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PREFACE

The aim of The Book of R: A First Course in Programming
and Statistics is to provide a relatively gentle yet infor-
mative exposure to the statistical software environ-
ment R, alongside some common statistical analyses,
so that readers may have a solid foundation from
which to eventually become experts in their own right. Learning to use
and program in a computing language is much the same as learning a new
spoken language. At the beginning, it is often difficult and may even be
daunting—but total immersion in and active use of the language is the
best and most effective way to become fluent.

Many beginner-style texts that focus on R can generally be allocated to
one of two categories: those concerned with computational aspects (that is,
syntax and general programming tools) and those with statistical modeling
and analysis in mind, often one particular type. In my experience, these
texts are extremely well written and contain a wealth of useful information
but better suit those individuals wanting to pursue fairly specific goals from
the outset. This text seeks to combine the best of both worlds, by first focus-
ing on only an appreciation and understanding of the language and its style
and subsequently using these skills to fully introduce, conduct, and inter-
pret some common statistical practices. The target audience is, quite simply,
anyone who wants to gain a foothold in R as a first computing language,



perhaps with the ultimate goal of completing their own statistical analyses.
This includes but is certainly not limited to undergraduates, postgraduates,
academic researchers, and practitioners in the applied sciences with little
or no experience in programming or statistics in general. A basic under-
standing of elementary mathematical behavior (for example, the order of
operations) and associated operators (for example, the summation symbol
Σ) is desirable, however.

In view of this, The Book of R can be used purely as a programming text
to learn the language or as an introductory statistical methods book with
accompanying instruction in R. Though it is not intended to represent an
exhaustive dictionary of the language, the aim is to provide readers with a
comfortable learning tool that eliminates the kind of foreboding many have
voiced to me when they have considered learning R from scratch. The fact
remains that there are usually many different ways to go about any given
task—something that holds true for most so-called high-level computer lan-
guages. What this text presents reflects my own way of thinking about learn-
ing and programming in R, which I approach less as a computer scientist
and more as an applied data analyst.

In part, I aim to provide a precursor and supplement to the work in The
Art of R Programming: A Tour of Statistical Software Design, the other R text pub-
lished by No Starch Press (2011), written by Professor Norman Matloff (Uni-
versity of California, Davis). In his detailed and well-received book, Professor
Matloff comes at R from a computer science angle, that is, treating it as a
programming language in its own right. As such, The Art of R Programming
provides some of the best descriptions of R’s computational features I’ve
yet to come across (for example, running external code such as C from R
programs, handling and manipulating R’s memory allocations, and formal
debugging strategies). Noteworthy, however, is the fact that some previous
experience and knowledge of programming in general goes a long way to
appreciating some of these more advanced features. It is my hope that my
text will not only provide this experience but do so in R itself at a comfort-
able pace, with statistical analyses as the supplementary motivation.

This text, which serves as a “traveler’s guide” as we backpack our way
through R country, was born out of a three-day introductory R workshop I
began teaching at the University of Otago in New Zealand. The emphasis
is on active use of the software, with each chapter containing a number of
code examples and practice exercises to encourage interaction. For those
readers not part of a workshop, just fire up your computer, grab a drink and
a comfy chair, and start with Chapter 1.

Tilman M. Davies
Dunedin, New Zealand
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INTRODUCTION

R plays a key role in a wide variety of
research and data analysis projects because

it makes many modern statistical methods,
both simple and advanced, readily available

and easy to use. It’s true, however, that a beginner to
R is often new to programming in general. As a begin-
ner, you must not only learn to use R for your specific
data analysis goals but also learn to think like a pro-
grammer. This is partly why R has a bit of a reputation
for being “hard”—but rest assured, that really isn’t
the case.

A Brief History of R

R is based heavily on the S language, first developed in the 1960s and 1970s
by researchers at Bell Laboratories in New Jersey (for an overview, see, for
example, Becker et al., 1988). With a view to embracing open source soft-
ware, R’s developers—Ross Ihaka and Robert Gentleman at the Univer-
sity of Auckland in New Zealand—released it in the early 1990s under the



GNU public license. (The software was named for Ross and Robert’s shared
first initial.) Since then, the popularity of R has grown in leaps and bounds
because of its unrivaled flexibility for data analysis and powerful graphical
tools, all available for the princely sum of nothing. Perhaps the most appeal-
ing feature of R is that any researcher can contribute code in the form of
packages (or libraries), so the rest of the world has fast access to developments
in statistics and data science (see Section A.2).

Today, the main source code archives are maintained by a dedicated
group known as the R Core Team, and R is a collaborative effort. You can find
the names of the most prominent contributors at http://www.r-project.org/ ;
these individuals deserve thanks for their ongoing efforts, which keep R alive
and at the forefront of statistical computing!

The team issues updated versions of R relatively frequently. There
have been substantial changes to the software over time, though neighbor-
ing versions are typically similar to one another. In this book, I’ve employed
versions 3.0.1–3.2.2. You can find out what’s new in the latest version by fol-
lowing the NEWS link on the relevant download page (see Appendix A).

About This Book

The Book of R is intended as a resource to help you get comfortable with R as
a first programming language and with the statistical thought that underpins
much of its use. The goal is to lay an introductory yet comprehensive foun-
dation for understanding the computational nature of modern data science.

The structure of the book seeks to progress naturally in content, first
focusing on R as a computational and programming tool and then shifting
gears to discuss using R for probability, statistics, and data exploration and
modeling. You’ll build your knowledge up progressively, and at the end
of each chapter, you’ll find a section summarizing the important code as a
quick reference.

Part I: The Language
Part I, which covers the fundamental syntax and object types used across all
aspects of R programming, is essential for beginners. Chapters 2 through 5
introduce the basics of simple arithmetic, assignment, and important object
types such as vectors, matrices, lists, and data frames. In Chapter 6, I’ll dis-
cuss the way R represents missing data values and distinguishes among dif-
ferent object types. You’re given a primer on plotting in Chapter 7, using
both built-in and contributed functionality (via the ggplot2 package—see
Wickham, 2009); this chapter lays the groundwork for graphical design
discussed later in the book. In Chapter 8, I’ll cover the fundamentals of
reading data in from external files, essential for analysis of your own col-
lected data.
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Part II: Programming
Part II focuses on getting you familiar with common R programming mech-
anisms. First, I’ll discuss functions and how they work in R in Chapter 9.
Then, in Chapter 10, I’ll cover loops and conditional statements, which
are used to control the flow, repetition, and execution of your code, before
teaching you how to write your own executable R functions in Chapter 11.
The examples in these two chapters are designed primarily to help you
understand the behavior of these mechanisms rather than to present real-
world analyses. I’ll also cover some additional topics, such as error handling
and measuring function execution time, in Chapter 12.

Part III: Statistics and Probability
With a firm handle on R as a language, you’ll shift your attention to sta-
tistical thinking in Part III. In Chapter 13, you’ll look at important termi-
nology used to describe variables; elementary summary statistics such as
the mean, variance, quantiles, and correlation; and how these statistics are
implemented in R. Turning again to plotting, Chapter 14 covers how to
visually explore your data (with both built-in and ggplot2 functionality) by
using and customizing common statistical plots such as histograms and box-
and-whisker plots. Chapter 15 gives an overview of the concepts of proba-
bility and random variables, and then you’ll look at the R implementation
and statistical interpretation of some common probability distributions in
Chapter 16.

Part IV: Statistical Testing and Modeling
In Part IV, you’re introduced to statistical hypothesis testing and linear
regression models. Chapter 17 introduces sampling distributions and con-
fidence intervals. Chapter 18 details hypothesis testing and p-values and
demonstrates implementation and interpretation using R; the common
ANOVA procedure is then discussed in Chapter 19. In Chapters 20 and 21,
you’ll explore linear regression modeling in detail, including model fitting
and dealing with different types of predictor variables, inferring and predict-
ing, and dealing with variable transformation and interactive effects. Round-
ing off Part IV, Chapter 22 discusses methods for selecting an appropriate
linear model and assessing the validity of that model with various diagnostic
tools.

Linear regression represents just one class of parametric models and is
a natural starting point for learning about statistical regression. Similarly,
the R syntax and output used to fit, summarize, predict from, and diagnose
linear models of this kind are much the same for other regression models—
so once you’re comfortable with these chapters, you’ll be ready to tackle the
R implementation of more complicated models covered in more advanced
texts with relative ease.
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Parts III and IV represent much of what you’d expect to see in first- and
second-year college statistics courses. My aim is to keep mathematical details
to a minimum and focus on implementation and interpretation. I’ll provide
references to other resources where necessary if you’re interested in looking
more closely at the underlying theory.

Part V: Advanced Graphics
The final part looks at some more advanced graphing skills. Chapter 23
shows you how to customize traditional R graphics, from handling the
graphics devices themselves to controlling the finer aspects of your plot’s
appearance. In Chapter 24, you’ll study the popular ggplot2 package further,
looking at more advanced features such as adding smooth scatterplot trends
and producing multiple plots via faceting. The final two chapters concen-
trate on higher dimensional plotting in R. Chapter 25 covers color handling
and 3D surface preparation before discussing contour plots, perspective
plots, and pixel images with the aid of multiple examples. Chapter 26 then
focuses on interactive plots and includes some simple instructions for plot-
ting multivariate parametric equations.

Though not strictly necessary, it’s helpful to have some familiarity with
the linear regression methods discussed in Part IV before tackling Part V,
since some of the examples in this last part use fitted linear models.

For Students

Like many, I first started becoming proficient in R programming and the
associated implementation of various statistical methods when I began my
graduate studies (at Massey University in Palmerston North, New Zealand).
Building on little more than the odd line or two of code I’d encountered
during my undergraduate years in Australia, being “thrown in the deep
end” had both benefits and drawbacks. While the immersion accelerated
my progress, not knowing what to do when things don’t work properly is of
course frustrating.

The Book of R thus represents the introduction to the language that I
wish I’d had when I began exploring R, combined with the first-year funda-
mentals of statistics as a discipline, implemented in R. With this book, you’ll
be able to build a well-rounded foundation for using R, both as a program-
ming language and as a tool for statistical analyses.

This book was written to be read cover to cover, like a story (albeit with
no plot twists!). Ideas are built up progressively within each part of the book,
so you can choose to begin either right at the start or where you feel your
level of knowledge currently stands. With that in mind, I offer the following
recommendation to students of R:

• Try not to be afraid of R. It will do exactly what you tell it to—nothing
more, nothing less. When something doesn’t work as expected or an
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error occurs, this literal behavior works in your favor. Look carefully at
the commands line by line and try to narrow down the instructions that
caused the fault.

• Attempt the practice exercises in this book and check your responses
using the suggested solutions—these are all available as R script files
on the book’s website, https://www.nostarch.com/bookofr/ . Download the
.zip file and extract the .R files, one for each part of the book. Open
these in your R session, and you can run the lines like you would any R
code to see the output. The short practice exercises are intended to be
exactly that—practice—as opposed to being hard or insurmountable
challenges. Everything you need to know to complete them will be con-
tained in the preceding sections of that chapter.

• Especially in your early stages of learning, when you’re away from this
book, try to use R for everything, even for very simple tasks or calcula-
tions you might usually do elsewhere. This will force your mind to switch
to “R mode” more often, and it’ll get you comfortable with the environ-
ment quickly.

For Instructors

This book was designed from a three-day workshop, Introduction to R, that
I run at my current institution—the Department of Mathematics & Statistics
at the University of Otago in New Zealand—as part of our Statistics Work-
shops for Postgraduates and Staff (SWoPS). Succeeded by the SWoPS class
Statistical Modelling 1 run by two of my colleagues, the aim of Introduction
to R is, as the title suggests, to address the programming side of things. Your
coverage will naturally depend on your target audience.

Here I provide some recommendations for using the content in The Book
of R for workshops of similar length to our SWoPS series. Particular chapters
can be added or dropped depending on your target workshop duration and
students’ existing knowledge.

• Programming Introduction: Parts I and II. Selected material from
Part V, especially Chapter 23 (Advanced Plot Customization), might
also suit the scope of such a course.

• Statistics Introduction: Parts III and IV. If a brief introduction to R is
warranted beforehand, consider dropping, for example, Chapter 13
from Part III and Chapters 17 through 19 in Part IV and building an
initial foundation from content in Part I.

• Intermediate Programming and Statistics: Parts II and IV. Consider
dropping Chapters 17 through 19 from Part IV to include Part V if the
audience is interested in developing plotting skills.

• R Graphics: Parts I and V. Depending on audience knowledge, mate-
rial from Part I may be dropped so that Chapter 14 in Part II can be
included (Basic Data Visualization).
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If you’re planning to go even further and structure a longer course
around this book, the practice exercises make particularly good lecture-
specific homework to keep students abreast of the skills in R and statistics as
they’re developed. The main points of the sections making up each chapter
are relatively easy to translate into slides that can be initially structured with
help from the Contents in Detail.
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1
GETTING STARTED

R provides a wonderfully flexible pro-
gramming environment favored by the

many researchers who do some form of
data analysis as part of their work. In this chap-

ter, I’ll lay the groundwork for learning and using R,
and I’ll cover the basics of installing R and certain
other things useful to know before you begin.

1.1 Obtaining and Installing R from CRAN

R is available for Windows, OS X, and Linux/Unix platforms. You can
find the main collection of R resources online at the Comprehensive R
Archive Network (CRAN). If you go to the R project website at http://
www.r-project.org/ , you can navigate to your local CRAN mirror and down-
load the installer relevant to your operating system. Section A.1 provides
step-by-step instructions for installing the base distribution of R.

http://www
http://www
.r-project.org/


1.2 Opening R for the First Time

R is an interpreted language that’s strictly case- and character-sensitive,
which means that you enter instructions that follow the specific syntactic
rules of the language into a console or command-line interface. The soft-
ware then interprets and executes your code and returns any results.

NOTE R is what’s known as a high-level programming language. Level refers to the level of
abstraction away from the fundamental details of computer execution. That is, a low-
level language will require you to do things such as manually manage the machine’s
memory allotments, but with a high-level language like R, you’re fortunately spared
these technicalities.

When you open the base R application, you’re presented with the R con-
sole; Figure 1-1 shows a Windows instance, and the left image of Figure 1-2
shows an example in OS X. This represents R’s naturally incorporated graph-
ical user interface (GUI) and is the typical way base R is used.

Figure 1-1: The R GUI application (default configuration) in Windows

The functional, “no-frills” appearance of the interpreter, which in my
experience has struck fear into the heart of many an undergraduate, stays
true to the very nature of the software—a blank statistical canvas that can be
used for any number of tasks. Note that OS X versions use separate windows
for the console and editor, though the default behavior in Windows is to
contain these panes in one overall R window (you can change this in the
GUI preferences if desired; see Section 1.2.1).
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Figure 1-2: The base R GUI console pane (left) and a newly opened instance of the
built-in editor (right) in OS X

NOTE As I’ve just done, in some parts of the book I’ll refer specifically to the R GUI func-
tionality in Windows and OS X, given these are the two platforms most often used
by beginners. As well as Linux/Unix implementations, it’s possible to run R from a
terminal or shell or, indeed, in the alternative batch mode. The vast majority of the
code in this book is functional in all settings.

1.2.1 Console and Editor Panes
There are two main window types used for programming R code and viewing
output. The console or command-line interpreter that you’ve just seen is
where all execution takes place and where all textual and numeric output
is provided. You may use the R console directly for calculations or plot-
ting. You would typically use the console directly only for short, one-line
commands.

By default, the R prompt that indicates R is ready and awaiting a com-
mand is a > symbol, after which a text cursor appears. To avoid confusion
with the mathematical symbol for “greater than,” >, some authors (including
me) prefer to modify this. A typical choice is R>, which you can set as follows:

> options(prompt="R> ")

R>

With the cursor placed at the prompt, you can use the keyboard up
arrow (↑) and down arrow (↓) to scroll through any previously executed
commands; this is useful when making small tweaks to earlier commands.

For longer chunks of code and function authoring, it’s more convenient
to first write your commands in an editor and execute them in the console
only when you’re done. There is a built-in R code editor for this purpose.
The R scripts you write in the code editor are essentially just plain-text files
with a .R extension.
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You can open a new instance of the editor using the R GUI menus (for
example, File→ New script in Windows or File→ New Document in OS X).

The built-in editor features useful keystroke shortcuts (for example,
CTRL-R in Windows or -RETURN in OS X), which automatically send lines
to the console. You can send the line upon which the cursor sits, a high-
lighted line, a highlighted part of a line, or a highlighted chunk of code.
It’s common to have multiple editor panes open at once when working
with multiple R script files; keystroke code submissions simply operate with
respect to the currently selected editor.

Aesthetics such as coloring and character spacing of both the console
and editor can be tailored to a certain extent depending on operating sys-
tem; you simply need to access the relevant GUI preferences. Figure 1-3
shows the R GUI preferences in Windows (Edit→ GUI preferences...) and
OS X (R→ Preferences...). A nice feature of the OS X version of R in partic-
ular is the code-coloring and bracket-matching features of the editor, which
can improve the authoring and readability of large sections of code.

Figure 1-3: The R GUI preferences in Windows (left) and OS X (right)

1.2.2 Comments
In R, you can annotate your code with comments. Just preface the line with
a hash mark (#), and anything that comes thereafter will be ignored by the
interpreter. For example, executing the following in the console does noth-
ing but return you to the prompt:

R> # This is a comment in R...

Comments can also appear after valid commands.

R> 1+1 # This works out the result of one plus one!

[1] 2

If you’re writing large or complicated chunks of code in the editor, this
kind of annotation can be helpful to others (and indeed yourself!) who want
to understand what your code is doing.
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1.2.3 Working Directory
An active R session always has a working directory associated with it. Unless
you explicitly specify a file path when saving or importing data files, R will
use this working directory by default. To check the location of the working
directory, use the getwd function.

R> getwd()

[1] "/Users/tdavies"

File paths are always enclosed in double quotation marks, and R uses
forward slashes, not backslashes, when specifying folder locations.

You can change the default working directory using the function setwd as
follows:

R> setwd("/folder1/folder2/folder3/")

You may provide your file path relative to the current working directory
or fully (in other words, from a system root drive). Either way, it’s important
to remember the case-sensitive nature of R; you must match the naming and
punctuation of any folder names exactly or an error will be thrown.

That said, if you’re happy specifying a full and correct file path each
time you read or write a file (there are further details in Chapter 8), then
the files of interest can reside anywhere on your computer.

1.2.4 Installing and Loading R Packages
The base installation of R comes ready with a plethora of built-in commands
for numeric calculations, common statistical analyses, and plotting and visu-
alization. These commands can be used right from the outset and needn’t
be loaded or imported in any way. I’ll refer to these functions as built-in or
ready-to-use in this text.

Slightly more specialized techniques and data sets are contained within
packages (also referred to as libraries) of code. Using contributed packages is
common, and you’ll be doing so throughout this book, so it’s important to
get comfortable with installing and loading the required libraries.

Section A.2 covers the relevant details concerning package download
and installation from CRAN, but I’ll provide a brief overview here.

Loading Packages

There are a small number of recommended packages that are included with
the base distribution of R (listed in Section A.2.2). They don’t need to be
installed separately, but to use them, you do need to load them by calling
library. One package you’ll use in this book is named MASS (Venables and
Ripley, 2002). To load it (or any other installed package) and gain access to
its functions and data sets, simply execute library at the prompt as follows:

R> library("MASS")
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Note that calling library provides access to a package’s functionality only
for the running R session. When you close R and reopen a fresh instance,
you’ll need to reload any packages you want to use.

Installing Packages

There are thousands of contributed packages not included with the typi-
cal R installation; to make them loadable in R, you must first download and
install them from a repository (usually CRAN). The easiest way to do this is
by using the install.packages function directly at the R prompt (for this you
need an Internet connection).

For example, one such package is ks (Duong, 2007), which you’ll use in
Chapter 26. Executing the following will attempt to connect to your local
CRAN mirror and download and install ks, as well as several packages upon
which it relies (called dependencies):

R> install.packages("ks")

The console will show running output as the procedure completes.
You need to install a package only once; thereafter it will be available for

your R installation. You can then load your installed package (like ks) in any
newly opened instance of R with a call to library, just as you did for MASS.

Section A.2.3 offers more detail on package installation.

Updating Packages

The maintainers of contributed packages periodically provide version
updates to fix bugs and add functionality. Every so often, you might want
to check for updates to your collection of installed packages.

From the R prompt, a simple execution of the following will attempt
to connect to your set package repository (defaulting to CRAN), looking
for versions of all your installed packages that are later than those you cur-
rently have.

R> update.packages()

Section A.3 offers more details about updating packages and Section A.4
discusses alternate CRAN mirrors and repositories.

1.2.5 Help Files and Function Documentation
R comes with a suite of help files that you can use to search for particular
functionality, to seek information on precisely how to use a given function
and specify its arguments (in other words, the values or objects you supply
to the function when you execute it), to clarify the role of arguments in the
operations, to learn about the form of any returned objects, to provide pos-
sible examples of using the function, and to get details on how you may cite
any software or data sets.

8 Chapter 1



To access the help file for a given command or other object, use the
help function at the console prompt or use the convenient shortcut ?. For
example, consider the ready-to-use arithmetic mean function, mean.

R> ?mean

This brings up the file in the top image of Figure 1-4.

Figure 1-4: The R help file for the function mean (top) and the results
of a help search for the string "mean" (bottom) in OS X
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If you’re unsure of the precise name of the desired function, you can
search the documentation across all installed packages using a character
string (a statement in double quotes) passed to help.search, or you can use
?? as a shortcut:

R> ??"mean"

This search brings up a list of functions, with their host packages and
descriptions, whose help files contain the string of interest, as shown in
the bottom image of Figure 1-4 (the highlighted entry is that of the arith-
metic mean).

All help files follow the general format shown in the top image of Fig-
ure 1-4; the length and level of detail in the file typically reflect the complex-
ity of the operations carried out by the function. Most help files include the
first three items listed here; the others are common but optional:

• The Description section provides a short statement about the operations
carried out.

• The Usage section specifies the form of the function in terms of how it
should be passed to the R console, including the natural order of the
arguments and any default values (these are the arguments that are
shown being set using =).

• In the Arguments section, more detail is given about what each argument
does as well as the possible values that they’re allowed to take on.

• The nature of the object that’s returned by the function (if anything) is
specified under Value.

• The References section provides relevant citations for the command or
the methodology behind the function.

• The help files for related functions are linked under See Also.

• Examples provides executable code that you can copy and paste into the
console, demonstrating the function in action.

There are several more possible fields in a help file—functions with
longer explanations often contain a Details section after the Arguments sec-
tion. Common traps or mistakes made when calling the function are usually
placed in a Warnings section, and additional information can be placed in
Notes.

Although they might seem quite technical when you’re first starting out,
I encourage you to keep looking at help files—even if you already know
how a function works, getting comfortable with the layout and interpreta-
tion of function documentation is an important part of becoming a skilled
R user.
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1.2.6 Third-Party Editors
The popularity of R has led to the development of several third-party code
editors, or compatible plug-ins for existing code-editing software, which can
enhance the experience of coding in R.

One noteworthy contribution is RStudio (RStudio Team, 2015). This is
an integrated development environment (IDE) available free for Windows,
OS X, and Linux/Unix platforms at http://www.rstudio.com/ .

RStudio includes a direct-submission code editor; separate point-and-
click panes for things such as file, object, and project management; and the
creation of markup documents incorporating R code. Appendix B discusses
RStudio and its capabilities in more detail.

Use of any third-party editor, including RStudio, is by and large a per-
sonal choice. In this book, I simply assume use of the typical base R GUI
application.

1.3 Saving Work and Exiting R

So, you’ve spent a few hours coding in R, and it’s time to go home? When
saving work in R, you need to pay attention to two things: any R objects that
have been created (and stored) in the active session and any R script files
written in an editor.

1.3.1 Workspaces
You can use the GUI menu items (for example, under File in Windows
and under Workspace in OS X) to save and load workspace image files. An
R workspace image contains all the information held in the R session at the
time of exit and is saved as a .RData file. This will include all objects you’ve
created and stored (in other words, assigned) within the session (you’ll see
how to do this in Chapter 2), including those that may have been loaded
from a previous workspace file.

Essentially, loading a stored .RData file allows you to “pick up from
where you left off.” At any point in an R session, you can execute ls() at
the prompt, which lists all objects, variables, and user-defined functions cur-
rently present in the active workspace.

Alternatively, you can use the R commands save.image and load at the
console for handling workspace .RData files—both of these functions con-
tain a file argument to which you pass the folder location and name of the
target .RData file (see the corresponding help files ?save.image and ?load for
further information on the use of these).

Note that saving a workspace image in this way doesn’t retain the func-
tionality of any contributed packages that were loaded in the previously
active R session. As mentioned in Section 1.2.4, you’ll need to use library

to load any packages required for your work for each new instance of R.
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The quickest way to exit the software is to enter q() at the prompt:

R> q()

Simply exiting the console will bring up a dialog asking if you’d like to
save the workspace image. In this case, choosing to save doesn’t open a file
browser to name your file but creates (or overwrites) a “no-name” file as one
with a .RData extension in your working directory (refer to Section 1.2.3).

If an unnamed .RData file exists in the default working directory when a
new instance of R is opened, the program will automatically load that default
workspace—if that has happened, you’ll be notified in the console’s wel-
coming text.

NOTE Alongside the .RData file, R will automatically save a file containing a line-by-line
history of all the commands executed in the console for the associated workspace in
the same directory. It’s this history file that allows you to scroll through the previously
executed commands using the keyboard directional arrows, as noted earlier.

1.3.2 Scripts
For tasks requiring anything more than a handful of commands, you’ll usu-
ally want to work in the built-in code editor. Saving your R scripts is there-
fore at least as important as saving a workspace, if not more so.

You save editor scripts as plain-text files with a .R extension (noted
in Section 1.2.1); this allows your operating system to associate these files
with the R software by default. To save a script from the built-in editor,
ensure the editor is selected and navigate to File→ Save (or press CTRL-S in
Windows or -S in OS X). To open a previously saved script, select File→
Open script... (CTRL-O) in Windows or File→ Open Document... ( -O)
in OS X.

Often, you won’t really need to save a workspace .RData file if your
script files are saved. Once any required commands in a saved script are
reexecuted in a new R console, the objects created previously (in other
words, those contained within a saved .RData file) are simply created once
more. This can be useful if you’re working on multiple problems at one
time because it can be easy to mistakenly overwrite an object when relying
solely on the stand-alone default workspace. Keeping your collection of R
scripts separate is therefore a simple way to separate several projects without
needing to worry about overwriting anything important that may have been
stored previously.

R also provides a number of ways to write individual objects, such as data
sets and image files of plots, to disk, which you’ll look at in Chapter 8.

1.4 Conventions

There are a few conventions that I’ll follow in the book in terms of the pre-
sentation of code and math.
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1.4.1 Coding
As mentioned, when you code with R, you execute the code in the console,
possibly after writing the script in the editor first. The following points are
important to note:

• R code that’s entered directly into the console for execution is shown
preceded by the R> prompt and followed by any output displayed in the
console. For example, this simple division of 14 by 6 from Section 2.1.1
looks like this:

R> 14/6

[1] 2.333333

If you want to copy and paste console-executed code directly from
the text of the book, you’ll need to omit the R> prompt.

• For code that should be written in the editor before it’s executed in the
console, I’ll indicate as such in the text, and the code will be presented
without the prompt. The following example comes from Section 10.2.1:

for(myitem in 5:7){

cat("--BRACED AREA BEGINS--\n")

cat("the current item is",myitem,"\n")

cat("--BRACED AREA ENDS--\n\n")

}

My preferred coding style for actually arranging and indenting
chunks like this will become clearer as you progress through Part II.

• There will occasionally be long lines of code (either executed directly
in the console or written in the editor), which, for the sake of print,
will be split and indented at an appropriate place to fit on the page. For
example, take this line from Section 6.2.2:

R> ordfac.vec <- factor(x=c("Small","Large","Large","Regular","Small"),

levels=c("Small","Regular","Large"),

ordered=TRUE)

Although this can be written out as a single line when using R, you
can also break the line at a comma (in this case, the comma splits the
arguments to the factor function). The broken line will be indented
to the level of the opening parenthesis of the relevant command. Both
forms—single line or split—will work as is when executed in R.

• Lastly, in a couple of places when the console output is lengthy and not
essential to your understanding of the immediate content, it’ll be sup-
pressed for the sake of print. I’ll say as much in the text, and you’ll see
the designation --snip-- in the affected chunk of code.
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1.4.2 Math and Equation References
Mathematics and equations that appear in this book (mainly in Parts III and
IV) will be kept to a minimum, but in certain sections it’s sometimes neces-
sary to go into a little mathematical detail.

Important equations will be presented on their own lines as follows:

y = 4x (1.1)

Equations will be numbered in parentheses, and references to equations
in the text will use these parenthesized numbers and may or may not be pre-
ceded by Equation. For example, you’ll see equations referred to in both of
the following ways:

• As per Equation (1.1), y = 8 when x = 2.

• Inversion of (1.1) yields x = y/4.

When numeric results are rounded to a certain level, they’ll be noted as
such according to the number of decimal places, abbreviated to d.p. Here are
some examples:

• The famous geometric value pi is given as π = 3.1416 (rounded to
4 d.p.).

• Setting x = 1.467 in (1.1) results in y = 5.87 (2 d.p.).

1.4.3 Exercises
Exercise questions in the chapters appear in a rounded box:

Exercise 1.1

a. Say the word cat aloud.

b. Using nothing but your brain, find the solution to 1 + 1.

These exercises are optional. If you choose to tackle them, they are
intended to be completed as and when they appear in the text to help you
practice and understand the specific content and code in the sections that
immediately precede them.

All the data sets you’ll use in this book for coding and plotting examples
are available either as built-in R objects or as part of one of the contributed
packages you’ll install. These packages will be noted in the relevant text (for
a short list of them, see Section A.2.3).

For your convenience, all code examples in this book, as well as com-
plete suggested solutions to all practice exercises, are freely available as
runnable .R script files on the book’s web page at https://www.nostarch.com/
bookofr/ .
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You should think of these solutions (and any accompanying commen-
tary) as “suggested” because there are often multiple ways to perform a cer-
tain task in R, which may not necessarily be any better or worse than those
supplied.

Important Code in This Chapter

Function/operator Brief description First occurrence

options Set various R options Section 1.2.1, p. 5
# A comment (ignored by interpreter) Section 1.2.2, p. 6
getwd Print current working directory Section 1.2.3, p. 7
setwd Set current working directory Section 1.2.3, p. 7
library Load an installed package Section 1.2.4, p. 7
install.packages Download and install package Section 1.2.4, p. 8
update.packages Update installed packages Section 1.2.4, p. 8
help or ? Function/object help file Section 1.2.5, p. 9
help.search or ?? Search help files Section 1.2.5, p. 10
q Quit R Section 1.3.1, p. 12
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2
NUMERICS, ARITHMETIC,

ASSIGNMENT, AND VECTORS

In its simplest role, R can function as a
mere desktop calculator. In this chapter,

I’ll discuss how to use the software for arith-
metic. I’ll also show how to store results so you

can use them later in other calculations. Then, you’ll
learn about vectors, which let you handle multiple
values at once. Vectors are an essential tool in R, and much of R’s function-
ality was designed with vector operations in mind. You’ll examine some
common and useful ways to manipulate vectors and take advantage of
vector-oriented behavior.

2.1 R for Basic Math

All common arithmetic operations and mathematical functionality are ready
to use at the console prompt. You can perform addition, subtraction, mul-
tiplication, and division with the symbols +, -, *, and /, respectively. You can
create exponents (also referred to as powers or indices) using ^, and you con-
trol the order of the calculations in a single command using parentheses, ().



2.1.1 Arithmetic
In R, standard mathematical rules apply throughout and follow the usual
left-to-right order of operations: parentheses, exponents, multiplication,
division, addition, subtraction (PEMDAS). Here’s an example in the
console:

R> 2+3

[1] 5

R> 14/6

[1] 2.333333

R> 14/6+5

[1] 7.333333

R> 14/(6+5)

[1] 1.272727

R> 3^2

[1] 9

R> 2^3

[1] 8

You can find the square root of any non-negative number with the sqrt

function. You simply provide the desired number to x as shown here:

R> sqrt(x=9)

[1] 3

R> sqrt(x=5.311)

[1] 2.304561

When using R, you’ll often find that you need to translate a complicated
arithmetic formula into code for evaluation (for example, when replicating
a calculation from a textbook or research paper). The next examples pro-
vide a mathematically expressed calculation, followed by its execution in R:

102
+

3 × 60
8
− 3

R> 10^2+3*60/8-3

[1] 119.5

53 × (6 − 2)

61 − 3 + 4

R> 5^3*(6-2)/(61-3+4)

[1] 8.064516

22+1 − 4 + 64−22.25− 1
4

R> 2^(2+1)-4+64^((-2)^(2.25-1/4))

[1] 16777220

(

0.44 × (1 − 0.44)

34

)
1
2 R> (0.44*(1-0.44)/34)^(1/2)

[1] 0.08512966
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Note that some R expressions require extra parentheses that aren’t
present in the mathematical expressions. Missing or misplaced parenthe-
ses are common causes of arithmetic errors in R, especially when dealing
with exponents. If the exponent is itself an arithmetic calculation, it must
always appear in parentheses. For example, in the third expression, you
need parentheses around 2.25-1/4. You also need to use parentheses if the
number being raised to some power is a calculation, such as the expression
22+1 in the third example. Note that R considers a negative number a cal-
culation because it interprets, for example, -2 as -1*2. This is why you also
need the parentheses around -2 in that same expression. It’s important to
highlight these issues early because they can easily be overlooked in large
chunks of code.

2.1.2 Logarithms and Exponentials
You’ll often see or read about researchers performing a log transformation
on certain data. This refers to rescaling numbers according to the logarithm.
When supplied a given number x and a value referred to as a base, the log-
arithm calculates the power to which you must raise the base to get to x.
For example, the logarithm of x = 243 to base 3 (written mathematically as
log3 243) is 5, because 35

= 243. In R, the log transformation is achieved
with the log function. You supply log with the number to transform, assigned
to the value x, and the base, assigned to base, as follows:

R> log(x=243,base=3)

[1] 5

Here are some things to consider:

• Both x and the base must be positive.

• The log of any number x when the base is equal to x is 1.

• The log of x = 1 is always 0, regardless of the base.

There’s a particular kind of log transformation often used in mathe-
matics called the natural log, which fixes the base at a special mathematical
number—Euler’s number. This is conventionally written as e and is approxi-
mately equal to 2.718.

Euler’s number gives rise to the exponential function, defined as e raised
to the power of x, where x can be any number (negative, zero, or positive).
The exponential function, f (x) = ex , is often written as exp(x) and repre-
sents the inverse of the natural log such that exp(loge x) = loge exp(x) = x.
The R command for the exponential function is exp:

R> exp(x=3)

[1] 20.08554
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The default behavior of log is to assume the natural log:

R> log(x=20.08554)

[1] 3

You must provide the value of base yourself if you want to use a value
other than e. The logarithm and exponential functions are mentioned here
because they become important later on in the book—many statistical meth-
ods use them because of their various helpful mathematical properties.

2.1.3 E-Notation
When R prints large or small numbers beyond a certain threshold of sig-
nificant figures, set at 7 by default, the numbers are displayed using the
classic scientific e-notation. The e-notation is typical to most programming
languages—and even many desktop calculators—to allow easier interpreta-
tion of extreme values. In e-notation, any number x can be expressed as xey,
which represents exactly x × 10y . Consider the number 2,342,151,012,900.
It could, for example, be represented as follows:

• 2.3421510129e12, which is equivalent to writing 2.3421510129 × 1012

• 234.21510129e10, which is equivalent to writing 234.21510129 × 1010

You could use any value for the power of y, but standard e-notation
uses the power that places a decimal just after the first significant digit. Put
simply, for a positive power +y, the e-notation can be interpreted as “move
the decimal point y positions to the right.” For a negative power −y, the inter-
pretation is “move the decimal point y positions to the left.” This is exactly
how R presents e-notation:

R> 2342151012900

[1] 2.342151e+12

R> 0.0000002533

[1] 2.533e-07

In the first example, R shows only the first seven significant digits and
hides the rest. Note that no information is lost in any calculations even if
R hides digits; the e-notation is purely for ease of readability by the user, and
the extra digits are still stored by R, even though they aren’t shown.

Finally, note that R must impose constraints on how extreme a number
can be before it is treated as either infinity (for large numbers) or zero (for
small numbers). These constraints depend on your individual system, and
I’ll discuss the technical details a bit more in Section 6.1.1. However, any
modern desktop system can be trusted to be precise enough by default for
most computational and statistical endeavors in R.
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Exercise 2.1

a. Using R, verify that

6a + 42
34.2−3.62

= 29.50556

when a = 2.3.

b. Which of the following squares negative 4 and adds 2 to the
result?
i. (-4)^2+2

ii. -4^2+2

iii. (-4)^(2+2)

iv. -4^(2+2)

c. Using R, how would you calculate the square root of half of the
average of the numbers 25.2, 15, 16.44, 15.3, and 18.6?

d. Find loge 0.3.

e. Compute the exponential transform of your answer to (d).

f. Identify R’s representation of −0.00000000423546322 when
printing this number to the console.

2.2 Assigning Objects

So far, R has simply displayed the results of the example calculations by
printing them to the console. If you want to save the results and perform fur-
ther operations, you need to be able to assign the results of a given computa-
tion to an object in the current workspace. Put simply, this amounts to storing
some item or result under a given name so it can be accessed later, without
having to write out that calculation again. In this book, I will use the terms
assign and store interchangeably. Note that some programming books refer
to a stored object as a variable because of the ability to easily overwrite that
object and change it to something different, meaning that what it represents
can vary throughout a session. However, I’ll use the term object throughout
this book because we’ll discuss variables in Part III as a distinctly different
statistical concept.

You can specify an assignment in R in two ways: using arrow notation
(<-) and using a single equal sign (=). Both methods are shown here:

R> x <- -5

R> x

[1] -5
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R> x = x + 1 # this overwrites the previous value of x

R> x

[1] -4

R> mynumber = 45.2

R> y <- mynumber*x

R> y

[1] -180.8

R> ls()

[1] "mynumber" "x" "y"

As you can see from these examples, R will display the value assigned
to an object when you enter the name of the object into the console. When
you use the object in subsequent operations, R will substitute the value you
assigned to it. Finally, if you use the ls command (which you saw in Sec-
tion 1.3.1) to examine the contents of the current workspace, it will reveal
the names of the objects in alphabetical order (along with any other previ-
ously created items).

Although = and <- do the same thing, it is wise (for the neatness of code
if nothing else) to be consistent. Many users choose to stick with the <-, how-
ever, because of the potential for confusion in using the = (for example, I
clearly didn’t mean that x is mathematically equal to x + 1 earlier). In this
book, I’ll do the same and reserve = for setting function arguments, which
begins in Section 2.3.2. So far you’ve used only numeric values, but note that
the procedure for assignment is universal for all types and classes of objects,
which you’ll examine in the coming chapters.

Objects can be named almost anything as long as the name begins with
a letter (in other words, not a number), avoids symbols (though underscores
and periods are fine), and avoids the handful of “reserved” words such as
those used for defining special values (see Section 6.1) or for controlling
code flow (see Chapter 10). You can find a useful summary of these naming
rules in Section 9.1.2.

Exercise 2.2

a. Create an object that stores the value 32 × 41/8.

b. Overwrite your object in (a) by itself divided by 2.33. Print the
result to the console.

c. Create a new object with the value −8.2 × 10−13.

d. Print directly to the console the result of multiplying (b) by (c).
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2.3 Vectors

Often you’ll want to perform the same calculations or comparisons upon
multiple entities, for example if you’re rescaling measurements in a data set.
You could do this type of operation one entry at a time, though this is clearly
not ideal, especially if you have a large number of items. R provides a far
more efficient solution to this problem with vectors.

For the moment, to keep things simple, you’ll continue to work with
numeric entries only, though many of the utility functions discussed here
may also be applied to structures containing non-numeric values. You’ll start
looking at these other kinds of data in Chapter 4.

2.3.1 Creating a Vector
The vector is the essential building block for handling multiple items in R.
In a numeric sense, you can think of a vector as a collection of observations
or measurements concerning a single variable, for example, the heights of
50 people or the number of coffees you drink daily. More complicated data
structures may consist of several vectors. The function for creating a vector
is the single letter c, with the desired entries in parentheses separated by
commas.

R> myvec <- c(1,3,1,42)

R> myvec

[1] 1 3 1 42

Vector entries can be calculations or previously stored items (including
vectors themselves).

R> foo <- 32.1

R> myvec2 <- c(3,-3,2,3.45,1e+03,64^0.5,2+(3-1.1)/9.44,foo)

R> myvec2

[1] 3.000000 -3.000000 2.000000 3.450000 1000.000000 8.000000

[7] 2.201271 32.100000

This code created a new vector assigned to the object myvec2. Some of
the entries are defined as arithmetic expressions, and it’s the result of the
expression that’s stored in the vector. The last element, foo, is an existing
numeric object defined as 32.1.

Let’s look at another example.

R> myvec3 <- c(myvec,myvec2)

R> myvec3

[1] 1.000000 3.000000 1.000000 42.000000 3.000000 -3.000000

[7] 2.000000 3.450000 1000.000000 8.000000 2.201271 32.100000

This code creates and stores yet another vector, myvec3, which contains
the entries of myvec and myvec2 appended together in that order.
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2.3.2 Sequences, Repetition, Sorting, and Lengths
Here I’ll discuss some common and useful functions associated with R vec-
tors: seq, rep, sort, and length.

Let’s create an equally spaced sequence of increasing or decreasing
numeric values. This is something you’ll need often, for example when
programming loops (see Chapter 10) or when plotting data points (see
Chapter 7). The easiest way to create such a sequence, with numeric values
separated by intervals of 1, is to use the colon operator.

R> 3:27

[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

The example 3:27 should be read as “from 3 to 27 (by 1).” The result is
a numeric vector just as if you had listed each number manually in parenthe-
ses with c. As always, you can also provide either a previously stored value or
a (strictly parenthesized) calculation when using the colon operator:

R> foo <- 5.3

R> bar <- foo:(-47+1.5)

R> bar

[1] 5.3 4.3 3.3 2.3 1.3 0.3 -0.7 -1.7 -2.7 -3.7 -4.7

[12] -5.7 -6.7 -7.7 -8.7 -9.7 -10.7 -11.7 -12.7 -13.7 -14.7 -15.7

[23] -16.7 -17.7 -18.7 -19.7 -20.7 -21.7 -22.7 -23.7 -24.7 -25.7 -26.7

[34] -27.7 -28.7 -29.7 -30.7 -31.7 -32.7 -33.7 -34.7 -35.7 -36.7 -37.7

[45] -38.7 -39.7 -40.7 -41.7 -42.7 -43.7 -44.7

Sequences with seq

You can also use the seq command, which allows for more flexible creations
of sequences. This ready-to-use function takes in a from value, a to value, and
a by value, and it returns the corresponding sequence as a numeric vector.

R> seq(from=3,to=27,by=3)

[1] 3 6 9 12 15 18 21 24 27

This gives you a sequence with intervals of 3 rather than 1. Note that
these kinds of sequences will always start at the from number but will not
always include the to number, depending on what you are asking R to
increase (or decrease) them by. For example, if you are increasing (or
decreasing) by even numbers and your sequence ends in an odd number,
the final number won’t be included. Instead of providing a by value, how-
ever, you can specify a length.out value to produce a vector with that many
numbers, evenly spaced between the from and to values.

R> seq(from=3,to=27,length.out=40)

[1] 3.000000 3.615385 4.230769 4.846154 5.461538 6.076923 6.692308

[8] 7.307692 7.923077 8.538462 9.153846 9.769231 10.384615 11.000000

[15] 11.615385 12.230769 12.846154 13.461538 14.076923 14.692308 15.307692
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[22] 15.923077 16.538462 17.153846 17.769231 18.384615 19.000000 19.615385

[29] 20.230769 20.846154 21.461538 22.076923 22.692308 23.307692 23.923077

[36] 24.538462 25.153846 25.769231 26.384615 27.000000

By setting length.out to 40, you make the program print exactly 40 evenly
spaced numbers from 3 to 27.

For decreasing sequences, the use of by must be negative. Here’s an
example:

R> foo <- 5.3

R> myseq <- seq(from=foo,to=(-47+1.5),by=-2.4)

R> myseq

[1] 5.3 2.9 0.5 -1.9 -4.3 -6.7 -9.1 -11.5 -13.9 -16.3 -18.7 -21.1

[13] -23.5 -25.9 -28.3 -30.7 -33.1 -35.5 -37.9 -40.3 -42.7 -45.1

This code uses the previously stored object foo as the value for from and
uses the parenthesized calculation (-47+1.5) as the to value. Given those
values (that is, with foo being greater than (-47+1.5)), the sequence can
progress only in negative steps; directly above, we set by to be -2.4. The use
of length.out to create decreasing sequences, however, remains the same
(it would make no sense to specify a “negative length”). For the same from

and to values, you can create a decreasing sequence of length 5 easily, as
shown here:

R> myseq2 <- seq(from=foo,to=(-47+1.5),length.out=5)

R> myseq2

[1] 5.3 -7.4 -20.1 -32.8 -45.5

There are shorthand ways of calling these functions, which you’ll learn
about in Chapter 9, but in these early stages I’ll stick with the explicit usage.

Repetition with rep

Sequences are extremely useful, but sometimes you may want simply to
repeat a certain value. You do this using rep.

R> rep(x=1,times=4)

[1] 1 1 1 1

R> rep(x=c(3,62,8.3),times=3)

[1] 3.0 62.0 8.3 3.0 62.0 8.3 3.0 62.0 8.3

R> rep(x=c(3,62,8.3),each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3

R> rep(x=c(3,62,8.3),times=3,each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0

[16] 62.0 8.3 8.3

The rep function is given a single value or a vector of values as its
argument x, as well as a value for the arguments times and each. The value
for times provides the number of times to repeat x, and each provides the

Numerics, Arithmetic, Assignment, and Vectors 25



number of times to repeat each element of x. In the first line directly above,
you simply repeat a single value four times. The other examples first use
rep and times on a vector to repeat the entire vector, then use each to repeat
each member of the vector, and finally use both times and each to do both
at once.

If neither times nor each is specified, R’s default is to treat the values of
times and each as 1 so that a call of rep(x=c(3,62,8.3)) will just return the origi-
nally supplied x with no changes.

As with seq, you can include the result of rep in a vector of the same data
type, as shown in the following example:

R> foo <- 4

R> c(3,8.3,rep(x=32,times=foo),seq(from=-2,to=1,length.out=foo+1))

[1] 3.00 8.30 32.00 32.00 32.00 32.00 -2.00 -1.25 -0.50 0.25 1.00

Here, I’ve constructed a vector where the third to sixth entries (inclu-
sive) are governed by the evaluation of a rep command—the single value
32 repeated foo times (where foo is stored as 4). The last five entries are the
result of an evaluation of seq, namely a sequence from −2 to 1 of length
foo+1 (5).

Sorting with sort

Sorting a vector in increasing or decreasing order of its elements is another
simple operation that crops up in everyday tasks. The conveniently named
sort function does just that.

R> sort(x=c(2.5,-1,-10,3.44),decreasing=FALSE)

[1] -10.00 -1.00 2.50 3.44

R> sort(x=c(2.5,-1,-10,3.44),decreasing=TRUE)

[1] 3.44 2.50 -1.00 -10.00

R> foo <- seq(from=4.3,to=5.5,length.out=8)

R> foo

[1] 4.300000 4.471429 4.642857 4.814286 4.985714 5.157143 5.328571 5.500000

R> bar <- sort(x=foo,decreasing=TRUE)

R> bar

[1] 5.500000 5.328571 5.157143 4.985714 4.814286 4.642857 4.471429 4.300000

R> sort(x=c(foo,bar),decreasing=FALSE)

[1] 4.300000 4.300000 4.471429 4.471429 4.642857 4.642857 4.814286 4.814286

[9] 4.985714 4.985714 5.157143 5.157143 5.328571 5.328571 5.500000 5.500000

The sort function is pretty straightforward. You supply a vector to the
function as the argument x, and a second argument, decreasing, indicates
the order in which you want to sort. This argument takes a type of value
you have not yet met: one of the all-important logical values. A logical value
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can be only one of two specific, case-sensitive values: TRUE or FALSE. Gener-
ally speaking, logicals are used to indicate the satisfaction or failure of a
certain condition, and they form an integral part of all programming lan-
guages. You’ll investigate logical values in R in greater detail in Section 4.1.
For now, in regards to sort, you set decreasing=FALSE to sort from smallest to
largest, and decreasing=TRUE sorts from largest to smallest.

Finding a Vector Length with length

I’ll round off this section with the length function, which determines how
many entries exist in a vector given as the argument x.

R> length(x=c(3,2,8,1))

[1] 4

R> length(x=5:13)

[1] 9

R> foo <- 4

R> bar <- c(3,8.3,rep(x=32,times=foo),seq(from=-2,to=1,length.out=foo+1))

R> length(x=bar)

[1] 11

Note that if you include entries that depend on the evaluation of other
functions (in this case, calls to rep and seq), length tells you the number of
entries after those inner functions have been executed.

Exercise 2.3

a. Create and store a sequence of values from 5 to −11 that pro-
gresses in steps of 0.3.

b. Overwrite the object from (a) using the same sequence with the
order reversed.

c. Repeat the vector c(-1,3,-5,7,-9) twice, with each element
repeated 10 times, and store the result. Display the result sorted
from largest to smallest.

d. Create and store a vector that contains, in any configuration, the
following:
i. A sequence of integers from 6 to 12 (inclusive)
ii. A threefold repetition of the value 5.3
iii. The number −3
iv. A sequence of nine values starting at 102 and ending at the

number that is the total length of the vector created in (c)

e. Confirm that the length of the vector created in (d) is 20.
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2.3.3 Subsetting and Element Extraction
In all the results you have seen printed to the console screen so far, you may
have noticed a curious feature. Immediately to the left of the output there
is a square-bracketed [1]. When the output is a long vector that spans the
width of the console and wraps onto the following line, another square-
bracketed number appears to the left of the new line. These numbers rep-
resent the index of the entry directly to the right. Quite simply, the index
corresponds to the position of a value within a vector, and that’s precisely why
the first value always has a [1] next to it (even if it’s the only value and not
part of a larger vector).

These indexes allow you to retrieve specific elements from a vector,
which is known as subsetting. Suppose you have a vector called myvec in
your workspace. Then there will be exactly length(x=myvec) entries in myvec,
with each entry having a specific position: 1 or 2 or 3, all the way up to
length(x=myvec). You can access individual elements by asking R to return
the values of myvec at specific locations, done by entering the name of the
vector followed by the position in square brackets.

R> myvec <- c(5,-2.3,4,4,4,6,8,10,40221,-8)

R> length(x=myvec)

[1] 10

R> myvec[1]

[1] 5

R> foo <- myvec[2]

R> foo

[1] -2.3

R> myvec[length(x=myvec)]

[1] -8

Because length(x=myvec) results in the final index of the vector (in this
case, 10), entering this phrase in the square brackets extracts the final ele-
ment, -8. Similarly, you could extract the second-to-last element by subtract-
ing 1 from the length; let’s try that, and also assign the result to a new object:

R> myvec.len <- length(x=myvec)

R> bar <- myvec[myvec.len-1]

R> bar

[1] 40221

As these examples show, the index may be an arithmetic function of
other numbers or previously stored values. You can assign the result to a new
object in your workspace in the usual way with the <- notation. Using your
knowledge of sequences, you can use the colon notation with the length of

28 Chapter 2



the specific vector to obtain all possible indexes for extracting a particular
element in the vector:

R> 1:myvec.len

[1] 1 2 3 4 5 6 7 8 9 10

You can also delete individual elements by using negative versions of the
indexes supplied in the square brackets. Continuing with the objects myvec,
foo, bar, and myvec.len as defined earlier, consider the following operations:

R> myvec[-1]

[1] -2.3 4.0 4.0 4.0 6.0 8.0 10.0 40221.0 -8.0

This line produces the contents of myvec without the first element. Sim-
ilarly, the following code assigns to the object baz the contents of myvec with-
out its second element:

R> baz <- myvec[-2]

R> baz

[1] 5 4 4 4 6 8 10 40221 -8

Again, the index in the square brackets can be the result of an appropri-
ate calculation, like so:

R> qux <- myvec[-(myvec.len-1)]

R> qux

[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0 -8.0

Using the square-bracket operator to extract or delete values from a
vector does not change the original vector you are subsetting unless you
explicitly overwrite the vector with the subsetted version. For instance, in
this example, qux is a new vector defined as myvec without its second-to-last
entry, but in your workspace, myvec itself remains unchanged. In other words,
subsetting vectors in this way simply returns the requested elements, which
can be assigned to a new object if you want, but doesn’t alter the original
object in the workspace.

Now, suppose you want to piece myvec back together from qux and bar.
You can call something like this:

R> c(qux[-length(x=qux)],bar,qux[length(x=qux)])

[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0 40221.0

[10] -8.0

As you can see, this line uses c to reconstruct the vector in three parts:
qux[-length(x=qux)], the object bar defined earlier, and qux[length(x=qux)]. For
clarity, let’s examine each part in turn.
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• qux[-length(x=qux)]

This piece of code returns the values of qux except for its last element.

R> length(x=qux)

[1] 9

R> qux[-length(x=qux)]

[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0

Now you have a vector that’s the same as the first eight entries of
myvec.

• bar

Earlier, you had stored bar as the following:

R> bar <- myvec[myvec.len-1]

R> bar

[1] 40221

This is precisely the second-to-last element of myvec that qux is missing.
So, you’ll slot this value in after qux[-length(x=qux)].

• qux[length(x=qux)]

Finally, you just need the last element of qux that matches the last ele-
ment of myvec. This is extracted from qux (not deleted as earlier) using
length.

R> qux[length(x=qux)]

[1] -8

Now it should be clear how calling these three parts of code together, in
this order, is one way to reconstruct myvec.

As with most operations in R, you are not restricted to doing things one
by one. You can also subset objects using vectors of indexes, rather than indi-
vidual indexes. Using myvec again from earlier, you get the following:

R> myvec[c(1,3,5)]

[1] 5 4 4

This returns the first, third, and fifth elements of myvec in one go.
Another common and convenient subsetting tool is the colon operator
(discussed in Section 2.3.2), which creates a sequence of indexes. Here’s
an example:

R> 1:4

[1] 1 2 3 4

R> foo <- myvec[1:4]

R> foo

[1] 5.0 -2.3 4.0 4.0
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This provides the first four elements of myvec (recall that the colon oper-
ator returns a numeric vector, so there is no need to explicitly wrap this
using c).

The order of the returned elements depends entirely upon the index
vector supplied in the square brackets. For example, using foo again, con-
sider the order of the indexes and the resulting extractions, shown here:

R> length(x=foo):2

[1] 4 3 2

R> foo[length(foo):2]

[1] 4.0 4.0 -2.3

Here you extracted elements starting at the end of the vector, working
backward. You can also use rep to repeat an index, as shown here:

R> indexes <- c(4,rep(x=2,times=3),1,1,2,3:1)

R> indexes

[1] 4 2 2 2 1 1 2 3 2 1

R> foo[indexes]

[1] 4.0 -2.3 -2.3 -2.3 5.0 5.0 -2.3 4.0 -2.3 5.0

This is now something a little more general than strictly “subsetting”—
by using an index vector, you can create an entirely new vector of any length
consisting of some or all of the elements in the original vector. As shown
earlier, this index vector can contain the desired element positions in any
order and can repeat indexes.

You can also return the elements of a vector after deleting more than
one element. For example, to create a vector after removing the first and
third elements of foo, you can execute the following:

R> foo[-c(1,3)]

[1] -2.3 4.0

Note that it is not possible to mix positive and negative indexes in a
single index vector.

Sometimes you’ll need to overwrite certain elements in an existing vec-
tor with new values. In this situation, you first specify the elements you want
to overwrite using square brackets and then use the assignment operator to
assign the new values. Here’s an example:

R> bar <- c(3,2,4,4,1,2,4,1,0,0,5)

R> bar

[1] 3 2 4 4 1 2 4 1 0 0 5

R> bar[1] <- 6

R> bar

[1] 6 2 4 4 1 2 4 1 0 0 5
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This overwrites the first element of bar, which was originally 3, with a
new value, 6. When selecting multiple elements, you can specify a single
value to replace them all or enter a vector of values that’s equal in length
to the number of elements selected to replace them one for one. Let’s try
this with the same bar vector from earlier.

R> bar[c(2,4,6)] <- c(-2,-0.5,-1)

R> bar

[1] 6.0 -2.0 4.0 -0.5 1.0 -1.0 4.0 1.0 0.0 0.0 5.0

Here you overwrite the second, fourth, and sixth elements with -2, -0.5,
and -1, respectively; all else remains the same. By contrast, the following
code overwrites elements 7 to 10 (inclusive), replacing them all with 100:

R> bar[7:10] <- 100

R> bar

[1] 6.0 -2.0 4.0 -0.5 1.0 -1.0 100.0 100.0 100.0 100.0 5.0

Finally, it’s important to mention that this section has focused on just
one of the two main methods, or “flavors,” of vector element extraction in R.
You’ll look at the alternative method, using logical flags, in Section 4.1.5.

Exercise 2.4

a. Create and store a vector that contains the following, in this
order:
– A sequence of length 5 from 3 to 6 (inclusive)
– A twofold repetition of the vector c(2,-5.1,-33)

– The value 7
42 + 2

b. Extract the first and last elements of your vector from (a), storing
them as a new object.

c. Store as a third object the values returned by omitting the first
and last values of your vector from (a).

d. Use only (b) and (c) to reconstruct (a).

e. Overwrite (a) with the same values sorted from smallest to
largest.

f. Use the colon operator as an index vector to reverse the order
of (e), and confirm this is identical to using sort on (e) with
decreasing=TRUE.

g. Create a vector from (c) that repeats the third element of (c)
three times, the sixth element four times, and the last ele-
ment once.

32 Chapter 2



h. Create a new vector as a copy of (e) by assigning (e) as is to a
newly named object. Using this new copy of (e), overwrite the
first, the fifth to the seventh (inclusive), and the last element with
the values 99 to 95 (inclusive), respectively.

2.3.4 Vector-Oriented Behavior
Vectors are so useful because they allow R to carry out operations on
multiple elements simultaneously with speed and efficiency. This vector-
oriented, vectorized, or element-wise behavior is a key feature of the language,
one that you will briefly examine here through some examples of rescaling
measurements.

Let’s start with this simple example:

R> foo <- 5.5:0.5

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

R> foo-c(2,4,6,8,10,12)

[1] 3.5 0.5 -2.5 -5.5 -8.5 -11.5

This code creates a sequence of six values between 5.5 and 0.5, in incre-
ments of 1. From this vector, you subtract another vector containing 2, 4,
6, 8, 10, and 12. What does this do? Well, quite simply, R matches up the
elements according to their respective positions and performs the operation
on each corresponding pair of elements. The resulting vector is obtained by
subtracting the first element of c(2,4,6,8,10,12) from the first element of foo
(5.5 − 2 = 3.5), then by subtracting the second element of c(2,4,6,8,10,12)
from the second element of foo (4.5 − 4 = 0.5), and so on. Thus, rather than
inelegantly cycling through each element in turn (as you could do by hand
or by explicitly using a loop), R permits a fast and efficient alternative using
vector-oriented behavior. Figure 2-1 illustrates how you can understand this
type of calculation and highlights the fact that the positions of the elements
are crucial in terms of the final result; elements in differing positions have
no effect on one another.

The situation is made more complicated when using vectors of different
lengths, which can happen in two distinct ways. The first is when the length
of the longer vector can be evenly divided by the length of the shorter vec-
tor. The second is when the length of the longer vector cannot be divided by
the length of the shorter vector—this is usually unintentional on the user’s
part. In both of these situations, R essentially attempts to replicate, or recycle,
the shorter vector by as many times as needed to match the length of the
longer vector, before completing the specified operation. As an example,
suppose you wanted to alternate the entries of foo shown earlier as negative
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Vector A Vector BOperation/Comparison

[1] [1]

[2] [2]

[n] [n]

... ...

Figure 2-1: A conceptual diagram of the element-wise behavior of a
comparison or operation carried out on two vectors of equal length
in R. Note that the operation is performed by matching up the element
positions.

and positive. You could explicitly multiply foo by c(1,-1,1,-1,1,-1), but you
don’t need to write out the full latter vector. Instead, you can write the
following:

R> bar <- c(1,-1)

R> foo*bar

[1] 5.5 -4.5 3.5 -2.5 1.5 -0.5

Here bar has been applied repeatedly throughout the length of foo until
completion. The left plot of Figure 2-2 illustrates this particular example.
Now let’s see what happens when the vector lengths are not evenly divisible.

R> baz <- c(1,-1,0.5,-0.5)

R> foo*baz

[1] 5.50 -4.50 1.75 -1.25 1.50 -0.50

Warning message:

In foo * baz :

longer object length is not a multiple of shorter object length

Here you see that R has matched the first four elements of foo with the
entirety of baz, but it’s not able to fully repeat the vector again. The repeti-
tion has been attempted, with the first two elements of baz being matched
with the last two of the longer foo, though not without a protest from R,
which notifies the user of the unevenly divisible lengths (you’ll look at warn-
ings in more detail in Section 12.1). The plot on the right in Figure 2-2 illus-
trates this example.
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bar*

[1] [1]

[6] [2]

foo baz*

[1] [1]

[2] [2]

[6] [2]

foo

[3] [1] [3] [3]

[4] [2]

[5] [1] [5] [1]

[2] [2]

[4] [4]

Figure 2-2: An element-wise operation on two vectors of differing lengths.
Left: foo multiplied by bar; lengths are evenly divisible. Right: foo multiplied
by baz; lengths are not evenly divisible, and a warning is issued.

As I noted in Section 2.3.3, you can consider single values to be vectors
of length 1, so you can use a single value to repeat an operation on all the
values of a vector of any length. Here’s an example, using the same vec-
tor foo:

R> qux <- 3

R> foo+qux

[1] 8.5 7.5 6.5 5.5 4.5 3.5

This is far easier than executing foo+c(3,3,3,3,3,3) or the more general
foo+rep(x=3,times=length(x=foo)). Operating on vectors using a single value in
this fashion is quite common, such as if you want to rescale or translate a set
of measurements by some constant amount.

Another benefit of vector-oriented behavior is that you can use vector-
ized functions to complete potentially laborious tasks. For example, if you
want to sum or multiply all the entries in a numeric vector, you can just use
a built-in function.
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Recall foo, shown earlier:

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

You can find the sum of these six elements with

R> sum(foo)

[1] 18

and their product with

R> prod(foo)

[1] 162.4219

Far from being just convenient, vectorized functions are faster and more
efficient than an explicitly coded iterative approach like a loop. The main
takeaway from these examples is that much of R’s functionality is designed
specifically for certain data structures, ensuring neatness of code as well as
optimization of performance.

Lastly, as mentioned earlier, this vector-oriented behavior applies in the
same way to overwriting multiple elements. Again using foo, examine the
following:

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

R> foo[c(1,3,5,6)] <- c(-99,99)

R> foo

[1] -99.0 4.5 99.0 2.5 -99.0 99.0

You see four specific elements being overwritten by a vector of length 2,
which is recycled in the same fashion you’re familiar with. Again, the length
of the vector of replacements must evenly divide the number of elements
being overwritten, or else a warning similar to the one shown earlier will be
issued when R cannot complete a full-length recycle.

Exercise 2.5

a. Convert the vector c(2,0.5,1,2,0.5,1,2,0.5,1) to a vector of only
1s, using a vector of length 3.

b. The conversion from a temperature measurement in degrees
Fahrenheit F to Celsius C is performed using the following
equation:

C =
5
9

(F − 32)
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Use vector-oriented behavior in R to convert the tempera-
tures 45, 77, 20, 19, 101, 120, and 212 in degrees Fahrenheit to
degrees Celsius.

c. Use the vector c(2,4,6) and the vector c(1,2) in conjunction with
rep and * to produce the vector c(2,4,6,4,8,12).

d. Overwrite the middle four elements of the resulting vector from
(c) with the two recycled values -0.1 and -100, in that order.

Important Code in This Chapter

Function/operator Brief description First occurrence

+, *, -, /, ^ Arithmetic Section 2.1, p. 17
sqrt Square root Section 2.1.1, p. 18
log Logarithm Section 2.1.2, p. 19
exp Exponential Section 2.1.2, p. 19
<-, = Object assignment Section 2.2, p. 21
c Vector creation Section 2.3.1, p. 23
:, seq Sequence creation Section 2.3.2, p. 24
rep Value/vector repetition Section 2.3.2, p. 25
sort Vector sorting Section 2.3.2, p. 26
length Determine vector length Section 2.3.2, p. 27
[ ] Vector subsetting/extraction Section 2.3.3, p. 28
sum Sum all vector elements Section 2.3.4, p. 36
prod Multiply all vector elements Section 2.3.4, p. 36
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3
MATRICES AND ARRAYS

By now, you have a solid handle on
using vectors in R. A matrix is simply sev-

eral vectors stored together. Whereas the
size of a vector is described by its length, the

size of a matrix is specified by a number of rows and
a number of columns. You can also create higher-
dimensional structures that are referred to as arrays.
In this chapter, we’ll begin by looking at how to work
with matrices before increasing the dimension to form
arrays.

3.1 Defining a Matrix

The matrix is an important mathematical construct, and it’s essential to
many statistical methods. You typically describe a matrix A as an m × n

matrix; that is, A will have exactly m rows and n columns. This means A

will have a total of mn entries, with each entry ai, j having a unique position
given by its specific row (i = 1, 2, . . ., m) and column ( j = 1, 2, . . ., n).



You can therefore express a matrix as follows:

A =



a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

. . .
. . .

...

am,1 am,2 . . . am,n


To create a matrix in R, use the aptly named matrix command, providing

the entries of the matrix to the data argument as a vector:

R> A <- matrix(data=c(-3,2,893,0.17),nrow=2,ncol=2)

R> A

[,1] [,2]

[1,] -3 893.00

[2,] 2 0.17

You must make sure that the length of this vector matches exactly
with the number of desired rows (nrow) and columns (ncol). You can
elect not to supply nrow and ncol when calling matrix, in which case R’s
default behavior is to return a single-column matrix of the entries in
data. For example, matrix(data=c(-3,2,893,0.17)) would be identical to
matrix(data=c(-3,2,893,0.17),nrow=4,ncol=1).

3.1.1 Filling Direction
It’s important to be aware of how R fills up the matrix using the entries from
data. Looking at the previous example, you can see that the 2 × 2 matrix A

has been filled in a column-by-column fashion when reading the data entries
from left to right. You can control how R fills in data using the argument
byrow, as shown in the following examples:

R> matrix(data=c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=FALSE)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Here, I’ve instructed R to provide a 2 × 3 matrix containing the digits
1 through 6. By using the optional argument byrow and setting it to FALSE,
you explicitly tell R to fill this 2 × 3 structure in a column-wise fashion, by
filling each column before moving to the next, reading the data argument
vector from left to right. This is R’s default handling of the matrix function,
so if the byrow argument isn’t supplied, the software will assume byrow=FALSE.
Figure 3-1 illustrates this behavior.
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c( 1, 2, 3, 4, 5, 6 )
/ | / | | /

//



1

�

3

−

�

5

=

�2 4 6


Figure 3-1: Filling a 2 × 3 matrix in a column-wise fashion with byrow=FALSE (R default)

Now, let’s repeat the same line of code but set byrow=TRUE.

R> matrix(data=c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

The resulting 2 × 3 structure has now been filled in a row-wise fashion,
as shown in Figure 3-2.

c( 1, 2, 3, 4, 5, 6 )
/ | /

//


1 2 3

/

4 5 6
| /


Figure 3-2: Filling a 2 × 3 matrix in a row-wise fashion with byrow=TRUE

3.1.2 Row and Column Bindings
If you have multiple vectors of equal length, you can quickly build a matrix
by binding together these vectors using the built-in R functions, rbind and
cbind. You can either treat each vector as a row (by using the command
rbind) or treat each vector as a column (using the command cbind). Say
you have the two vectors 1:3 and 4:6. You can reconstruct the 2 × 3 matrix
in Figure 3-2 using rbind as follows:

R> rbind(1:3,4:6)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6
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Here, rbind has bound together the vectors as two rows of a matrix, with
the top-to-bottom order of the rows matching the order of the vectors sup-
plied to rbind. The same matrix could be constructed as follows, using cbind:

R> cbind(c(1,4),c(2,5),c(3,6))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Here, you have three vectors each of length 2. You use cbind to glue
together these three vectors in the order they were supplied, and each vec-
tor becomes a column of the resulting matrix.

3.1.3 Matrix Dimensions
Another useful function, dim, provides the dimensions of a matrix stored in
your workspace.

R> mymat <- rbind(c(1,3,4),5:3,c(100,20,90),11:13)

R> mymat

[,1] [,2] [,3]

[1,] 1 3 4

[2,] 5 4 3

[3,] 100 20 90

[4,] 11 12 13

R> dim(mymat)

[1] 4 3

R> nrow(mymat)

[1] 4

R> ncol(mymat)

[1] 3

R> dim(mymat)[2]

[1] 3

Having defined a matrix mymat using rbind, you can confirm its dimen-
sions with dim, which returns a vector of length 2; dim always supplies the
number of rows first, followed by the number of columns. You can also use
two related functions: nrow (which provides the number of rows only) and
ncol (which provides the number of columns only). In the last command
shown, you use dim and your knowledge of vector subsetting to extract the
same result that ncol would give you.

3.2 Subsetting

Extracting and subsetting elements from matrices in R is much like extract-
ing elements from vectors. The only complication is that you now have
an additional dimension. Element extraction still uses the square-bracket

42 Chapter 3



operator, but now it must be performed with both a row and a column posi-
tion, given strictly in the order of [row,column]. Let’s start by creating a 3 × 3
matrix, which I’ll use for the examples in this section.

R> A <- matrix(c(0.3,4.5,55.3,91,0.1,105.5,-4.2,8.2,27.9),nrow=3,ncol=3)

R> A

[,1] [,2] [,3]

[1,] 0.3 91.0 -4.2

[2,] 4.5 0.1 8.2

[3,] 55.3 105.5 27.9

To tell R to “look at the third row of A and give me the element from the
second column,” you execute the following:

R> A[3,2]

[1] 105.5

As expected, you’re given the element at position [3,2].

3.2.1 Row, Column, and Diagonal Extractions
To extract an entire row or column from a matrix, you simply specify the
desired row or column number and leave the other value blank. It’s impor-
tant to note that you must still include the comma that separates the row and
column numbers—this is how R distinguishes between a request for a row
and a request for a column. The following returns the second column of A:

R> A[,2]

[1] 91.0 0.1 105.5

The following examines the first row:

R> A[1,]

[1] 0.3 91.0 -4.2

Note that whenever an extraction (or deletion, covered in a moment)
results in a single value, single row, or single column, R will always return
stand-alone vectors comprised of the requested values. You can also per-
form more complicated extractions, for example requesting whole rows or
columns, or multiples rows or columns, where the result must be returned as
a new matrix of the appropriate dimensions. Consider the following subsets:

R> A[2:3,]

[,1] [,2] [,3]

[1,] 4.5 0.1 8.2

[2,] 55.3 105.5 27.9

R> A[,c(3,1)]

[,1] [,2]
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[1,] -4.2 0.3

[2,] 8.2 4.5

[3,] 27.9 55.3

R> A[c(3,1),2:3]

[,1] [,2]

[1,] 105.5 27.9

[2,] 91.0 -4.2

The first command returns the second and third rows of A, and the sec-
ond command returns the third and first columns of A. The last command
accesses the third and first rows of A, in that order, and from those rows it
returns the second and third column elements.

You can also identify the values along the diagonal of a square matrix
(that is, a matrix with an equal number of rows and columns) using the diag

command.

R> diag(x=A)

[1] 0.3 0.1 27.9

This returns a vector with the elements along the diagonal of A, starting
at A[1,1].

3.2.2 Omitting and Overwriting
To delete or omit elements from a matrix, you again use square brackets,
but this time with negative indexes. The following provides A without its sec-
ond column:

R> A[,-2]

[,1] [,2]

[1,] 0.3 -4.2

[2,] 4.5 8.2

[3,] 55.3 27.9

The following removes the first row from A and retrieves the third and
second column values, in that order, from the remaining two rows:

R> A[-1,3:2]

[,1] [,2]

[1,] 8.2 0.1

[2,] 27.9 105.5

The following produces A without its first row and second column:

R> A[-1,-2]

[,1] [,2]

[1,] 4.5 8.2

[2,] 55.3 27.9
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Lastly, this deletes the first row and then deletes the second and third
columns from the result:

R> A[-1,-c(2,3)]

[1] 4.5 55.3

Note that this final operation leaves you with only the last two elements
of the first column of A, so this result is returned as a stand-alone vector
rather than a matrix.

To overwrite particular elements, or entire rows or columns, you identify
the elements to be replaced and then assign the new values, as you did with
vectors in Section 2.3.3. The new elements can be a single value, a vector of
the same length as the number of elements to be replaced, or a vector whose
length evenly divides the number of elements to be replaced. To illustrate
this, let’s first create a copy of A and call it B.

R> B <- A

R> B

[,1] [,2] [,3]

[1,] 0.3 91.0 -4.2

[2,] 4.5 0.1 8.2

[3,] 55.3 105.5 27.9

The following overwrites the second row of B with the sequence 1, 2,
and 3:

R> B[2,] <- 1:3

R> B

[,1] [,2] [,3]

[1,] 0.3 91.0 -4.2

[2,] 1.0 2.0 3.0

[3,] 55.3 105.5 27.9

The following overwrites the second column elements of the first and
third rows with 900:

R> B[c(1,3),2] <- 900

R> B

[,1] [,2] [,3]

[1,] 0.3 900 -4.2

[2,] 1.0 2 3.0

[3,] 55.3 900 27.9

Next, you replace the third column of B with the values in the third
row of B.

R> B[,3] <- B[3,]

R> B

[,1] [,2] [,3]

Matrices and Arrays 45



[1,] 0.3 900 55.3

[2,] 1.0 2 900.0

[3,] 55.3 900 27.9

To try R’s vector recycling, let’s now overwrite the first and third column
elements of rows 1 and 3 (a total of four elements) with the two values -7

and 7.

R> B[c(1,3),c(1,3)] <- c(-7,7)

R> B

[,1] [,2] [,3]

[1,] -7 900 -7

[2,] 1 2 900

[3,] 7 900 7

The vector of length 2 has replaced the four elements in a column-wise
fashion. The replacement vector c(-7,7) overwrites the elements at positions
(1,1) and (3,1), in that order, and is then repeated to overwrite (1,3) and
(3,3), in that order.

To highlight the role of index order on matrix element replacement,
consider the following example:

R> B[c(1,3),2:1] <- c(65,-65,88,-88)

R> B

[,1] [,2] [,3]

[1,] 88 65 -7

[2,] 1 2 900

[3,] -88 -65 7

The four values in the replacement vector have overwritten the four
specified elements, again in a column-wise fashion. In this case, because
I specified the first and second columns in reverse order, the overwriting
proceeded accordingly, filling the second column before moving to the
first. Position (1,2) is matched with 65, followed by (3,2) with -65; then (1,1)

becomes 88, and (3,1) becomes -88.
If you just want to replace the diagonal of a square matrix, you can avoid

explicit indexes and directly overwrite the values using the diag command.

R> diag(x=B) <- rep(x=0,times=3)

R> B

[,1] [,2] [,3]

[1,] 0 65 -7

[2,] 1 0 900

[3,] -88 -65 0
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Exercise 3.1

a. Construct and store a 4 × 2 matrix that’s filled row-wise with the
values 4.3, 3.1, 8.2, 8.2, 3.2, 0.9, 1.6, and 6.5, in that order.

b. Confirm the dimensions of the matrix from (a) are 3 × 2 if you
remove any one row.

c. Overwrite the second column of the matrix from (a) with that
same column sorted from smallest to largest.

d. What does R return if you delete the fourth row and the first col-
umn from (c)? Use matrix to ensure the result is a single-column
matrix, rather than a vector.

e. Store the bottom four elements of (c) as a new 2 × 2 matrix.

f. Overwrite, in this order, the elements of (c) at positions (4,2),
(1,2), (4,1), and (1,1) with − 1

2 of the two values on the diagonal
of (e).

3.3 Matrix Operations and Algebra

You can think of matrices in R from two perspectives. First, you can use
these structures purely as a computational tool in programming to store and
operate on results, as you’ve seen so far. Alternatively, you can use matrices
for their mathematical properties in relevant calculations, such as the use
of matrix multiplication for expressing regression model equations. This
distinction is important because the mathematical behavior of matrices is
not always the same as the more generic data handling behavior. Here I’ll
briefly describe some special matrices, as well as some of the most common
mathematical operations involving matrices, and the corresponding func-
tionality in R. If the mathematical behavior of matrices isn’t of interest to
you, you can skip this section for now and refer to it later as needed.

3.3.1 Matrix Transpose
For any m × n matrix A, its transpose, A⊤, is the n × m matrix obtained by
writing either its columns as rows or its rows as columns.

Here’s an example:

If A =

[
2 5 2
6 1 4

]
, then A⊤ =


2 6
5 1
2 4

 .
In R, the transpose of a matrix is found with the function t. Let’s create a

new matrix and then transpose it.
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R> A <- rbind(c(2,5,2),c(6,1,4))

R> A

[,1] [,2] [,3]

[1,] 2 5 2

[2,] 6 1 4

R> t(A)

[,1] [,2]

[1,] 2 6

[2,] 5 1

[3,] 2 4

If you “transpose the transpose” of A, you’ll recover the original matrix.

R> t(t(A))

[,1] [,2] [,3]

[1,] 2 5 2

[2,] 6 1 4

3.3.2 Identity Matrix
The identity matrix written as Im is a particular kind of matrix used in mathe-
matics. It’s a square m × m matrix with ones on the diagonal and zeros
elsewhere.

Here’s an example:

I3 =


1 0 0
0 1 0
0 0 1


You can create an identity matrix of any dimension using the standard

matrix function, but there’s a quicker approach using diag. Earlier, I used
diag on an existing matrix to extract or overwrite its diagonal elements. You
can also use it as follows:

R> A <- diag(x=3)

R> A

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

Here you see diag can be used to easily produce an identity matrix. To
clarify, the behavior of diag depends on what you supply to it as its argu-
ment x. If, as earlier, x is a matrix, diag will retrieve the diagonal elements
of the matrix. If x is a single positive integer, as is the case here, then diag

will produce the identity matrix of the corresponding dimension. You can
find more uses of diag on its help page.
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3.3.3 Scalar Multiple of a Matrix
A scalar value is just a single, univariate value. Multiplication of any matrix A

by a scalar value a results in a matrix in which every individual element is
multiplied by a.

Here’s an example:

2 ×
[
2 5 2
6 1 4

]
=

[
4 10 4

12 2 8

]

R will perform this multiplication in an element-wise manner, as you
might expect. Scalar multiplication of a matrix is carried out using the stan-
dard arithmetic * operator.

R> A <- rbind(c(2,5,2),c(6,1,4))

R> a <- 2

R> a*A

[,1] [,2] [,3]

[1,] 4 10 4

[2,] 12 2 8

3.3.4 Matrix Addition and Subtraction
Addition or subtraction of two matrices of equal size is also performed in
an element-wise fashion. Corresponding elements are added or subtracted
from one another, depending on the operation.

Here’s an example:


2 6
5 1
2 4

 −

−2 8.1
3 8.2
6 −9.8

 =


4 −2.1
2 −7.2
−4 13.8


You can add or subtract any two equally sized matrices with the standard

+ and - symbols.

R> A <- cbind(c(2,5,2),c(6,1,4))

R> A

[,1] [,2]

[1,] 2 6

[2,] 5 1

[3,] 2 4

R> B <- cbind(c(-2,3,6),c(8.1,8.2,-9.8))

R> B

[,1] [,2]

[1,] -2 8.1

[2,] 3 8.2

[3,] 6 -9.8

R> A-B
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[,1] [,2]

[1,] 4 -2.1

[2,] 2 -7.2

[3,] -4 13.8

3.3.5 Matrix Multiplication
In order to multiply two matrices A and B of size m × n and p × q, it must
be true that n = p. The resulting matrix A · B will have the size m × q. The
elements of the product are computed in a row-by-column fashion, where
the value at position (AB)i, j is computed by element-wise multiplication of
the entries in row i of A by the entries in column j of B, summing the result.

Here’s an example:

[
2 5 2
6 1 4

]
·


3 −3
−1 1
1 5


=

[
2×3 + 5×(−1) + 2×1 2×(−3) + 5×(1) + 2×5
6×3 + 1×(−1) + 4×1 6×(−3) + 1×(1) + 4×5

]

=

[
3 9
21 3

]

Note that, in general, multiplication of appropriately sized matrices
(denoted, say, with C and D) is not commutative; that is, CD , DC.

Unlike addition, subtraction, and scalar multiplication, matrix multipli-
cation is not a simple element-wise calculation, and the standard * operator
cannot be used. Instead, you must use R’s matrix product operator, written
with percent symbols as %*%. Before you try this operator, let’s first store the
two example matrices and check to make sure the number of columns in the
first matrix matches the number of rows in the second matrix using dim.

R> A <- rbind(c(2,5,2),c(6,1,4))

R> dim(A)

[1] 2 3

R> B <- cbind(c(3,-1,1),c(-3,1,5))

R> dim(B)

[1] 3 2

This confirms the two matrices are compatible for multiplication, so you
can proceed.

R> A%*%B

[,1] [,2]

[1,] 3 9

[2,] 21 3
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You can show that matrix multiplication is noncommutative using
the same two matrices. Switching the order of multiplication gives you
an entirely different result.

R> B%*%A

[,1] [,2] [,3]

[1,] -12 12 -6

[2,] 4 -4 2

[3,] 32 10 22

3.3.6 Matrix Inversion
Some square matrices can be inverted. The inverse of a matrix A is denoted
A−1. An invertible matrix satisfies the following equation:

AA−1
= Im

Here’s an example of a matrix and its inverse:

[
3 1
4 2

]−1

=

[
1 −0.5
−2 1.5

]

Matrices that are not invertible are referred to as singular. Inverting
a matrix is often necessary when solving equations with matrices and has
important practical ramifications. There are several different approaches
to matrix inversion, and these calculations can become extremely computa-
tionally expensive as you increase the size of a matrix. We won’t go into too
much detail here, but if you’re interested, see Golub and Van Loan (1989)
for formal discussions.

For now, I’ll just show you the R function solve as one option for invert-
ing a matrix.

R> A <- matrix(data=c(3,4,1,2),nrow=2,ncol=2)

R> A

[,1] [,2]

[1,] 3 1

[2,] 4 2

R> solve(A)

[,1] [,2]

[1,] 1 -0.5

[2,] -2 1.5

You can also verify that the product of these two matrices (using matrix
multiplication rules) results in the 2 × 2 identity matrix.
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R> A%*%solve(A)

[,1] [,2]

[1,] 1 0

[2,] 0 1

Exercise 3.2

a. Calculate the following:

2
7
*.,

1 2
2 4
7 6

 −

10 20
30 40
50 60


+/-

b. Store these two matrices:

A =


1
2
7

 B =


3
4
8


Which of the following multiplications are possible? For

those that are, compute the result.
i. A · B
ii. A⊤ · B
iii. B⊤ · (A · A⊤)

iv. (A · A⊤) · B⊤
v. [(B · B⊤) + (A · A⊤) − 100I3]−1

c. For

A =



2 0 0 0
0 3 0 0
0 0 5 0
0 0 0 −1


,

confirm that A−1 · A − I4 provides a 4 × 4 matrix of zeros.

3.4 Multidimensional Arrays

Just as a matrix (a “rectangle” of elements) is the result of increasing the
dimension of a vector (a “line” of elements), the dimension of a matrix can
be increased to get more complex data structures. In R, vectors and matrices
can be considered special cases of the more general array, which is how I’ll
refer to these types of structures when they have more than two dimensions.

So, what’s the next step up from a matrix? Well, just as a matrix is con-
sidered to be a collection of vectors of equal length, a three-dimensional
array can be considered to be a collection of equally dimensioned matrices,
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providing you with a rectangular prism of elements. You still have a fixed
number of rows and a fixed number of columns, as well as a new third
dimension called a layer. Figure 3-3 illustrates a three-row, four-column,
two-layer (3 × 4 × 2) array.

[1,1,2] [1,2,2] [1,3,2] [1,4,2]

[1,1,1] [1,2,1] [1,3,1] [1,4,1]

[2,1,2] [2,2,2] [2,3,2] [2,4,2]

[2,1,1] [2,2,1] [2,3,1] [2,4,1]

[3,1,2] [3,2,2] [3,3,2] [3,4,2]

[3,1,1] [3,2,1] [3,3,1] [3,4,1]

Figure 3-3: A conceptual diagram of a 3 × 4 × 2 array. The index of each element
is given at the corresponding position. These indexes are provided in the strict order
of [row,column,layer].

3.4.1 Definition
To create these data structures in R, use the array function and specify the
individual elements in the data argument as a vector. Then specify size in
the dim argument as another vector with a length corresponding to the
number of dimensions. Note that array fills the entries of each layer with
the elements in data in a strict column-wise fashion, starting with the first
layer. Consider the following example:

R> AR <- array(data=1:24,dim=c(3,4,2))

R> AR

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

, , 2
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[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

This gives you an array of the same size as in Figure 3-3—each of the
two layers constitutes a 3 × 4 matrix. In this example, note the order of the
dimensions supplied to dim: c(rows,columns,layers). Just like a single matrix,
the product of the dimension sizes of an array will yield the total number
of elements. As you increase the dimension further, the dim vector must be
extended accordingly. For example, a four-dimensional array is the next
step up and can be thought of as blocks of three-dimensional arrays. Suppose
you had a four-dimensional array comprised of three copies of AR, the three-
dimensional array just defined. This new array can be stored in R as follows
(once again, the array is filled column-wise):

R> BR <- array(data=rep(1:24,times=3),dim=c(3,4,2,3))

R> BR

, , 1, 1

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

, , 2, 1

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

, , 1, 2

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

, , 2, 2

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

, , 1, 3
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[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

, , 2, 3

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

With BR you now have three copies of AR. Each of these copies is split into
its two layers so R can print the object to the screen. As before, the rows are
indexed by the first digit, the columns by the second digit, and the layers by
the third digit. The new fourth digit indexes the blocks.

3.4.2 Subsets, Extractions, and Replacements
Even though high-dimensional objects can be difficult to conceptualize,
R indexes them consistently. This makes extracting elements from these
structures straightforward now that you know how to subset matrices—you
just have to keep using commas in the square brackets as separators of the
dimensions being accessed. This is highlighted in the examples that follow.

Suppose you want the second row of the second layer of the previously
created array AR. You just enter these exact dimensional locations of AR in
square brackets.

R> AR[2,,2]

[1] 14 17 20 23

The desired elements have been extracted as a vector of length 4. If you
want specific elements from this vector, say the third and first, in that order,
you can call the following:

R> AR[2,c(3,1),2]

[1] 20 14

Again, this literal method of subsetting makes dealing with even high-
dimensional objects in R manageable.

An extraction that results in multiple vectors will be presented as
columns in the returned matrix. For example, to extract the first rows of
both layers of AR, you enter this:

R> AR[1,,]

[,1] [,2]

[1,] 1 13
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[2,] 4 16

[3,] 7 19

[4,] 10 22

The returned object has the first rows of each of the two matrix
layers. However, it has returned each of these vectors as a column of the
single returned matrix. As this example shows, when multiple vectors are
extracted from an array, they will be returned as columns by default. This
means extracted rows will not necessarily be returned as rows.

Turning to the object BR, the following gives you the single element of
the second row and first column of the matrix in the first layer of the three-
dimensional array located in the third block.

R> BR[2,1,1,3]

[1] 2

Again, you just need to look at the position of the index in the square
brackets to know which values you are asking R to return from the array.
The following examples highlight this:

R> BR[1,,,1]

[,1] [,2]

[1,] 1 13

[2,] 4 16

[3,] 7 19

[4,] 10 22

This returns all the values in the first row of the first block. Since I left
the column and layer indexes blank in this subset [1,,,1], the command has
returned values for all four columns and both layers in that block of BR.

Next, the following line returns all the values in the second layer of the
array BR, composed of three matrices:

R> BR[,,2,]

, , 1

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

, , 2

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24
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, , 3

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

This last example highlights a feature noted earlier, where multiple
vectors from AR were returned as a matrix. Broadly speaking, if you have
an extraction that results in multiple d-dimensional arrays, the result will
be an array of the next-highest dimension, d + 1. In the last example, you
extracted multiple (two-dimensional) matrices, and they were returned as a
three-dimensional array. This is demonstrated again in the next example:

R> BR[3:2,4,,]

, , 1

[,1] [,2]

[1,] 12 24

[2,] 11 23

, , 2

[,1] [,2]

[1,] 12 24

[2,] 11 23

, , 3

[,1] [,2]

[1,] 12 24

[2,] 11 23

This extracts the elements at rows 3 and 2 (in that order), column 4, for
all layers and for all array blocks. Consider the following final example:

R> BR[2,,1,]

[,1] [,2] [,3]

[1,] 2 2 2

[2,] 5 5 5

[3,] 8 8 8

[4,] 11 11 11

Here you’ve asked R to return the entire second rows of the first layers
of all the arrays stored in BR.

Deleting and overwriting elements in high-dimensional arrays follows
the same rules as for stand-alone vectors and matrices. You specify the

Matrices and Arrays 57



dimension positions the same way, using negative indexes (for deletion) or
using the assignment operator for overwriting.

You can use the array function to create one-dimensional arrays (vec-
tors) and two-dimensional arrays (matrices) should you want to (by setting
the dim argument to be of length 1 or 2, respectively). Note, though, that
vectors in particular may be treated differently by some functions if created
with array instead of c (see the help file ?array for technical details). For this
reason, and to make large sections of code more readable, it’s more con-
ventional in R programming to use the specific vector- and matrix-creation
functions c and matrix.

Exercise 3.3

a. Create and store a three-dimensional array with six layers of a
4 × 2 matrix, filled with a decreasing sequence of values between
4.8 and 0.1 of the appropriate length.

b. Extract and store as a new object the fourth- and first-row ele-
ments, in that order, of the second column only of all layers
of (a).

c. Use a fourfold repetition of the second row of the matrix formed
in (b) to fill a new array of dimensions 2 × 2 × 2 × 3.

d. Create a new array comprised of the results of deleting the sixth
layer of (a).

e. Overwrite the second and fourth row elements of the second
column of layers 1, 3, and 5 of (d) with −99.

Important Code in This Chapter

Function/operator Brief description First occurrence

matrix Create a matrix Section 3.1, p. 40
rbind Create a matrix (bind rows) Section 3.1.2, p. 41
cbind Create a matrix (bind columns) Section 3.1.2, p. 42
dim Get matrix dimensions Section 3.1.3, p. 42
nrow Get number of rows Section 3.1.3, p. 42
ncol Get number of columns Section 3.1.3, p. 42
[ , ] Matrix/array subsetting Section 3.2, p. 43
diag Diagonal elements/identity matrix Section 3.2.1, p. 44
t Matrix transpose Section 3.3.1, p. 47

* Scalar matrix multiple Section 3.3.3, p. 49
+, - Matrix addition/subtraction Section 3.3.4, p. 49
%*% Matrix multiplication Section 3.3.5, p. 50
solve Matrix inversion Section 3.3.6, p. 51
array Create an array Section 3.4.1, p. 53
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4
NON-NUMERIC VALUES

So far, you’ve been working almost exclu-
sively with numeric values. But statistical

programming also requires non-numeric
values. In this chapter, we’ll consider three

important non-numeric data types: logicals, char-
acters, and factors. These data types play an impor-
tant role in effective use of R, especially as we get into
more complex R programming in Part II.

4.1 Logical Values

Logical values (also simply called logicals) are based on a simple premise:
a logical-valued object can only be either TRUE or FALSE. These can be inter-
preted as yes/no, one/zero, satisfied/not satisfied, and so on. This is a con-
cept that appears across all programming languages, and logical values have
many important uses. Often, they signal whether a condition has been satis-
fied or whether a parameter should be switched on or off.

You encountered logical values briefly when you used the sort function
in Section 2.3.2 and the matrix function in Section 3.1. When using sort, set-
ting decreasing=TRUE returns a vector ordered from largest to smallest, and



decreasing=FALSE sorts the vector the other way around. Similarly, when con-
structing a matrix, byrow=TRUE fills the matrix entries row-wise; otherwise, the
matrix is filled column-wise. Now, you’ll take a more detailed look at ways to
use logicals.

4.1.1 TRUE or FALSE?
Logical values in R are written fully as TRUE and FALSE, but they are fre-
quently abbreviated as T or F. The abbreviated version has no effect on the
execution of the code, so, for example, using decreasing=T is equivalent to
decreasing=TRUE in the sort function. (But do not create objects named T or F

if you want to make use of this convenience—see Section 9.1.3.)
Assigning logical values to an object is the same as assigning numeric

values.

R> foo <- TRUE

R> foo

[1] TRUE

R> bar <- F

R> bar

[1] FALSE

This gives you one object with the value TRUE and one with the value
FALSE. Similarly, vectors can be filled with logical values.

R> baz <- c(T,F,F,F,T,F,T,T,T,F,T,F)

R> baz

[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE

R> length(x=baz)

[1] 12

Matrices (and other higher-dimensional arrays) can be created with
these values too. Using foo and baz from earlier, you could construct some-
thing like this:

R> qux <- matrix(data=baz,nrow=3,ncol=4,byrow=foo)

R> qux

[,1] [,2] [,3] [,4]

[1,] TRUE FALSE FALSE FALSE

[2,] TRUE FALSE TRUE TRUE

[3,] TRUE FALSE TRUE FALSE

4.1.2 A Logical Outcome: Relational Operators
Logicals are commonly used to check relationships between values. For
example, you might want to know whether some number a is greater than
a predefined threshold b. For this, you use the standard relational operators
shown in Table 4-1, which produce logical values as results.
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Table 4-1: Relational Operators

Operator Interpretation

== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Typically, these operators are used on numeric values (though you’ll
look at some other possibilities in Section 4.2.1). Here’s an example:

R> 1==2

[1] FALSE

R> 1>2

[1] FALSE

R> (2-1)<=2

[1] TRUE

R> 1!=(2+3)

[1] TRUE

The results should be unsurprising: 1 being equal to 2 is FALSE and 1

being greater than 2 is also FALSE, while the result of 2-1 being less than or
equal to 2 is TRUE and it is also TRUE that 1 is not equal to 5 (2+3). These kinds
of operations are much more useful when used on numbers that are variable
in some way, as you’ll see shortly.

You’re already familiar with R’s element-wise behavior when working
with vectors. The same rules apply when using relational operators. To illus-
trate this, let’s first create two vectors and double-check that they’re of equal
length.

R> foo <- c(3,2,1,4,1,2,1,-1,0,3)

R> bar <- c(4,1,2,1,1,0,0,3,0,4)

R> length(x=foo)==length(x=bar)

[1] TRUE

Now consider the following four evaluations:

R> foo==bar

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE

R> foo<bar

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

R> foo<=bar

[1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE

R> foo<=(bar+10)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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The first line checks whether the entries in foo are equal to the corre-
sponding entries in bar, which is true only for the fifth and ninth entries.
The returned vector will contain a logical result for each pair of elements,
so it will be the same length as the vectors being compared. The second
line compares foo and bar in the same way, this time checking whether the
entries in foo are less than the entries in bar. Contrast this result with the
third comparison, which asks whether entries are less than or equal to one
another. Finally, the fourth line checks whether foo’s members are less than
or equal to bar, when the elements of bar are increased by 10. Naturally, the
results are all TRUE.

Vector recycling also applies to logicals. Let’s use foo from earlier, along
with a shorter vector, baz.

R> baz <- foo[c(10,3)]

R> baz

[1] 3 1

Here you create baz as a vector of length 2 comprised of the 10th and
3rd elements of foo. Now consider the following:

R> foo>baz

[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE

Here, the two elements of baz are recycled and checked against the
10 elements of foo. Elements 1 and 2 of foo are checked against 1 and 2 of
baz, elements 3 and 4 of foo are checked against 1 and 2 of baz, and so on.
You can also check all the values of a vector against a single value. Here’s an
example:

R> foo<3

[1] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

This is a typical operation when handling data sets in R.
Now let’s rewrite the contents of foo and bar as 5 × 2 column-filled

matrices.

R> foo.mat <- matrix(foo,nrow=5,ncol=2)

R> foo.mat

[,1] [,2]

[1,] 3 2

[2,] 2 1

[3,] 1 -1

[4,] 4 0

[5,] 1 3

R> bar.mat <- matrix(bar,nrow=5,ncol=2)

R> bar.mat

[,1] [,2]

[1,] 4 0
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[2,] 1 0

[3,] 2 3

[4,] 1 0

[5,] 1 4

The same element-wise behavior applies here; if you compare the
matrices, you get a matrix of the same size filled with logicals.

R> foo.mat<=bar.mat

[,1] [,2]

[1,] TRUE FALSE

[2,] FALSE FALSE

[3,] TRUE TRUE

[4,] FALSE TRUE

[5,] TRUE TRUE

R> foo.mat<3

[,1] [,2]

[1,] FALSE TRUE

[2,] TRUE TRUE

[3,] TRUE TRUE

[4,] FALSE TRUE

[5,] TRUE FALSE

This kind of evaluation also applies to arrays of more than two
dimensions.

There are two useful functions you can use to quickly inspect a collec-
tion of logical values: any and all. When examining a vector, any returns
TRUE if any of the logicals in the vector are TRUE and returns FALSE otherwise.
The function all returns a TRUE only if all of the logicals are TRUE, and returns
FALSE otherwise. As a quick example, let’s work with two of the logical vectors
formed by the comparisons of foo and bar from the beginning of this section.

R> qux <- foo==bar

R> qux

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE

R> any(qux)

[1] TRUE

R> all(qux)

[1] FALSE

Here, the qux contains two TRUEs, and the rest are FALSE—so the result of
any is of course TRUE, but the result of all is FALSE. Following the same rules,
you get this:

R> quux <- foo<=(bar+10)

R> quux

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

R> any(quux)
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[1] TRUE

R> all(quux)

[1] TRUE

The any and all functions do the same thing for matrices and arrays of
logical values.

Exercise 4.1

a. Store the following vector of 15 values as an object in your
workspace: c(6,9,7,3,6,7,9,6,3,6,6,7,1,9,1). Identify the fol-
lowing elements:
i. Those equal to 6
ii. Those greater than or equal to 6
iii. Those less than 6 + 2
iv. Those not equal to 6

b. Create a new vector from the one used in (a) by deleting its
first three elements. With this new vector, fill a 2 × 2 × 3 array.
Examine the array for the following entries:
i. Those less than or equal to 6 divided by 2, plus 4
ii. Those less than or equal to 6 divided by 2, plus 4, after

increasing every element in the array by 2

c. Confirm the specific locations of elements equal to 0 in the
10 × 10 identity matrix I10 (see Section 3.3).

d. Check whether any of the values of the logical arrays created in
(b) are TRUE. If they are, check whether they are all TRUE.

e. By extracting the diagonal elements of the logical matrix created
in (c), use any to confirm there are no TRUE entries.

4.1.3 Multiple Comparisons: Logical Operators
Logicals are especially useful when you want to examine whether multiple
conditions are satisfied. Often you’ll want to perform certain operations
only if a number of different conditions have been met.

The previous section looked at relational operators, used to com-
pare the literal values (that is, numeric or otherwise) of stored R objects.
Now you’ll look at logical operators, which are used to compare two TRUE

or FALSE objects. These operators are based on the statements AND and
OR. Table 4-2 summarizes the R syntax and the behavior of logical opera-
tors. The AND and OR operators each have a “single” and “element-wise”
version—you’ll see how they’re different in a moment.
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Table 4-2: Logical Operators Comparing Two Logical Values

Operator Interpretation Results

&

TRUE & TRUE is TRUE

AND TRUE & FALSE is FALSE

(element-wise) FALSE & TRUE is FALSE

FALSE & FALSE is FALSE

&&
AND

Same as & above
(single comparison)

|

TRUE|TRUE is TRUE

OR TRUE|FALSE is TRUE

(element-wise) FALSE|TRUE is TRUE

FALSE|FALSE is FALSE

||
OR

Same as | above
(single comparison)

! NOT
!TRUE is FALSE

!FALSE is TRUE

The result of using any logical operator is a logical value. An AND com-
parison is true only if both logicals are TRUE. An OR comparison is true if at
least one of the logicals is TRUE. The NOT operator (!) simply returns the
opposite of the logical value it’s used on. You can combine these operators
to examine multiple conditions at once.

R> FALSE||((T&&TRUE)||FALSE)

[1] TRUE

R> !TRUE&&TRUE

[1] FALSE

R> (T&&(TRUE||F))&&FALSE

[1] FALSE

R> (6<4)||(3!=1)

[1] TRUE

As with numeric arithmetic, there is an order of importance for logical
operations in R. An AND statement has a higher precedence than an OR
statement. It’s helpful to place each comparative pair in parentheses to pre-
serve the correct order of evaluation and make the code more readable. You
can see this in the first line of this code, where the innermost comparison is
the first to be carried out: T&&TRUE results in TRUE; this is then provided as one
of the logical values for the next bracketed comparison where TRUE||FALSE

results in TRUE. The final comparison is then FALSE||TRUE, and the result, TRUE,
is printed to the console. The second line reads as NOT TRUE AND TRUE,
which of course returns FALSE. In the third line, once again the innermost
pair is evaluated first: TRUE||F is TRUE; T&&TRUE is TRUE; and finally TRUE&&FALSE
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is FALSE. The fourth and final example evaluates two distinct conditions in
parentheses, which are then compared using a logical operator. Since 6<4 is
FALSE and 3!=1 is TRUE, that gives you a logical comparison of FALSE||TRUE and a
final result of TRUE.

In Table 4-2, there is a short (&, |) and long (&&, ||) version of the AND
and OR operators. The short versions are meant for element-wise compar-
isons, where you have two logical vectors and you want multiple logicals as
a result. The long versions, which you’ve been using so far, are meant for
comparing two individual values and will return a single logical value. This
is important when programming conditional checks in R in an if statement,
which you’ll look at in Chapter 10. It’s possible to compare a single pair of
logicals using the short version—though it’s considered better practice to
use the longer versions when a single TRUE/FALSE result is needed.

Let’s look at some examples of element-wise comparisons. Suppose you
have two vectors of equal length, foo and bar:

R> foo <- c(T,F,F,F,T,F,T,T,T,F,T,F)

R> foo

[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE

and

R> bar <- c(F,T,F,T,F,F,F,F,T,T,T,T)

R> bar

[1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

The short versions of the logical operators match each pair of elements
by position and return the result of the comparison.

R> foo&bar

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

R> foo|bar

[1] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

Using the long version of the operators, on the other hand, means
R carries out the comparison only on the first pair of logicals in the two
vectors.

R> foo&&bar

[1] FALSE

R> foo||bar

[1] TRUE

Notice that the last two results match the first entries of the vectors you
got using the short versions of the logical operators.
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Exercise 4.2

a. Store the vector c(7,1,7,10,5,9,10,3,10,8) as foo. Identify the
elements greater than 5 OR equal to 2.

b. Store the vector c(8,8,4,4,5,1,5,6,6,8) as bar. Identify the ele-
ments less than or equal to 6 AND not equal to 4.

c. Identify the elements that satisfy (a) in foo AND satisfy (b) in bar.

d. Store a third vector called baz that is equal to the element-wise
sum of foo and bar. Determine the following:
i. The elements of baz greater than or equal to 14 but not

equal to 15
ii. The elements of the vector obtained via an element-wise

division of baz by foo that are greater than 4 OR less than or
equal to 2

e. Confirm that using the long version in all of the preceding
exercises performs only the first comparison (that is, the results
each match the first entries of the previously obtained vectors).

4.1.4 Logicals Are Numbers!
Because of the binary nature of logical values, they’re often represented with
TRUE as 1 and FALSE as 0. In fact, in R, if you perform elementary numeric
operations on logical values, TRUE is treated like 1, and FALSE is treated like 0.

R> TRUE+TRUE

[1] 2

R> FALSE-TRUE

[1] -1

R> T+T+F+T+F+F+T

[1] 4

These operations turn out the same as if you had used the digits 1 and
0. In some situations when you’d use logicals, you can substitute the numeric
values.

R> 1&&1

[1] TRUE

R> 1||0

[1] TRUE

R> 0&&1

[1] FALSE
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Being able to interpret logicals as zeros and ones means you can use a
variety of functions to summarize a logical vector, and you’ll explore this
further in Part III.

4.1.5 Logical Subsetting and Extraction
Logicals can also be used to extract and subset elements in vectors and other
objects, in the same way as you’ve done so far with index vectors. Rather
than entering explicit indexes in the square brackets, you can supply logical
flag vectors, where an element is extracted if the corresponding entry in the
flag vector is TRUE. As such, logical flag vectors should be the same length as
the vector that’s being accessed (though recycling does occur for shorter
flag vectors, as a later example shows).

At the beginning of Section 2.3.3 you defined a vector of length 10 as
follows:

R> myvec <- c(5,-2.3,4,4,4,6,8,10,40221,-8)

If you wanted to extract the two negative elements, you could either
enter myvec[c(2,10)], or you could do the following using logical flags:

R> myvec[c(F,T,F,F,F,F,F,F,F,T)]

[1] -2.3 -8.0

This particular example may seem far too cumbersome for practical
use. It becomes useful, however, when you want to extract elements based
on whether they satisfy a certain condition (or several conditions). For
example, you can easily use logicals to find negative elements in myvec by
applying the condition <0.

R> myvec<0

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

This a perfectly valid flag vector that you can use to subset myvec to get
the same result as earlier.

R> myvec[myvec<0]

[1] -2.3 -8.0

As mentioned, R recycles the flag vector if it’s too short. To extract
every second element from myvec, starting with the first, you could enter the
following:

R> myvec[c(T,F)]

[1] 5 4 4 8 40221
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You can do more complicated extractions using relational and logical
operators, such as:

R> myvec[(myvec>0)&(myvec<1000)]

[1] 5 4 4 4 6 8 10

This returns the positive elements that are less than 1,000. You can also
overwrite specific elements using a logical flag vector, just as with index
vectors.

R> myvec[myvec<0] <- -200

R> myvec

[1] 5 -200 4 4 4 6 8 10 40221 -200

This replaces all existing negative entries with −200. Note, though, that
you cannot directly use negative logical flag vectors to delete specific ele-
ments; this can be done only with numeric index vectors.

As you can see, logicals are therefore very useful for element extrac-
tion. You don’t need to know beforehand which specific index positions
to return, since the conditional check can find them for you. This is par-
ticularly valuable when you’re dealing with large data sets and you want to
inspect records or recode entries that match certain criteria.

In some cases, you might want to convert a logical flag vector into a
numeric index vector. This is helpful when you need the explicit indexes
of elements that were flagged TRUE. The R function which takes in a logical
vector as the argument x and returns the indexes corresponding to the posi-
tions of any and all TRUE entries.

R> which(x=c(T,F,F,T,T))

[1] 1 4 5

You can use this to identify the index positions of myvec that meet a cer-
tain condition; for example, those containing negative numbers:

R> which(x=myvec<0)

[1] 2 10

The same can be done for the other myvec selections you experimented
with. Note that a line of code such as myvec[which(x=myvec<0)] is redundant
because that extraction can be made using the condition by itself, that is, via
myvec[myvec<0], without using which. On the other hand, using which lets you
delete elements based on logical flag vectors. You can simply use which to
identify the numeric indexes you want to delete and render them negative.
To omit the negative entries of myvec, you could execute the following:

R> myvec[-which(x=myvec<0)]

[1] 5 4 4 4 6 8 10 40221
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The same can be done with matrices and other arrays. In Section 3.2,
you stored a 3 × 3 matrix as follows:

R> A <- matrix(c(0.3,4.5,55.3,91,0.1,105.5,-4.2,8.2,27.9),nrow=3,ncol=3)

R> A

[,1] [,2] [,3]

[1,] 0.3 91.0 -4.2

[2,] 4.5 0.1 8.2

[3,] 55.3 105.5 27.9

To extract the second and third column elements of the first row of A
using numeric indexes, you could execute A[1,2:3]. To do this with logical
flags, you could enter the following:

R> A[c(T,F,F),c(F,T,T)]

[1] 91.0 -4.2

Again, though, you usually wouldn’t explicitly specify the logical vectors.
Suppose for example you want to replace all elements in A that are less than
1 with −7. Performing this using numeric indexes is rather fiddly. It’s much
easier to use the logical flag matrix created with the following:

R> A<1

[,1] [,2] [,3]

[1,] TRUE FALSE TRUE

[2,] FALSE TRUE FALSE

[3,] FALSE FALSE FALSE

You can supply this logical matrix to the square bracket operators, and
the replacement is done as follows:

R> A[A<1] <- -7

R> A

[,1] [,2] [,3]

[1,] -7.0 91.0 -7.0

[2,] 4.5 -7.0 8.2

[3,] 55.3 105.5 27.9

This is the first time you’ve subsetted a matrix without having to list row
or column positions inside the square brackets, using commas to separate
out dimensions (see Section 3.2). This is because the flag matrix has the
same number of rows and columns as the target matrix, thereby providing
all the relevant structural information.

If you use which to identify numeric indexes based on a logical flag struc-
ture, you have to be a little more careful when dealing with two-dimensional
objects or higher. Suppose you want the index positions of the elements that
are greater than 25. The appropriate logical matrix is as follows.
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R> A>25

[,1] [,2] [,3]

[1,] FALSE TRUE FALSE

[2,] FALSE FALSE FALSE

[3,] TRUE TRUE TRUE

Now, say you ask R the following:

R> which(x=A>25)

[1] 3 4 6 9

This returns the four indexes of the elements that satisfied the relational
check, but they are provided as scalar values. How do these correspond to
the row/column positioning of the matrix?

The answer lies in R’s default behavior for the which function, which
essentially treats the multidimensional object as a single vector (laid
out column after column) and then returns the vector of correspond-
ing indexes. Say the matrix A was arranged as a vector by stacking the
columns first through third, using c(A[,1],A[,2],A[,3]). Then the indexes
returned make more sense.

R> which(x=c(A[,1],A[,2],A[,3])>25)

[1] 3 4 6 9

With the columns laid out end to end, the elements that return TRUE

are the third, fourth, sixth, and ninth elements in the list. This can be diffi-
cult to interpret, though, especially when dealing with higher-dimensional
arrays. In this kind of situation, you can make which return dimension-
specific indexes using the optional argument arr.ind (array indexes). By
default, this argument is set to FALSE, resulting in the vector converted
indexes. Setting arr.ind to TRUE, on the other hand, treats the object as a
matrix or array rather than a vector, providing you with the row and col-
umn positions of the elements you requested.

R> which(x=A>25,arr.ind=T)

row col

[1,] 3 1

[2,] 1 2

[3,] 3 2

[4,] 3 3

The returned object is now a matrix, where each row represents an ele-
ment that satisfied the logical comparison and each column provides the
position of the element. Comparing the output here with A, you can see
these positions do indeed correspond to elements where A>25.

Both versions of the output (with arr.ind=T or arr.ind=F) can be useful—
the correct choice depends on the application.
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Exercise 4.3

a. Store this vector of 10 values: foo <- c(7,5,6,1,2,10,8,3,8,2).
Then, do the following:
i. Extract the elements greater than or equal to 5, storing the

result as bar.
ii. Display the vector containing those elements from foo that

remain after omitting all elements that are greater than or
equal to 5.

b. Use bar from (a)(i) to construct a 2 × 3 matrix called baz, filled in
a row-wise fashion. Then, do the following:
i. Replace any elements that are equal to 8 with the squared

value of the element in row 1, column 2 of baz itself.
ii. Confirm that all values in baz are now less than or equal to 25

AND greater than 4.

c. Create a 3 × 2 × 3 array called qux using the following vector of
18 values: c(10,5,1,4,7,4,3,3,1,3,4,3,1,7,8,3,7,3). Then, do the
following:
i. Identify the dimension-specific index positions of elements

that are either 3 OR 4.
ii. Replace all elements in qux that are less than 3 OR greater

than or equal to 7 with the value 100.

d. Return to foo from (a). Use the vector c(F,T) to extract every
second value from foo. In Section 4.1.4, you saw that in some
situations, you can substitute 0 and 1 for TRUE and FALSE. Can you
perform the same extraction from foo using the vector c(0,1)?
Why or why not? What does R return in this case?

4.2 Characters

Character strings are another common data type, and are used to repre-
sent text. In R, strings are often used to specify folder locations or software
options (as shown briefly in Section 1.2); to supply an argument to a func-
tion; and to annotate stored objects, provide textual output, or help clarify
plots and graphics. In a simple way, they can also be used to define differ-
ent groups making up a categorical variable, though as you’ll see in see Sec-
tion 4.3, factors are better suited for that.

NOTE There are three different string formats in the R environment. The default string
format is called an extended regular expression; the other variants are named
Perl and literal regular expressions. The intricacies of these variants are beyond
the scope of this book, so any mention of character strings from here on refers to an
extended regular expression. For more technical details about other string formats,
enter ?regex at the prompt.
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4.2.1 Creating a String
Character strings are indicated by double quotation marks, ". To create a
string, just enter text between a pair of quotes.

R> foo <- "This is a character string!"

R> foo

[1] "This is a character string!"

R> length(x=foo)

[1] 1

R treats the string as a single entity. In other words, foo is a vector of
length 1 because R counts only the total number of distinct strings rather
than individual words or characters. To count the number of individual
characters, you can use the nchar function. Here’s an example using foo:

R> nchar(x=foo)

[1] 27

Almost any combination of characters, including numbers, can be a
valid character string.

R> bar <- "23.3"

R> bar

[1] "23.3"

Note that in this form, the string has no numeric meaning, and it won’t
be treated like the number 23.3. Attempting to multiply it by 2, for example,
results in an error.

R> bar*2

Error in bar * 2 : non-numeric argument to binary operator

This error occurs because * is expecting to operate on two numeric
values (not one number and one string, which makes no sense).

Strings can be compared in several ways, the most common comparison
being a check for equality.

R> "alpha"=="alpha"

[1] TRUE

R> "alpha"!="beta"

[1] TRUE

R> c("alpha","beta","gamma")=="beta"

[1] FALSE TRUE FALSE

Other relational operators work as you might expect. For example, R
considers letters that come later in the alphabet to be greater than earlier
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letters, meaning it can determine whether one string of letters is greater
than another with respect to alphabetical order.

R> "alpha"<="beta"

[1] TRUE

R> "gamma">"Alpha"

[1] TRUE

Furthermore, uppercase letters are considered greater than lowercase
letters.

R> "Alpha">"alpha"

[1] TRUE

R> "beta">="bEtA"

[1] FALSE

Most symbols can also be used in a string. The following string is valid,
for example:

R> baz <- "&4 _ 3 **%.? $ymbolic non$en$e ,; "

R> baz

[1] "&4 _ 3 **%.? $ymbolic non$en$e ,; "

One important exception is the backslash \, also called an escape. When
a backslash is used within the quotation marks of a string, it initiates some
simple control over the printing or display of the string itself. You’ll see how
this works in a moment in Section 4.2.3. First let’s look at two useful func-
tions for combining strings.

4.2.2 Concatenation
There are two main functions used to concatenate (or glue together) one or
more strings: cat and paste. The difference between the two lies in how their
contents are returned. The first function, cat, sends its output directly to the
console screen and doesn’t formally return anything. The paste function con-
catenates its contents and then returns the final character string as a usable
R object. This is useful when the result of a string concatenation needs to
be passed to another function or used in some secondary way, as opposed to
just being displayed. Consider the following vector of character strings:

R> qux <- c("awesome","R","is")

R> length(x=qux)

[1] 3

R> qux

[1] "awesome" "R" "is"

As with numbers and logicals, you can also store any number of strings
in a matrix or array structure if you want.
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When calling cat or paste, you pass arguments to the function in the
order you want them combined. The following lines show identical usage
yet different types of output from the two functions:

R> cat(qux[2],qux[3],"totally",qux[1],"!")

R is totally awesome !

R> paste(qux[2],qux[3],"totally",qux[1],"!")

[1] "R is totally awesome !"

Here, you’ve used the three elements of qux as well as two additional
strings, "totally" and "!", to produce the final concatenated string. In the
output, note that cat has simply concatenated and printed the text to the
screen. This means you cannot directly assign the result to a new variable
and treat it as a character string. For paste, however, the [1] to the left of
the output and the presence of the " quotes indicate the returned item is a
vector containing a character string, and this can be assigned to an object
and used in other functions.

NOTE There’s a slight difference between OS X and Windows in the default handling of
string concatenation when using the R GUI. After calling cat in Windows, the new R
prompt awaiting your next command appears on the same line as the printed string,
in which case you can just hit ENTER to move to the next line, or use an escape
sequence, which you’ll look at in Section 4.2.3. In OS X, the new prompt appears
on the next line as usual.

These two functions have an optional argument, sep, that’s used as a
separator between strings as they’re concatenated. You pass sep a character
string, and it will place this string between all other strings you’ve provided
to paste or cat. For example:

R> paste(qux[2],qux[3],"totally",qux[1],"!",sep="---")

[1] "R---is---totally---awesome---!"

R> paste(qux[2],qux[3],"totally",qux[1],"!",sep="")

[1] "Ristotallyawesome!"

The same behavior would occur for cat. Note that if you don’t want any
separation, you set sep="", an empty string, as shown in the second example.
The empty string separator can be used to achieve correct sentence spac-
ing; note the gap between awesome and the exclamation mark in the previous
code when you first used paste and cat. If the sep argument isn’t included, R
will insert a space between strings by default.

For example, using manual insertion of spaces where necessary, you can
write the following:

R> cat("Do you think ",qux[2]," ",qux[3]," ",qux[1],"?",sep="")

Do you think R is awesome?

Concatenation can be useful when you want to neatly summarize the
results from a certain function or set of calculations. Many kinds of R objects
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can be passed directly to paste or cat; the software will attempt to automati-
cally coerce these items into character strings. This means R will convert the
input into a string so the values can be included in the final concatenated
string. This works particularly well with numeric objects, as the following
examples demonstrate:

R> a <- 3

R> b <- 4.4

R> cat("The value stored as 'a' is ",a,".",sep="")

The value stored as 'a' is 3.

R> paste("The value stored as 'b' is ",b,".",sep="")

[1] "The value stored as 'b' is 4.4."

R> cat("The result of a+b is ",a,"+",b,"=",a+b,".",sep="")

The result of a+b is 3+4.4=7.4.

R> paste("Is ",a+b," less than 10? That's totally ",a+b<10,".",sep="")

[1] "Is 7.4 less than 10? That's totally TRUE."

Here, the values of the non-string objects are placed where you want
them in the final string output. The results of calculations can also appear
as fields, as shown with the arithmetic a+b and the logical comparison a+b<10.
You’ll see more details about coercion from one kind of value to another in
Section 6.2.4.

4.2.3 Escape Sequences
In Section 4.2.1, I noted that a stand-alone backslash doesn’t act like a nor-
mal character within a string. The \ is used to invoke an escape sequence. An
escape sequence lets you enter characters that control the format and spac-
ing of the string, rather than being interpreted as normal text. Table 4-3
describes some of the most common escape sequences, and you can find a
full list by entering ?Quotes at the prompt.

Table 4-3: Common Escape Sequences for
Use in Character Strings

Escape sequence Result

\n Starts a newline
\t Horizontal tab
\b Invokes a backspace
\\ Used as a single backslash
\" Includes a double quote

Escape sequences add flexibility to the display of character strings,
which can be useful for summaries of results and plot annotations. You
enter the sequence precisely where you want it to take effect. Let’s look at
an example.
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R> cat("here is a string\nsplit\tto neww\b\n\n\tlines")

here is a string

split to new

lines

Since the signal for an escape is \ and the signal to begin and end a
string is ", if you want either of these characters to be included in a string,
you must also use an escape to have them be interpreted as a normal
character.

R> cat("I really want a backslash: \\\nand a double quote: \"")

I really want a backslash: \

and a double quote: "

These escape sequences mean that you can’t use a stand-alone backslash
in file path strings in R. As noted in Section 1.2.3 (where you used getwd to
print the current working directory and setwd to change it), folder separa-
tion must use a forward slash / and not a backslash.

R> setwd("/folder1/folder2/folder3/")

File path specification crops up when reading and writing files, which
you’ll explore in Chapter 8.

4.2.4 Substrings and Matching
Pattern matching lets you inspect a given string to identify smaller strings
within it.

The function substr takes a string x and extracts the part of the string
between two character positions (inclusive), indicated with numbers passed
as start and stop arguments. Let’s try it on the object foo from Section 4.2.1.

R> foo <- "This is a character string!"

R> substr(x=foo,start=21,stop=27)

[1] "string!"

Here, you’ve extracted the characters between positions 21 and 27,
inclusive, to get "string!". The function substr can also be used with the
assignment operator to directly substitute in a new set of characters. In this
case, the replacement string should contain the same number of characters
as the selected area.

R> substr(x=foo,start=1,stop=4) <- "Here"

R> foo

[1] "Here is a character string!"
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If the replacement string is longer than the number of characters indi-
cated by start and stop, then replacement still takes place, beginning at
start and ending at stop. It cuts off any characters that overrun the number
of characters you’re replacing. If the string is shorter than the number of
characters you’re replacing, then replacement ends when the string is fully
inserted, leaving the original characters up to stop untouched.

Substitution is more flexible using the functions sub and gsub. The
sub function searches a given string x for a smaller string pattern contained
within. It then replaces the first instance with a new string, given as the argu-
ment replacement. The gsub function does the same thing, but it replaces every
instance of pattern. Here’s an example:

R> bar <- "How much wood could a woodchuck chuck"

R> sub(pattern="chuck",replacement="hurl",x=bar)

[1] "How much wood could a woodhurl chuck"

R> gsub(pattern="chuck",replacement="hurl",x=bar)

[1] "How much wood could a woodhurl hurl"

With sub and gsub, the replacement value need not have the same number
of characters as the pattern being replaced. These functions also have search
options like case-sensitivity. The help files ?substr and ?sub have more details,
as well as noting a handful of other pattern-matching functions and tech-
niques. You might also want to check out the grep command and its variants;
see the relevant help file ?grep.

Exercise 4.4

a. Re-create exactly the following output:

"The quick brown fox

jumped over

the lazy dogs"

b. Suppose you’ve stored the values num1 <- 4 and num2 <- 0.75.
Write a line of R code that returns the following string:

[1] "The result of multiplying 4 by 0.75 is 3"

Make sure your code produces a string with the correct
multiplication result for any two numbers stored as num1 and num2.

c. On my local machine, the directory for my work on this book is
specified in R as "/Users/tdavies/Documents/RBook/". Imagine it is
your machine—write a line of code that replaces tdavies in this
string with your first initial and surname.
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d. In Section 4.2.4, you stored the following string:

R> bar <- "How much wood could a woodchuck chuck"

i. Store a new string by gluing onto bar the words
"if a woodchuck could chuck wood".

ii. In the result of (i), replace all instances of wood with metal.

e. Store the string "Two 6-packs for $12.99". Then do the following:
i. Use a check for equality to confirm that the substring

beginning with character 5 and ending with character 10
is "6-pack".

ii. Make it a better deal by changing the price to $10.99.

4.3 Factors

In this section, you’ll look at some simple functions related to creating,
handling, and inspecting factors. Factors are R’s most natural way of repre-
senting data points that fit in only one of a finite number of distinct cate-
gories, rather than belonging to a continuum. Categorical data like this can
play an important role in data science, and you’ll look at factors again in
more detail from a statistical perspective in Chapter 13.

4.3.1 Identifying Categories
To see how factors work, let’s start with a simple data set. Suppose you
find eight people and record their first name, sex, and month of birth in
Table 4-4.

Table 4-4: An Example Data Set of
Eight Individuals

Person Sex Month of birth

Liz Female April
Jolene Female January
Susan Female December
Boris Male September
Rochelle Female November
Tim Male July
Simon Male July
Amy Female June
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There’s really only one sensible way to represent the name of each per-
son in R—as a vector of character strings.

R> firstname <- c("Liz","Jolene","Susan","Boris","Rochelle","Tim","Simon",

"Amy")

You have more flexibility when it comes to recording sex, however. Cod-
ing females as 0 and males as 1, a numeric option would be as follows:

R> sex.num <- c(0,0,0,1,0,1,1,0)

Of course, character strings are also possible, and many prefer this
because you don’t need to remember the numeric code for each group.

R> sex.char <- c("female","female","female","male","female","male","male",

"female")

There is, however, a fundamental difference between an individual’s
name and their sex when stored as data. Where a person’s name is a unique
identifier that can take any one of an infinite number of possibilities, there
are generally only two options for recording a person’s sex. These kinds of
data, where all possible values fall into a finite number of categories, are best
represented in R using factors.

Factors are typically created from a numeric or a character vector (note
that you cannot fill matrices or multidimensional arrays using factor values;
factors can only take the form of vectors). To create a factor vector, use the
function factor, as in this example working with sex.num and sex.char:

R> sex.num.fac <- factor(x=sex.num)

R> sex.num.fac

[1] 0 0 0 1 0 1 1 0

Levels: 0 1

R> sex.char.fac <- factor(x=sex.char)

R> sex.char.fac

[1] female female female male female male male female

Levels: female male

Here, you obtain factor versions of the two vectors storing gender values.
At first glance, these objects don’t look much different from the char-

acter and numeric vectors from which they were created. Indeed, factor
objects work in much the same way as vectors, but with a little extra infor-
mation attached (R’s internal representation of factor objects is a little dif-
ferent as well). Functions like length and which work the same way on factor
objects as with vectors, for example.

The most important extra piece of information (or attribute; see Sec-
tion 6.2.1) that a factor object contains is its levels, which store the possible
values in the factor. These levels are printed at the bottom of each factor
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vector. You can extract the levels as a vector of character strings using the
levels function.

R> levels(x=sex.num.fac)

[1] "0" "1"

R> levels(x=sex.char.fac)

[1] "female" "male"

You can also relabel a factor using levels. Here’s an example:

R> levels(x=sex.num.fac) <- c("1","2")

R> sex.num.fac

[1] 1 1 1 2 1 2 2 1

Levels: 1 2

This relabels the females 1 and the males 2.
Factor-valued vectors are subsetted in the same way as any other vector.

R> sex.char.fac[2:5]

[1] female female male female

Levels: female male

R> sex.char.fac[c(1:3,5,8)]

[1] female female female female female

Levels: female male

Note that after subsetting a factor object, the object continues to store
all defined levels even if some of the levels are no longer represented in the
subsetted object.

If you want to subset from a factor using a logical flag vector, keep in
mind that the levels of a factor are stored as character strings, even if the
original data vector was numeric, so you need to use a string when request-
ing or testing for a particular level. To, for example, identify all the men
using the newly relabeled sex.num.fac, use this:

R> sex.num.fac=="2"

[1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE

Since the elements in firstname and sex have corresponding positions in
their factor vectors, you can then use this logical vector to obtain the names
of all the men (this time using the "male"/"female" factor vector).

R> firstname[sex.char.fac=="male"]

[1] "Boris" "Tim" "Simon"

Of course, this simple subsetting could have been achieved in much the
same way with the raw numeric vector sex.num or the raw character vector
sex.char. In the next section, you’ll explore some more distinctive advan-
tages to having categorical data represented as a factor in R.
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4.3.2 Defining and Ordering Levels
The sex factor from the previous section represents the simplest kind of
factor variable—there are only two possible levels with no ordering, in
that one level is not intuitively considered “higher than” or “following” the
other. Here you’ll look at factors with levels that can be logically ordered;
for example, month of birth (MOB), where there are 12 levels that have a
natural order. Let’s store the observed MOB data from earlier as a character
vector.

R> mob <- c("Apr","Jan","Dec","Sep","Nov","Jul","Jul","Jun")

There are two problems with the data in this vector. First, not all possi-
ble categories are represented since mob contains only seven unique months.
Second, this vector doesn’t reflect the natural order of the months. If you
compare January and December to see which is greater, you get:

R> mob[2]

[1] "Jan"

R> mob[3]

[1] "Dec"

R> mob[2]<mob[3]

[1] FALSE

Alphabetically, this result is of course correct—J doesn’t occur before
D. But in terms of the order of the calendar months, which is what we’re
interested in, the FALSE result is incorrect.

If you create a factor object from these values, you can deal with both
of these problems by supplying additional arguments to the factor func-
tion. You can define additional levels by supplying a character vector of
all possible values to the levels argument and then instruct R to order the
values precisely as they appear in levels by setting the argument ordered
to TRUE.

R> ms <- c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov",

"Dec")

R> mob.fac <- factor(x=mob,levels=ms,ordered=TRUE)

R> mob.fac

[1] Apr Jan Dec Sep Nov Jul Jul Jun

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

Here, the mob.fac vector contains the same individual entries at the same
index positions as the mob vector from earlier. But notice that this variable
has 12 levels, even though you have not made any observations for the lev-
els "Feb", "Mar", "May", "Aug", or "Oct". (Note that if your R console window is
too narrow to print all the levels to the screen, you may see a ..., indicating
there’s more output that’s been hidden. Just widen your window and reprint
the object to see the hidden levels.) Also, the strict order of these levels is
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shown by the < symbol in the object output. Using this new factor object, you
can perform the relational comparison from earlier and get the result you
might expect.

R> mob.fac[2]

[1] Jan

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

R> mob.fac[3]

[1] Dec

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

R> mob.fac[2]<mob.fac[3]

[1] TRUE

These improvements are far from just cosmetic. There’s a big differ-
ence, for example, between a data set with zero observations in some of the
categories and the same data set defined with fewer categories to begin with.
The choice of whether to instruct R to formally order a factor vector can also
have important consequences in the implementation of various statistical
methods, such as regression and other types of modeling.

4.3.3 Combining and Cutting
As you’ve seen, it’s usually simple to combine multiple vectors of the same
kind (whether numeric, logical, or character) using the c function. Here’s
an example:

R> foo <- c(5.1,3.3,3.1,4)

R> bar <- c(4.5,1.2)

R> c(foo,bar)

[1] 5.1 3.3 3.1 4.0 4.5 1.2

This combines the two numeric vectors into one.
However, the c function doesn’t work the same way with factor-valued

vectors. Let’s see what happens when you use it on the data in Table 4-4 and
the MOB factor vector mob.fac, from Section 4.3.2. Suppose you now observe
three more individuals with MOB values "Oct", "Feb", and "Feb", which are
stored as a factor object, as follows.

R> new.values <- factor(x=c("Oct","Feb","Feb"),levels=levels(mob.fac),

ordered=TRUE)

R> new.values

[1] Oct Feb Feb

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

Now you have mob.fac with the original eight observations and new.values

with an additional three. Both are factor objects, defined with identical,
ordered levels. You might expect that you can just use c to combine the two
as follows.
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R> c(mob.fac,new.values)

[1] 4 1 12 9 11 7 7 6 10 2 2

Clearly, this has not done what you want it to do. Combining the two
factor objects resulted in a numeric vector. This is because the c func-
tion interprets factors as integers. Comparing this with the defined levels,
you can see that the numbers refer to the index of each month within the
ordered levels.

R> levels(mob.fac)

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

This means you can use these integers with levels(mob.fac) to retrieve a
character vector of the complete observed data—the original eight observa-
tions plus the additional three.

R> levels(mob.fac)[c(mob.fac,new.values)]

[1] "Apr" "Jan" "Dec" "Sep" "Nov" "Jul" "Jul" "Jun" "Oct" "Feb" "Feb"

Now you have all the observations stored in a vector, but they are cur-
rently stored as strings, not factor values. The final step is to turn this vector
into a factor object.

R> mob.new <- levels(mob.fac)[c(mob.fac,new.values)]

R> mob.new.fac <- factor(x=mob.new,levels=levels(mob.fac),ordered=TRUE)

R> mob.new.fac

[1] Apr Jan Dec Sep Nov Jul Jul Jun Oct Feb Feb

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

As this example shows, combining factors requires you to essentially
deconstruct the two objects, obtaining the numeric index positions of each
entry with respect to the factor levels, and then rebuild them together. This
helps ensure that the levels are consistent and the observations are valid in
the final product.

Factors are also often created from data that was originally measured on
a continuum, for example the weight of a set of adults or the amount of a
drug given to a patient. Sometimes you’ll need to group (or bin) these types
of observations into categories, like Small/Medium/Large or Low/High. In
R, you can mold this kind of data into discrete factor categories using the cut

function. Consider the following numeric vector of length 10:

R> Y <- c(0.53,5.4,1.5,3.33,0.45,0.01,2,4.2,1.99,1.01)

Suppose you want to bin the data as follows: Small refers to obser-
vations in the interval [0,2), Medium refers to [2,4), and Large refers
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to [4,6]. A square bracket refers to inclusion of its nearest value, and a
parenthesis indicates exclusion, so an observation y will fall in the Small
interval if 0 ≤ y < 2, in Medium if 2 ≤ y < 4, or in Large if 4 ≤ y ≤ 6. For
this you’d use cut and supply your desired break intervals to the breaks

argument:

R> br <- c(0,2,4,6)

R> cut(x=Y,breaks=br)

[1] (0,2] (4,6] (0,2] (2,4] (0,2] (0,2] (0,2] (4,6] (0,2] (0,2]

Levels: (0,2] (2,4] (4,6]

This gives you a factor, with each observation now assigned an inter-
val. However, notice that your boundary intervals are back-to-front—you
want the boundary levels on the left like [0,2), rather than the right as they
appear by default, (0,2]. You can fix this by setting the logical argument
right to FALSE.

R> cut(x=Y,breaks=br,right=F)

[1] [0,2) [4,6) [0,2) [2,4) [0,2) [0,2) [2,4) [4,6) [0,2) [0,2)

Levels: [0,2) [2,4) [4,6)

Now you’ve swapped which boundaries are inclusive and exclusive. This
is important because it changes which categories the values fall into. Notice
that the seventh observation has changed categories. But there’s still a prob-
lem: the final interval currently excludes 6, and you want this maximum value
to be included in the highest level. You can fix this with another logical argu-
ment: include.lowest. Even though it’s called “include.lowest,” this argument
can also be used to include the highest value if right is FALSE, as indicated in
the help file ?cut.

R> cut(x=Y,breaks=br,right=F,include.lowest=T)

[1] [0,2) [4,6] [0,2) [2,4) [0,2) [0,2) [2,4) [4,6] [0,2) [0,2)

Levels: [0,2) [2,4) [4,6]

The intervals are now defined how you want. Finally, you want to add
better labels to the categories, rather than using the interval levels that R
applies by default, by passing a character string vector to the labels argu-
ment. The order of labels must match the order of the levels in the factor
object.

R> lab <- c("Small","Medium","Large")

R> cut(x=Y,breaks=br,right=F,include.lowest=T,labels=lab)

[1] Small Large Small Medium Small Small Medium Large Small Small

Levels: Small Medium Large
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Exercise 4.5

The New Zealand government consists of the political parties
National, Labour, Greens, and Māori, with several smaller parties
labeled as Other. Suppose you asked 20 New Zealanders which of
these they identified most with and obtained the following data:

• There were 12 males and 8 females; the individuals numbered 1,
5–7, 12, and 14–16 were females.

• The individuals numbered 1, 4, 12, 15, 16, and 19 identified with
Labour; no one identified with Māori; the individuals numbered
6, 9, and 11 identified with Greens; 10 and 20 identified with
Other; and the rest identified with National.

a. Use your knowledge of vectors (for example, subsetting and
overwriting) to create two character vectors: sex with entries
"M" (male) and "F" (female) and party with entries "National",
"Labour", "Greens", "Maori", and "Other". Make sure the entries are
placed in the correct positions as outlined earlier.

b. Create two different factor vectors based on sex and party. Does
it make any sense to use ordered=TRUE in either case? How has R
appeared to arrange the levels?

c. Use factor subsetting to do the following:
i. Return the factor vector of chosen parties for only the male

participants.
ii. Return the factor vector of genders for those who chose

National.

d. Another six people joined the survey, with the results
c("National","Maori","Maori","Labour","Greens","Labour") for the
preferred party and c("M","M","F","F","F","M") as their gender.
Combine these results with the original factors from (b).

Suppose you also asked all individuals to state how confident they
were that Labour will win more seats in Parliament than National
in the next election and to attach a subjective percentage to that
confidence. The following 26 results were obtained: 93, 55, 29, 100,
52, 84, 56, 0, 33, 52, 35, 53, 55, 46, 40, 40, 56, 45, 64, 31, 10, 29, 40,
95, 18, 61.

e. Create a factor with levels of confidence as follows: Low for
percentages [0,30]; Moderate for percentages (30,70]; and
High for percentages (70,100].

f. From (e), extract the levels corresponding to those individuals
who originally said they identified with Labour. Do this also for
National. What do you notice?
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Important Code in This Chapter

Function/operator Brief description First occurrence

TRUE, FALSE Reserved logical values Section 4.1.1, p. 60
T, F Unreserved versions of above Section 4.1.1, p. 60
==, !=, >, <, >=, <= relational operators Section 4.1.2, p. 61
any Checks whether any entries are TRUE Section 4.1.2, p. 63
all Checks whether all entries are TRUE Section 4.1.2, p. 63
&&, &, ||, |, ! logical operators Section 4.1.3, p. 65
which Determines indexes of TRUEs Section 4.1.5, p. 69
" " Creates a character string Section 4.2.1, p. 73
nchar Gets number of characters in a string Section 4.2.1, p. 73
cat Concatenates strings (no return) Section 4.2.2, p. 74
paste Pastes strings (returns a string) Section 4.2.2, p. 74
\ String escape Section 4.2.3, p. 76
substr Subsets a string Section 4.2.4, p. 77
sub, gsub String matching and replacement Section 4.2.4, p. 78
factor Creates a factor vector Section 4.3.1, p. 80
levels Gets levels of a factor Section 4.3.1, p. 81
cut Creates factor from continuum Section 4.3.3, p. 85
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5
LISTS AND DATA FRAMES

Vectors, matrices, and arrays are efficient
and convenient data storage structures in

R, but they have one distinct limitation: they
can store only one type of data. In this chap-

ter, you’ll explore two more data structures, lists and
data frames, which can store multiple types of values
at once.

5.1 Lists of Objects

The list is an incredibly useful data structure. It can be used to group
together any mix of R structures and objects. A single list could contain a
numeric matrix, a logical array, a single character string, and a factor object.
You can even have a list as a component of another list. In this section,
you’ll see how to create, modify, and access components of these flexible
structures.

5.1.1 Definition and Component Access
Creating a list is much like creating a vector. You supply the elements that
you want to include to the list function, separated by commas.



R> foo <- list(matrix(data=1:4,nrow=2,ncol=2),c(T,F,T,T),"hello")

R> foo

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] TRUE FALSE TRUE TRUE

[[3]]

[1] "hello"

In the list foo, you’ve stored a 2 × 2 numeric matrix, a logical vector, and
a character string. These are printed in the order they were supplied to list.
Just as with vectors, you can use the length function to check the number of
components in a list.

R> length(x=foo)

[1] 3

You can retrieve components from a list using indexes, which are
entered in double square brackets.

R> foo[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

R> foo[[3]]

[1] "hello"

This action is known as a member reference. When you’ve retrieved a
component this way, you can treat it just like a stand-alone object in the
workspace; there’s nothing special that needs to be done.

R> foo[[1]] + 5.5

[,1] [,2]

[1,] 6.5 8.5

[2,] 7.5 9.5

R> foo[[1]][1,2]

[1] 3

R> foo[[1]][2,]

[1] 2 4

R> cat(foo[[3]],"you!")

hello you!
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To overwrite a member of foo, you use the assignment operator.

R> foo[[3]]

[1] "hello"

R> foo[[3]] <- paste(foo[[3]],"you!")

R> foo

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[1] TRUE FALSE TRUE TRUE

[[3]]

[1] "hello you!"

Suppose now you want to access the second and third components of foo
and store them as one object. Your first instinct might be to try something
like this:

R> foo[[c(2,3)]]

[1] TRUE

But R hasn’t done what you wanted. Instead, it returned the third ele-
ment of the second component. This is because using double square brack-
ets on a list is always interpreted with respect to a single member. Fortu-
nately, member referencing with the double square brackets is not the only
way to access components of a list. You can also use single square bracket
notation. This is referred to as list slicing, and it lets you select multiple list
items at once.

R> bar <- foo[c(2,3)]

R> bar

[[1]]

[1] TRUE FALSE TRUE TRUE

[[2]]

[1] "hello you!"

Note that the result bar is itself a list with the two components stored in
the order in which they were requested.

5.1.2 Naming
You can name list components to make the elements more recognizable and
easy to work with. Just like the information stored about factor levels (as you
saw in Section 4.3.1), a name is an R attribute.
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Let’s start by adding names to the list foo from earlier.

R> names(foo) <- c("mymatrix","mylogicals","mystring")

R> foo

$mymatrix

[,1] [,2]

[1,] 1 3

[2,] 2 4

$mylogicals

[1] TRUE FALSE TRUE TRUE

$mystring

[1] "hello you!"

This has changed how the object is printed to the console. Where ear-
lier it printed [[1]], [[2]], and [[3]] before each component, now it prints
the names you specified: $mymatrix, $mylogicals, and $mystring. You can now
perform member referencing using these names and the dollar operator,
rather than the double square brackets.

R> foo$mymatrix

[,1] [,2]

[1,] 1 3

[2,] 2 4

This is the same as calling foo[[1]]. In fact, even when an object is
named, you can still use the numeric index to obtain a member.

R> foo[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

Subsetting named members also works the same way.

R> all(foo$mymatrix[,2]==foo[[1]][,2])

[1] TRUE

This confirms (using the all function you saw in Section 4.1.2) that
these two ways of extracting the second column of the matrix in foo provide
an identical result.

To name the components of a list as it’s being created, assign a label
to each component in the list command. Using some components of foo,
create a new, named list.

R> baz <- list(tom=c(foo[[2]],T,T,T,F),dick="g'day mate",harry=foo$mymatrix*2)

R> baz

$tom
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[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

$dick

[1] "g'day mate"

$harry

[,1] [,2]

[1,] 2 6

[2,] 4 8

The object baz now contains the three named components tom, dick, and
harry.

R> names(baz)

[1] "tom" "dick" "harry"

If you want to rename these members, you can simply assign a character
vector of length 3 to names(baz), the same way you did for foo earlier.

NOTE When using the names function, the component names are always provided and
returned as character strings in double quotes. However, if you’re specifying names
when a list is created (inside the list function) or using names to extract members
with the dollar operator, the names are entered without quotes (in other words, they
are not given as strings).

5.1.3 Nesting
As noted earlier, a member of a list can itself be a list. When nesting lists like
this, it’s important to keep track of the depth of any member for subsetting
or extraction later.

Note that you can add components to any existing list by using the dol-
lar operator and a new name. Here’s an example using foo and baz from
earlier:

R> baz$bobby <- foo

R> baz

$tom

[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

$dick

[1] "g'day mate"

$harry

[,1] [,2]

[1,] 2 6

[2,] 4 8

$bobby
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$bobby$mymatrix

[,1] [,2]

[1,] 1 3

[2,] 2 4

$bobby$mylogicals

[1] TRUE FALSE TRUE TRUE

$bobby$mystring

[1] "hello you!"

Here you’ve defined a fourth component to the list baz called bobby. The
member bobby is assigned the entire list foo. As you can see by printing the
new baz, there are now three components in bobby. Naming and indexes
are now both layered, and you can use either (or combine them) to retrieve
members of the inner list.

R> baz$bobby$mylogicals[1:3]

[1] TRUE FALSE TRUE

R> baz[[4]][[2]][1:3]

[1] TRUE FALSE TRUE

R> baz[[4]]$mylogicals[1:3]

[1] TRUE FALSE TRUE

These all instruct R to return the first three elements of the logical vec-
tor stored as the second component ([[2]], also named mylogicals) of the
list bobby, which in turn is the fourth component of the list baz. As long as
you’re aware of what is returned at each layer of a subset, you can continue
to subset as needed using names and numeric indexes. Consider the third
line in this example. The first layer of the subset is baz[[4]], which is a list
with three components. The second layer of subsetting extracts the compo-
nent mylogicals from that list by calling baz[[4]]$mylogicals. This component
represents a vector of length 4, so the third layer of subsetting retrieves the
first three elements of that vector with the line baz[[4]]$mylogicals[1:3].

Lists are often used to return output from various R functions. But they
can quickly become rather large objects in terms of system resources to
store. It’s generally recommended that when you have only one type of data,
you should stick to using basic vector, matrix, or array structures to record
and store the observations.

Exercise 5.1

a. Create a list that contains, in this order, a sequence of 20 evenly
spaced numbers between −4 and 4; a 3 × 3 matrix of the logical
vector c(F,T,T,T,F,T,T,F,F) filled column-wise; a character vector
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with the two strings "don" and "quixote"; and a factor vector con-
taining the observations c("LOW","MED","LOW","MED","MED","HIGH").
Then, do the following:

i. Extract row elements 2 and 1 of columns 2 and 3, in that
order, of the logical matrix.

ii. Use sub to overwrite "quixote" with "Quixote" and "don" with
"Don" inside the list. Then, using the newly overwritten list
member, concatenate to the console screen the following
statement exactly:

"Windmills! ATTACK!"

-\Don Quixote/-

iii. Obtain all values from the sequence between −4 and 4 that
are greater than 1.

iv. Using which, determine which indexes in the factor vector are
assigned the "MED" level.

b. Create a new list with the factor vector from (a) as a compo-
nent named "facs"; the numeric vector c(3,2.1,3.3,4,1.5,4.9) as a
component named "nums"; and a nested list comprised of the first
three members of the list from (a) (use list slicing to obtain this),
named "oldlist". Then, do the following:

i. Extract the elements of "facs" that correspond to elements of
"nums" that are greater than or equal to 3.

ii. Add a new member to the list named "flags". This member
should be a logical vector of length 6, obtained as a twofold
repetition of the third column of the logical matrix in the
"oldlist" component.

iii. Use "flags" and the logical negation operator ! to extract the
entries of "num" corresponding to FALSE.

iv. Overwrite the character string vector component of "oldlist"
with the single character string "Don Quixote".

5.2 Data Frames

A data frame is R’s most natural way of presenting a data set with a collection
of recorded observations for one or more variables. Like lists, data frames
have no restriction on the data types of the variables; you can store numeric
data, factor data, and so on. The R data frame can be thought of as a list
with some extra rules attached. The most important distinction is that in a
data frame (unlike a list), the members must all be vectors of equal length.

The data frame is one of the most important and frequently used tools
in R for statistical data analysis. In this section, you’ll look at how to create
data frames and learn about their general characteristics.
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5.2.1 Construction
To create a data frame from scratch, use the data.frame function. You supply
your data, grouped by variable, as vectors of the same length—the same way
you would construct a named list. Consider the following example data set:

R> mydata <- data.frame(person=c("Peter","Lois","Meg","Chris","Stewie"),

age=c(42,40,17,14,1),

sex=factor(c("M","F","F","M","M")))

R> mydata

person age sex

1 Peter 42 M

2 Lois 40 F

3 Meg 17 F

4 Chris 14 M

5 Stewie 1 M

Here, you’ve constructed a data frame with the first name, age in years,
and sex of five individuals. The returned object should make it clear why
vectors passed to data.frame must be of equal length: vectors of differing
lengths wouldn’t make sense in this context. If you pass vectors of unequal
length to data.frame, then R will attempt to recycle any shorter vectors to
match the longest, throwing your data off and potentially allocating obser-
vations to the wrong variable. Notice that data frames are printed to the
console in rows and columns—they look more like a matrix than a named
list. This natural spreadsheet style makes it easy to read and manipulate data
sets. Each row in a data frame is called a record, and each column is a variable.

You can extract portions of the data by specifying row and column index
positions (much as with a matrix). Here’s an example:

R> mydata[2,2]

[1] 40

This gives you the element at row 2, column 2—the age of Lois. Now
extract the third, fourth, and fifth elements of the third column:

R> mydata[3:5,3]

[1] F M M

Levels: F M

This returns a factor vector with the sex of Meg, Chris, and Stewie. The
following extracts the entire third and first columns (in that order):

R> mydata[,c(3,1)]

sex person

1 M Peter

2 F Lois

3 F Meg
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4 M Chris

5 M Stewie

This results in another data frame giving the sex and then the name of
each person.

You can also use the names of the vectors that were passed to data.frame

to access variables even if you don’t know their column index positions,
which can be useful for large data sets. You use the same dollar operator you
used for member-referencing named lists.

R> mydata$age

[1] 42 40 17 14 1

You can subset this returned vector, too:

R> mydata$age[2]

[1] 40

This returns the same thing as the earlier call of mydata[2,2].
You can report the size of a data frame—the number of records and

variables—just as you’ve seen for the dimensions of a matrix (first shown
in Section 3.1.3).

R> nrow(mydata)

[1] 5

R> ncol(mydata)

[1] 3

R> dim(mydata)

[1] 5 3

The nrow function retrieves the number of rows (records), ncol retrieves
the number of columns (variables), and dim retrieves both.

R’s default behavior for character vectors passed to data.frame is to con-
vert each variable into a factor object. Observe the following:

R> mydata$person

[1] Peter Lois Meg Chris Stewie

Levels: Chris Lois Meg Peter Stewie

Notice that this variable has levels, which shows it’s being treated as a
factor. But this isn’t what you intended when you defined mydata earlier—
you explicitly defined sex to be a factor but left person as a vector of character
strings. To prevent this automatic conversion of character strings to factors
when using data.frame, set the optional argument stringsAsFactors to FALSE

(otherwise, it defaults to TRUE). Reconstructing mydata with this in place looks
like this:

R> mydata <- data.frame(person=c("Peter","Lois","Meg","Chris","Stewie"),

age=c(42,40,17,14,1),

Lists and Data Frames 97



sex=factor(c("M","F","F","M","M")),

stringsAsFactors=FALSE)

R> mydata

person age sex

1 Peter 42 M

2 Lois 40 F

3 Meg 17 F

4 Chris 14 M

5 Stewie 1 M

R> mydata$person

[1] "Peter" "Lois" "Meg" "Chris" "Stewie"

You now have person in the desired, nonfactor form.

5.2.2 Adding Data Columns and Combining Data Frames
Say you want to add data to an existing data frame. This could be a set of
observations for a new variable (adding to the number of columns), or it
could be more records (adding to the number of rows). Once again, you
can use some of the functions you’ve already seen applied to matrices.

Recall the rbind and cbind functions from Section 3.1.2, which let you
append rows and columns, respectively. These same functions can be used
to extend data frames intuitively. For example, suppose you had another
record to include in mydata: the age and sex of another individual, Brian.
The first step is to create a new data frame that contains Brian’s information.

R> newrecord <- data.frame(person="Brian",age=7,

sex=factor("M",levels=levels(mydata$sex)))

R> newrecord

person age sex

1 Brian 7 M

To avoid any confusion, it’s important to make sure the variable names
and the data types match the data frame you’re planning to add this to.
Note that for a factor, you can extract the levels of the existing factor vari-
able using levels.

Now, you can simply call the following:

R> mydata <- rbind(mydata,newrecord)

R> mydata

person age sex

1 Peter 42 M

2 Lois 40 F

3 Meg 17 F

4 Chris 14 M

5 Stewie 1 M

6 Brian 7 M
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Using rbind, you combined mydata with the new record and overwrote
mydata with the result.

Adding a variable to a data frame is also quite straightforward. Let’s say
you’re now given data on the classification of how funny these six individuals
are, defined as a “degree of funniness.” The degree of funniness can take
three possible values: Low, Med (medium), and High. Suppose Peter, Lois, and
Stewie have a high degree of funniness, Chris and Brian have a medium
degree of funniness, and Meg has a low degree of funniness. In R, you’d
have a factor vector like this:

R> funny <- c("High","High","Low","Med","High","Med")

R> funny <- factor(x=funny,levels=c("Low","Med","High"))

R> funny

[1] High High Low Med High Med

Levels: Low Med High

The first line creates the basic character vector as funny, and the second
line overwrites funny by turning it into a factor. The order of these elements
must correspond to the records in your data frame. Now, you can simply use
cbind to append this factor vector as a column to the existing mydata.

R> mydata <- cbind(mydata,funny)

R> mydata

person age sex funny

1 Peter 42 M High

2 Lois 40 F High

3 Meg 17 F Low

4 Chris 14 M Med

5 Stewie 1 M High

6 Brian 7 M Med

The rbind and cbind functions aren’t the only ways to extend a data
frame. One useful alternative for adding a variable is to use the dollar oper-
ator, much like adding a new member to a named list, as in Section 5.1.3.
Suppose now you want to add another variable to mydata by including a
column with the age of the individuals in months, not years, calling this
new variable age.mon.

R> mydata$age.mon <- mydata$age*12

R> mydata

person age sex funny age.mon

1 Peter 42 M High 504

2 Lois 40 F High 480

3 Meg 17 F Low 204

4 Chris 14 M Med 168

5 Stewie 1 M High 12

6 Brian 7 M Med 84
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This creates a new age.mon column with the dollar operator and at the
same time assigns it the vector of ages in years (already stored as age) multi-
plied by 12.

5.2.3 Logical Record Subsets
In Section 4.1.5, you saw how to use logical flag vectors to subset data struc-
tures. This is a particularly useful technique with data frames, where you’ll
often want to examine a subset of entries that meet certain criteria. For
example, when working with data from a clinical drug trial, a researcher
might want to examine the results for just male participants and compare
them to the results for females. Or the researcher might want to look at the
characteristics of individuals who responded most positively to the drug.

Let’s continue to work with mydata. Say you want to examine all records
corresponding to males. From Section 4.3.1, you know that the following
line will identify the relevant positions in the sex factor vector:

R> mydata$sex=="M"

[1] TRUE FALSE FALSE TRUE TRUE TRUE

This flags the male records. You can use this with the matrix-like syntax
you saw in Section 5.2.1 to get the male-only subset.

R> mydata[mydata$sex=="M",]

person age sex funny age.mon

1 Peter 42 M High 504

4 Chris 14 M Med 168

5 Stewie 1 M High 12

6 Brian 7 M Med 84

This returns data for all variables for only the male participants. You can
use the same behavior to pick and choose which variables to return in the
subset. For example, since you know you are selecting the males only, you
could omit sex from the result using a negative numeric index in the column
dimension.

R> mydata[mydata$sex=="M",-3]

person age funny age.mon

1 Peter 42 High 504

4 Chris 14 Med 168

5 Stewie 1 High 12

6 Brian 7 Med 84

If you don’t have the column number or if you want to have more con-
trol over the returned columns, you can use a character vector of variable
names instead.
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R> mydata[mydata$sex=="M",c("person","age","funny","age.mon")]

person age funny age.mon

1 Peter 42 High 504

4 Chris 14 Med 168

5 Stewie 1 High 12

6 Brian 7 Med 84

The logical conditions you use to subset a data frame can be as simple
or as complicated as you need them to be. The logical flag vector you place
in the square brackets just has to match the number of records in the data
frame. Let’s extract from mydata the full records for individuals who are
more than 10 years old OR have a high degree of funniness.

R> mydata[mydata$age>10|mydata$funny=="High",]

person age sex funny age.mon

1 Peter 42 M High 504

2 Lois 40 F High 480

3 Meg 17 F Low 204

4 Chris 14 M Med 168

5 Stewie 1 M High 12

Sometimes, asking for a subset will yield no records. In this case, R
returns a data frame with zero rows, which looks like this:

R> mydata[mydata$age>45,]

[1] person age sex funny age.mon

<0 rows> (or 0-length row.names)

In this example, no records are returned from mydata because there
are no individuals older than 45. To check whether a subset will contain
any records, you can use nrow on the result—if this is equal to zero, then no
records have satisfied the specified condition(s).

Exercise 5.2

a. Create and store this data frame as dframe in your R workspace:

person sex funny

Stan M High

Francine F Med

Steve M Low

Roger M High

Hayley F Med

Klaus M Med
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The variables person, sex, and funny should be identical in
nature to the variables in the mydata object studied throughout
Section 5.2. That is, person should be a character vector, sex
should be a factor with levels F and M, and funny should be a
factor with levels Low, Med, and High.

b. Stan and Francine are 41 years old, Steve is 15, Hayley is 21, and
Klaus is 60. Roger is extremely old—1,600 years. Append these
data as a new numeric column variable in dframe called age.

c. Use your knowledge of reordering the column variables based
on column index positions to overwrite dframe, bringing it in line
with mydata. That is, the first column should be person, the second
column age, the third column sex, and the fourth column funny.

d. Turn your attention to mydata as it was left after you included the
age.mon variable in Section 5.2.2. Create a new version of mydata
called mydata2 by deleting the age.mon column.

e. Now, combine mydata2 with dframe, naming the resulting object
mydataframe.

f. Write a single line of code that will extract from mydataframe just
the names and ages of any records where the individual is female
and has a level of funniness equal to Med OR High.

g. Use your knowledge of handling character strings in R to extract
all records from mydataframe that correspond to people whose
names start with S. Hint: Recall substr from Section 4.2.4 (note
that substr can be applied to a vector of multiple character
strings).

Important Code in This Chapter

Function/operator Brief description First occurrence

list Create a list Section 5.1.1, p. 89
[[ ]] Unnamed member reference Section 5.1.1, p. 90
[ ] List slicing (multiple members) Section 5.1.1, p. 91
$ Get named member/variable Section 5.1.2, p. 92
data.frame Create a data frame Section 5.2.1, p. 96
[ , ] Extract data frame row/columns Section 5.2.1, p. 96
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6
SPECIAL VALUES, CLASSES,

AND COERCION

You’ve now learned about numeric values,
logicals, character strings, and factors, as

well as their unique properties and applica-
tions. Now you’ll look at some special values

in R that aren’t as well-defined. You’ll see how they
might come about and how to handle and test for
them. Then you’ll look at different data types in R
and some general object class concepts.

6.1 Some Special Values

Many situations in R call for special values. For example, when a data set has
missing observations or when a practically infinite number is calculated, the
software has some unique terms that it reserves for these situations. These
special values can be used to mark abnormal or missing values in vectors,
arrays, or other data structures.



6.1.1 Infinity
In Section 2.1, I mentioned that R imposes limits on how extreme a number
can be before the software cannot reliably represent it. When a number is
too large for R to represent, the value is deemed to be infinite. Of course,
the mathematical concept of infinity (∞) does not correspond to a specific
number—R simply has to define an extreme cutoff point. The precise cutoff
value varies from system to system and is governed in part by the amount
of memory R has access to. This value is represented by the special object
Inf, which is case sensitive. Because it represents a numeric value, Inf can be
associated only with numeric vectors. Let’s create some objects to test it out.

R> foo <- Inf

R> foo

[1] Inf

R> bar <- c(3401,Inf,3.1,-555,Inf,43)

R> bar

[1] 3401.0 Inf 3.1 -555.0 Inf 43.0

R> baz <- 90000^100

R> baz

[1] Inf

Here, you’ve defined an object foo that is a single instance of an infinite
value. You’ve also defined a numeric vector, bar, with two infinite elements,
and then raised 90,000 to a power of 100 in baz to produce a result R deems
infinite.

R can also represent negative infinity, with -Inf.

R> qux <- c(-42,565,-Inf,-Inf,Inf,-45632.3)

R> qux

[1] -42.0 565.0 -Inf -Inf Inf -45632.3

This creates a vector with two negative-infinite values and one positive-
infinite value.

Though infinity does not represent any specific value, to a certain extent
you can still perform mathematical operations on infinite values in R. For
example, multiplying Inf by any negative value will result in -Inf.

R> Inf*-9

[1] -Inf

If you add to or multiply infinity, you also get infinity as a result.

R> Inf+1

[1] Inf

R> 4*-Inf

[1] -Inf

R> -45.2-Inf

[1] -Inf

104 Chapter 6



R> Inf-45.2

[1] Inf

R> Inf+Inf

[1] Inf

R> Inf/23

[1] Inf

Zero and infinity go hand in hand when it comes to division. Any
(finite) numeric value divided by infinity, positive or negative, will result
in zero.

R> -59/Inf

[1] 0

R> -59/-Inf

[1] 0

Though it isn’t mathematically defined, note that in R, any nonzero
value divided by zero will result in infinity (positive or negative depending
on the sign of the numerator).

R> -59/0

[1] -Inf

R> 59/0

[1] Inf

R> Inf/0

[1] Inf

Often, you’ll simply want to detect infinite values in a data structure.
The functions is.infinite and is.finite take in a collection of values, typ-
ically a vector, and return for each element a logical value answering the
question posed. Here’s an example using qux from earlier:

R> qux

[1] -42.0 565.0 -Inf -Inf Inf -45632.3

R> is.infinite(x=qux)

[1] FALSE FALSE TRUE TRUE TRUE FALSE

R> is.finite(x=qux)

[1] TRUE TRUE FALSE FALSE FALSE TRUE

Note that these functions do not distinguish between positive or nega-
tive infinity, and the result of is.finite will always be the opposite (the nega-
tion) of the result of is.infinite.

Finally, relational operators function as you might expect.

R> -Inf<Inf

[1] TRUE

R> Inf>Inf

[1] FALSE
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R> qux==Inf

[1] FALSE FALSE FALSE FALSE TRUE FALSE

R> qux==-Inf

[1] FALSE FALSE TRUE TRUE FALSE FALSE

Here, the first line confirms that -Inf is indeed treated as less than Inf,
and the second line shows that Inf is not greater than Inf. The third and
fourth lines, again using qux, test for equality, which is a useful way to dis-
tinguish between positive and negative infinity if you need to.

6.1.2 NaN
In some situations, it’s impossible to express the result of a calculation using
a number, Inf, or -Inf. These difficult-to-quantify special values are labeled
NaN in R, which stands for Not a Number.

As with infinite values, NaN values are associated only with numeric obser-
vations. It’s possible to define or include a NaN value directly, but this is rarely
the way they’re encountered.

R> foo <- NaN

R> foo

[1] NaN

R> bar <- c(NaN,54.3,-2,NaN,90094.123,-Inf,55)

R> bar

[1] NaN 54.30 -2.00 NaN 90094.12 -Inf 55.00

Typically, NaN is the unintended result of attempting a calculation that’s
impossible to perform with the specified values.

In Section 6.1.1, you saw that adding or subtracting from Inf or -Inf will
simply result again in Inf or -Inf. However, if you attempt to cancel repre-
sentations of infinity in any way, the result will be NaN.

R> -Inf+Inf

[1] NaN

R> Inf/Inf

[1] NaN

Here, the first line won’t result in zero because positive and negative
infinity can’t be interpreted in that numeric sense, so you get NaN as a result.
The same thing happens if you attempt to divide Inf by itself. In addition,
although you saw earlier that a nonzero value divided by zero will result in
positive or negative infinity, NaN results when zero is divided by zero.

R> 0/0

[1] NaN

Note that any mathematical operation involving NaN will simply result
in NaN.
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R> NaN+1

[1] NaN

R> 2+6*(4-4)/0

[1] NaN

R> 3.5^(-Inf/Inf)

[1] NaN

In the first line, adding 1 to “not a number” is still NaN. In the second
line, you obtain NaN from the (4-4)/0, which is clearly 0/0, so the result is also
NaN. In the third line, NaN results from -Inf/Inf, so the result of the remain-
ing calculation is again NaN. This begins to give you an idea of how NaN or
infinite values might unintentionally crop up. If you have a function where
various values are passed to a fixed calculation and you don’t take care to
prevent, for example, 0/0 from occurring, then the code will return NaN.

Like with Inf, a special function (is.nan) is used to detect the presence
of NaN values. Unlike infinite values, however, relational operators cannot be
used with NaN. Here’s an example using bar, which was defined earlier:

R> bar

[1] NaN 54.30 -2.00 NaN 90094.12 -Inf 55.00

R> is.nan(x=bar)

[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE

R> !is.nan(x=bar)

[1] FALSE TRUE TRUE FALSE TRUE TRUE TRUE

R> is.nan(x=bar)|is.infinite(x=bar)

[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE

R> bar[-(which(is.nan(x=bar)|is.infinite(x=bar)))]

[1] 54.30 -2.00 90094.12 55.00

Using the is.nan function on bar flags the two NaN positions as TRUE. In the
second example, you use the negation operator ! to flag the positions where
the elements are NOT NaN. Using the element-wise OR, | (see Section 4.1.3),
you then identify elements that are either NaN OR infinite. Finally, the last
line uses which to convert these logical values into numeric index positions
so that you can remove them with negative indexes in square brackets (see
Section 4.1.5 for a refresher on using which).

You can find more details on the functionality and behavior of NaN and
Inf in the R help file by entering ?Inf at the prompt.

Exercise 6.1

a. Store the following vector:

foo <- c(13563,-14156,-14319,16981,12921,11979,9568,8833,-12968,

8133)
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Then, do the following:

i. Output all elements of foo that, when raised to a power of 75,
are NOT infinite.

ii. Return the elements of foo, excluding those that result in
negative infinity when raised to a power of 75.

b. Store the following 3 × 4 matrix as the object bar:


77875.40 27551.45 23764.30 −36478.88
−35466.25 −73333.85 36599.69 −70585.69
−39803.81 55976.34 76694.82 47032.00


Now, do the following:

i. Identify the coordinate-specific indexes of the entries of bar
that are NaN when you raise bar to a power of 65 and divide by
infinity.

ii. Return the values in bar that are NOT NaN when bar is raised
to a power of 67 and infinity is added to the result. Confirm
this is identical to identifying those values in bar that, when
raised to a power of 67, are not equal to negative infinity.

iii. Identify those values in bar that are either negative infinity
OR finite when you raise bar to a power of 67.

6.1.3 NA
In statistical analyses, data sets often contain missing values. For example,
someone filling out a questionnaire may not respond to a particular item, or
a researcher may record some observations from an experiment incorrectly.
Identifying and handling missing values is important so that you can still use
the rest of the data. R provides a standard special term to represent missing
values, NA, which reads as Not Available.

NA entries are not the same as NaN entries. Whereas NaN is used only with
respect to numeric operations, missing values can occur for any type of
observation. As such, NAs can exist in both numeric and non-numeric set-
tings. Here’s an example:

R> foo <- c("character","a",NA,"with","string",NA)

R> foo

[1] "character" "a" NA "with" "string" NA

R> bar <- factor(c("blue",NA,NA,"blue","green","blue",NA,"red","red",NA,

"green"))

R> bar

[1] blue <NA> <NA> blue green blue <NA> red red <NA> green

Levels: blue green red

R> baz <- matrix(c(1:3,NA,5,6,NA,8,NA),nrow=3,ncol=3)
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R> baz

[,1] [,2] [,3]

[1,] 1 NA NA

[2,] 2 5 8

[3,] 3 6 NA

The object foo is a character vector with entries 3 and 6 missing; bar is a
factor vector of length 11 with elements 2, 3, 7, and 10 missing; and baz is a
numeric matrix with row 1, columns 2 and 3, and row 3, column 3, elements
missing. In the factor vector, note that the NAs are printed as <NA>. This is to
differentiate between bona fide levels of the factor and the missing observa-
tions, to prevent NA from being mistakenly interpreted as one of the levels.

Like the other special values so far, you can identify NA elements using
the function is.na. This is often useful for removing or replacing NA values.
Consider the following numeric vector:

R> qux <- c(NA,5.89,Inf,NA,9.43,-2.35,NaN,2.10,-8.53,-7.58,NA,-4.58,2.01,NaN)

R> qux

[1] NA 5.89 Inf NA 9.43 -2.35 NaN 2.10 -8.53 -7.58 NA -4.58

[13] 2.01 NaN

This vector has a total of 14 entries, including NA, NaN, and Inf.

R> is.na(x=qux)

[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE

[13] FALSE TRUE

As you can see, is.na flags the corresponding NA entries in qux as TRUE.
But this is not all—note that it also flags elements 7 and 14, which are NaN,
not NA. Strictly speaking, NA and NaN are different entities, but numericly they
are practically the same since there is almost nothing you can do with either
value. Using is.na labels both as TRUE, allowing the user to remove or recode
both at the same time.

If you want to identify NA and NaN entries separately, you can use is.nan in
conjunction with logical operators. Here’s an example:

R> which(x=is.nan(x=qux))

[1] 7 14

This identifies the index positions whose elements are specifically NaN. If
you want to identify NA entries only, try the following:

R> which(x=(is.na(x=qux)&!is.nan(x=qux)))

[1] 1 4 11

This identifies the element indexes for only the NA entries (by checking
for entries where is.na is TRUE AND where is.nan is NOT TRUE).
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After locating the offending elements, you could use negative indexes in
square brackets to remove them, though R offers a more direct option. The
function na.omit will take a structure and delete all NAs from it; na.omit will
also apply to NaNs if the elements are numeric.

R> quux <- na.omit(object=qux)

R> quux

[1] 5.89 Inf 9.43 -2.35 2.10 -8.53 -7.58 -4.58 2.01

attr(,"na.action")

[1] 1 4 7 11 14

attr(,"class")

[1] "omit"

Note that the structure passed to na.omit is given as the argument object
and that some additional output is displayed in printing the returned object.
These extra details are provided to inform the user that there were elements
in the original vector that were removed (in this case, the element positions
provided in the attribute na.action). Attributes will be discussed more in
Section 6.2.1.

Similar to NaN, arithmetic calculations with NA result in NA. Using rela-
tional operators with either NaN or NA will also result in NA.

R> 3+2.1*NA-4

[1] NA

R> 3*c(1,2,NA,NA,NaN,6)

[1] 3 6 NA NA NaN 18

R> NA>76

[1] NA

R> 76>NaN

[1] NA

You can find more details on the usage and finer technicalities of NA
values by entering ?NA.

6.1.4 NULL
Finally, you’ll look at the null value, written as NULL. This value is often used
to explicitly define an “empty” entity, which is quite different from a “miss-
ing” entity specified with NA. An instance of NA clearly denotes an existing
position that can be accessed and/or overwritten if necessary—not so for
NULL. You can see an indication of this if you compare the assignment of NA
with the assignment of a NULL.

R> foo <- NULL

R> foo

NULL

R> bar <- NA
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R> bar

[1] NA

Note that bar, the NA object, is printed with an index position [1]. This
suggests you have a vector with a single element. In contrast, you explicitly
instructed foo to be empty with NULL. Printing this object doesn’t provide a
position index because there is no position to access.

This interpretation of NULL also applies to vectors that have other well-
defined items. Consider the following two lines of code:

R> c(2,4,NA,8)

[1] 2 4 NA 8

R> c(2,4,NULL,8)

[1] 2 4 8

The first line creates a vector of length 4, with the third position coded
as NA. The second line creates a similar vector but using NULL instead of NA.
The result is a vector with a length of only 3. That’s because NULL cannot take
up a position in the vector. As such, it makes no sense to assign NULL to multi-
ple positions in a vector (or any other structure). Again, here’s an example:

R> c(NA,NA,NA)

[1] NA NA NA

R> c(NULL,NULL,NULL)

NULL

The first line can be interpreted as “three possible slots with unrecorded
observations.” The second line simply provides “emptiness three times,”
which is interpreted as one single, unsubsettable, empty object.

At this point, you might wonder why there is even a need for NULL. If
something is empty and doesn’t exist, why define it in the first place? The
answer lies in the need to be able to explicitly state or check whether a cer-
tain object has been defined. This occurs often when calling functions in R.
For example, when a function contains optional arguments, internally the
function has to check which of those arguments have been supplied and
which are missing or empty. The NULL value is a useful and flexible tool
that the author of a function can use to facilitate such checks. You’ll see
examples of this later on in Chapter 11.

The is.null function is used to check whether something is explicitly
NULL. Suppose you have a function with an optional argument named opt.arg

and that, if supplied, opt.arg should be a character vector of length 3. Let’s
say a user calls this function with the following.

R> opt.arg <- c("string1","string2","string3")
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Now if you check whether the argument was supplied using NA, you
might call this:

R> is.na(x=opt.arg)

[1] FALSE FALSE FALSE

The position-specific nature of NA means that this check is element-wise
and returns an answer for each value in opt.arg. This is problematic because
you want only a single answer—is opt.arg empty or is it supplied? This is
when NULL comes to the party.

R> is.null(x=opt.arg)

[1] FALSE

Quite clearly opt.arg is not empty, and the function can proceed as nec-
essary. If the argument is empty, using NULL over NA for the check is again
better for these purposes.

R> opt.arg <- c(NA,NA,NA)

R> is.na(x=opt.arg)

[1] TRUE TRUE TRUE

R> opt.arg <- c(NULL,NULL,NULL)

R> is.null(x=opt.arg)

[1] TRUE

As noted earlier, filling a vector with NULL isn’t usual practice; it’s done
here just for illustration. But usage of NULL is far from specific to this partic-
ular example. It’s commonly used throughout both ready-to-use and user-
contributed functionality in R.

The empty NULL has an interesting effect if it’s included in arithmetic or
relational comparisons.

R> NULL+53

numeric(0)

R> 53<=NULL

logical(0)

Rather than NULL as you might expect, the result is an “empty” vector of
a type determined by the nature of the operation attempted. NULL typically
dominates any arithmetic, even if it includes other special values.

R> NaN-NULL+NA/Inf

numeric(0)

NULL also occurs naturally when examining lists and data frames. For
example, define a new list foo.
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R> foo <- list(member1=c(33,1,5.2,7),member2="NA or NULL?")

R> foo

$member1

[1] 33.0 1.0 5.2 7.0

$member2

[1] "NA or NULL?"

This list obviously doesn’t include a member called member3. Look at
what happens when you try to access a member in foo by that name:

R> foo$member3

NULL

The result of NULL signals that a member called member3 in foo doesn’t
exist, or in R terms, is empty. Therefore, it can be filled with whatever
you want.

R> foo$member3 <- NA

R> foo

$member1

[1] 33.0 1.0 5.2 7.0

$member2

[1] "NA or NULL?"

$member3

[1] NA

The same principle applies when querying a data frame for a nonexis-
tent column or variable using the dollar operator (as in Section 5.2.2).

For more technical details on how NULL and is.null are handled by R, see
the help file accessed by ?NULL.

Exercise 6.2

a. Consider the following line of code:

foo <- c(4.3,2.2,NULL,2.4,NaN,3.3,3.1,NULL,3.4,NA)

Decide yourself which of the following statements are true
and which are false and then use R to confirm:

i. The length of foo is 8.
ii. Calling which(x=is.na(x=foo)) will not result in 4 and 8.
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iii. Checking is.null(x=foo) will provide you with the locations of
the two NULL values that are present.

iv. Executing is.na(x=foo[8])+4/NULL will not result in NA.

b. Create and store a list containing a single member: the vector
c(7,7,NA,3,NA,1,1,5,NA). Then, do the following:

i. Name the member "alpha".
ii. Confirm that the list doesn’t have a member with the

name "beta" using the appropriate logical valued function.
iii. Add a new member called beta, which is the vector obtained

by identifying the index positions of alpha that are NA.

6.2 Understanding Types, Classes, and Coercion

By now, you’ve studied many of the fundamental features in the R language
for representing, storing, and handling data. In this section, you’ll examine
how to formally distinguish between different kinds of values and structures
and look at some simple examples of conversion from one type to another.

6.2.1 Attributes
Each R object you create has additional information about the nature of
the object itself. This additional information is referred to as the object’s
attributes. You’ve see a few attributes already. In Section 3.1.3, you identified
the dimensions attribute of a matrix using dim. In Section 4.3.1, you used
levels to get the levels attribute of a factor. It was also noted that names can
get the member names of a list in Section 5.1.2, and in Section 6.1.3, that an
attribute annotates the result of applying na.omit.

In general, you can think of attributes as either explicit or implicit.
Explicit attributes are immediately visible to the user, while R determines
implicit attributes internally. You can print explicit attributes for a given
object with the attributes function, which takes any object and returns a
named list. Consider, for example, the following 3 × 3 matrix:

R> foo <- matrix(data=1:9,nrow=3,ncol=3)

R> foo

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

R> attributes(foo)

$dim

[1] 3 3
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Here, calling attributes returns a list with one member: dim. Of course,
you can retrieve the contents of dim with attributes(foo)$dim, but if you know
the name of an attribute, you can also use attr:

R> attr(x=foo,which="dim")

[1] 3 3

This function takes the object in as x and the name of the attribute as
which. Recall that names are specified as character strings in R. To make
things even more convenient, the most common attributes have their own
functions (usually named after the attribute) to access the corresponding
value. For the dimensions of a matrix, you’ve already seen the function dim.

R> dim(foo)

[1] 3 3

These attribute-specific functions are useful because they also allow
access to implicit attributes, which, while still controllable by the user, are set
automatically by the software as a matter of necessity. The names and levels

functions mentioned earlier are also both attribute-specific functions.
Explicit attributes are often optional; if they aren’t specified, they are

NULL. For example, when building a matrix with the matrix function, you can
use the optional argument dimnames to annotate the rows and columns with
names. You pass dimnames a list made up of two members, both character vec-
tors of the appropriate lengths—the first giving row names and the second
giving column names. Let’s define the matrix bar as follows:

R> bar <- matrix(data=1:9,nrow=3,ncol=3,dimnames=list(c("A","B","C"),

c("D","E","F")))

R> bar

D E F

A 1 4 7

B 2 5 8

C 3 6 9

Because the dimension names are attributes, the dimnames appear when
you call attributes(bar).

R> attributes(bar)

$dim

[1] 3 3

$dimnames

$dimnames[[1]]

[1] "A" "B" "C"

$dimnames[[2]]

[1] "D" "E" "F"

Special Values, Classes, and Coercion 115



Note that dimnames is itself a list, nested inside the larger attributes list.
Again, to extract the values of this attribute, you can use list member ref-
erencing, you can use attr as shown earlier, or you can use the attribute-
specific function.

R> dimnames(bar)

[[1]]

[1] "A" "B" "C"

[[2]]

[1] "D" "E" "F"

Some attributes can be modified after an object has been created (as
you saw already in Section 5.1.2, where you renamed members of a list).
Here, to make foo match bar exactly, you can give foo some dimnames by
assigning them to the attribute-specific function:

R> dimnames(foo) <- list(c("A","B","C"),c("D","E","F"))

R> foo

D E F

A 1 4 7

B 2 5 8

C 3 6 9

I’ve used matrices in the discussion here, but optional attributes for
other objects in R are treated the same way. Attributes are not restricted
to built-in R objects, either. Objects you build yourself can be defined with
their own attributes and attribute-specific functions. Just remember that the
role of an attribute is typically to provide descriptive data about an object, or
you could end up overcomplicating your object structures unnecessarily.

6.2.2 Object Class
An object’s class is one of the most useful attributes for describing an entity
in R. Every object you create is identified, either implicitly or explicitly, with
at least one class. R is an object-oriented programming language, meaning
entities are stored as objects and have methods that act upon them. In such
a language, class identification is formally referred to as inheritance.

NOTE This section will focus on the most common classing structure used in R, called S3.
There is another structure, S4, which is essentially a more formal set of rules for the
identification and treatment of different objects. For most practical intents and cer-
tainly for beginners, understanding and using S3 will be sufficient. You can find
further details in R’s online documentation.

The class of an object is explicit in situations where you have user-
defined object structures or an object such as a factor vector or data frame
where other attributes play an important part in the handling of the object
itself—for example, level labels of a factor vector, or variable names in a data
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frame, are modifiable attributes that play a primary role in accessing the
observations of each object. Elementary R objects such as vectors, matrices,
and arrays, on the other hand, are implicitly classed, which means the class
is not identified with the attributes function. Whether implicit or explicit,
the class of a given object can always be retrieved using the attribute-specific
function class.

Stand-Alone Vectors

Let’s create some simple vectors to use as examples.

R> num.vec1 <- 1:4

R> num.vec1

[1] 1 2 3 4

R> num.vec2 <- seq(from=1,to=4,length=6)

R> num.vec2

[1] 1.0 1.6 2.2 2.8 3.4 4.0

R> char.vec <- c("a","few","strings","here")

R> char.vec

[1] "a" "few" "strings" "here"

R> logic.vec <- c(T,F,F,F,T,F,T,T)

R> logic.vec

[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE

R> fac.vec <- factor(c("Blue","Blue","Green","Red","Green","Yellow"))

R> fac.vec

[1] Blue Blue Green Red Green Yellow

Levels: Blue Green Red Yellow

You can pass any object to the class function, and it returns a character
vector as output. Here are examples using the vectors just created:

R> class(num.vec1)

[1] "integer"

R> class(num.vec2)

[1] "numeric"

R> class(char.vec)

[1] "character"

R> class(logic.vec)

[1] "logical"

R> class(fac.vec)

[1] "factor"

The output from using class on the character vector, the logical vector,
and the factor vector simply match the kind of data that has been stored.
The output from the number vectors is a little more intricate, however. So
far, I’ve referred to any object with an arithmetically valid set of numbers as
“numeric.” If all the numbers stored in a vector are whole, then R identifies
the vector as "integer". Numbers with decimal places (called floating-point
numbers), on the other hand, are identified as "numeric". This distinction
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is necessary because some tasks strictly require integers, not floating-point
numbers. Colloquially, I’ll continue to refer to both types as “numeric” and
in fact, the is.numeric function will return TRUE for both integer and floating-
point structures, as you’ll see in Section 6.2.3.

Other Data Structures

As mentioned earlier, R’s classes are essentially designed to facilitate object-
oriented programming. As such, class usually reports on the nature of the
data structure, rather than the type of data that’s stored—it returns the data
type only when used on stand-alone vectors. Let’s try it on some matrices.

R> num.mat1 <- matrix(data=num.vec1,nrow=2,ncol=2)

R> num.mat1

[,1] [,2]

[1,] 1 3

[2,] 2 4

R> num.mat2 <- matrix(data=num.vec2,nrow=2,ncol=3)

R> num.mat2

[,1] [,2] [,3]

[1,] 1.0 2.2 3.4

[2,] 1.6 2.8 4.0

R> char.mat <- matrix(data=char.vec,nrow=2,ncol=2)

R> char.mat

[,1] [,2]

[1,] "a" "strings"

[2,] "few" "here"

R> logic.mat <- matrix(data=logic.vec,nrow=4,ncol=2)

R> logic.mat

[,1] [,2]

[1,] TRUE TRUE

[2,] FALSE FALSE

[3,] FALSE TRUE

[4,] FALSE TRUE

Note from Section 4.3.1 that factors are used only in vector form, so
fac.vec is not included here. Now check these matrices with class.

R> class(num.mat1)

[1] "matrix"

R> class(num.mat2)

[1] "matrix"

R> class(char.mat)

[1] "matrix"

R> class(logic.mat)

[1] "matrix"
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You see that regardless of the data type, class reports the structure of
the object itself—all matrices. The same is true for other object structures,
like arrays, lists, and data frames.

Multiple Classes

Certain objects will have multiple classes. A variant on a standard form of
an object, such as an ordered factor vector, will inherit the usual factor class
and also contain the additional ordered class. Both are returned if you use
the class function.

R> ordfac.vec <- factor(x=c("Small","Large","Large","Regular","Small"),

levels=c("Small","Regular","Large"),

ordered=TRUE)

R> ordfac.vec

[1] Small Large Large Regular Small

Levels: Small < Regular < Large

R> class(ordfac.vec)

[1] "ordered" "factor"

Earlier, fac.vec was identified as "factor" only, but the class of ordfac.vec
has two components. It’s still identified as "factor", but it also includes
"ordered", which identifies the variant of the "factor" class also present in
the object. Here, you can think of "ordered" as a subclass of "factor". In other
words, it is a special case that inherits from, and therefore behaves like, a
"factor". For further technical details on R subclasses, I recommend Chap-
ter 9 of The Art of R Programming by Matloff (2011).

NOTE I have focused on the class function here because it’s directly relevant to the object-
oriented programming style exercised in this text, especially in Part II. There are other
functions that show some of the complexities of R’s classing rules. For example, the
function typeof reports the type of data contained within an object, not just for vectors
but also for matrices and arrays. Note, however, that the terminology in the output of
typeof doesn’t always match the output of class. See the help file ?typeof for details
on the values it returns.

To summarize, an object’s class is first and foremost a descriptor of the
data structure, though for simple vectors, the class function reports the type
of data stored. If the vector entries are exclusively whole numbers, then R
classes the vector as "integer", whereas "numeric" is used to label a vector with
floating-point numbers.

6.2.3 Is-Dot Object-Checking Functions
Identifying the class of an object is essential for functions that operate on
stored objects, especially those that behave differently depending on the
class of the object. To check whether the object is a specific class or data
type, you can use the is-dot functions on the object and it will return a TRUE

or FALSE logical value.
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Is-dot functions exist for almost any sensible check you can think of. For
example, consider once more the num.vec1 vector from Section 6.2.2 and the
following six checks:

R> num.vec1 <- 1:4

R> num.vec1

[1] 1 2 3 4

R> is.integer(num.vec1)

[1] TRUE

R> is.numeric(num.vec1)

[1] TRUE

R> is.matrix(num.vec1)

[1] FALSE

R> is.data.frame(num.vec1)

[1] FALSE

R> is.vector(num.vec1)

[1] TRUE

R> is.logical(num.vec1)

[1] FALSE

The first, second, and sixth is-dot functions check the kind of data
stored in the object, while the others check the structure of the object itself.
The results are to be expected: num.vec1 is an “integer” (and is “numeric”),
and it is a “vector.” It’s not a matrix or a data frame, nor is it logical.

Briefly, it’s worth noting that these checks use more general categories
than the formal classes identified with class. Recall that num.vec1 was identi-
fied solely as "integer" in Section 6.2.2, but using is.numeric here still returns
TRUE. In this example, the num.vec1 with integer data is generalized to be
"numeric". Similarly, for a data frame, an object of class "data.frame" will
return TRUE for is.data.frame and is.list because a data frame is intuitively
generalized to a list.

There’s a difference between the object is-dot functions detailed here
and functions such as is.na discussed in Section 6.1. The functions to check
for the special values like NA should be thought of as a check for equality;
they exist because it is not legal syntax to write something like foo==NA. Those
functions from Section 6.1 thus operate in R’s element-wise fashion, whereas
the object is-dot functions inspect the object itself, returning only a single
logical value.

6.2.4 As-Dot Coercion Functions
You’ve seen different ways to modify an object after it’s been created—by
accessing and overwriting elements, for example. But what about the struc-
ture of the object itself and the type of data contained within?

Converting from one object or data type to another is referred to as
coercion. Like other features of R you’ve met so far, coercion is performed
either implicitly or explicitly. Implicit coercion occurs automatically when
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elements need to be converted to another type in order for an operation to
complete. In fact, you’ve come across this behavior already, in Section 4.1.4,
for example, when you used numeric values for logical values. Remember
that logical values can be thought of as integers—one for TRUE and zero
for FALSE. Implicit coercion of logical values to their numeric counterparts
occurs in lines of code like this:

R> 1:4+c(T,F,F,T)

[1] 2 2 3 5

In this operation, R recognizes that you’re attempting an arithmetic cal-
culation with +, so it expects numeric quantities. Since the logical vector is
not in this form, the software internally coerces it to ones and zeros before
completing the task.

Another frequent example of implicit coercion is when paste and cat are
used to glue together character strings, as explored in Section 4.2.2. Non-
character entries are automatically coerced to strings before the concatena-
tion takes place. Here’s an example:

R> foo <- 34

R> bar <- T

R> paste("Definitely foo: ",foo,"; definitely bar: ",bar,".",sep="")

[1] "Definitely foo: 34; definitely bar: TRUE."

Here, the integer 34 and the logical T are implicitly coerced to characters
since R knows the output of paste must be a string.

In other situations, coercion won’t happen automatically and must
be carried out by the user. This explicit coercion can be achieved with the
as-dot functions. Like is-dot functions, as-dot functions exist for most typical
R data types and object classes. The previous two examples can be coerced
explicitly, as follows.

R> as.numeric(c(T,F,F,T))

[1] 1 0 0 1

R> 1:4+as.numeric(c(T,F,F,T))

[1] 2 2 3 5

R> foo <- 34

R> foo.ch <- as.character(foo)

R> foo.ch

[1] "34"

R> bar <- T

R> bar.ch <- as.character(bar)

R> bar.ch

[1] "TRUE"

R> paste("Definitely foo: ",foo.ch,"; definitely bar: ",bar.ch,".",sep="")

[1] "Definitely foo: 34; definitely bar: TRUE."
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Coercions are possible in most cases that “make sense.” For example, it’s
easy to see why R is able to read something like this:

R> as.numeric("32.4")

[1] 32.4

However, the following conversion makes no sense:

R> as.numeric("g'day mate")

[1] NA

Warning message:

NAs introduced by coercion

Since there is no logical way to translate “g’day mate” into numbers,
the entry is returned as NA (in this case, R has also issued a warning mes-
sage). This means that in certain cases, multiple coercions are needed to
attain the final result. Suppose, for example, you have the character vector
c("1","0","1","0","0") and you want to coerce it to a logical-valued vector.
Direct character to logical coercion is not possible, because even if all the
character strings contained numbers, there is no guarantee in general that
they would all be ones and zeros.

R> as.logical(c("1","0","1","0","0"))

[1] NA NA NA NA NA

However, you know that character string numbers can be converted to
a numeric data type, and you know that ones and zeros are easily coerced to
logicals. So, you can perform the coercion in those two steps, as follows:

R> as.logical(as.numeric(c("1","0","1","0","0")))

[1] TRUE FALSE TRUE FALSE FALSE

Not all data-type coercion is entirely straightforward. Factors, for
example, are trickier because R treats the levels as integers. In other words,
regardless of how the levels of a given factor are actually labeled, the soft-
ware will refer to them internally as level 1, level 2, and so on. This is clear
if you try to coerce a factor to a numeric data type.

R> baz <- factor(x=c("male","male","female","male"))

R> baz

[1] male male female male

Levels: female male

R> as.numeric(baz)

[1] 2 2 1 2

Here, you see that R has assigned the numeric representation of the fac-
tor in the stored order of the factor labels (alphabetic by default). Level 1
refers to female, and level 2 refers to male. This example is simple enough,
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though it’s important to be aware of the behavior since coercion from fac-
tors with numeric levels can cause confusion.

R> qux <- factor(x=c(2,2,3,5))

R> qux

[1] 2 2 3 5

Levels: 2 3 5

R> as.numeric(qux)

[1] 1 1 2 3

The numeric representation of the factor qux is c(1,1,2,3). This high-
lights again that the levels of qux are simply treated as level 1 (even though
it has a label of 2), level 2 (which has a label of 3), and level 3 (which has a
label of 5).

Coercion between object classes and structures can also be useful. For
example, you might need to store the contents of a matrix as a single vector.

R> foo <- matrix(data=1:4,nrow=2,ncol=2)

R> foo

[,1] [,2]

[1,] 1 3

[2,] 2 4

R> as.vector(foo)

[1] 1 2 3 4

Note that as.vector has coerced the matrix by “stacking” the columns
into a single vector. The same column-wise deconstruction occurs for
higher-dimensional arrays, in order of layer or block.

R> bar <- array(data=c(8,1,9,5,5,1,3,4,3,9,8,8),dim=c(2,3,2))

R> bar

, , 1

[,1] [,2] [,3]

[1,] 8 9 5

[2,] 1 5 1

, , 2

[,1] [,2] [,3]

[1,] 3 3 8

[2,] 4 9 8

R> as.matrix(bar)

[,1]

[1,] 8

[2,] 1

[3,] 9
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[4,] 5

[5,] 5

[6,] 1

[7,] 3

[8,] 4

[9,] 3

[10,] 9

[11,] 8

[12,] 8

R> as.vector(bar)

[1] 8 1 9 5 5 1 3 4 3 9 8 8

You can see that as.matrix stores the array as a 12 × 1 matrix, and
as.vector stores it as a single vector. Similar commonsense rules for data
types apply to coercion when working with object structures. For example,
coercing the following list baz to a data frame produces an error:

R> baz <- list(var1=foo,var2=c(T,F,T),var3=factor(x=c(2,3,4,4,2)))

R> baz

$var1

[,1] [,2]

[1,] 1 3

[2,] 2 4

$var2

[1] TRUE FALSE TRUE

$var3

[1] 2 3 4 4 2

Levels: 2 3 4

R> as.data.frame(baz)

Error in data.frame(var1 = 1:4, var2 = c(TRUE, FALSE, TRUE), var3 = c(1L, :

arguments imply differing number of rows: 2, 3, 5

The error occurs because the variables do not have matching lengths.
But there is no problem with coercing the list qux, shown here, which has
equal-length members:

R> qux <- list(var1=c(3,4,5,1),var2=c(T,F,T,T),var3=factor(x=c(4,4,2,1)))

R> qux

$var1

[1] 3 4 5 1

$var2

[1] TRUE FALSE TRUE TRUE
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$var3

[1] 4 4 2 1

Levels: 1 2 4

R> as.data.frame(qux)

var1 var2 var3

1 3 TRUE 4

2 4 FALSE 4

3 5 TRUE 2

4 1 TRUE 1

This stores the variables as a data set in a column-wise fashion, in the
order that your list supplies them as members.

This discussion on object classes, data types, and coercion is not
exhaustive, but it serves as a useful introduction to how R deals with issues
surrounding the formal identification, description, and handling of the
objects you create—issues that are present for most high-level languages.
Once you’re more familiar with R, the help files (such as the one accessed
by entering ?as at the prompt) provide further details about object handling
in the software.

Exercise 6.3

a. Identify the class of the following objects. For each object, also
state whether the class is explicitly or implicitly defined.
i. foo <- array(data=1:36,dim=c(3,3,4))

ii. bar <- as.vector(foo)

iii. baz <- as.character(bar)

iv. qux <- as.factor(baz)

v. quux <- bar+c(-0.1,0.1)

b. For each object defined in (a), find the sum of the result of
calling is.numeric and is.integer on it separately. For example,
is.numeric(foo)+is.integer(foo) would compute the sum for (i).
Turn the collection of five results into a factor with levels 0, 1,
and 2, identified by the results themselves. Compare this factor
vector with the result of coercing it to a numeric vector.

c. Turn the following:

[,1] [,2] [,3] [,4]

[1,] 2 5 8 11

[2,] 3 6 9 12

[3,] 4 7 10 13

into the following:

[1] "2" "5" "8" "11" "3" "6" "9" "12" "4" "7" "10" "13"
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d. Store the following matrix:



34 0 1
23 1 2
33 1 1
42 0 1
41 0 2


Then, do the following:
i. Coerce the matrix to a data frame.
ii. As a data frame, coerce the second column to be logical-

valued.
iii. As a data frame, coerce the third column to be factor-valued.

Important Code in This Chapter

Function/operator Brief description First occurrence

Inf, -Inf Value for ±infinity Section 6.1.1, p. 104
is.infinite Element-wise check for Inf Section 6.1.1, p. 105
is.finite Element-wise check for finiteness Section 6.1.1, p. 105
NaN Value for invalid numerics Section 6.1.2, p. 106
is.nan Element-wise check for NaN Section 6.1.2, p. 107
NA Value for missing observation Section 6.1.3, p. 108
is.na Element-wise check for NA OR NaN Section 6.1.3, p. 109
na.omit Delete all NAs and NaNs Section 6.1.3, p. 110
NULL Value for “empty” Section 6.1.4, p. 110
is.null Check for NULL Section 6.1.4, p. 111
attributes List explicit attributes Section 6.2.1, p. 114
attr Obtain specific attribute Section 6.2.1, p. 115
dimnames Get array dimension names Section 6.2.1, p. 116
class Get object class (S3) Section 6.2.2, p. 117
is. Object-checking functions Section 6.2.3, p. 120
as. Object-coercion functions Section 6.2.4, p. 121
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7
BASIC PLOTTING

One particularly popular feature of R is
its incredibly flexible plotting tools for

data and model visualization. This is what
draws many to R in the first place. Mastering

R’s graphical functionality does require practice, but
the fundamental concepts are straightforward. In this
chapter, I’ll provide an overview of the plot function and some useful
options for controlling the appearance of the final graph. Then I’ll cover
the basics of using ggplot2, a powerful library for visualizing data in R. This
chapter will cover just the basics of plotting, and then you’ll learn more
about creating different types of statistical plots in Chapter 14, and about
advanced plotting techniques in Part V.

7.1 Using plot with Coordinate Vectors

The easiest way to think about generating plots in R is to treat your screen
as a blank, two-dimensional canvas. You can plot points and lines using x-
and y-coordinates. On paper, these coordinates are usually represented
with points written as a pair: (x value, y value). The R function plot, on the
other hand, takes in two vectors—one vector of x locations and one vector
of y locations—and opens a graphics device where it displays the result. If a



graphics device is already open, R’s default behavior is to refresh the device,
overwriting the current contents with the new plot.

For example, let’s say you wanted to plot the points (1.1,2), (2,2.2),
(3.5,−1.3), (3.9,0), and (4.2,0.2). In plot, you must provide the vector of x

locations first, and the y locations second. Let’s define these as foo and bar,
respectively:

R> foo <- c(1.1,2,3.5,3.9,4.2)

R> bar <- c(2,2.2,-1.3,0,0.2)

R> plot(foo,bar)

Figure 7-1 shows the resulting graphics device with the plot (I’ll use this
simple data set as a working example throughout this section).

Figure 7-1: The five plotted points using R’s default behavior

The x and y locations don’t necessarily need to be specified as separate
vectors. You can also supply coordinates in the form of a matrix, with the
x values in the first column and the y values in the second column, or as a
list. For example, setting up a matrix of the five points, the following code
exactly reproduces Figure 7-1 (note the window pane will look slightly differ-
ent depending on your operating system):

R> baz <- cbind(foo,bar)

R> baz

foo bar
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[1,] 1.1 2.0

[2,] 2.0 2.2

[3,] 3.5 -1.3

[4,] 3.9 0.0

[5,] 4.2 0.2

R> plot(baz)

The plot function is one of R’s versatile generic functions. It works dif-
ferently for different objects and allows users to define their own methods
for handling objects (including user-defined object classes). Technically, the
version of the plot command that you’ve just used is internally identified as
plot.default. The help file ?plot.default provides additional details on this
scatterplot style of data visualization.

7.2 Graphical Parameters

There are a wide range of graphical parameters that can be supplied as argu-
ments to the plot function (or other plotting functions, such as those in
Section 7.3). These parameters invoke simple visual enhancements, like
coloring the points and adding axis labels, and can also control technical
aspects of the graphics device (Chapter 23 covers the latter in more detail).
Some of the most commonly used graphical parameters are listed here; I’ll
briefly discuss each of these in turn in the following sections:

type Tells R how to plot the supplied coordinates (for example, as
stand-alone points or joined by lines or both dots and lines).

main, xlab, ylab Options to include plot title, the horizontal axis label,
and the vertical axis label, respectively.

col Color (or colors) to use for plotting points and lines.

pch Stands for point character. This selects which character to use for
plotting individual points.

cex Stands for character expansion. This controls the size of plotted point
characters.

lty Stands for line type. This specifies the type of line to use to connect
the points (for example, solid, dotted, or dashed).

lwd Stands for line width. This controls the thickness of plotted lines.

xlim, ylim This provides limits for the horizontal range and vertical
range (respectively) of the plotting region.

7.2.1 Automatic Plot Types
By default, the plot function will plot individual points, as shown in Fig-
ure 7-1. This is the default plot type, but other plot types will have a differ-
ent appearance. To control the plot type, you can specify a single character-
valued option for the argument type.
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For example, in many cases it makes sense to show lines connecting
each coordinate, such as when plotting time series data. For this, you would
specify plot type "l". Using foo and bar from Section 7.1, the following pro-
duces the plot in the left panel of Figure 7-2:

R> plot(foo,bar,type="l")

Figure 7-2: A line plot produced using five adjoined coordinates, setting type="l" (left)
or type="b" (right)

The default value for type is "p", which can be interpreted as “points
only.” Since you didn’t specify anything different, this is what was used for
the graph in Figure 7-1. In this last example, on the other hand, you’ve set
type="l" (meaning “lines only”). Other options include "b" for both points
and lines (shown in the right panel of Figure 7-2) and "o" for overplotting
the points with lines (this eliminates the gaps between points and lines vis-
ible for type="b"). The option type="n" results in no points or lines plotted,
creating an empty plot, which can be useful for complicated plots that must
be constructed in steps.

7.2.2 Title and Axis Labels
By default, a basic plot won’t have a main title, and its axes will be labeled
with the names of the vectors being plotted. But a main title and more
descriptive axis labels often make the plotted data easier to interpret. You
can add these by supplying text as character strings to main for a title, xlab
for the x-axis label, and ylab for the y-axis label. Note that these strings may
include escape sequences (discussed in Section 4.2.3). The following code
produces the plots in Figure 7-3:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="x axis label",

ylab="location y")

R> plot(foo,bar,type="b",main="My lovely plot\ntitle on two lines",xlab="",

ylab="")
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Figure 7-3: Two examples of plots with axis labels and titles

In the second plot, note how the new line escape sequence splits the
title into two lines. In that plot, xlab and ylab are also set to the empty
string "" to prevent R from labeling the axes with the names of the x and
y vectors.

7.2.3 Color
Adding color to a graph is far from just an aesthetic consideration. Color
can make data much clearer—for example by distinguishing factor levels
or emphasizing important numeric limits. You can set colors with the col

parameter in a number of ways. The simplest options are to use an integer
selector or a character string. There are a number of color string values
recognized by R, which you can see by entering colors() at the prompt.
The default color is integer 1 or the character string "black". The top row
of Figure 7-4 shows two examples of colored graphs, created by the follow-
ing code:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",col=2)

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",col="seagreen4")

There are eight possible integer values (shown in the leftmost plot of
Figure 7-5) and around 650 character strings to specify color. But you aren’t
limited to these options since you can also specify colors using RGB (red,
green, and blue) levels and by creating your own palettes. I’ll talk more
about the last two options in Chapter 25.
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Figure 7-4: Experimenting with basic R plotting. Top row: Two examples of colored plots
with col=2 (left) and col="seagreen4" (right). Middle row: Two further examples making
use of pch, lty, cex, and lwd. Bottom row: Setting plotting region limits xlim=c(-10,5),
ylim=c(-3,3) (left), and xlim=c(3,5), ylim=c(-0.5,0.2) (right).
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7.2.4 Line and Point Appearances
To alter the appearance of the plotted points you would use pch, and to
alter the lines you would use lty. The pch parameter controls the character
used to plot individual data points. You can specify a single character to
use for each point, or you can specify a value between 1 and 25 (inclusive).
The symbols corresponding to each integer are shown in the middle plot
of Figure 7-5. The lty parameter, which affects the type of line drawn, can
take the values 1 through 6. These options are shown in the rightmost plot
of Figure 7-5.

Figure 7-5: Some reference plots giving the results of possible integer options of col (left),
pch (middle), and lty (right)

You can also control the size of plotted points using cex and the thick-
ness of lines using lwd. The default size and thickness for both of these is
1. To request half-size points, for example, you’d specify cex=0.5; to specify
double-thick lines, use lwd=2.

The following two lines produce the two plots in the middle row of Fig-
ure 7-4, showing off pch, lty, cex, and lwd:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",

col=4,pch=8,lty=2,cex=2.3,lwd=3.3)

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",

col=6,pch=15,lty=3,cex=0.7,lwd=2)

7.2.5 Plotting Region Limits
As you can see in the plots of foo and bar, by default R sets the range of
each axis by using the range of the supplied x and y values (plus a small
constant to pad a little area around the outermost points). But you might
need more space than this to, for example, annotate individual points, add
a legend, or plot additional points that fall outside the original ranges (as
you’ll see in Section 7.3). You can set custom plotting area limits using xlim

and ylim. Both parameters require a numeric vector of length 2, provided as
c(lower,upper).
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Consider the plots in the bottom row of Figure 7-4, created with the fol-
lowing two commands:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",

col=4,pch=8,lty=2,cex=2.3,lwd=3.3,xlim=c(-10,5),ylim=c(-3,3))

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",

col=6,pch=15,lty=3,cex=0.7,lwd=2,xlim=c(3,5),ylim=c(-0.5,0.2))

These plots are exactly the same as the two in the middle row, except
for one important difference. In the bottom-left plot of Figure 7-4, the x-
and y-axes are set to be much wider than the observed data, and the plot on
the right restricts the plotting window so that only a portion of the data is
displayed.

7.3 Adding Points, Lines, and Text to an Existing Plot

Generally speaking, each call to plot will refresh the active graphics device
for a new plotting region. But this is not always desired—to build more com-
plicated plots, it’s easiest to start with an empty plotting region and progres-
sively add any required points, lines, text, and legends to this canvas. Here
are some useful, ready-to-use functions in R that will add to a plot without
refreshing or clearing the window:

points Adds points

lines, abline, segments Adds lines

text Writes text

arrows Adds arrows

legend Adds a legend

The syntax for calling and setting parameters for these functions is the
same as plot. The best way to see how these work is through an extended
example, which I’ll base on some hypothetical data made up of 20 (x, y)

locations.

R> x <- 1:20

R> y <- c(-1.49,3.37,2.59,-2.78,-3.94,-0.92,6.43,8.51,3.41,-8.23,

-12.01,-6.58,2.87,14.12,9.63,-4.58,-14.78,-11.67,1.17,15.62)

Using these data, you’ll build up the plot shown in Figure 7-6 (note
that you may need to manually enlarge your graphics device and replot
to ensure the legend doesn’t overlap other features of the image). It’s
worth remembering a generally accepted rule in plotting: “keep it clear
and simple.” Figure 7-6 is an exception for the sake of demonstrating the
R commands used.
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Figure 7-6: An elaborate final plot of some hypothetical data

In Figure 7-6, the data points will be plotted differently according to
their x and y locations, depending on their relation to the “sweet spot”
pointed out in the figure. Points with a y value greater than 5 are marked
with a purple ×; points with a y value less than −5 are marked with a
green +. Points between these two y values but still outside of the sweet
spot are marked with a ◦. Finally, points in the sweet spot (with x between
5 and 15 and with y between −5 and 5) are marked as a blue •. Red horizon-
tal and vertical lines delineate the sweet spot, which is labeled with an arrow,
and there’s also a legend.

Ten lines of code were used to build this plot in its entirety (plus one
additional line to add the legend). The plot, as it looks at each step, is given
in Figure 7-7. The lines of code are detailed next.

1. The first step is to create the empty plotting region where you can add
points and draw lines. This first line tells R to plot the data in x and y,
though the option type is set to "n". As mentioned in Section 7.2, this
opens or refreshes the graphics device and sets the axes to the appropri-
ate lengths (with labels and axes), but it doesn’t plot any points or lines.

R> plot(x,y,type="n",main="")

2. The abline function is a simple way to add straight lines spanning a
plot. The line (or lines) can be specified with slope and intercept values
(see the later discussions on regression in Chapter 20). You can also
simply add horizontal or vertical lines. This line of code adds two
separate horizontal lines, one at y = 5 and the other at y = 5, using
h=c(-5,5). The three parameters (covered in Section 7.2) make these
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Figure 7-7: Building the final plot given in Figure 7-6. The plots (1)
through (10) correspond to the itemized lines of code in the text.
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two lines red, dashed, and double-thickness. For vertical lines, you could
have written v=c(-5,5), which would have drawn them at x = −5 and
x = 5.

R> abline(h=c(-5,5),col="red",lty=2,lwd=2)

3. The third line of code adds shorter vertical lines between the horizontal
ones drawn in step 2 to form a box. For this you use segments, not abline,
since you don’t want these lines to span the entire plotting region. The
segments command takes a “from” coordinate (given as x0 and y0) and
a “to” coordinate (as x1 and y1) and draws the corresponding line. The
vector-oriented behavior of R matches up the two sets of “from” and “to”
coordinates. Both lines are red and dotted and have double-thickness.
(You could also supply vectors of length 2 to these parameters, in which
case the first segment would use the first parameter value and the sec-
ond segment would use the second value.)

R> segments(x0=c(5,15),y0=c(-5,-5),x1=c(5,15),y1=c(5,5),col="red",lty=3,

lwd=2)

4. As step 4, you use points to begin adding specific coordinates from x

and y to the plot. Just like plot, points takes two vectors of equal lengths
with x and y values. In this case, you want points plotted differently
according to their location, so you use logical vector subsetting (see
Section 4.1.5) to identify and extract elements of x and y where the y

value is greater than or equal to 5. These (and only these) points are
added as purple × symbols and are enlarged by a factor of 2 with cex.

R> points(x[y>=5],y[y>=5],pch=4,col="darkmagenta",cex=2)

5. The fifth line of code is much like the fourth; this time it extracts the
coordinates where y values are less than or equal to −5. A + point char-
acter is used, and you set the color to dark green.

R> points(x[y<=-5],y[y<=-5],pch=3,col="darkgreen",cex=2)

6. The sixth step adds the blue “sweet spot” points, which are identified
with (x>=5&x<=15)&(y>-5&y<5). This slightly more complicated set of condi-
tions extracts the points whose x location lies between 5 and 15 (inclu-
sive) AND whose y location lies between −5 and 5 (exclusive). Note that
this line uses the “short” form of the logical operator & throughout since
you want element-wise comparisons here (see Section 4.1.3).

R> points(x[(x>=5&x<=15)&(y>-5&y<5)],y[(x>=5&x<=15)&(y>-5&y<5)],pch=19,

col="blue")

7. This next command identifies the remaining points in the data set (with
an x value that is either less than 5 OR greater than 15 AND a y value
between −5 and 5). No graphical parameters are specified, so these
points are plotted with the default black ◦.
R> points(x[(x<5|x>15)&(y>-5&y<5)],y[(x<5|x>15)&(y>-5&y<5)])
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8. To draw lines connecting the coordinates in x and y, you use lines. Here
you’ve also set lty to 4, which draws a dash-dot-dash style line.

R> lines(x,y,lty=4)

9. The ninth line of code adds the arrow pointing to the sweet spot. The
function arrows is used just like segments, where you provide a “from”
coordinate (x0, y0) and a “to” coordinate (x1, y1). By default, the head
of the arrow is located at the “to” coordinate, though this (and other
options such as the angle and length of the head) can be altered using
optional arguments described in the help file ?arrows.

R> arrows(x0=8,y0=14,x1=11,y1=2.5)

10. The tenth line prints a label on the plot at the top of the arrow. As
per the default behavior of text, the string supplied as labels is centered
on the coordinates provided with the arguments x and y.

R> text(x=8,y=15,labels="sweet spot")

As a finishing touch, you can add the legend with the legend function,
which gives you the final product shown in Figure 7-6.

legend("bottomleft",

legend=c("overall process","sweet","standard",

"too big","too small","sweet y range","sweet x range"),

pch=c(NA,19,1,4,3,NA,NA),lty=c(4,NA,NA,NA,NA,2,3),

col=c("black","blue","black","darkmagenta","darkgreen","red","red"),

lwd=c(1,NA,NA,NA,NA,2,2),pt.cex=c(NA,1,1,2,2,NA,NA))

The first argument sets where the legend should be placed. There are
various ways to do this (including setting exact x- and y-coordinates), but
it often suffices to pick a corner using one of the four following character
strings: "topleft", "topright", "bottomleft", or "bottomright". Next you supply
the labels as a vector of character strings to the legend argument. Then you
need to supply the remaining argument values in vectors of the same length
so that the right elements match up with each label.

For example, for the first label ("overall process"), you want a line
of type 4 with default thickness and color. So, in the first positions of the
remaining argument vectors, you set pch=NA, lty=4, col="black", lwd=1, and
pt.cex=NA (all of these are default values, except for lty). Here, pt.cex simply
refers to the cex parameter when calling points (using just cex in legend would
expand the text used, not the points).

Note that you have to fill in some elements in these vectors with NA when
you don’t want to set the corresponding graphical parameter. This is just
to preserve the equal lengths of the vectors supplied so R can track which
parameter values correspond to each particular reference. As you work
through this book, you’ll see plenty more examples using legend.
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Exercise 7.1

a. As closely as you can, re-create the following plot:

b. With the following data, create a plot of weight on the x-axis and
height on the y-axis. Use different point characters or colors to
distinguish between males and females and provide a matching
legend. Label the axes and give the plot a title.

Weight (kg) Height (cm) Sex

55 161 female
85 185 male
75 174 male
42 154 female
93 188 male
63 178 male
58 170 female
75 167 male
89 181 male
67 178 female

7.4 The ggplot2 Package

This chapter so far has shown off R’s built-in graphical tools (often called
base R graphics or traditional R graphics). Now, let’s look at another important
suite of graphical tools: ggplot2, a prominent contributed package by Hadley
Wickham (2009). Available on CRAN like any other contributed package,
ggplot2 offers particularly powerful alternatives to the standard plotting pro-
cedures in R. The gg stands for grammar of graphics—a particular approach
to graphical production described by Wilkinson (2005). In following this
approach, ggplot2 standardizes the production of different plot and graph
types, streamlines some of the more fiddly aspects of adding to existing plots
(such as including a legend), and lets you build plots by defining and manip-
ulating layers. For the moment, let’s see the elementary behavior of ggplot2
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using the same simple examples in Sections 7.1–7.3. You’ll get familiar with
the basic plotting function qplot and how it differs from the generic plot

function used earlier. I’ll return to the topic of ggplot2 when I cover statis-
tical plots in Chapter 14, and you’ll investigate even more advanced abilities
in Chapter 24.

7.4.1 A Quick Plot with qplot
First, you must install the ggplot2 package by downloading it manually
or simply entering install.packages("ggplot2") at the prompt (see Sec-
tion A.2.3). Then, load the package with the following:

R> library("ggplot2")

Now, let’s go back to the five data points originally stored in Section 7.1
as foo and bar.

R> foo <- c(1.1,2,3.5,3.9,4.2)

R> bar <- c(2,2.2,-1.3,0,0.2)

You can produce ggplot2’s version of Figure 7-1 using its “quick plot”
function qplot.

R> qplot(foo,bar)

The result is shown in the left image of Figure 7-8. There are some obvi-
ous differences between this image and the one produced using plot, but the
basic syntax of qplot is the same as earlier. The first two arguments passed to
qplot are vectors of equal length, with the x-coordinates in foo supplied first,
followed by the y-coordinates in bar.

Figure 7-8: Five plotted points using ggplot2’s default behavior for the qplot function (left)
and with title and axis labels added (right)
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Adding a title and axis labels also uses the same arguments you already
saw with plot in Section 7.2.

R> qplot(foo,bar,main="My lovely qplot",xlab="x axis label",ylab="location y")

This produces the right panel of Figure 7-8.
Underneath this basic similarity in syntax, though, there is a funda-

mental difference between how ggplot2 and base R graphics create plots.
Constructing plots using the built-in graphics tools is essentially a live, step-
by-step process. This was particularly noticeable in Section 7.3, where you
treated the graphics device as an active canvas where you added points,
lines, and other features one by one. By contrast, ggplot2 plots are stored
as objects, which means they have an underlying, static representation until
you change the object—what you essentially visualize with qplot is the printed
object at any given time. To highlight this, enter the following code:

R> baz <- plot(foo,bar)

R> baz

NULL

R> qux <- qplot(foo,bar)

R> qux

The first assignment uses the built-in plot function. When you run that
line of code, the plot in Figure 7-1 pops up. Since nothing is actually stored
in the workspace, printing the supposed object baz yields the empty NULL

value. On the other hand, it makes sense to store the qplot content (stored
as the object qux here). This time, when you perform the assignment, no
plot is displayed. The graphic, which matches Figure 7-8, is displayed only
when you enter qux at the prompt, which invokes the print method for that
object. This may seem like a minor point, but the fact that you can save a
plot this way before displaying it opens up new ways to modify or enhance
plots before displaying them (as you will see in a moment), and it can be a
distinct advantage over base R graphics.

7.4.2 Setting Appearance Constants with Geoms
To add and customize points and lines in a ggplot2 graphic, you alter the
object itself, rather than using a long list of arguments or secondary func-
tions executed separately (such as points or lines). You can modify the
object using ggplot2’s convenient suite of geometric modifiers, known as geoms.
Let’s say you want to connect the five points in foo and bar with a line, just as
you did in Section 7.1. You can first create a blank plot object and then use
geometric modifiers on it like this:

R> qplot(foo,bar,geom="blank") + geom_point() + geom_line()

The resulting plot is shown on the left of Figure 7-9. In the first call
to qplot, you create an empty plot object by setting the initial geometric
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modifier as geom="blank" (if you displayed this plot, you would just see the
gray background and the axes). Then you layer on the two other geoms as
geom_point() and geom_line(). As indicated by the parentheses, these geoms
are functions that result in their own specialized objects. You can add geoms
to the qplot object using the + operator. Here, you haven’t supplied any
arguments to either geom, which means they’ll operate on the same data
originally supplied to qplot (foo and bar) and they’ll stick to the default set-
tings for any other features, such as color or point/line type. You can con-
trol those features by specifying optional arguments, as shown here:

R> qplot(foo,bar,geom="blank") + geom_point(size=3,shape=6,color="blue") +

geom_line(color="red",linetype=2)

Figure 7-9: Two simple plots that use geometric modifiers to alter the appearance of a
qplot object. Left: Adding points and lines using default settings. Right: Using the geoms
to affect point character, size, and color, and line type and color.

Note that some of ggplot2’s argument names used here for things such
as point characters and size (shape and size) are different from the base R
graphics arguments (pch and cex). But ggplot2 is actually compatible with
many of the common graphical parameters used in R’s standard plot func-
tion, so you can use those arguments here too if you prefer. For instance,
setting cex=3 and pch=6 in geom_point in this example would result in the same
image.

The object-oriented nature of ggplot2 graphics means tweaking a plot or
experimenting with different visual features no longer requires you to rerun
every plotting command each time you change something. This is facilitated
by geoms. Say you like the line type used on the right side of Figure 7-9 but
want a different point character. To experiment, you could first store the
qplot object you created earlier and then use geom_point with that object to
try different point styles.
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R> myqplot <- qplot(foo,bar,geom="blank") + geom_line(color="red",linetype=2)

R> myqplot + geom_point(size=3,shape=3,color="blue")

R> myqplot + geom_point(size=3,shape=7,color="blue")

The first line stores the original plot in myqplot, and the next lines call
myqplot with different point shapes. The second and third lines produce the
graphics on the left and right of Figure 7-10, respectively.

Figure 7-10: Using the object-oriented nature of ggplot2 graphics to experiment with
different point characters

There are a number of geometric modifiers that can be called using
a function name beginning with geom_ in ggplot2. To obtain a list, simply
ensure the package is loaded and enter ??"geom_" as a help search at the
prompt.

7.4.3 Aesthetic Mapping with Geoms
Geoms and ggplot2 also provide efficient, automated ways to apply differ-
ent styles to different subsets of a plot. If you split a data set into categories
using a factor object, ggplot2 can automatically apply particular styles to dif-
ferent categories. In ggplot2’s documentation, the factor that holds these cat-
egories is called a variable, which ggplot2 can map to aesthetic values. This gets
rid of much of the effort that goes into isolating subsets of data and plotting
them separately using base R graphics (as you did in Section 7.3).

All this is best illustrated with an example. Let’s return to the 20 obser-
vations you manually plotted, step-by-step, to produce the elaborate plot in
Figure 7-6.

R> x <- 1:20

R> y <- c(-1.49,3.37,2.59,-2.78,-3.94,-0.92,6.43,8.51,3.41,-8.23,

-12.01,-6.58,2.87,14.12,9.63,-4.58,-14.78,-11.67,1.17,15.62)
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In Section 7.3, you defined several categories that classified each obser-
vation as either “standard,” “sweet,” “too big,” or “too small” based on their
x and y values. Using those same classification rules, let’s explicitly define a
factor to correspond to x and y.

R> ptype <- rep(NA,length(x=x))

R> ptype[y>=5] <- "too_big"

R> ptype[y<=-5] <- "too_small"

R> ptype[(x>=5&x<=15)&(y>-5&y<5)] <- "sweet"

R> ptype[(x<5|x>15)&(y>-5&y<5)] <- "standard"

R> ptype <- factor(x=ptype)

R> ptype

[1] standard standard standard standard sweet sweet too_big

[8] too_big sweet too_small too_small too_small sweet too_big

[15] too_big standard too_small too_small standard too_big

Levels: standard sweet too_big too_small

Now you have a factor with 20 values sorted into four levels. You’ll use
this factor to tell qplot how to map your aesthetics. Here’s a simple way to
do that:

R> qplot(x,y,color=ptype,shape=ptype)

This single line of code produces the left plot in Figure 7-11, which sep-
arates the four categories by color and point character and even provides
a legend. This was all done by the aesthetic mapping in the call to qplot,
where you set color and shape to be mapped to the ptype variable.

Figure 7-11: Demonstration of aesthetic mapping using qplot and geoms in ggplot2.
Left: The initial call to qplot, which maps point character and color using ptype. Right:
Augmenting the left plot using various geoms to override the default mappings.
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Now, let’s replot these data using the same qplot object along with a
suite of geom modifications in order to get something more like Figure 7-6.
Executing the following produces the plot on the right of Figure 7-11:

R> qplot(x,y,color=ptype,shape=ptype) + geom_point(size=4) +

geom_line(mapping=aes(group=1),color="black",lty=2) +

geom_hline(mapping=aes(yintercept=c(-5,5)),color="red") +

geom_segment(mapping=aes(x=5,y=-5,xend=5,yend=5),color="red",lty=3) +

geom_segment(mapping=aes(x=15,y=-5,xend=15,yend=5),color="red",lty=3)

In the first line, you add geom_point(size=4) to increase the size of all the
points on the graph. In the lines that follow, you add a line connecting all
the points, plus horizontal and vertical lines to mark out the sweet spot. For
those last four lines, you have to use aes to set alternate aesthetic mappings
for the point categories. Let’s look a little closer at what’s going on there.

Since you used ptype for aesthetic mapping in the initial call to qplot, by
default all other geoms will be mapped to each category in the same way,
unless you override that default mapping with aes. For example, when you
call geom_line to connect all the points, if you were to stick with the default
mapping to ptype instead of including mapping=aes(group=1), this geom would
draw lines connecting points within each category. You would see four sepa-
rate dashed lines—one connecting all “standard” points, another connecting
all “sweet” points, and so on. But that’s not what you want here; you want a
line that connects all of the points, from left to right. So, you tell geom_line to
treat all the observations as one group by entering aes(group=1).

After that, you use the geom_hline function to draw horizontal lines at
y = −5 and y = 5 using its yintercept argument, again passed to aes to rede-
fine that geom’s mapping. In this case, you need to redefine the mapping to
operate on the vector c(-5,5), rather than using the observed data in x and
y. Similarly, you end by using geom_segment to draw the two vertical dotted
line segments. geom_segment operates much like segments—you redefine the
mapping based on a “from” coordinate (arguments x and y) and a “to” co-
ordinate (xend and yend here). Since the first geom, geom_point(size=4), sets
a constant enlarged size for every plotted point, it doesn’t matter how the
geom is mapped because it simply makes a uniform change to each point.

Plotting in R, from base graphics to contributed packages like ggplot2,
stays true to the nature of the language. The element-wise matching allows
you to create intricate plots with a handful of straightforward and intuitive
functions. Once you display a plot, you can save it to the hard drive by select-
ing the graphics device and choosing File→ Save. However, you can also
write plots to a file directly, as you’ll see momentarily in Section 8.3.

The graphical capabilities explored in this section are merely the tip of
the iceberg, and you’ll continue to use data visualizations from this point
onward.
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Exercise 7.2

In Exercise 7.1 (b), you used base R graphics to plot some weight and
height data, distinguishing males and females using different points
or colors. Repeat this task using ggplot2.

Important Code in This Chapter

Function/operator Brief description First occurrence

plot Create/display base R plot Section 7.1, p. 128
type Set plot type Section 7.2.1, p. 130
main, xlab, ylab Set axis labels Section 7.2.2, p. 130
col Set point/line color Section 7.2.3, p. 131
pch, cex Set point type/size Section 7.2.4, p. 133
lty, lwd Set line type/width Section 7.2.4, p. 133
xlim, ylim Set plot region limits Section 7.2.5, p. 134
abline Add vertical/horizontal line Section 7.3, p. 137
segments Add specific line segments Section 7.3, p. 137
points Add points Section 7.3, p. 137
lines Add lines following coords Section 7.3, p. 138
arrows Add arrows Section 7.3, p. 138
text Add text Section 7.3, p. 138
legend Add/control legend Section 7.3, p. 138
qplot Create ggplot2 “quick plot” Section 7.4.1, p. 140
geom_point Add points geom Section 7.4.2, p. 141
geom_line Add lines geom Section 7.4.2, p. 141
size, shape, color Set geom constants Section 7.4.2, p. 142
linetype Set geom line type Section 7.4.2, p. 142
mapping, aes Geom aesthetic mapping Section 7.4.3, p. 145
geom_hline Add horizontal lines geom Section 7.4.3, p. 145
geom_segment Add line segments geom Section 7.4.3, p. 145
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8
READING AND WRITING FILES

Now I’ll cover one more fundamental
aspect of working with R: loading and sav-

ing data in an active workspace by reading
and writing files. Typically, to work with a large

data set, you’ll need to read in the data from an exter-
nal file, whether it’s stored as plain text, in a spread-
sheet file, or on a website. R provides command line
functions you can use to import these data sets, usually as a data frame
object. You can also export data frames from R by writing a new file on
your computer, plus you can save any plots you create as image files. In
this chapter, I’ll go over some useful command-based read and write oper-
ations for importing and exporting data.

8.1 R-Ready Data Sets

First, let’s take a brief look at some of the data sets that are built into the
software or are part of user-contributed packages. These data sets are useful
samples to practice with and to experiment with functionality.

Enter data() at the prompt to bring up a window listing these ready-to-
use data sets along with a one-line description. These data sets are organized
in alphabetical order by name and grouped by package (the exact list that



appears will depend on what contributed packages have been installed from
CRAN; see Section A.2).

8.1.1 Built-in Data Sets
There are a number of data sets contained within the built-in, automatically
loaded package datasets. To see a summary of the data sets contained in the
package, you can use the library function as follows:

R> library(help="datasets")

R-ready data sets have a corresponding help file where you can find
important details about the data and how it’s organized. For example, one
of the built-in data sets is named ChickWeight. If you enter ?ChickWeight at the
prompt, you’ll see the window in Figure 8-1.

Figure 8-1: The help file for the ChickWeight data set

As you can see, this file explains the variables and their values; it notes
that the data are stored in a data frame with 578 rows and 4 columns. Since
the objects in datasets are built in, all you have to do to access ChickWeight is
enter its name at the prompt. Let’s look at the first 15 records.

R> ChickWeight[1:15,]

weight Time Chick Diet

1 42 0 1 1

2 51 2 1 1

3 59 4 1 1

4 64 6 1 1

5 76 8 1 1
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6 93 10 1 1

7 106 12 1 1

8 125 14 1 1

9 149 16 1 1

10 171 18 1 1

11 199 20 1 1

12 205 21 1 1

13 40 0 2 1

14 49 2 2 1

15 58 4 2 1

You can treat this data set like any other data frame you’ve created in
R—note the use of [1:15,] to access the desired rows from such an object,
as detailed in Section 5.2.1.

8.1.2 Contributed Data Sets
There are many more R-ready data sets that come as part of contributed
packages. To access them, first install and load the relevant package. Con-
sider the data set ice.river, which is in the contributed package tseries by
Trapletti and Hornik (2013). First, you have to install the package, which
you can do by running the line install.packages("tseries") at the prompt.
Then, to access the components of the package, load it using library:

R> library("tseries")

'tseries' version: 0.10-32

'tseries' is a package for time series analysis and computational finance.

See 'library(help="tseries")' for details.

Now you can enter library(help="tseries") to see the list of data sets in
this package, and you can enter ?ice.river to find more details about the
data set you want to work with here. The help file describes ice.river as a
“time series object” comprised of river flow, precipitation, and temperature
measurements—data initially reported in Tong (1990). To access this object
itself, you must explicitly load it using the data function. Then you can work
with ice.river in your workspace as usual. Here are the first five records:

R> data(ice.river)

R> ice.river[1:5,]

flow.vat flow.jok prec temp

[1,] 16.10 30.2 8.1 0.9

[2,] 19.20 29.0 4.4 1.6

[3,] 14.50 28.4 7.0 0.1

[4,] 11.00 27.8 0.0 0.6

[5,] 13.60 27.8 0.0 2.0
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The availability and convenience of these R-ready data sets make it easy
to test code, and I’ll use them in subsequent chapters for demonstrations.
To analyze your own data, however, you’ll often have to import them from
some external file. Let’s see how to do that.

8.2 Reading in External Data Files

R has a variety of functions for reading characters from stored files and
making sense of them. You’ll look at how to read table-format files, which
are among the easiest for R to read and import.

8.2.1 The Table Format
Table-format files are best thought of as plain-text files with three key fea-
tures that fully define how R should read the data.

Header If a header is present, it’s always the first line of the file. This
optional feature is used to provide names for each column of data.
When importing a file into R, you need to tell the software whether
a header is present so that it knows whether to treat the first line as
variable names or, alternatively, observed data values.

Delimiter The all-important delimiter is a character used to separate the
entries in each line. The delimiter character cannot be used for anything
else in the file. This tells R when a specific entry begins and ends (in
other words, its exact position in the table).

Missing value This is another unique character string used exclusively
to denote a missing value. When reading the file, R will turn these
entries into the form it recognizes: NA.

Typically, these files have a .txt extension (highlighting the plain-text
style) or .csv (for comma-separated values).

Let’s try an example, using a variation on the data frame mydata as
defined at the end of Section 5.2.2. Figure 8-2 shows an appropriate table-
format file called mydatafile.txt, which has the data from that data frame
with a few values now marked as missing. This data file can be found on
the book’s website at https://www.nostarch.com/bookofr/ , or you can create it
yourself from Figure 8-2 using a text editor.

Figure 8-2: A plain-text table-format file
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Note that the first line is the header, the values are delimited with a
single space, and missing values are denoted with an asterisk (*). Also, note
that each new record is required to start on a new line. Suppose you’re
handed this plain-text file for data analysis in R. The ready-to-use com-
mand read.table imports table-format files, producing a data frame object,
as follows:

R> mydatafile <- read.table(file="/Users/tdavies/mydatafile.txt",

header=TRUE,sep=" ",na.strings="*",

stringsAsFactors=FALSE)

R> mydatafile

person age sex funny age.mon

1 Peter NA M High 504

2 Lois 40 F <NA> 480

3 Meg 17 F Low 204

4 Chris 14 M Med 168

5 Stewie 1 M High NA

6 Brian NA M Med NA

In a call to read.table, file takes a character string with the filename
and folder location (using forward slashes), header is a logical value telling R
whether file has a header (TRUE in this case), sep takes a character string pro-
viding the delimiter (a single space, " ", in this case), and na.strings requests
the characters used to denote missing values ("*" in this case).

If you’re reading in multiple files and don’t want to type the entire
folder location each time, it’s possible to first set your working directory
via setwd (Section 1.2.3) and then simply use the filename and its exten-
sion as the character string supplied to the file argument. However, both
approaches require you to know exactly where your file is located when
you’re working at the R prompt. Fortunately, R possesses some useful addi-
tional tools should you forget your file’s precise location. You can view tex-
tual output of the contents of any folder by using list.files. The following
example betrays the messiness of my local user directory.

R> list.files("/Users/tdavies")

[1] "bands-SCHIST1L200.txt" "Brass" "Desktop"

[4] "Documents" "DOS Games" "Downloads"

[7] "Dropbox" "Exercise2-20Data.txt" "Google Drive"

[10] "iCloud" "Library" "log.txt"

[13] "Movies" "Music" "mydatafile.txt"

[16] "OneDrive" "peritonitis.sav" "peritonitis.txt"

[19] "Personal9414" "Pictures" "Public"

[22] "Research" "Rintro.tex" "Rprofile.txt"

[25] "Rstartup.R" "spreadsheetfile.csv" "spreadsheetfile.xlsx"

[28] "TakeHome_template.tex" "WISE-P2L" "WISE-P2S.txt"

[31] "WISE-SCHIST1L200.txt"
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One important feature to note here, though, is that it can be difficult to
distinguish between files and folders. Files will typically have an extension,
and folders won’t; however, WISE-P2L is a file that happens to have no exten-
sion and looks no different from any of the listed folders.

You can also find files interactively from R. The file.choose command
opens your filesystem viewer directly from the R prompt—just as any other
program does when you want to open something. Then, you can navigate to
the folder of interest, and after you select your file (see Figure 8-3), only a
character string is returned.

R> file.choose()

[1] "/Users/tdavies/mydatafile.txt"

Figure 8-3: My local file navigator opened as the result of a call to file.choose.
When the file of interest is opened, the R command returns the full file path to that
file as a character string.

This command is particularly useful, as it returns the character string
of the directory in precisely the format that’s required for a command such
as read.table. So, calling the following line and selecting mydatafile.txt, as in
Figure 8-3, will produce an identical result to the explicit use of the file path
in file, shown earlier:

R> mydatafile <- read.table(file=file.choose(),header=TRUE,sep=" ",

na.strings="*",stringsAsFactors=FALSE)

If your file has been successfully loaded, you should be returned to the
R prompt without receiving any error messages. You can check this with
a call to mydatafile, which should return the data frame. When importing
data into data frames, keep in mind the difference between character string
observations and factor observations. No factor attribute information is
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stored in the plain-text file, but read.table will convert non-numeric values
into factors by default. Here, you want to keep some of your data saved as
strings, so set stringsAsFactors=FALSE, which prevents R from treating all non-
numeric elements as factors. This way, person, sex, and funny are all stored as
character strings.

You can then overwrite sex and funny with factor versions of themselves if
you want them as that data type.

R> mydatafile$sex <- as.factor(mydatafile$sex)

R> mydatafile$funny <- factor(x=mydatafile$funny,levels=c("Low","Med","High"))

8.2.2 Spreadsheet Workbooks
Next, let’s examine some ubiquitous spreadsheet software file formats. The
standard file format for Microsoft Office Excel is .xls or .xlsx. In general,
these files are not directly compatible with R. There are some contributed
package functions that attempt to bridge this gap—see, for example, gdata
by Warnes et al. (2014) or XLConnect by Mirai Solutions GmbH (2014)—but
it’s generally preferable to first export the spreadsheet file to a table format,
such as CSV. Consider the hypothetical data from Exercise 7.1 (b), which
has been stored in an Excel file called spreadsheetfile.xlsx, shown in Figure 8-4.

Figure 8-4: A spreadsheet file of the data
from Exercise 7.1 (b)

To read this spreadsheet with R, you should first convert it to a table
format. In Excel, File→ Save As... provides a wealth of options. Save the
spreadsheet as a comma-separated file, called spreadsheet.csv. R has a shortcut
version of read.table, read.csv, for these files.

R> spread <- read.csv(file="/Users/tdavies/spreadsheetfile.csv",

header=FALSE,stringsAsFactors=TRUE)

R> spread

V1 V2 V3

1 55 161 female
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2 85 185 male

3 75 174 male

4 42 154 female

5 93 188 male

6 63 178 male

7 58 170 female

8 75 167 male

9 89 181 male

10 67 178 female

Here, the file argument again specifies the desired file, which has no
header, so header=FALSE. You set stringsAsFactors=TRUE because you do want to
treat the sex variable (the only non-numeric variable) as a factor. There are
no missing values, so you don’t need to specify na.strings (though if there
were, this argument is simply used in the same way as earlier), and by defi-
nition, .csv files are comma-delimited, which read.csv correctly implements
by default, so you don’t need the sep argument. The resulting data frame,
spread, can then be printed in your R console.

As you can see, reading tabular data into R is fairly straightforward—
you just need to be aware of how the data file is headed and delimited and
how missing entries are identified. The simple table format is a natural and
common way for data sets to be stored, but if you need to read in a file with
a more complicated structure, R and its contributed packages make avail-
able some more sophisticated functions. See, for example, the documenta-
tion for the scan and readLines functions, which provide advanced control
over how to parse a file. You can also find documentation on read.table and
read.csv by accessing ?read.table from the prompt.

8.2.3 Web-Based Files
With an Internet connection, R can read in files from a website with the
same read.table command. All the same rules concerning headers, delim-
iters, and missing values remain in place; you just have to specify the URL
address of the file instead of a local folder location.

As an example, you’ll use the online repository of data sets made avail-
able by the Journal of Statistics Education (JSE) through the American Statisti-
cal Association at http://www.amstat.org/publications/jse/ jse_data_archive.htm.

One of the first files linked to at the top of this page is the table-format
data set 4cdata.txt (http://www.amstat.org/publications/jse/v9n2/4cdata.txt),
which contains data on the characteristics of 308 diamonds from an analy-
sis by Chu (2001) based on an advertisement in a Singaporean newspaper.
Figure 8-5 shows the data.

You can look at the documentation file (4c.txt) and the accompanying
article linked from the JSE site for details on what is recorded in this table.
Note that of the five columns, the first and fifth are numeric, and the others
would be well represented by factors. The delimiter is blank whitespace,
there’s no header, and there are no missing values (so you don’t have to
specify a value used to represent them).
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Figure 8-5: A table-format data file found online

With this in mind, you can create a data frame directly from the R
prompt simply with the following lines:

R> dia.url <- "http://www.amstat.org/publications/jse/v9n2/4cdata.txt"

R> diamonds <- read.table(dia.url)

Note that you haven’t supplied any extra values in this call to read.table

because the defaults all work just fine. Because there’s no header in the
table, you can leave the default header value FALSE. The default value for sep

is "", meaning whitespace (not to be confused with " ", meaning an explicit
space character), which is exactly what this table uses. The default value
for stringsAsFactors is TRUE, which is what you want for your character string
columns. Following the import, you can supply names (based on the infor-
mation in the documentation) to each column as follows:

R> names(diamonds) <- c("Carat","Color","Clarity","Cert","Price")

R> diamonds[1:5,]

Carat Color Clarity Cert Price

1 0.30 D VS2 GIA 1302

2 0.30 E VS1 GIA 1510

3 0.30 G VVS1 GIA 1510

4 0.30 G VS1 GIA 1260

5 0.31 D VS1 GIA 1641

Viewing the first five records shows that the data frame is displayed as
you intended.

8.2.4 Other File Formats
There are other file formats besides .txt or .csv files that can be read into
R, such as the data file format .dat. These files can also be imported using
read.table, though they may contain extra information at the top that must
be skipped using the optional skip argument. The skip argument asks for
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the number of lines at the top of the file that should be ignored before R
begins the import.

As mentioned in Section 8.2.2, there are also contributed packages that
can cope with other statistical software files; however, if there are multiple
worksheets within a file it can complicate things. The R package foreign (R
Core Team, 2015), available from CRAN, provides support for reading data
files used by statistical programs such as Stata, SAS, Minitab, and SPSS.

Other contributed packages on CRAN can help R handle files from vari-
ous database management systems (DBMSs). For example, the RODBC package
(Ripley and Lapsley, 2013) lets you query Microsoft Access databases and
return the results as a data frame object. Other interfaces include the pack-
ages RMySQL (James and DebRoy, 2012) and RJDBC (Urbanek, 2013).

8.3 Writing Out Data Files and Plots

Writing out new files from data frame objects with R is just as easy as reading
in files. R’s vector-oriented behavior is a fast and convenient way to recode
data sets, so it’s perfect for reading in data, restructuring it, and writing it
back out to a file.

8.3.1 Data Sets
The function for writing table-format files to your computer is write.table.
You supply a data frame object as x, and this function writes its contents to
a new file with a specified name, delimiter, and missing value string. For
example, the following line takes the mydatafile object from Section 8.2 and
writes it to a file:

R> write.table(x=mydatafile,file="/Users/tdavies/somenewfile.txt",

sep="@",na="??",quote=FALSE,row.names=FALSE)

You provide file with the folder location, ending in the filename you
want for your new data file. This command creates a new table-format file
called somenewfile.txt in the specified folder location, delimited by @ and with
missing values denoted with ?? (because you’re actually creating a new file,
the file.choose command doesn’t tend to be used here). Since mydatafile has
variable names, these are automatically written to the file as a header. The
optional logical argument quote determines whether to encapsulate each
non-numeric entry in double quotes (if you explicitly need them in your file
for, say, formatting requirements of other software); request no quotes by
setting the argument to FALSE. Another optional logical argument, row.names,
asks whether to include the row names of mydatafile (in this example, this
would just be the numbers 1 to 6), which you also omit with FALSE. The result-
ing file, shown in Figure 8-6, can be opened in a text editor.

Like read.csv, write.csv is a shortcut version of the write.table function
designed specifically for .csv files.
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Figure 8-6: The contents of somenewfile.txt

8.3.2 Plots and Graphics Files
Plots can also be written directly to a file. In Chapter 7, you created and
displayed plots in an active graphics device. This graphics device needn’t
be a screen window; it can be a specified file. Instead of displaying the plot
immediately on the screen, you can have R follow these steps: open a “file”
graphics device, run any plotting commands to create the final plot, and
close the device. R supports direct writing to .jpeg, .bmp, .png, and .tiff files
using functions of the same names. For example, the following code uses
these three steps to create a .jpeg file:

R> jpeg(filename="/Users/tdavies/myjpegplot.jpeg",width=600,height=600)

R> plot(1:5,6:10,ylab="a nice ylab",xlab="here's an xlab",

main="a saved .jpeg plot")

R> points(1:5,10:6,cex=2,pch=4,col=2)

R> dev.off()

null device

1

The file graphics device is opened by a call to jpeg, where you pro-
vide the intended name of the file and its folder location as filename. By
default, the dimensions of the device are set to 480×480 pixels, but here you
change them to 600 × 600. You could also set these dimensions by supplying
other units (inches, centimeters, or millimeters) to width and height and by
specifying the unit with an optional units argument. Once the file is opened,
you execute any R plotting commands you need in order to create the
image—this example plots some points and then includes some additional
points with a second command. The final graphical result is silently writ-
ten to the specified file just as it would have been displayed on the screen.
When you’ve finished plotting, you must explicitly close the file device with
a call to dev.off(), which prints information on the remaining active device
(here, “null device” can be loosely interpreted as “nothing is left open”). If
dev.off() isn’t called, then R will continue to output any subsequent plotting
commands to the file, and possibly overwrite what you have there. The left
plot in Figure 8-7 shows the resulting file created in this example.
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Figure 8-7: R plots that have been written directly to disk: a .jpeg version (left)
and a .pdf version (right) of the same plotting commands

You can also store R plots as other file types, such as PDFs (using the
pdf function) and EPS files (using the postscript function). Though some
argument names and default values are different for these functions, they
follow the same basic premise. You specify a folder location, a filename, and
width and height dimensions; enter your plotting commands; and then close
the device with dev.off(). The right panel of Figure 8-7 shows the .pdf file
created with the following code:

R> pdf(file="/Users/tdavies/mypdfplot.pdf",width=5,height=5)

R> plot(1:5,6:10,ylab="a nice ylab",xlab="here's an xlab",

main="a saved .pdf plot")

R> points(1:5,10:6,cex=2,pch=4,col=2)

R> dev.off()

null device

1

Here, you use the same plotting commands as before, and there are just
a few minor differences in the code. The argument for the file is file (as
opposed to filename), and the units for width and height default to inches
in pdf. The difference of appearance between the two images in Figure 8-7
results primarily from these differences in width and height.

This same process also works for ggplot2 images. True to style, however,
ggplot2 provides a convenient alternative. The ggsave function can be used
to write the most recently plotted ggplot2 graphic to file and performs the
device open/close action in one line.

For example, the following code creates and displays a ggplot2 object
from a simple data set.

R> foo <- c(1.1,2,3.5,3.9,4.2)

R> bar <- c(2,2.2,-1.3,0,0.2)
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R> qplot(foo,bar,geom="blank")

+ geom_point(size=3,shape=8,color="darkgreen")

+ geom_line(color="orange",linetype=4)

Now, to save this plot to a file, all you need is the following line:

R> ggsave(filename="/Users/tdavies/mypngqplot.png")

Saving 7 x 7 in image

This writes the image to a .png file in the specified filename directory.
(Note that dimensions are reported if you don’t explicitly set them using
width and height; these will vary depending on the size of your graphics
device.) The result is shown in Figure 8-8.

Figure 8-8: The .png file created using ggplot2’s ggsave
command

Beyond just being concise, ggsave is convenient in a few other ways. For
one, you can use the same command to create a variety of image file types—
the type is simply determined by the extension you supply in the filename

argument. Also, ggsave has a range of optional arguments if you want to con-
trol the size of the image and the quality or scaling of the graphic.

For more details on saving images from base R graphics, see the ?jpeg,
?pdf, and ?postscript help files. You can consult ?ggsave for more on saving
images with ggplot2.
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8.4 Ad Hoc Object Read/Write Operations

For the typical R user, the most common input/output operations will
probably revolve around data sets and plot images. But if you need to read
or write other kinds of R objects, such as lists or arrays, you’ll need the dput

and dget commands, which can handle objects in a more ad hoc style.
Suppose, for example, you create this list in the current session:

R> somelist <- list(foo=c(5,2,45),

bar=matrix(data=c(T,T,F,F,F,F,T,F,T),nrow=3,ncol=3),

baz=factor(c(1,2,2,3,1,1,3),levels=1:3,ordered=T))

R> somelist

$foo

[1] 5 2 45

$bar

[,1] [,2] [,3]

[1,] TRUE FALSE TRUE

[2,] TRUE FALSE FALSE

[3,] FALSE FALSE TRUE

$baz

[1] 1 2 2 3 1 1 3

Levels: 1 < 2 < 3

This object can itself be written to a file, which is useful if you want to
pass it to a colleague or open it in a new R session elsewhere. Using dput, the
following line stores the object as a plain-text file that is interpretable by R:

R> dput(x=somelist,file="/Users/tdavies/myRobject.txt")

In technical terms, this command creates an American Standard Code
for Information Interchange (ASCII) representation of the object. As you
call dput, the object you want to write is specified as x, and the folder location
and name of the new plain-text file are passed to file. Figure 8-9 shows the
contents of the resulting file.

Figure 8-9: myRobject.txt created by using dput on somelist
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Notice that dput stores all of the members of the object plus any other
relevant information, such as attributes. The third element of somelist, for
example, is an ordered factor, so it isn’t enough to simply represent it in the
text file as a stand-alone vector.

Now, let’s say you want to import this list into an R workspace. If a file
has been created with dput, then it can be read into any other workspace
using dget.

R> newobject <- dget(file="/Users/tdavies/myRobject.txt")

R> newobject

$foo

[1] 5 2 45

$bar

[,1] [,2] [,3]

[1,] TRUE FALSE TRUE

[2,] TRUE FALSE FALSE

[3,] FALSE FALSE TRUE

$baz

[1] 1 2 2 3 1 1 3

Levels: 1 < 2 < 3

You read the object from the myRobject.txt file using dget and assign it to
newobject. This object is the same as the original R object somelist, with all
structures and attributes present.

There are some drawbacks to using these commands. For starters, dput
is not as reliable a command as write.table because it’s sometimes quite dif-
ficult for R to create the necessary plain-text representation for an object
(fundamental object classes typically cause no problems, but complex user-
defined classes can). Also, because they need to store structural information,
files created using dput are relatively inefficient both in terms of required
space and in terms of how long it takes to execute read and write operations.
This becomes more noticeable for objects that contain a lot of data. Nev-
ertheless, dput and dget are useful ways to store or transfer specific objects
without having to save an entire workspace.

Exercise 8.1

a. In R’s built-in datasets library is the data frame quakes. Make sure
you can access this object and view the corresponding help file to
get an idea of what this data represents. Then, do the following:
i. Select only those records that correspond to a magnitude

(mag) of greater than or equal to 5 and write them to a
table-format file called q5.txt in an existing folder on your
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machine. Use a delimiting character of ! and do not include
any row names.

ii. Read the file back into your R workspace, naming the object
q5.dframe.

b. In the contributed package car, there’s a data frame called Duncan,
which provides historical data on perceived job prestige in 1950.
Install the car package and access the Duncan data set and its help
file. Then, do the following:
i. Write R code that will plot education on the x-axis and

income on the y-axis, with both x- and y-axis limits fixed to
be [0,100]. Provide appropriate axis labels. For jobs with a
prestige value of less than or equal to 80, use a black ◦ as the
point character. For jobs with prestige greater than 80, use a
blue •.

ii. Add a legend explaining the difference between the two
types of points and then save a 500 × 500 pixel .png file of
the image.

c. Create a list called exer that contains the three data sets quakes,
q5.dframe, and Duncan. Then, do the following:
i. Write the list object directly to disk, calling it Exercise8-1.txt.

Briefly inspect the contents of the file in a text editor.
ii. Read Exercise8-1.txt back into your workspace; call the result-

ing object list.of.dataframes. Check that list.of.dataframes
does indeed contain the three data frame objects.

d. In Section 7.4.3, you created a ggplot2 graphic of 20 observations
displayed as the bottom image of Figure 7-11 on page 144. Use
ggsave to save a copy of this plot as a .tiff file.

Important Code in This Chapter

Function/operator Brief description First occurrence

data Load contributed data set Section 8.1.2, p. 149
read.table Import table-format data file Section 8.2.1, p. 151
list.files Print specific folder contents Section 8.2.1, p. 151
file.choose Interactive file selection Section 8.2.1, p. 152
read.csv Import comma-delimited file Section 8.2.2, p. 153
write.table Write table-format file to disk Section 8.3.1, p. 156
jpeg, bmp, png, tiff Write image/plot file to disk Section 8.3.2, p. 157
dev.off Close file graphics device Section 8.3.2, p. 157
pdf, postscript Write image/plot file to disk Section 8.3.2, p. 158
ggsave Write ggplot2 plot file to disk Section 8.3.2, p. 159
dput Write R object to file (ASCII) Section 8.4, p. 160
dget Import ASCII object file Section 8.4, p. 161
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9
CALLING FUNCTIONS

Before you start writing your own func-
tions in R, it’s useful to understand how

functions are called and interpreted in an R
session. First, you’ll look at how variable names

are compartmentalized in R. You’ll see R’s rules for
naming arguments and objects, and how R searches
for arguments and other variables when a function
is called. Then you’ll look at some alternative ways to
specify arguments when calling a function.

9.1 Scoping

To begin with, it’s important to understand R’s scoping rules, which deter-
mine how the language compartmentalizes objects and retrieves them in
a given session. This framework also defines the situations in which dupli-
cate object names can exist at once. For example, you’ve used the argu-
ment data when calling matrix (Section 3.1), but data is also the name of a
ready-to-use function that loads data sets from contributed packages (Sec-
tion 8.1.2). In this section, you’ll gain an introductory understanding of



how R behaves internally in these circumstances, which will help you later
on when it comes to programming and executing your own functions and
those of other packages.

9.1.1 Environments
R enforces scoping rules with virtual environments. You can think of environ-
ments as separate compartments where data structures and functions are
stored. They allow R to distinguish between identical names that are associ-
ated with different scopes and therefore stored in different environments.
Environments are dynamic entities—new environments can be created, and
existing environments can be manipulated or removed.

NOTE Technically speaking, environments don’t actually contain items. Rather, they have
pointers to the location of those items in the computer’s memory. But using the “com-
partment” metaphor and thinking of objects “belonging to” these compartments is use-
ful when you’re first getting a general sense of how environments work.

There are three important kinds of environments: global environments,
package environments and namespaces, and local or lexical environments.

Global Environment

The global environment is the compartment set aside for user-defined objects.
Every object you’ve created or overwritten so far has resided in the global
environment of your current R session. In Section 1.3.1, I mentioned that a
call to ls() lists all the objects, variables, and user-defined functions in the
active workspace—more precisely, ls() prints the names of everything in the
current global environment.

Starting with a new R workspace, the following code creates two objects
and confirms their existence in the global environment:

R> foo <- 4+5

R> bar <- "stringtastic"

R> ls()

[1] "bar" "foo"

But what about all the ready-to-use objects and functions? Why aren’t
those printed alongside foo and bar as members of this environment? In
fact, those objects and functions belong to package-specific environments,
described next.

Package Environments and Namespaces

For simplicity, I’ll use the term package environment rather loosely to refer
to the items made available by each package in R. In fact, the structure
of R packages in terms of scoping is a bit more complicated. Each pack-
age environment actually represents several environments that control
different aspects of a search for a given object. A package namespace, for
example, essentially defines the visibility of its functions. (A package can
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have visible functions that a user is able to use and invisible functions that
provide internal support to the visible functions.) Another part of the pack-
age environment handles imports designations, dealing with any functions
or objects from other libraries that the package needs to import for its own
functionality.

To clarify this, you can think of all the ready-to-use functions and objects
you’re working with in this book as belonging to specific package environ-
ments. The same is true for the functions and objects of any contributed
packages you’ve explicitly loaded with a call to library. You can use ls to list
the items in a package environment as follows:

R> ls("package:graphics")

[1] "abline" "arrows" "assocplot" "axis"

[5] "Axis" "axis.Date" "axis.POSIXct" "axTicks"

[9] "barplot" "barplot.default" "box" "boxplot"

[13] "boxplot.default" "boxplot.matrix" "bxp" "cdplot"

[17] "clip" "close.screen" "co.intervals" "contour"

[21] "contour.default" "coplot" "curve" "dotchart"

[25] "erase.screen" "filled.contour" "fourfoldplot" "frame"

[29] "grconvertX" "grconvertY" "grid" "hist"

[33] "hist.default" "identify" "image" "image.default"

[37] "layout" "layout.show" "lcm" "legend"

[41] "lines" "lines.default" "locator" "matlines"

[45] "matplot" "matpoints" "mosaicplot" "mtext"

[49] "pairs" "pairs.default" "panel.smooth" "par"

[53] "persp" "pie" "plot" "plot.default"

[57] "plot.design" "plot.function" "plot.new" "plot.window"

[61] "plot.xy" "points" "points.default" "polygon"

[65] "polypath" "rasterImage" "rect" "rug"

[69] "screen" "segments" "smoothScatter" "spineplot"

[73] "split.screen" "stars" "stem" "strheight"

[77] "stripchart" "strwidth" "sunflowerplot" "symbols"

[81] "text" "text.default" "title" "xinch"

[85] "xspline" "xyinch" "yinch"

The ls command lists all of the visible objects contained in the graphics

package environment. Note that this list includes some of the functions you
used in Chapter 7, such as arrows, plot, and segments.

Local Environments

Each time a function is called in R, a new environment is created called the
local environment, sometimes referred to as the lexical environment. This local
environment contains all the objects and variables created in and visible to
the function, including any arguments you’ve supplied to the function upon
execution. It’s this feature that allows the presence of argument names that
are identical to other object names accessible in a given workspace.
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For example, say you call matrix and pass in the argument data, as
follows:

R> youthspeak <- matrix(data=c("OMG","LOL","WTF","YOLO"),nrow=2,ncol=2)

R> youthspeak

[,1] [,2]

[1,] "OMG" "WTF"

[2,] "LOL" "YOLO"

Calling this function creates a local environment containing the data

vector. When you execute the function, it begins by looking for data in this
local environment. That means R isn’t confused by other objects or func-
tions named data in other environments (such as the data function auto-
matically loaded from the utils package environment). If a required item
isn’t found in the local environment, only then does R begin to widen its
search for that item (I’ll discuss this feature a little more in Section 9.1.2).
Once the function has completed, this local environment is automatically
removed. The same comments apply to the nrow and ncol arguments.

9.1.2 Search Path
To access data structures and functions from environments other than the
immediate global environment, R follows a search path. The search path lays
out all the environments that a given R session has available to it.

The search path is basically a list of the environments that R will search
when an object is requested. If the object isn’t found in one environment,
R proceeds to the next one. You can view R’s search path at any time using
search().

R> search()

[1] ".GlobalEnv" "tools:RGUI" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

From the command prompt, this path will always begin at the global
user environment (.GlobalEnv) and end after the base package environment
(package:base). You can think of these as belonging to a hierarchy, with an
arrow pointing from left to right between each pair of environments. For my
current session, if I request a certain object at the R prompt, the program
will inspect .GlobalEnv→ tools:RGUI→ package:stats→ . . . → package:base

in turn, stopping the search when the desired object is found and retrieved.
Note that, depending on your operating system and whether you’re using
the built-in GUI, tools:RGUI might not be included in your search path.

If R doesn’t find what it’s looking for by following the environments in
the search path, the empty environment is reached. The empty environment
is not explicitly listed in the output from search(), but it’s always the final
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destination after package:base. This environment is special because it marks
the end of the search path.

For example, if you call the following, a number of things happen
internally:

R> baz <- seq(from=0,to=3,length.out=5)

R> baz

[1] 0.00 0.75 1.50 2.25 3.00

R first searches the global environment for a function called seq, and
when this isn’t found, it goes on to search in the enclosing environment,
which is the next level up in the search path (according to the left-to-right
arrows mentioned earlier). It doesn’t find it there, so R keeps going through
the path to the next environment, searching the packages that have been
loaded (automatically or otherwise) until it finds what it’s looking for. In
this example, R locates seq in the built-in base package environment. Then
it executes the seq function (creating a temporary local environment) and
assigns the results to a new object, baz, which resides in the global environ-
ment. In the subsequent call to print baz, R begins by searching the global
environment and immediately finds the requested object.

You can look up the enclosing environment of any function using
environment, as follows:

R> environment(seq)

<environment: namespace:base>

R> environment(arrows)

<environment: namespace:graphics>

Here, I’ve identified the package namespace of base as the owner of the
seq function and the graphics package as the owner of the arrows function.

Each environment has a parent, to direct the order of the search path.
Examining the earlier output from the call search(), you can see that the
parent of package:stats, for example, is package:graphics. The specific parent-
child structure is dynamic in the sense that the search path changes when
additional libraries are loaded or data frames are attached. When you load
a contributed package with a call to library, this essentially just inserts
the desired package in the search path. For example, in Exercise 8.1 on
page 161, you installed the contributed package car. After loading this
package, your search path will include its contents.

R> library("car")

R> search()

[1] ".GlobalEnv" "package:car" "tools:RGUI"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"
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Note the position of the car package environment in the path—inserted
directly after the global environment. This is where each subsequently
loaded package will be placed (followed by any additional packages it
depends upon for its own functionality).

As noted earlier, R will stop searching once it has exhausted the entire
search path and reached the empty environment. If you request a function
or object that you haven’t defined, that doesn’t exist, or that is perhaps in a
contributed package that you’ve forgotten to load (this is quite a common
little mistake), then an error is thrown. These “cannot find” errors are rec-
ognizable for both functions and other objects.

R> neither.here()

Error: could not find function "neither.here"

R> nor.there

Error: object 'nor.there' not found

Environments help compartmentalize the huge amount of functionality
in R. This becomes particularly important when there are functions with the
same name in different packages in the search path. At that point, masking,
discussed in Section 12.3, comes into play.

As you get more comfortable with R and want more precise control over
how it operates, it’s worth investigating in full how R handles environments.
For more technical details on this, Gupta (2012) provides a particularly well-
written online article.

9.1.3 Reserved and Protected Names
A few key terms are strictly forbidden from being used as object names in R.
These reserved names are necessary in order to protect fundamental opera-
tions and data types frequently used in the language.

The following identifiers are reserved:

• if and else

• for, while, and in

• function

• repeat, break, and next

• TRUE and FALSE

• Inf and -Inf

• NA, NaN, and NULL

I haven’t yet covered some of the terms on this list. These items repre-
sent the core tools for programming in the R language, and you’ll begin to
explore them in the following chapter. The last three bullet points include
the familiar logical values (Section 4.1) and special terms used to represent
things like infinity and missing entries (Section 6.1).
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If you try to assign a new value to any of these reserved terms, an error
occurs.

R> NaN <- 5

Error in NaN <- 5 : invalid (do_set) left-hand side to assignment

Because R is case sensitive, it’s possible to assign values to any case-
variant of the reserved names, but this can be confusing and is generally
not advisable.

R> False <- "confusing"

R> nan <- "this is"

R> cat(nan,False)

this is confusing

Also be wary of assigning values to T and F, the abbreviations of TRUE and
FALSE. The full identifiers TRUE and FALSE are reserved, but the abbreviated
versions are not.

R> T <- 42

R> F <- TRUE

R> F&&TRUE

[1] TRUE

Assigning values to T and F this way will affect any subsequent code that
intends to use T and F to refer to TRUE and FALSE. The second assignment
(F <- TRUE) is perfectly legal in R’s eyes, but it’s extremely confusing given
the normal usage of F as an abbreviation: the line F&&TRUE now represents a
TRUE&&TRUE comparison! It’s best to simply avoid these types of assignments.

If you’ve been following along with the examples in your R console, it’s
prudent at this point to clear the global environment (thereby deleting the
objects False, nan, T, and F from your workspace). To do this, use the rm func-
tion as shown next. Using ls(), supply a character vector of all objects in the
global environment as the argument list.

R> ls()

[1] "bar" "baz" "F" "False" "foo" "nan"

[7] "T" "youthspeak"

R> rm(list=ls())

R> ls()

character(0)

Now the global environment is empty, and calling ls() returns an empty
character vector (character(0)).
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Exercise 9.1

a. Identify the first 20 items contained in the built-in and auto-
matically loaded methods package. How many items are there in
total?

b. Determine the environment that owns each of the following
functions:
i. read.table

ii. data

iii. matrix

iv. jpeg

c. Use ls and a test for character string equality to confirm the
function smoothScatter is part of the graphics package.

9.2 Argument Matching

Another set of rules that determine how R interprets function calls has to
do with argument matching. Argument matching conditions allow you to pro-
vide arguments to functions either with abbreviated names or without names
at all.

9.2.1 Exact
So far, you’ve mostly been using exact matching of arguments, where each
argument tag is written out in full. This is the most exhaustive way to call a
function. It’s helpful to write out full argument names this way when first
getting to know R or a new function.

Other benefits of exact matching include the following:

• Exact matching is less prone to mis-specification of arguments than
other matching styles.

• The order in which arguments are supplied doesn’t matter.

• Exact matching is useful when a function has many possible arguments
but you want to specify only a few.

The main drawbacks of exact matching are clear:

• It can be cumbersome for relatively simple operations.

• Exact matching requires the user to remember or look up the full, case-
sensitive tags.
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As an example, in Section 6.2.1, you used exact matching to execute the
following:

R> bar <- matrix(data=1:9,nrow=3,ncol=3,dimnames=list(c("A","B","C"),

c("D","E","F")))

R> bar

D E F

A 1 4 7

B 2 5 8

C 3 6 9

This creates a 3×3 matrix object bar with a dimnames attribute for the rows
and columns. Since the argument tags are fully specified, the order of the
arguments doesn’t matter. You could switch around the arguments, and the
function still has all the information it requires.

R> bar <- matrix(nrow=3,dimnames=list(c("A","B","C"),c("D","E","F")),ncol=3,

data=1:9)

R> bar

D E F

A 1 4 7

B 2 5 8

C 3 6 9

This behaves the same way as the previous function call. For the sake
of consistency, you usually won’t switch around arguments each time you
call a function, but this example shows a benefit of exact matching: you
don’t have to worry about the order of any optional arguments or about
skipping them.

9.2.2 Partial
Partial matching lets you identify arguments with an abbreviated tag. This
can shorten your code, and it still lets you provide arguments in any order.

Here is another way to call matrix that takes advantage of partial
matching:

R> bar <- matrix(nr=3,di=list(c("A","B","C"),c("D","E","F")),nc=3,dat=1:9)

R> bar

D E F

A 1 4 7

B 2 5 8

C 3 6 9
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Notice I’ve shortened the nrow, dimnames, and ncol argument tags to the
first two letters and shortened the data argument to the first three. For par-
tial matching, there’s no set number of letters you have to provide, as long
as each argument is still uniquely identifiable for the function being called.
Partial matching has the following benefits:

• It requires less code than exact matching.

• Argument tags are still visible (which limits the possibility of mis-
specification).

• The order of supplied arguments still doesn’t matter.

But partial matching also has some limitations. For one, it gets trickier if
there are multiple arguments whose tags start with the same letters. Here’s
an example:

R> bar <- matrix(nr=3,di=list(c("A","B","C"),c("D","E","F")),nc=3,d=1:9)

Error in matrix(nr = 3, di = list(c("A", "B", "C"), c("D", "E", "F")), :

argument 4 matches multiple formal arguments

An error has occurred. The fourth argument tag is designated simply
as d, which is meant to stand for data. This is illegal because another argu-
ment, namely dimnames, also starts with d. Even though dimnames is specified
separately as di earlier in the same line, the call isn’t valid.

Drawbacks of partial matching include the following:

• The user must be aware of other potential arguments that can be
matched by the shortened tag (even if they aren’t specified in the call
or have a default value assigned).

• Each tag must have a unique identification, which can be difficult to
remember.

9.2.3 Positional
The most compact mode of function calling in R is positional matching. This
is when you supply arguments without tags, and R interprets them based
solely on their order.

Positional matching is usually used for relatively simple functions with
only a few arguments, or functions that are very familiar to the user. For
this type of matching, you must be aware of the precise positions of each
argument. You can find that information in the “Usage” section of the func-
tion’s help file, or it can be printed to the console with the args function.
Here’s an example:

R> args(matrix)

function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

NULL
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This shows the defined order of arguments of the matrix function, as
well as the default value for each argument. To construct the matrix bar with
positional matching, execute the following:

R> bar <- matrix(1:9,3,3,F,list(c("A","B","C"),c("D","E","F")))

R> bar

D E F

A 1 4 7

B 2 5 8

C 3 6 9

The benefits of positional matching are as follows:

• Shorter, cleaner code, particularly for routine tasks

• No need to remember specific argument tags

Notice that when using exact and partial matching, you didn’t need to
supply anything for the byrow argument, which, by default, is set to FALSE.
With positional matching, you must provide a value (given here as F) for
byrow as the fourth argument because R relies on position alone to interpret
the function call. If you leave out the argument, you get an error, as follows:

R> bar <- matrix(1:9,3,3,list(c("A","B","C"),c("D","E","F")))

Error in matrix(1:9, 3, 3, list(c("A", "B", "C"), c("D", "E", "F"))) :

invalid 'byrow' argument

Here R has tried to assign the fourth argument (the list you intended
for dimnames) as the value for the logical byrow argument. This brings us to the
drawbacks of positional matching:

• You must look up and exactly match the defined order of arguments.

• Reading code written by someone else can be more difficult, especially
when it includes unfamiliar functions.

9.2.4 Mixed
Since each matching style has pros and cons, it’s quite common, and per-
fectly legal, to mix these three styles in a single function call.

For instance, you can avoid the type of error shown in the previous
example like so:

R> bar <- matrix(1:9,3,3,dim=list(c("A","B","C"),c("D","E","F")))

R> bar

D E F

A 1 4 7

B 2 5 8

C 3 6 9
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Here I’ve used positional matching for the first three arguments, which
are by now familiar to you. At the same time, I’ve used partial matching to
explicitly tell R that the list is meant as a dimnames value, not for byrow.

9.2.5 Dot-Dot-Dot: Use of Ellipses
Many functions exhibit variadic behavior. That is, they can accept any num-
ber of arguments, and it’s up to the user to decide how many arguments
to provide. The functions c, data.frame, and list are all like this. When you
call a function like data.frame, you can specify any number of members as
arguments.

This flexibility is achieved in R through the special dot-dot-dot designa-
tion (...), also called the ellipsis. This construct allows the user to supply any
number of data vectors (these become the columns in the final data frame).
You can see whether an ellipsis is used in a function on the function’s help
page or with args. Looking at data.frame, notice the first argument slot is an
ellipsis:

R> args(data.frame)

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

When you call a function and supply an argument that can’t be matched
with one of the function’s defined argument tags, normally this would pro-
duce an error. But if the function is defined with an ellipsis, any arguments
that aren’t matched to other argument tags are matched to the ellipsis.

Functions that employ ellipses generally fall into two groups. The first
group includes functions such as c, data.frame, and list, where the ellipsis
always represents the “main ingredients” in the function call. That is, the
objective of the function is to use contents of the ellipsis in the resulting
object or output. The second group consists of functions where the ellipsis is
meant as a supplementary or potential repository of optional arguments. This
is common when the function of interest calls other subfunctions that them-
selves require additional arguments depending upon the originally supplied
items. Rather than explicitly copy all the arguments desired by the subfunc-
tion into the argument list of the “parent” function, the parent function can
instead be defined including an ellipsis that is subsequently provided to the
subfunction.

Here’s an example of the ellipsis used for supplementary arguments
with the generic plot function:

R> args(plot)

function (x, y, ...)

NULL

From examining the arguments, it’s clear that optional arguments such
as point size (argument tag cex) or line type (argument tag lty), if supplied,
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are matched to the ellipsis. These optional arguments are then passed in to
the function to be used by various methods that tweak graphical parameters.

Ellipses are a convenient programming tool for writing variadic func-
tions or functions where an unknown number of arguments may be sup-
plied. This will become clearer when you start writing your own functions
in Chapter 11. However, when writing functions like this, it’s important to
properly document the intended use of ... so the potential users of the
function know exactly which arguments can be passed to it and what those
arguments are subsequently used for in execution.

Exercise 9.2

a. Use positional matching with seq to create a sequence of values
between −4 and 4 that progresses in steps of 0.2.

b. In each of the following lines of code, identify which style of
argument matching is being used: exact, partial, positional, or
mixed. If mixed, identify which arguments are specified in each
style.
i. array(8:1,dim=c(2,2,2))

ii. rep(1:2,3)

iii. seq(from=10,to=8,length=5)

iv. sort(decreasing=T,x=c(2,1,1,2,0.3,3,1.3))

v. which(matrix(c(T,F,T,T),2,2))

vi. which(matrix(c(T,F,T,T),2,2),a=T)

c. Suppose you explicitly ran the plotting function plot.default and
supplied values to arguments tagged type, pch, xlab, ylab, lwd, lty,
and col. Use the function documentation to determine which of
these arguments fall under the umbrella of the ellipsis.

Important Code in This Chapter

Function/operator Brief description First occurrence

ls Inspect environment objects Section 9.1.1, p. 167
search Current search path Section 9.1.2, p. 168
environment Function environment properties Section 9.1.2, p. 169
rm Delete objects in workspace Section 9.1.3, p. 171
args Show function arguments Section 9.2.3, p. 174
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10
CONDITIONS AND LOOPS

To write more sophisticated programs
with R, you’ll need to control the flow and

order of execution in your code. One funda-
mental way to do this is to make the execution

of certain sections of code dependent on a condition.
Another basic control mechanism is the loop, which
repeats a block of code a certain number of times. In
this chapter, we’ll explore these core programming
techniques using if-else statements, for and while

loops, and other control structures.

10.1 if Statements

The if statement is the key to controlling exactly which operations are
carried out in a given chunk of code. An if statement runs a block of code
only if a certain condition is true. These constructs allow a program to
respond differently depending on whether a condition is TRUE or FALSE.



10.1.1 Stand-Alone Statement
Let’s start with the stand-alone if statement, which looks something like this:

if(condition){

do any code here

}

The condition is placed in parentheses after the if keyword. This condi-
tion must be an expression that yields a single logical value (TRUE or FALSE).
If it’s TRUE, the code in the braces, {}, will be executed. If the condition isn’t
satisfied, the code in the braces is skipped, and R does nothing (or contin-
ues on to execute any code after the closing brace).

Here’s a simple example. In the console, store the following:

R> a <- 3

R> mynumber <- 4

Now, in the R editor, write the following code chunk:

if(a<=mynumber){

a <- a^2

}

When this chunk is executed, what will the value of a be? It depends
on the condition defining the if statement, as well as what’s actually speci-
fied in the braced area. In this case, when the condition a<=mynumber is eval-
uated, the result is TRUE since 3 is indeed less than or equal to 4. That means
the code inside the braces is executed, which sets a to a^2, or 9.

Now highlight the entire chunk of code in the editor and send it to the
console for evaluation. Remember, you can do this in several ways:

• Copy and paste the selected text from the editor directly into the
console.

• From the menu, select Edit→ Run line or selection in Windows or select
Edit→ Execute in OS X.

• Use the keystroke shortcut such as CTRL-R in Windows or -RETURN on
a Mac.

Once you execute the code in the console, you’ll see something
like this:

R> if(a<=mynumber){

+ a <- a^2

+ }
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Then, look at the object a, shown here:

R> a

[1] 9

Next, suppose you execute the same if statement again right away. Will
a be squared once more, giving 81? Nope! Since a is now 9 and mynumber is
still 4, the condition a<=mynumber will be FALSE, and the code in the braces will
not be executed; a will remain at 9.

Note that after you send the if statement to the console, each line after
the first is prefaced by a +. These + signs do not represent any kind of arith-
metic addition; rather, they indicate that R is expecting more input before it
begins execution. For example, when a left brace is opened, R will not begin
any kind of execution until that section is closed with a right brace. To avoid
redundancy, in future examples I won’t show this repetition of code sent
from the editor to the console.

NOTE You can change the + symbol by assigning a different character string to the continue

component of R’s options command, in the way you reset the prompt in Section 1.2.1.

The if statement offers a huge amount of flexibility—you can place
any kind of code in the braced area, including more if statements (see the
upcoming discussion of nesting in Section 10.1.4), enabling your program to
make a sequence of decisions.

To illustrate a more complicated if statement, consider the following
two new objects:

R> myvec <- c(2.73,5.40,2.15,5.29,1.36,2.16,1.41,6.97,7.99,9.52)

R> myvec

[1] 2.73 5.40 2.15 5.29 1.36 2.16 1.41 6.97 7.99 9.52

R> mymat <- matrix(c(2,0,1,2,3,0,3,0,1,1),5,2)

R> mymat

[,1] [,2]

[1,] 2 0

[2,] 0 3

[3,] 1 0

[4,] 2 1

[5,] 3 1

Use these two objects in the code chunk given here:

if(any((myvec-1)>9)||matrix(myvec,2,5)[2,1]<=6){

cat("Condition satisfied --\n")

new.myvec <- myvec

new.myvec[seq(1,9,2)] <- NA

mylist <- list(aa=new.myvec,bb=mymat+0.5)

cat("-- a list with",length(mylist),"members now exists.")

}
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Send this to the console, and it produces the following output:

Condition satisfied --

-- a list with 2 members now exists.

Indeed, an object mylist has been created that you can examine.

R> mylist

$aa

[1] NA 5.40 NA 5.29 NA 2.16 NA 6.97 NA 9.52

$bb

[,1] [,2]

[1,] 2.5 0.5

[2,] 0.5 3.5

[3,] 1.5 0.5

[4,] 2.5 1.5

[5,] 3.5 1.5

In this example, the condition consists of two parts separated by an
OR statement using ||, which produces a single logical result. Let’s walk
through it.

• The first part of the condition looks at myvec, takes 1 away from each ele-
ment, and checks whether any of the results are greater than 9. If you
run this part on its own, it yields FALSE.

R> myvec-1

[1] 1.73 4.40 1.15 4.29 0.36 1.16 0.41 5.97 6.99 8.52

R> (myvec-1)>9

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

R> any((myvec-1)>9)

[1] FALSE

• The second part of the condition uses positional matching in a call to
matrix to construct a two-row, five-column, column-filled matrix using
entries of the original myvec. Then, the number in the second row of
the first column of that result is checked to see whether it’s less than
or equal to 6, which it is.

R> matrix(myvec,2,5)

[,1] [,2] [,3] [,4] [,5]

[1,] 2.73 2.15 1.36 1.41 7.99

[2,] 5.40 5.29 2.16 6.97 9.52

R> matrix(myvec,2,5)[2,1]

[1] 5.4

R> matrix(myvec,2,5)[2,1]<=6

[1] TRUE
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This means the overall condition being checked by the if statement will
be FALSE||TRUE, which evaluates as TRUE.

R> any((myvec-1)>9)||matrix(myvec,2,5)[2,1]<=6

[1] TRUE

As a result, the code inside the braces is accessed and executed. First,
it prints the "Condition satisfied" string and copies myvec to new.myvec. Using
seq, it then accesses the odd-numbered indexes of new.myvec and overwrites
them with NA. Next, it creates mylist. In this list, new.myvec is stored in a mem-
ber named aa, and then it takes the original mymat, increases all its elements
by 0.5, and stores the result in bb. Lastly, it prints the length of the result-
ing list.

Note that if statements don’t have to match the exact style I’m using
here. Some programmers, for example, prefer to open the left brace on
a new line after the condition, or some may prefer a different amount of
indentation.

10.1.2 else Statements
The if statement executes a chunk of code if and only if a defined condi-
tion is TRUE. If you want something different to happen when the condition
is FALSE, you can add an else declaration. Here’s an example in pseudocode:

if(condition){

do any code in here if condition is TRUE

} else {

do any code in here if condition is FALSE

}

You set the condition, then in the first set of braces you place the code
to run if the condition is TRUE. After this, you declare else followed by a new
set of braces where you can place code to run if the condition is FALSE.

Let’s return to the first example in Section 10.1.1, once more storing
these values at the console prompt.

R> a <- 3

R> mynumber <- 4

In the editor, create a new version of the earlier if statement.

if(a<=mynumber){

cat("Condition was",a<=mynumber)

a <- a^2

} else {

cat("Condition was",a<=mynumber)

a <- a-3.5
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}

a

Here, you again square a if the condition a<=mynumber is TRUE, but if FALSE,
a is overwritten by the result of itself minus 3.5. You also print text to the
console stating whether the condition was met. After resetting a and mynumber

to their original values, the first run of the if loop computes a as 9, just as
earlier, outputting the following:

Condition was TRUE

R> a

[1] 9

Now, immediately highlight and execute the entire statement again.
This time around, a<=mynumber will evaluate to FALSE and execute the code
after else.

Condition was FALSE

R> a

[1] 5.5

10.1.3 Using ifelse for Element-wise Checks
An if statement can check the condition of only a single logical value. If you
pass in, for example, a vector of logicals for the condition, the if statement
will only check (and operate based on) the very first element. It will issue a
warning saying as much, as the following dummy example shows:

R> if(c(FALSE,TRUE,FALSE,TRUE,TRUE)){}

Warning message:

In if (c(FALSE, TRUE, FALSE, TRUE, TRUE)) { :

the condition has length > 1 and only the first element will be used

There is, however, a shortcut function available, ifelse, which can per-
form this kind of vector-oriented check in relatively simple cases. To demon-
strate how it works, consider the objects x and y defined as follows:

R> x <- 5

R> y <- -5:5

R> y

[1] -5 -4 -3 -2 -1 0 1 2 3 4 5

Now, suppose you want to produce the result of x/y but with any
instance of Inf (that is, any instance where x is divided by zero) replaced
with NA. In other words, for each element in y, you want to check whether
y is zero. If so, you want the code to output NA, and if not, it should output
the result of x/y.
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As you’ve just seen, a simple if statement won’t work here. Since it
accepts only a single logical value, it can’t run through the entire logical
vector produced by y==0.

R> y==0

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Instead, you can use the element-wise ifelse function for this kind of
scenario.

R> result <- ifelse(test=y==0,yes=NA,no=x/y)

R> result

[1] -1.000000 -1.250000 -1.666667 -2.500000 -5.000000 NA 5.000000 2.500000

[9] 1.666667 1.250000 1.000000

Using exact matching, this command creates the desired result vector
in one line. Three arguments must be specified: test takes a logical-valued
data structure, yes provides the element to return if the condition is satisfied,
and no gives the element to return if the condition is FALSE. As noted in the
function documentation (which you can access with ?ifelse), the returned
structure will be of “the same length and attributes as test.”

Exercise 10.1

a. Create the following two vectors:

vec1 <- c(2,1,1,3,2,1,0)

vec2 <- c(3,8,2,2,0,0,0)

Without executing them, determine which of the following
if statements would result in the string being printed to the
console. Then confirm your answers in R.

i. if((vec1[1]+vec2[2])==10){ cat("Print me!") }

ii. if(vec1[1]>=2&&vec2[1]>=2){ cat("Print me!") }

iii. if(all((vec2-vec1)[c(2,6)]<7)){ cat("Print me!") }

iv. if(!is.na(vec2[3])){ cat("Print me!") }

b. Using vec1 and vec2 from (a), write and execute a line of code
that multiplies the corresponding elements of the two vectors
together if their sum is greater than 3. Otherwise, the code
should simply sum the two elements.
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c. In the editor, write R code that takes a square character matrix
and checks if any of the character strings on the diagonal (top
left to bottom right) begin with the letter g, lowercase or upper-
case. If satisfied, these specific entries should be overwritten with
the string "HERE". Otherwise, the entire matrix should be replaced
with an identity matrix of the same dimensions. Then, try your
code on the following matrices, checking the result each time:

i. mymat <- matrix(as.character(1:16),4,4)

ii. mymat <- matrix(c("DANDELION","Hyacinthus","Gerbera",

"MARIGOLD","geranium","ligularia",

"Pachysandra","SNAPDRAGON","GLADIOLUS"),3,3)

iii. mymat <- matrix(c("GREAT","exercises","right","here"),2,2,

byrow=T)

Hint: This requires some thought—you will find the func-
tions diag from Section 3.2.1 and substr from Section 4.2.4 useful.

10.1.4 Nesting and Stacking Statements
An if statement can itself be placed within the outcome of another if state-
ment. By nesting or stacking several statements, you can weave intricate paths
of decision-making by checking a number of conditions at various stages
during execution.

In the editor, modify the mynumber example once more as follows:

if(a<=mynumber){

cat("First condition was TRUE\n")

a <- a^2

if(mynumber>3){

cat("Second condition was TRUE")

b <- seq(1,a,length=mynumber)

} else {

cat("Second condition was FALSE")

b <- a*mynumber

}

} else {

cat("First condition was FALSE\n")

a <- a-3.5

if(mynumber>=4){

cat("Second condition was TRUE")

b <- a^(3-mynumber)

} else {

cat("Second condition was FALSE")

b <- rep(a+mynumber,times=3)
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}

}

a

b

Here you see the same initial decision being made as earlier. The value
a is squared if it’s less than or equal to mynumber; if not, it has 3.5 subtracted
from it. But now there’s another if statement within each braced area. If the
first condition is satisfied and a is squared, you then check whether mynumber

is greater than 3. If TRUE, b is assigned seq(1,a,length=mynumber). If FALSE, b is
assigned a*mynumber.

If the first condition fails and you subtract 3.5 from a, then you check a
second condition to see whether mynumber is greater than or equal to 4. If it is,
then b becomes a^(3-mynumber). If it’s not, b becomes rep(a+mynumber,times=3).
Note that I’ve indented the code within each subsequent braced area to
make it easier to see which lines are relevant to each possible decision.

Now, reset a <- 3 and mynumber <- 4 either directly in the console or from
the editor. When you run the mynumber example code, you’ll get the following
output:

First condition was TRUE

Second condition was TRUE

R> a

[1] 9

R> b

[1] 1.000000 3.666667 6.333333 9.000000

The result indicates exactly which code was invoked—the first condition
and second condition were both TRUE. Trying another run of the same code,
after first setting

R> a <- 6

R> mynumber <- 4

you see this output:

First condition was FALSE

Second condition was TRUE

R> a

[1] 2.5

R> b

[1] 0.4

This time the first condition fails, but the second condition checked
inside the else statement is TRUE.

Alternatively, you could accomplish the same thing by sequentially stack-
ing if statements and using a combination of logical expressions in each
condition. In the following example, you check for the same four situations,
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but this time you stack if statements by placing a new if declaration immedi-
ately following an else declaration:

if(a<=mynumber && mynumber>3){

cat("Same as 'first condition TRUE and second TRUE'")

a <- a^2

b <- seq(1,a,length=mynumber)

} else if(a<=mynumber && mynumber<=3){

cat("Same as 'first condition TRUE and second FALSE'")

a <- a^2

b <- a*mynumber

} else if(mynumber>=4){

cat("Same as 'first condition FALSE and second TRUE'")

a <- a-3.5

b <- a^(3-mynumber)

} else {

cat("Same as 'first condition FALSE and second FALSE'")

a <- a-3.5

b <- rep(a+mynumber,times=3)

}

a

b

Just as before, only one of the four braced areas will end up being exe-
cuted. Comparing this to the nested version, the first two braced areas cor-
respond to what was originally the first condition (a<=mynumber) being satis-
fied, but this time you use && to check two expressions at once. If neither of
those two situations is met, this means the first condition is false, so in the
third statement, you just have to check whether mynumber>=4. For the final
else statement, you don’t need to check any conditions because that state-
ment will be executed only if all the previous conditions were not met.

If you again reset a and mynumber to 3 and 4, respectively, and execute the
stacked statements shown earlier, you get the following result:

Same as 'first condition TRUE and second TRUE'

R> a

[1] 9

R> b

[1] 1.000000 3.666667 6.333333 9.000000

This produces the same values for a and b as earlier. If you execute the
code again using the second set of initial values (a as 6 and mynumber as 4),
you get the following:

Same as 'first condition FALSE and second TRUE'

R> a

[1] 2.5
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R> b

[1] 0.4

This again matches the results of using the nested version of the code.

10.1.5 The switch Function
Let’s say you need to choose which code to run based on the value of a
single object (a common scenario). One option is to use a series of if state-
ments, where you compare the object with various possible values to pro-
duce a logical value for each condition. Here’s an example:

if(mystring=="Homer"){

foo <- 12

} else if(mystring=="Marge"){

foo <- 34

} else if(mystring=="Bart"){

foo <- 56

} else if(mystring=="Lisa"){

foo <- 78

} else if(mystring=="Maggie"){

foo <- 90

} else {

foo <- NA

}

The goal of this code is simply to assign a numeric value to an object
foo, where the exact number depends on the value of mystring. The mystring

object can take one of the five possibilities shown, or if mystring doesn’t
match any of these, foo is assigned NA.

This code works just fine as it is. For example, setting

R> mystring <- "Lisa"

and executing the chunk, you’ll see this:

R> foo

[1] 78

Setting the following

R> mystring <- "Peter"

and executing the chunk again, you’ll see this:

R> foo

[1] NA

Conditions and Loops 189



This setup using if-else statements is quite cumbersome for such a basic
operation, though. R can handle this type of multiple-choice decision in
a far more compact form via the switch function. For example, you could
rewrite the stacked if statements as a much shorter switch statement as
follows:

R> mystring <- "Lisa"

R> foo <- switch(EXPR=mystring,Homer=12,Marge=34,Bart=56,Lisa=78,Maggie=90,NA)

R> foo

[1] 78

and

R> mystring <- "Peter"

R> foo <- switch(EXPR=mystring,Homer=12,Marge=34,Bart=56,Lisa=78,Maggie=90,NA)

R> foo

[1] NA

The first argument, EXPR, is the object of interest and can be either a
numeric or a character string. The remaining arguments provide the val-
ues or operations to carry out based on the value of EXPR. If EXPR is a string,
these argument tags must exactly match the possible results of EXPR. Here, the
switch statement evaluates to 12 if mystring is "Homer", 34 if mystring is "Marge",
and so on. The final, untagged value, NA, indicates the result if mystring
doesn’t match any of the preceding items.

The integer version of switch works in a slightly different way. Instead
of using tags, the outcome is determined purely with positional matching.
Consider the following example:

R> mynum <- 3

R> foo <- switch(mynum,12,34,56,78,NA)

R> foo

[1] 56

Here, you provide an integer mynum as the first argument, and it’s posi-
tionally matched to EXPR. The example code then shows five untagged argu-
ments: 12 to NA. The switch function simply returns the value in the specific
position requested by mynum. Since mynum is 3, the statement assigns 56 to
foo. Had mynum been 1, 2, 4, or 5, foo would’ve been assigned 12, 34, 78, or
NA, respectively. Any other value of mynum (less than 1 or greater than 5) will
return NULL.

R> mynum <- 0

R> foo <- switch(mynum,12,34,56,78,NA)

R> foo

NULL
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In these types of situations, the switch function behaves the same way
as a set of stacked if statements, so it can serve as a convenient shortcut.
However, if you need to examine multiple conditions at once or you need
to execute a more complicated set of operations based on this decision,
you’ll need to use the explicit if and else control structures.

Exercise 10.2

a. Write an explicit stacked set of if statements that does the same
thing as the integer version of the switch function illustrated
earlier. Test it with mynum <- 3 and mynum <- 0, as in the text.

b. Suppose you are tasked with computing the precise dosage
amounts of a certain drug in a collection of hypothetical sci-
entific experiments. These amounts depend upon some pre-
determined set of “dosage thresholds” (lowdose, meddose, and
highdose), as well as a predetermined dose level factor vector
named doselevel. Look at the following items (i–iv) to see the
intended form of these objects. Then write a set of nested if

statements that produce a new numeric vector called dosage,
according to the following rules:
– First, if there are any instances of "High" in doselevel, per-

form the following operations:
* Check if lowdose is greater than or equal to 10. If so,

overwrite lowdose with 10; otherwise, overwrite lowdose by
itself divided by 2.

* Check if meddose is greater than or equal to 26. If so,
overwrite meddose by 26.

* Check if highdose is less than 60. If so, overwrite highdose

with 60; otherwise, overwrite highdose by itself multiplied
by 1.5.

* Create a vector named dosage with the value of lowdose
repeated (rep) to match the length of doselevel.

* Overwrite the elements in dosage corresponding to the
index positions of instances of "Med" in doselevel by
meddose.

* Overwrite the elements in dosage corresponding to the
index positions of instances of "High" in doselevel by
highdose.

– Otherwise (in other words, if there are no instances of "High"
in doselevel), perform the following operations:
* Create a new version of doselevel, a factor vector with

levels "Low" and "Med" only, and label these with "Small"

and "Large", respectively (refer to Section 4.3 for details
or see ?factor).
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* Check to see if lowdose is less than 15 AND meddose is less
than 35. If so, overwrite lowdose by itself multiplied by 2
and overwrite meddose by itself plus highdose.

* Create a vector named dosage, which is the value of
lowdose repeated (rep) to match the length of doselevel.

* Overwrite the elements in dosage corresponding to the
index positions of instances of "Large" in doselevel by
meddose.

Now, confirm the following:
i. Given

lowdose <- 12.5

meddose <- 25.3

highdose <- 58.1

doselevel <- factor(c("Low","High","High","High","Low","Med",

"Med"),levels=c("Low","Med","High"))

the result of dosage after running the nested if statements is
as follows:

R> dosage

[1] 10.0 60.0 60.0 60.0 10.0 25.3 25.3

ii. Using the same lowdose, meddose, and highdose thresholds as in
(i), given

doselevel <- factor(c("Low","Low","Low","Med","Low","Med",

"Med"),levels=c("Low","Med","High"))

the result of dosage after running the nested if statements is
as follows:

R> dosage

[1] 25.0 25.0 25.0 83.4 25.0 83.4 83.4

Also, doselevel has been overwritten as follows:

R> doselevel

[1] Small Small Small Large Small Large Large

Levels: Small Large

iii. Given

lowdose <- 9

meddose <- 49

highdose <- 61

doselevel <- factor(c("Low","Med","Med"),

levels=c("Low","Med","High"))
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the result of dosage after running the nested if statements is
as follows:

R> dosage

[1] 9 49 49

Also, doselevel has been overwritten as follows:

R> doselevel

[1] Small Large Large

Levels: Small Large

iv. Using the same lowdose, meddose, and highdose thresholds as
(iii), as well as the same doselevel as (i), the result of dosage
after running the nested if statements is as follows:

R> dosage

[1] 4.5 91.5 91.5 91.5 4.5 26.0 26.0

c. Assume the object mynum will only ever be a single integer between
0 and 9. Use ifelse and switch to produce a command that takes
in mynum and returns a matching character string for all possible
values 0, 1, . . . , 9. Supplied with 3, for example, it should return
"three"; supplied with 0, it should return "zero".

10.2 Coding Loops

Another core programming mechanism is the loop, which repeats a specified
section of code, often while incrementing an index or counter. There are
two styles of looping: the for loop repeats code as it works its way through a
vector, element by element; the while loop simply repeats code until a spe-
cific condition evaluates to FALSE. Looplike behavior can also be achieved
with R’s suite of apply functions, which are discussed in Section 10.2.3.

10.2.1 for Loops
The R for loop always takes the following general form:

for(loopindex in loopvector){

do any code in here

}

Here, the loopindex is a placeholder that represents an element in the
loopvector—it starts off as the first element in the vector and moves to the
next element with each loop repetition. When the for loop begins, it runs
the code in the braced area, replacing any occurrence of the loopindex

with the first element of the loopvector. When the loop reaches the closing
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brace, the loopindex is incremented, taking on the second element of the
loopvector, and the braced area is repeated. This continues until the loop
reaches the final element of the loopvector, at which point the braced code
is executed for the final time, and the loop exits.

Here’s a simple example written in the editor:

for(myitem in 5:7){

cat("--BRACED AREA BEGINS--\n")

cat("the current item is",myitem,"\n")

cat("--BRACED AREA ENDS--\n\n")

}

This loop prints the current value of the loopindex (which I’ve named
myitem here) as it increments from 5 to 7. Here’s the output after sending to
the console:

--BRACED AREA BEGINS--

the current item is 5

--BRACED AREA ENDS--

--BRACED AREA BEGINS--

the current item is 6

--BRACED AREA ENDS--

--BRACED AREA BEGINS--

the current item is 7

--BRACED AREA ENDS--

You can use loops to manipulate objects that exist outside the loop.
Consider the following example:

R> counter <- 0

R> for(myitem in 5:7){

+ counter <- counter+1

+ cat("The item in run",counter,"is",myitem,"\n")

+ }

The item in run 1 is 5

The item in run 2 is 6

The item in run 3 is 7

Here, I’ve initially defined an object, counter, and set it to zero in the
workspace. Then, inside the loop, counter is overwritten by itself plus 1. Each
time the loop repeats, counter increases, and the current value is printed to
the console.

Looping via Index or Value

Note the difference between using the loopindex to directly represent ele-
ments in the loopvector and using it to represent indexes of a vector. The
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following two loops use these two different approaches to print double each
number in myvec:

R> myvec <- c(0.4,1.1,0.34,0.55)

R> for(i in myvec){

+ print(2*i)

+ }

[1] 0.8

[1] 2.2

[1] 0.68

[1] 1.1

R> for(i in 1:length(myvec)){

+ print(2*myvec[i])

+ }

[1] 0.8

[1] 2.2

[1] 0.68

[1] 1.1

The first loop uses the loopindex i to directly represent the elements in
myvec, printing the value of each element times 2. In the second loop, on the
other hand, you use i to represent integers in the sequence 1:length(myvec).
These integers form all the possible index positions of myvec, and you use
these indexes to extract myvec’s elements (once again multiplying each ele-
ment by 2 and printing the result). Though it takes a slightly longer form,
using vector index positions provides more flexibility in terms of how you
can use the loopindex. This will become clearer when your needs demand
more complicated for loops, such as in the next example.

Suppose you want to write some code that will inspect any list object and
gather information about any matrix objects stored as members in the list.
Consider the following list:

R> foo <- list(aa=c(3.4,1),bb=matrix(1:4,2,2),cc=matrix(c(T,T,F,T,F,F),3,2),

dd="string here",ee=matrix(c("red","green","blue","yellow")))

R> foo

$aa

[1] 3.4 1.0

$bb

[,1] [,2]

[1,] 1 3

[2,] 2 4

$cc

[,1] [,2]

[1,] TRUE TRUE

[2,] TRUE FALSE

[3,] FALSE FALSE
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$dd

[1] "string here"

$ee

[,1]

[1,] "red"

[2,] "green"

[3,] "blue"

[4,] "yellow"

Here you’ve created foo, which contains three matrices of varying
dimensions and data types. You’ll write a for loop that goes through each
member of a list like this one and checks whether the member is a matrix.
If it is, the loop will retrieve the number of rows and columns and the data
type of the matrix.

Before you write the for loop, you should create some vectors that will
store information about the list members: name for the list member names,
is.mat to indicate whether each member is a matrix (with "Yes" or "No"),
nc and nr to store the number of rows and columns for each matrix, and
data.type to store the data type of each matrix.

R> name <- names(foo)

R> name

[1] "aa" "bb" "cc" "dd" "ee"

R> is.mat <- rep(NA,length(foo))

R> is.mat

[1] NA NA NA NA NA

R> nr <- is.mat

R> nc <- is.mat

R> data.type <- is.mat

Here, you store the names of the members of foo as name. You also set
up is.mat, nr, nc, and data.type, which are all assigned vectors of length
length(foo) filled with NAs. These values will be updated as appropriate by
your for loop, which you’re now ready to write. Enter the following code in
the editor:

for(i in 1:length(foo)){

member <- foo[[i]]

if(is.matrix(member)){

is.mat[i] <- "Yes"

nr[i] <- nrow(member)

nc[i] <- ncol(member)

data.type[i] <- class(as.vector(member))

} else {

is.mat[i] <- "No"
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}

}

bar <- data.frame(name,is.mat,nr,nc,data.type,stringsAsFactors=FALSE)

Initially, set up the loopindex i so that it will increment through the
index positions of foo (the sequence 1:length(foo)). In the braced code,
the first command is to write the member of foo at position i to an object
member. Next, you can check whether that member is a matrix using is.matrix

(refer to Section 6.2.3). If TRUE, you do the following: the ith position of
is.mat vector is set as "Yes"; the ith element of nr and nc is set as the num-
ber of rows and number of columns of member, respectively; and the ith ele-
ment of data.type is set as the result of class(as.vector(member)). This final
command first coerces the matrix into a vector with as.vector and then uses
the class function (covered in Section 6.2.2) to find the data type of the
elements.

If member isn’t a matrix and the if condition fails, the corresponding
entry in is.mat is set to "No", and the entries in the other vectors aren’t
changed (so they will remain NA).

After the loop is run, a data frame bar is created from the vectors (note
the use of stringsAsFactors=FALSE in order to prevent the character string vec-
tors in bar being automatically converted to factors; see Section 5.2.1). After
executing the code, bar looks like this:

R> bar

name is.mat nr nc data.type

1 aa No NA NA <NA>

2 bb Yes 2 2 integer

3 cc Yes 3 2 logical

4 dd No NA NA <NA>

5 ee Yes 4 1 character

As you can see, this matches the nature of the matrices present in the
list foo.

Nesting for Loops

You can also nest for loops, just like if statements. When a for loop is nested
in another for loop, the inner loop is executed in full before the outer loop
loopindex is incremented, at which point the inner loop is executed all over
again. Create the following objects in your R console:

R> loopvec1 <- 5:7

R> loopvec1

[1] 5 6 7

R> loopvec2 <- 9:6

R> loopvec2

[1] 9 8 7 6

R> foo <- matrix(NA,length(loopvec1),length(loopvec2))
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R> foo

[,1] [,2] [,3] [,4]

[1,] NA NA NA NA

[2,] NA NA NA NA

[3,] NA NA NA NA

The following nested loop fills foo with the result of multiplying each
integer in loopvec1 by each integer in loopvec2:

R> for(i in 1:length(loopvec1)){

+ for(j in 1:length(loopvec2)){

+ foo[i,j] <- loopvec1[i]*loopvec2[j]

+ }

+ }

R> foo

[,1] [,2] [,3] [,4]

[1,] 45 40 35 30

[2,] 54 48 42 36

[3,] 63 56 49 42

Note that nested loops require a unique loopindex for each use of for.
In this case, the loopindex is i for the outer loop and j for the inner loop.
When the code is executed, i is first assigned 1, the inner loop begins, and
then j is also assigned 1. The only command in the inner loop is to take the
product of the ith element of loopvec1 and the jth element of loopvec2 and
assign it to row i, column j of foo. The inner loop repeats until j reaches
length(loopvec2) and fills the first row of foo; then i increments, and the
inner loop is started up again. The entire procedure is complete after i

reaches length(loopvec1) and the matrix is filled.
Inner loopvectors can even be defined to match the current value of the

loopindex of the outer loop. Using loopvec1 and loopvec2 from earlier, here’s
an example:

R> foo <- matrix(NA,length(loopvec1),length(loopvec2))

R> foo

[,1] [,2] [,3] [,4]

[1,] NA NA NA NA

[2,] NA NA NA NA

[3,] NA NA NA NA

R> for(i in 1:length(loopvec1)){

+ for(j in 1:i){

+ foo[i,j] <- loopvec1[i]+loopvec2[j]

+ }

+ }

R> foo

[,1] [,2] [,3] [,4]

[1,] 14 NA NA NA
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[2,] 15 14 NA NA

[3,] 16 15 14 NA

Here, the ith row, jth column element of foo is filled with the sum
of loopvec1[i] and loopvec2[j]. However, the inner loop values for j are
now decided based on the value of i. For example, when i is 1, the inner
loopvector is 1:1, so the inner loop executes only once before returning
to the outer loop. With i as 2, the inner loopvector is then 1:2, and so on.
This makes it so each row of foo is only partially filled. Extra care must be
taken when programming loops this way. Here, for example, the values for j

depend on the length of loopvec1, so an error will occur if length(loopvec1) is
greater than length(loopvec2).

Any number of for loops can be nested, but the computational expense
can become a problem if nested loops are used unwisely. Loops in general
add some computational cost, so to produce more efficient code in R, you
should always ask “Can I do this in a vector-oriented fashion?” Only when
the individual operations are not possible or straightforward to achieve en
masse should you explore an iterative, looped approach. You can find some
relevant and valuable comments on R loops and associated best-practice cod-
ing in the “R Help Desk” article by Ligges and Fox (2008).

Exercise 10.3

a. In the interests of efficient coding, rewrite the nested loop
example from this section, where the matrix foo was filled with
the multiples of the elements of loopvec1 and loopvec2, using only
a single for loop.

b. In Section 10.1.5, you used the command

switch(EXPR=mystring,Homer=12,Marge=34,Bart=56,Lisa=78,Maggie=90,

NA)

to return a number based on the supplied value of a single
character string. This line won’t work if mystring is a character
vector. Write some code that will take a character vector and
return a vector of the appropriate numeric values. Test it on the
following vector:

c("Peter","Homer","Lois","Stewie","Maggie","Bart")

c. Suppose you have a list named mylist that can contain other lists
as members, but assume those “member lists” cannot themselves
contain lists. Write nested loops that can search any possible
mylist defined in this way and count how many matrices are
present. Hint: Simply set up a counter before commencing the
loops that is incremented each time a matrix is found, regardless
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of whether it is a straightforward member of mylist or it is a
member of a member list of mylist.

Then confirm the following:

i. That the answer is 4 if you have the following:

mylist <- list(aa=c(3.4,1),bb=matrix(1:4,2,2),

cc=matrix(c(T,T,F,T,F,F),3,2),dd="string here",

ee=list(c("hello","you"),matrix(c("hello",

"there"))),

ff=matrix(c("red","green","blue","yellow")))

ii. That the answer is 0 if you have the following:

mylist <- list("tricked you",as.vector(matrix(1:6,3,2)))

iii. That the answer is 2 if you have the following:

mylist <- list(list(1,2,3),list(c(3,2),2),

list(c(1,2),matrix(c(1,2))),

rbind(1:10,100:91))

10.2.2 while Loops
To use for loops, you must know, or be able to easily calculate, the number
of times the loop should repeat. In situations where you don’t know how
many times the desired operations need to be run, you can turn to the while

loop. A while loop runs and repeats while a specified condition returns TRUE,
and takes the following general form:

while(loopcondition){

do any code in here

}

A while loop uses a single logical-valued loopcondition to control how
many times it repeats. Upon execution, the loopcondition is evaluated. If the
condition is found to be TRUE, the braced area code is executed line by line as
usual until complete, at which point the loopcondition is checked again. The
loop terminates only when the condition evaluates to FALSE, and it does so
immediately—the braced code is not run one last time.

This means the operations carried out in the braced area must some-
how cause the loop to exit, either by affecting the loopcondition somehow or
by declaring break, which you’ll see a little later. If not, the loop will keep
repeating forever, creating an infinite loop, which will freeze the console
(and, depending on the operations specified inside the braced area, R can
crash because of memory constraints). If that occurs, you can terminate the
loop in the R user interface by clicking the Stop button in the top menu or
by pressing ESC.
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As a simple example of a while loop, consider the following code:

myval <- 5

while(myval<10){

myval <- myval+1

cat("\n'myval' is now",myval,"\n")

cat("'mycondition' is now",myval<10,"\n")

}

Here, you set a new object myval to 5. Then you start a while loop with
the condition myval<10. Since this is TRUE to begin with, you enter the braced
area. Inside the loop you increment myval by 1, print its current value, and
print the logical value of the condition myval<5. The loop continues until the
condition myval<10 is FALSE at the next evaluation. Execute the code chunk,
and you see the following:

'myval' is now 6

'mycondition' is now TRUE

'myval' is now 7

'mycondition' is now TRUE

'myval' is now 8

'mycondition' is now TRUE

'myval' is now 9

'mycondition' is now TRUE

'myval' is now 10

'mycondition' is now FALSE

As expected, the loop repeats until myval is set to 10, at which point
myval<10 returns FALSE, causing the loop to exit because the initial condition
is no longer TRUE.

In more complicated settings, it’s often useful to set the loopcondition to
be a separate object so that you can modify it as necessary within the braced
area. For the next example, you’ll use a while loop to iterate through an inte-
ger vector and create an identity matrix (see Section 3.3.2) with the dimen-
sion matching the current integer. This loop should stop when it reaches a
number in the vector that’s greater than 5 or when it reaches the end of the
integer vector.

In the editor, define some initial objects, followed by the loop itself.

mylist <- list()

counter <- 1

mynumbers <- c(4,5,1,2,6,2,4,6,6,2)

mycondition <- mynumbers[counter]<=5

while(mycondition){

Conditions and Loops 201



mylist[[counter]] <- diag(mynumbers[counter])

counter <- counter+1

if(counter<=length(mynumbers)){

mycondition <- mynumbers[counter]<=5

} else {

mycondition <- FALSE

}

}

The first object, mylist, will store all the matrices that the loop creates.
You’ll use the vector mynumbers to provide the matrix sizes, and you’ll use
counter and mycondition to control the loop.

The loopcondition, mycondition, is initially set to TRUE since the first ele-
ment of mynumbers is less than or equal to 5. Inside the loop beginning at
while, the first line uses double square brackets and the value of counter to
dynamically create a new entry at that position in mylist (you did this ear-
lier with named lists in Section 5.1.3). This entry is assigned an identity
matrix whose size matches the corresponding element of mynumbers. Next,
the counter is incremented, and now you have to update mycondition. Here
you want to check whether mynumbers[counter]<=5, but you also need to check
whether you’ve reached the end of the integer vector (otherwise, you can
end up with an error by trying to retrieve an index position outside the
range of mynumbers). So, you can use an if statement to first check the condi-
tion counter<=length(mynumbers). If TRUE, then set mycondition to the outcome of
mynumbers[counter]<=5. If not, this means you’ve reached the end of mynumbers,
so you make sure the loop exits by setting mycondition <- FALSE.

Execute the loop with those predefined objects, and it will produce the
mylist object shown here:

R> mylist

[[1]]

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

[[2]]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 1

[[3]]

[,1]

[1,] 1
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[[4]]

[,1] [,2]

[1,] 1 0

[2,] 0 1

As expected, you have a list with four members—identity matrices of size
4 × 4, 5 × 5, 1 × 1, and 2 × 2—matching the first four elements of mynumbers.
The loop stopped executing when it reached the fifth element of mynumbers
(6) since that’s greater than 5.

Exercise 10.4

a. Based on the most recent example of storing identity matrices
in a list, determine what the resulting mylist would look like
for each of the following possible mynumbers vectors, without
executing anything:
i. mynumbers <- c(2,2,2,2,5,2)

ii. mynumbers <- 2:20

iii. mynumbers <- c(10,1,10,1,2)

Then, confirm your answers in R (note you’ll also have to
reset the initial values of mylist, counter, and mycondition each
time, just as in the text).

b. For this problem, I’ll introduce the factorial operator. The fac-
torial of a non-negative integer x, expressed as x!, refers to x

multiplied by the product of all integers less than x, down to 1.
Formally, it is written like this:

“x factorial” = x! = x × (x − 1) × (x − 2) × . . . × 1

Note that there is a special case of zero factorial, which is
always 1. That is:

0! = 1

For example, to work out 3 factorial, you compute the
following:

3 × 2 × 1 = 6

To work out 7 factorial, you compute the following:

7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040

Write a while loop that computes and stores as a new object
the factorial of any non-negative integer mynum by decrementing
mynum by 1 at each repetition of the braced code.
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Using your loop, confirm the following:
i. That the result of using mynum <- 5 is 120

ii. That using mynum <- 12 yields 479001600

iii. That having mynum <- 0 correctly returns 1

c. Consider the following code, where the operations in the braced
area of the while loop have been omitted:

mystring <- "R fever"

index <- 1

ecount <- 0

result <- mystring

while(ecount<2 && index<=nchar(mystring)){

# several omitted operations #

}

result

Your task is to complete the code in the braced area so
it inspects mystring character by character until it reaches
the second instance of the letter e or the end of the string,
whichever comes first. The result object should be the entire
character string if there is no second e or the character string
made up of all the characters up to, but not including, the sec-
ond e if there is one. For example, mystring <- "R fever" should
provide result as "R fev". This must be achieved by following
these operations in the braces:
1. Use substr (Section 4.2.4) to extract the single character of

mystring at position index.
2. Use a check for equality to determine whether this single-

character string is either "e" OR "E". If so, increase ecount

by 1.
3. Next, perform a separate check to see whether ecount is equal

to 2. If so, use substr to set result equal to the characters
between 1 and index-1 inclusive.

4. Increment index by 1.

Test your code—ensure the previous result for
mystring <- "R fever". Furthermore, confirm the following:
– Using mystring <- "beautiful" provides result as "beautiful"

– Using mystring <- "ECCENTRIC" provides result as "ECC"

– Using mystring <- "ElAbOrAte" provides result as "ElAbOrAt"

– Using mystring <- "eeeeek!" provides result as "e"

10.2.3 Implicit Looping with apply
In some situations, especially for relatively routine for loops (such as exe-
cuting some function on each member of a list), you can avoid some of the
details associated with explicit looping by using the apply function. The apply
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function is the most basic form of implicit looping—it takes a function and
applies it to each margin of an array.

For a simple illustrative example, let’s say you have the following matrix:

R> foo <- matrix(1:12,4,3)

R> foo

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

Say you want to find the sum of each row. If you call the following, you
just get the grand total of all elements, which is not what you want.

R> sum(foo)

[1] 78

Instead, you could use a for loop like this one:

R> row.totals <- rep(NA,times=nrow(foo))

R> for(i in 1:nrow(foo)){

+ row.totals[i] <- sum(foo[i,])

+ }

R> row.totals

[1] 15 18 21 24

This cycles through each row and stores the sum in row.totals. But you
can use apply to get the same result in a more compact form. To call apply,
you have to specify at least three arguments. The first argument, X, is the
object you want to cycle through. The next argument, MARGIN, takes an inte-
ger that flags which margin of X to operate on (rows, columns, etc.). Finally,
FUN provides the function you want to perform on each margin. With the
following call, you get the same result as the earlier for loop.

R> row.totals2 <- apply(X=foo,MARGIN=1,FUN=sum)

R> row.totals2

[1] 15 18 21 24

The MARGIN index follows the positional order of the dimension for
matrices and arrays, as discussed in Chapter 3—1 always refers to rows, 2 to
columns, 3 to layers, 4 to blocks, and so on. To instruct R to sum each col-
umn of foo instead, simply change the MARGIN argument to 2.

R> apply(X=foo,MARGIN=2,FUN=sum)

[1] 10 26 42
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The operations supplied to FUN should be appropriate for the MARGIN

selected. So, if you select rows or columns with MARGIN=1 or MARGIN=2, make
sure the FUN function is appropriate for vectors. Or if you have a three-
dimensional array and use apply with MARGIN=3, be sure to set FUN to a func-
tion appropriate for matrices. Here’s an example for you to enter:

R> bar <- array(1:18,dim=c(3,3,2))

R> bar

, , 1

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

, , 2

[,1] [,2] [,3]

[1,] 10 13 16

[2,] 11 14 17

[3,] 12 15 18

Then, make the following call:

R> apply(bar,3,FUN=diag)

[,1] [,2]

[1,] 1 10

[2,] 5 14

[3,] 9 18

This extracts the diagonal elements of each of the matrix layers of bar.
Each call to diag on a matrix returns a vector, and these vectors are returned
as columns of a new matrix. The FUN argument can also be any appropriate
user-defined function, and you’ll look at some examples of using apply with
your own functions in Chapter 11.

Other apply Functions

There are different flavors of the basic apply function. The tapply function,
for example, performs operations on subsets of the object of interest, where
those subsets are defined in terms of one or more factor vectors. As an
example, let’s return to the code from Section 8.2.3, which reads in a web-
based data file on diamond pricing, sets appropriate variable names of the
data frame, and displays the first five records.

R> dia.url <- "http://www.amstat.org/publications/jse/v9n2/4cdata.txt"

R> diamonds <- read.table(dia.url)

R> names(diamonds) <- c("Carat","Color","Clarity","Cert","Price")

R> diamonds[1:5,]
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Carat Color Clarity Cert Price

1 0.30 D VS2 GIA 1302

2 0.30 E VS1 GIA 1510

3 0.30 G VVS1 GIA 1510

4 0.30 G VS1 GIA 1260

5 0.31 D VS1 GIA 1641

To add up the total value of the diamonds present for the full data set
but separated according to Color, you can use tapply like this:

R> tapply(diamonds$Price,INDEX=diamonds$Color,FUN=sum)

D E F G H I

113598 242349 392485 287702 302866 207001

This sums the relevant elements of the target vector diamonds$Price. The
corresponding factor vector diamonds$Color is passed to INDEX, and the func-
tion of interest is specified with FUN=sum exactly as earlier.

Another particularly useful alternative is lapply, which can operate
member by member on a list. In Section 10.2.1, recall you wrote a for loop
to inspect matrices in the following list:

R> baz <- list(aa=c(3.4,1),bb=matrix(1:4,2,2),cc=matrix(c(T,T,F,T,F,F),3,2),

dd="string here",ee=matrix(c("red","green","blue","yellow")))

Using lapply, you can check for matrices in the list with a single short
line of code.

R> lapply(baz,FUN=is.matrix)

$aa

[1] FALSE

$bb

[1] TRUE

$cc

[1] TRUE

$dd

[1] FALSE

$ee

[1] TRUE

Note that no margin or index information is required for lapply; R
knows to apply FUN to each member of the specified list. The returned value
is itself a list. Another variant, sapply, returns the same results as lapply but in
an array form.
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R> sapply(baz,FUN=is.matrix)

aa bb cc dd ee

FALSE TRUE TRUE FALSE TRUE

Here, the result is provided as a vector. In this example, baz has a names

attribute that is copied to the corresponding entries of the returned object.
Other variants of apply include vapply, which is similar to sapply albeit

with some relatively subtle differences, and mapply, which can operate on
multiple vectors or lists at once. To learn more about mapply, see the ?mapply

help file; vapply and sapply are both covered in the ?lapply help file.
All of R’s apply functions allow for additional arguments to be passed to

FUN; most of them do this via an ellipsis. For example, take another look at
the matrix foo:

R> apply(foo,1,sort,decreasing=TRUE)

[,1] [,2] [,3] [,4]

[1,] 9 10 11 12

[2,] 5 6 7 8

[3,] 1 2 3 4

Here you’ve applied sort to each row of the matrix and supplied the
additional argument decreasing=TRUE to sort the rows from largest to smallest.

Some programmers prefer using the suite of apply functions wherever
possible to improve the compactness and neatness of their code. However,
note that these functions generally do not offer any substantial improvement
in terms of computational speed or efficiency over an explicit loop (this is
particularly the case with more recent versions of R). Plus, when you’re first
learning the R language, explicit loops can be easier to read and follow since
the operations are laid out clearly line by line.

Exercise 10.5

a. Continuing on from the most recent example in the text,
write an implicit loop that calculates the product of all
the column elements of the matrix returned by the call to
apply(foo,1,sort,decreasing=TRUE).

b. Convert the following for loop to an implicit loop that does
exactly the same thing:

matlist <- list(matrix(c(T,F,T,T),2,2),

matrix(c("a","c","b","z","p","q"),3,2),

matrix(1:8,2,4))

matlist

for(i in 1:length(matlist)){

matlist[[i]] <- t(matlist[[i]])
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}

matlist

c. In R, store the following 4 × 4 × 2 × 3 array as the object qux:

R> qux <- array(96:1,dim=c(4,4,2,3))

That is, it is a four-dimensional array comprised of three
blocks, with each block being an array made up of two layers of
4 × 4 matrices. Then, do the following:
i. Write an implicit loop that obtains the diagonal elements

of all second-layer matrices only to produce the following
matrix:

[,1] [,2] [,3]

[1,] 80 48 16

[2,] 75 43 11

[3,] 70 38 6

[4,] 65 33 1

ii. Write an implicit loop that will return the dimensions of each
of the three matrices formed by accessing the fourth column
of every matrix in qux, regardless of layer or block, wrapped
by another implicit loop that finds the row sums of that
returned structure, resulting simply in the following vector:

[1] 12 6

10.3 Other Control Flow Mechanisms

To round off this chapter, you’ll look at three more control flow mecha-
nisms: break, next, and repeat. These mechanisms are often used in conjunc-
tion with the loops and if statements you’ve seen already.

10.3.1 Declaring break or next
Normally a for loop will exit only when the loopindex exhausts the loopvector,
and a while loop will exit only when the loopcondition evaluates to FALSE. But
you can also preemptively terminate a loop by declaring break.

For example, say you have a number, foo, that you want to divide by each
element in a numeric vector bar.

R> foo <- 5

R> bar <- c(2,3,1.1,4,0,4.1,3)

Furthermore, let’s say you want to divide foo by bar element by element
but want to halt execution if one of the results evaluates to Inf (which will
result if dividing by zero). To do this, you can check each iteration with the
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is.finite function (Section 6.1.1), and you can issue a break command to
terminate the loop if it returns FALSE.

R> loop1.result <- rep(NA,length(bar))

R> loop1.result

[1] NA NA NA NA NA NA NA

R> for(i in 1:length(bar)){

+ temp <- foo/bar[i]

+ if(is.finite(temp)){

+ loop1.result[i] <- temp

+ } else {

+ break

+ }

+ }

R> loop1.result

[1] 2.500000 1.666667 4.545455 1.250000 NA NA NA

Here, the loop divides the numbers normally until it reaches the fifth
element of bar and divides by zero, resulting in Inf. Upon the resulting con-
ditional check, the loop ends immediately, leaving the remaining entries of
loop1.result as they were originally set—NAs.

Invoking break is a fairly drastic move. Often, a programmer will include
it only as a safety catch that’s meant to highlight or prevent unintended cal-
culations. For more routine operations, it’s best to use another method. For
instance, the example loop could easily be replicated as a while loop or the
vector-oriented ifelse function, rather than relying on a break.

Instead of breaking and completely ending a loop, you can use next to
simply advance to the next iteration and continue execution. Consider the
following, where using next avoids division by zero:

R> loop2.result <- rep(NA,length(bar))

R> loop2.result

[1] NA NA NA NA NA NA NA

R> for(i in 1:length(bar)){

+ if(bar[i]==0){

+ next

+ }

+ loop2.result[i] <- foo/bar[i]

+ }

R> loop2.result

[1] 2.500000 1.666667 4.545455 1.250000 NA 1.219512 1.666667

First, the loop checks to see whether the ith element of bar is zero. If it
is, next is declared, and as a result, R ignores any subsequent lines of code in
the braced area of the loop and returns to the top, automatically advancing
to the next value of the loopindex. In the current example, the loop skips the
fifth entry of bar (leaving the original NA value for that place) and continues
through the rest of bar.
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Note that if you use either break or next in a nested loop, the command
will apply only to the innermost loop. Only that inner loop will exit or
advance to the next iteration, and any outer loops will continue as normal.
For example, let’s return to the nested for loops from Section 10.2.1 that
you used to fill a matrix with multiples of two vectors. This time you’ll use
next in the inner loop to skip certain values.

R> loopvec1 <- 5:7

R> loopvec1

[1] 5 6 7

R> loopvec2 <- 9:6

R> loopvec2

[1] 9 8 7 6

R> baz <- matrix(NA,length(loopvec1),length(loopvec2))

R> baz

[,1] [,2] [,3] [,4]

[1,] NA NA NA NA

[2,] NA NA NA NA

[3,] NA NA NA NA

R> for(i in 1:length(loopvec1)){

+ for(j in 1:length(loopvec2)){

+ temp <- loopvec1[i]*loopvec2[j]

+ if(temp>=54){

+ next

+ }

+ baz[i,j] <- temp

+ }

+ }

R> baz

[,1] [,2] [,3] [,4]

[1,] 45 40 35 30

[2,] NA 48 42 36

[3,] NA NA 49 42

The inner loop skips to the next iteration if the product of the current
elements is greater than or equal to 54. Note the effect applies only to that
innermost loop—that is, only the j loopindex is preemptively incremented,
while i is left untouched, and the outer loop continues normally.

I’ve been using for loops to illustrate next and break, but they behave the
same way inside while loops.

10.3.2 The repeat Statement
Another option for repeating a set of operations is the repeat statement. The
general definition is simple.
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repeat{

do any code in here

}

Notice that a repeat statement doesn’t include any kind of loopindex or
loopcondition. To stop repeating the code inside the braces, you must use
a break declaration inside the braced area (usually within an if statement);
without it, the braced code will repeat without end, creating an infinite loop.
To avoid this, you must make sure the operations will at some point cause
the loop to reach a break.

To see repeat in action, you’ll use it to calculate the famous mathemati-
cal series the Fibonacci sequence. The Fibonacci sequence is an infinite series
of integers beginning with 1,1,2,3,5,8,13, . . . where each term in the series
is determined by the sum of the two previous terms. Formally, if Fn repre-
sents the nth Fibonacci number, then you have:

Fn+1 = Fn + Fn−1; n = 2,3,4,5, . . . ,

where
F1 = F2 = 1.

The following repeat statement computes and prints the Fibonacci
sequence, ending when it reaches a term greater than 150:

R> fib.a <- 1

R> fib.b <- 1

R> repeat{

+ temp <- fib.a+fib.b

+ fib.a <- fib.b

+ fib.b <- temp

+ cat(fib.b,", ",sep="")

+ if(fib.b>150){

+ cat("BREAK NOW...\n")

+ break

+ }

+ }

2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, BREAK NOW...

First, the sequence is initialized by storing the first two terms, both 1,
as fib.a and fib.b. Then, the repeat statement is entered, and it uses fib.a

and fib.b to compute the next term in the sequence, stored as temp. Next,
fib.a is overwritten to be fib.b, and fib.b is overwritten to be temp so that the
two variables move forward through the series. That is, fib.b becomes the
newly calculated Fibonacci number, and fib.a becomes the second-to-last
number in the series so far. Use of cat then prints the new value of fib.b to
the console. Finally, a check is made to see whether the latest term is greater
than 150, and if it is, break is declared.
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When you run the code, the braced area is repeated over and over
until fib.b reaches the first number that is greater than 150, namely,
89 + 144 = 233. Once that happens, the if statement condition evaluates
as TRUE, and R runs into break, terminating the loop.

The repeat statement is not as commonly used as the standard while or
for loops, but it’s useful if you don’t want to be bound by formally specifying
the loopindex and loopvector of a for loop or the loopcondition of a while loop.
However, with repeat, you have to take a bit more caution to prevent infinite
loops.

Exercise 10.6

a. Using the same objects from Section 10.3.1,

foo <- 5

bar <- c(2,3,1.1,4,0,4.1,3)

do the following:
i. Write a while loop—without using break or next—that will

reach exactly the same result as the break example in Sec-
tion 10.3.1. That is, produce the same vector as loop2.result

in the text.
ii. Obtain the same result as loop3.result, the example concern-

ing next, using an ifelse function instead of a loop.

b. To demonstrate while loops in Section 10.2.2, you used the vector

mynumbers <- c(4,5,1,2,6,2,4,6,6,2)

to progressively fill mylist with identity matrices whose dimen-
sions matched the values in mynumbers. The loop was instructed to
stop when it reached the end of the numeric vector or a number
that was greater than 5.
i. Write a for loop using a break declaration that does the same

thing.
ii. Write a repeat statement that does the same thing.

c. Suppose you have two lists, matlist1 and matlist2, both filled
with numeric matrices as their members. Assume that all mem-
bers have finite, nonmissing values, but do not assume that the
dimensions of the matrices are the same throughout. Write a
nested pair of for loops that aim to create a result list, reslist,
of all possible matrix products (refer to Section 3.3.5) of the
members of the two lists according to the following guidelines:
– The matlist1 object should be indexed/searched in the outer

loop, and the matlist2 object should be indexed/searched in
the inner loop.
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– You’re interested only in the possible matrix products of the
members of matlist1 with the members of matlist2 in that
order.

– If a particular multiple isn’t possible (that is, if the ncol of a
member of matlist1 doesn’t match the nrow of a member of
matlist2), then you should skip that multiplication, store the
string "not possible" at the relevant position in reslist, and
proceed directly to the next matrix multiplication.

– You can define a counter that is incremented at each com-
parison (inside the inner loop) to keep track of the current
position of reslist.

Note, therefore, that the length of reslist will be equal to
length(matlist1)*length(matlist2). Now, confirm the following
results:
i. If you have

matlist1 <- list(matrix(1:4,2,2),matrix(1:4),matrix(1:8,4,2))

matlist2 <- matlist1

then all members of reslist should be "not possible" apart
from members [[1]] and [[7]].

ii. If you have

matlist1 <- list(matrix(1:4,2,2),matrix(2:5,2,2),

matrix(1:16,4,2))

matlist2 <- list(matrix(1:8,2,4),matrix(10:7,2,2),

matrix(9:2,4,2))

then only the "not possible" members of reslist should be
[[3]], [[6]], and [[9]].

Important Code in This Chapter

Function/operator Brief description First occurrence

if( ){ } Conditional check Section 10.1.1, p. 180
if( ){ } else { } Check and alternative Section 10.1.2, p. 183
ifelse Element-wise if-else check Section 10.1.3, p. 185
switch Multiple if choices Section 10.1.5, p. 190
for( ){ } Iterative loop Section 10.2.1, p. 194
while( ){ } Conditional loop Section 10.2.2, p. 200
apply Implicit loop by margin Section 10.2.3, p. 205
tapply Implicit loop by factor Section 10.2.3, p. 207
lapply Implicit loop by member Section 10.2.3, p. 207
sapply As lapply, array returned Section 10.2.3, p. 207
break Exit explicit loop Section 10.3.1, p. 210
next Skip to next loop iteration Section 10.3.1, p. 210
repeat{ } Repeat code until break Section 10.3.2, p. 212
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11
WRITING FUNCTIONS

Defining a function allows you to reuse a
chunk of code without endlessly copying

and pasting. It also allows other users to use
your functions to carry out the same compu-

tations on their own data or objects. In this chapter,
you’ll learn about writing your own R functions. You’ll
learn how to define and use arguments, how to return
output from a function, and how to specialize your
functions in other ways.

11.1 The function Command

To define a function, use the function command and assign the results to
an object name. Once you’ve done this, you can call the function using
that object name just like any other built-in or contributed function in the
workspace. This section will walk you through the basics of function creation
and discuss some associated issues, such as returning objects and specifying
arguments.



11.1.1 Function Creation
A function definition always follows this standard format:

functionname <- function(arg1,arg2,arg3,...){

do any code in here when called

return(returnobject)

}

The functionname placeholder can be any valid R object name, which is
what you’ll ultimately use to call the function. Assign to this functionname

a call to function, followed by parentheses with any arguments you want
the function to have. The pseudocode includes three argument place-
holders plus an ellipsis. Of course, the number of arguments, their tags,
and whether to include an ellipsis all depend on the particular function
you’re defining. If the function does not require any arguments, simply
include empty parentheses: (). If you do include arguments in this defini-
tion, note that they are not objects in the workspace and they do not have
any type or class attributes associated with them—they are merely a declara-
tion of argument names that will be required by functionname.

When the function is called, it runs the code in the braced area (also
called the function body or body code). It can include if statements, loops,
and even other function calls. When encountering an internal function call
during execution, R follows the search rules discussed in Chapter 9. In the
braced area, you can use arg1, arg2, and arg3, and they are treated as objects
in the function’s lexical environment.

Depending on how those declared arguments are used in the body
code, each argument may require a certain data type and object structure.
If you’re writing functions that you intend for others to use, it’s important to
have sound documentation to say what the function expects.

Often, the function body will include one or more calls to the return

command. When R encounters a return statement during execution, the
function exits, returning control to the user at the command prompt. This
mechanism is what allows you to pass results from operations in the function
back to the user. This output is denoted in the pseudocode by returnobject,
which is typically assigned an object created or calculated earlier in the func-
tion body. If there is no return statement, the function will simply return the
object created by the last executed expression (I’ll discuss this feature more
in Section 11.1.2).

It’s time for an example. Let’s take the Fibonacci sequence generator
from Section 10.3.2 and turn it into a function in the editor.

myfib <- function(){

fib.a <- 1

fib.b <- 1

cat(fib.a,", ",fib.b,", ",sep="")

repeat{

temp <- fib.a+fib.b
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fib.a <- fib.b

fib.b <- temp

cat(fib.b,", ",sep="")

if(fib.b>150){

cat("BREAK NOW...")

break

}

}

}

I’ve named the function myfib, and it doesn’t use or require any argu-
ments. The body code is identical to the example in Section 10.3.2, except
I’ve added the third line, cat(fib.a,", ",fib.b,", ",sep=""), to ensure the first
two terms, 1 and 1, are also printed to the screen.

Before you can call myfib from the console, you have to send the func-
tion definition there. Highlight the code in the editor and press CTRL-R or

-RETURN.

R> myfib <- function(){

+ fib.a <- 1

+ fib.b <- 1

+ cat(fib.a,", ",fib.b,", ",sep="")

+ repeat{

+ temp <- fib.a+fib.b

+ fib.a <- fib.b

+ fib.b <- temp

+ cat(fib.b,", ",sep="")

+ if(fib.b>150){

+ cat("BREAK NOW...")

+ break

+ }

+ }

+ }

This imports the function into the workspace (if you enter ls() at the
command prompt, "myfib" will now appear in the list of present objects).
This step is required anytime you create or modify a function and want to
use it from the command prompt.

Now you can call the function from the console.

R> myfib()

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, BREAK NOW...

It computes and prints the Fibonacci sequence up to 250, just as
instructed.
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Adding Arguments

Rather than printing a fixed set of terms, let’s add an argument to control
how many Fibonacci numbers are printed. Consider the following new func-
tion, myfib2, with this modification:

myfib2 <- function(thresh){

fib.a <- 1

fib.b <- 1

cat(fib.a,", ",fib.b,", ",sep="")

repeat{

temp <- fib.a+fib.b

fib.a <- fib.b

fib.b <- temp

cat(fib.b,", ",sep="")

if(fib.b>thresh){

cat("BREAK NOW...")

break

}

}

}

This version now takes a single argument, thresh. In the body code,
thresh acts as a threshold determining when to end the repeat procedure,
halt printing, and complete the function—once a value of fib.b that is
greater than thresh is calculated, the repeat statement will exit after encoun-
tering the call to break. Therefore, the output printed to the console will be
the Fibonacci sequence up to and including the first fib.b value bigger than
thresh. This means that thresh must be supplied as a single numeric value—
supplying a character string, for example, would make no sense.

After importing the definition of myfib2 into the console, note the same
results as given by the original myfib when you set thresh=150.

R> myfib2(thresh=150)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, BREAK NOW...

But now you can print the sequence to any limit you want (this time
using positional matching to specify the argument):

R> myfib2(1000000)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,

4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811,

514229, 832040, 1346269, BREAK NOW...

Returning Results

If you want to use the results of a function in future operations (rather than
just printing output to the console), you need to return content to the user.
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Continuing with the current example, here’s a Fibonacci function that stores
the sequence in a vector and returns it:

myfib3 <- function(thresh){

fibseq <- c(1,1)

counter <- 2

repeat{

fibseq <- c(fibseq,fibseq[counter-1]+fibseq[counter])

counter <- counter+1

if(fibseq[counter]>thresh){

break

}

}

return(fibseq)

}

First you create the vector fibseq and assign it the first two terms of
the sequence. This vector will ultimately become the returnobject. You also
create a counter initialized to 2 to keep track of the current position in fibseq.
Then the function enters a repeat statement, which overwrites fibseq with
c(fibseq,fibseq[counter-1]+fibseq[counter]). That expression constructs a new
fibseq by appending the sum of the most recent two terms to the contents of
what is already stored in fibseq. For example, with counter starting at 2, the
first run of this line will sum fibseq[1] and fibseq[2], appending the result as
a third entry onto the original fibseq.

Next, counter is incremented, and the condition is checked. If the most
recent value of fibseq[counter] is not greater than thresh, the loop repeats. If
it is greater, the loop breaks, and you reach the final line of myfib3. Calling
return ends the function and passes out the specified returnobject (in this
case, the final contents of fibseq).

After importing myfib3, consider the following code:

R> myfib3(150)

[1] 1 1 2 3 5 8 13 21 34 55 89 144 233

R> foo <- myfib3(10000)

R> foo

[1] 1 1 2 3 5 8 13 21 34 55 89 144

[13] 233 377 610 987 1597 2584 4181 6765 10946

R> bar <- foo[1:5]

R> bar

[1] 1 1 2 3 5

Here, the first line calls myfib3 with thresh assigned 150. The output is still
printed to the screen, but this isn’t the result of the cat command as it was
earlier; it is the returnobject. You can assign this returnobject to a variable,
such as foo, and foo is now just another R object in the global environment
that you can manipulate. For example, you use it to create bar with a simple
vector subset. This would not have been possible with either myfib or myfib2.
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11.1.2 Using return
If there’s no return statement inside a function, the function will end
when the last line in the body code has been run, at which point it will
return the most recently assigned or created object in the function. If noth-
ing is created, such as in myfib and myfib2 from earlier, the function returns
NULL. To demonstrate this point, enter the following two dummy functions in
the editor:

dummy1 <- function(){

aa <- 2.5

bb <- "string me along"

cc <- "string 'em up"

dd <- 4:8

}

dummy2 <- function(){

aa <- 2.5

bb <- "string me along"

cc <- "string 'em up"

dd <- 4:8

return(dd)

}

The first function, dummy1, simply assigns four different objects in its
lexical environment (not the global environment) and doesn’t explicitly
return anything. On the other hand, dummy2 creates the same four objects
and explicitly returns the last one, dd. If you import and run the two func-
tions, both provide the same return object.

R> foo <- dummy1()

R> foo

[1] 4 5 6 7 8

R> bar <- dummy2()

R> bar

[1] 4 5 6 7 8

A function will end as soon as it evaluates a return command, without
executing any remaining code in the function body. To emphasize this, con-
sider one more version of the dummy function:

dummy3 <- function(){

aa <- 2.5

bb <- "string me along"

return(aa)

cc <- "string 'em up"

dd <- 4:8

220 Chapter 11



return(bb)

}

Here, dummy3 has two calls to return: one in the middle and one at the
end. But when you import and execute the function, it returns only one
value.

R> baz <- dummy3()

R> baz

[1] 2.5

Executing dummy3 returns only the object aa because only the first
instance of return is executed and the function exits immediately at that
point. In the current definition of dummy3, the last three lines (the assign-
ment of cc and dd and the return of bb) will never be executed.

Using return adds another function call to your code, so technically, it
introduces a little extra computational expense. Because of this, some argue
that return statements should be avoided unless absolutely necessary. But
the additional computational cost of the call to return is small enough to be
negligible for most purposes. Plus, return statements can make code more
readable, making it easier to see where the author of a function intends it
to complete and precisely what is intended to be supplied as output. I’ll use
return throughout the remainder of this work.

Exercise 11.1

a. Write another Fibonacci sequence function, naming it myfib4.
This function should provide an option to perform either the
operations available in myfib2, where the sequence is simply
printed to the console, or the operations in myfib3, where a vec-
tor of the sequence is formally returned. Your function should
take two arguments: the first, thresh, should define the limit of
the sequence (just as in myfib2 or myfib3); the second, printme,
should be a logical value. If TRUE, then myfib4 should just print;
if FALSE, then myfib4 should return a vector. Confirm the correct
results arise from the following calls:
– myfib4(thresh=150,printme=TRUE)

– myfib4(1000000,T)

– myfib4(150,FALSE)

– myfib4(1000000,printme=F)

b. In Exercise 10.4 on page 203, you were tasked with writing a while

loop to perform integer factorial calculations.
i. Using your factorial while loop (or writing one if you didn’t

do so earlier), write your own R function, myfac, to compute
the factorial of an integer argument int (you may assume int
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will always be supplied as a non-negative integer). Perform
a quick test of the function by computing 5 factorial, which
is 120; 12 factorial, which is 479,001,600; and 0 factorial,
which is 1.

ii. Write another version of your factorial function, naming it
myfac2. This time, you may still assume int will be supplied
as an integer but not that it will be non-negative. If negative,
the function should return NaN. Test myfac2 on the same three
values as previously, but also try using int=-6.

11.2 Arguments

Arguments are an essential part of most R functions. In this section, you’ll
consider how R evaluates arguments. You’ll also see how to write functions
that have default argument values, how to make functions handle missing
argument values, and how to pass extra arguments into an internal function
call with ellipses.

11.2.1 Lazy Evaluation
An important concept related to handling arguments in many high-level
programming languages is lazy evaluation. Generally, this refers to the fact
that expressions are evaluated only when they are needed. This applies to
arguments in the sense that they are accessed and used only at the point
they appear in the function body.

Let’s see exactly how R functions recognize and use arguments dur-
ing execution. As a working example to be used throughout this section,
you’ll write a function to search through a specified list for matrix objects
and attempt to post-multiply each with another matrix specified as a second
argument (refer back to Section 3.3.5 for details on matrix multiplication).
The function will store and return the result in a new list. If no matrices are
in the supplied list or if no appropriate matrices (given the dimensions of
the multiplying matrix) are present, the function should return a character
string informing the user of these facts. You can assume that if there are
matrices in the specified list, they will be numeric. Consider the following
function, which I’ll call multiples1:

multiples1 <- function(x,mat,str1,str2){

matrix.flags <- sapply(x,FUN=is.matrix)

if(!any(matrix.flags)){

return(str1)

}

indexes <- which(matrix.flags)

counter <- 0
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result <- list()

for(i in indexes){

temp <- x[[i]]

if(ncol(temp)==nrow(mat)){

counter <- counter+1

result[[counter]] <- temp%*%mat

}

}

if(counter==0){

return(str2)

} else {

return(result)

}

}

This function takes four arguments, with no default values assigned.
The target list to search is intended to be supplied to x; the post-multiplying
matrix is supplied to mat; and two other arguments, str1 and str2, take char-
acter strings to return if x has no suitable members.

Inside the body code, a vector called matrix.flags is created with the
sapply implicit looping function. This applies the function is.matrix to the
list argument x. The result is a logical vector of equal length as x, with TRUE

elements where the corresponding member of x is in fact a matrix. If there
are no matrices in x, the function hits a return statement, which exits the
function and outputs the argument str1.

If the function did not exit at that point, this means there are indeed
matrices in x. The next step is to retrieve the matrix member indexes by
applying which to matrix.flags. A counter is initialized to 0 to keep track of
how many successful matrix multiplications are carried out, and an empty
list (result) is created to store any results.

Next, you enter a for loop. For each member of indexes, the loop stores
the matrix member at that position as temp and checks to see whether it’s
possible to perform post-multiplication of temp by the argument mat (to per-
form the operation, ncol(temp) must equal nrow(mat)). If the matrices are
compatible, counter is incremented, and this position of result is filled with
the relevant calculation. If FALSE, nothing is done. The indexer, i, then takes
on the next value of indexes and repeats until completion.

The final procedure in multiples1 checks whether the for loop actu-
ally found any compatible matrix products. If no compatibility existed, the
braced if statement code inside the for loop would never have been exe-
cuted, and the counter would remain set to zero. So, if counter is still equal
to zero upon completion of the loop, the function simply returns the str2

argument. Otherwise, if compatible matrices were found, appropriate results
will have been computed, and multiples1 returns the result list, which would
have at least one member.
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It’s time to import and then test the function. You’ll use the following
three list objects:

R> foo <- list(matrix(1:4,2,2),"not a matrix",

"definitely not a matrix",matrix(1:8,2,4),matrix(1:8,4,2))

R> bar <- list(1:4,"not a matrix",c(F,T,T,T),"??")

R> baz <- list(1:4,"not a matrix",c(F,T,T,T),"??",matrix(1:8,2,4))

You’ll set the argument mat to the 2 × 2 identity matrix (post-multiplying
any appropriate matrix by this will simply return the original matrix), and
you’ll pass in appropriate string messages for str1 and str2. Here’s how the
function works on foo:

R> multiples1(x=foo,mat=diag(2),str1="no matrices in 'x'",

str2="matrices in 'x' but none of appropriate dimensions given

'mat'")

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

The function has returned result with the two compatible matrices
of foo (members [[1]] and [[5]]). Now let’s try it on bar using the same
arguments.

R> multiples1(x=bar,mat=diag(2),str1="no matrices in 'x'",

str2="matrices in 'x' but none of appropriate dimensions given

'mat'")

[1] "no matrices in 'x'"

This time, the value of str1 has been returned. The initial check identi-
fied that there are no matrices in the list supplied to x, so the function has
exited before the for loop. Finally, let’s try baz.

R> multiples1(x=baz,mat=diag(2),str1="no matrices in 'x'",

str2="matrices in 'x' but none of appropriate dimensions given

'mat'")

[1] "matrices in 'x' but none of appropriate dimensions given 'mat'"
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Here the value of str2 was returned. Though there is a matrix in baz and
the for loop in the body code of multiples1 has been executed, the matrix is
not compatible for post-multiplication by mat.

Notice that the string arguments str1 and str2 are used only when the
argument x does not contain a matrix with the appropriate dimensions.
When you applied multiples1 to x=foo, for example, there was no need to
use str1 or str2. R evaluates the defined expressions lazily, dictating that
argument values are sought only at the moment they are required during
execution. In this function, str1 and str2 are required only when the input
list doesn’t have suitable matrices, so you could lazily ignore providing values
for these arguments when x=foo.

R> multiples1(x=foo,mat=diag(2))

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

This returns the same results as before with no problem whatsoever.
Attempting this with bar, on the other hand, doesn’t work.

R> multiples1(x=bar,mat=diag(2))

Error in multiples1(x = bar, mat = diag(2)) :

argument "str1" is missing, with no default

Here we are quite rightly chastised by R because it requires the value for
str1. It informs us that the value is missing and there is no default.

11.2.2 Setting Defaults
The previous example shows one case where it’s useful to set default values
for certain arguments. Default argument values are also sensible in many
other situations, such as when the function has a large number of arguments
or when arguments have natural values that are used more often than not.
Let’s write a new version of the multiples1 function from Section 11.2.1,
multiples2, which now includes default values for str1 and str2.

multiples2 <- function(x,mat,str1="no valid matrices",str2=str1){

matrix.flags <- sapply(x,FUN=is.matrix)

if(!any(matrix.flags)){
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return(str1)

}

indexes <- which(matrix.flags)

counter <- 0

result <- list()

for(i in indexes){

temp <- x[[i]]

if(ncol(temp)==nrow(mat)){

counter <- counter+1

result[[counter]] <- temp%*%mat

}

}

if(counter==0){

return(str2)

} else {

return(result)

}

}

Here, you have given str1 a default value of "no valid matrices" by assign-
ing the string value in the formal definition of the arguments. You’ve also
set a default for str2 by assigning str1 to it. If you import and execute this
function again on the three lists, you no longer need to explicitly provide
values for those arguments.

R> multiples2(foo,mat=diag(2))

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

R> multiples2(bar,mat=diag(2))

[1] "no valid matrices"

R> multiples2(baz,mat=diag(2))

[1] "no valid matrices"

You can now call the function, whatever the outcome, without being
required to specify every argument in full. If you don’t want to use the
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default arguments in a specific call, you can still specify different values for
those arguments when calling the function, and those values will overwrite
the defaults.

11.2.3 Checking for Missing Arguments
The missing function checks the arguments of a function to see if all
required arguments have been supplied. It takes an argument tag and
returns a single logical value of TRUE if the specified argument isn’t found.
You can use missing to avoid the error you saw in an earlier call to multiples1,
when str1 was required but not supplied.

In some situations, the missing function can be particularly useful in the
body code. Consider another modification to the example function:

multiples3 <- function(x,mat,str1,str2){

matrix.flags <- sapply(x,FUN=is.matrix)

if(!any(matrix.flags)){

if(missing(str1)){

return("'str1' was missing, so this is the message")

} else {

return(str1)

}

}

indexes <- which(matrix.flags)

counter <- 0

result <- list()

for(i in indexes){

temp <- x[[i]]

if(ncol(temp)==nrow(mat)){

counter <- counter+1

result[[counter]] <- temp%*%mat

}

}

if(counter==0){

if(missing(str2)){

return("'str2' was missing, so this is the message")

} else {

return(str2)

}

} else {

return(result)

}

}
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The only differences between this version and multiples1 are in the
first and last if statements. The first if statement checks whether there are
no matrices in x, in which case it returns a string message. In multiples1,
that message was always str1, but now you use another if statement with
missing(str1) to see whether the str1 argument actually has a value first.
If not, the function returns another character string saying that str1 was
missing. A similar alternative is defined for str2. Here it is once more
importing the function and using foo, bar, and baz:

R> multiples3(foo,diag(2))

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

R> multiples3(bar,diag(2))

[1] "'str1' was missing, so this is the message"

R> multiples3(baz,diag(2))

[1] "'str2' was missing, so this is the message"

Using missing this way permits arguments to be left unsupplied in a given
function call. It is primarily used when it’s difficult to choose a default value
for a certain argument, yet the function still needs to handle cases when that
argument isn’t provided. In the current example, it makes more sense to
define defaults for str1 and str2, as you did for multiples2, and avoid the
extra code required to implement missing.

11.2.4 Dealing with Ellipses
In Section 9.2.5, I introduced the ellipsis, also called dot-dot-dot notation.
The ellipsis allows you to pass in extra arguments without having to first
define them in the argument list, and these arguments can then be passed
to another function call within the code body. When included in a function
definition, the ellipsis is often (but not always) placed in the last position
because it represents a variable number of arguments.

Building on the myfib3 function from Section 11.1.1, let’s use the ellipsis
to write a function that can plot the specified Fibonacci numbers.

myfibplot <- function(thresh,plotit=TRUE,...){

fibseq <- c(1,1)

counter <- 2
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repeat{

fibseq <- c(fibseq,fibseq[counter-1]+fibseq[counter])

counter <- counter+1

if(fibseq[counter]>thresh){

break

}

}

if(plotit){

plot(1:length(fibseq),fibseq,...)

} else {

return(fibseq)

}

}

In this function, an if statement checks to see whether the plotit argu-
ment is TRUE (which is the default value). If so, then you call plot, passing in
1:length(fibseq) for the x-axis coordinates and the Fibonacci numbers them-
selves for the y-axis. After these coordinates, you also pass the ellipsis directly
into plot. In this case, the ellipsis represents any additional arguments a user
might pass in to control the execution of plot.

Importing myfibplot and executing the following line, the plot in Fig-
ure 11-1 pops up in a graphics device.

R> myfibplot(150)

Here you used positional matching to assign 150 to thresh, leaving the
default value for the plotit argument. The ellipsis is empty in this call.

Figure 11-1: The default plot produced by a call to myfibplot,
with thresh=150
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Since you didn’t specify otherwise, R has simply followed the default
behavior of plot. You can spruce things up by specifying more plotting
options. The following line produces the plot in Figure 11-2:

R> myfibplot(150,type="b",pch=4,lty=2,main="Terms of the Fibonacci sequence",

ylab="Fibonacci number",xlab="Term (n)")

Figure 11-2: A plot produced by a call to myfibplot with
graphical parameters passed in using the ellipsis

Here the ellipsis allows you to pass arguments to plot through the call to
myfibplot, even though the particular graphical parameters are not explicitly
defined arguments of myfibplot.

Ellipses can be convenient, but they require care. The ambiguous ...

can represent any number of mysterious arguments. Good function docu-
mentation is key to indicate the appropriate usage.

If you want to unpack the arguments passed in through an ellipsis, you
can use the list function to convert those arguments into a list. Here’s an
example:

unpackme <- function(...){

x <- list(...)

cat("Here is ... in its entirety as a list:\n")

print(x)

cat("\nThe names of ... are:",names(x),"\n\n")

cat("\nThe classes of ... are:",sapply(x,class))

}
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This dummy function simply takes an ellipsis and converts it to a list with
x <- list(...). This subsequently allows the object x to be treated the same
way as any other list. In this case, you can summarize the object by providing
its names and class attributes. Here’s a sample run:

R> unpackme(aa=matrix(1:4,2,2),bb=TRUE,cc=c("two","strings"),

dd=factor(c(1,1,2,1)))

Here is ... in its entirety as a list:

$aa

[,1] [,2]

[1,] 1 3

[2,] 2 4

$bb

[1] TRUE

$cc

[1] "two" "strings"

$dd

[1] 1 1 2 1

Levels: 1 2

The names of ... are: aa bb cc dd

The classes of ... are: matrix logical character factor

Four tagged arguments, aa, bb, cc, and dd, are provided as the contents
of the ellipsis, and they are explicitly identified within unpackme by using the
simple list(...) operation. This construction can be useful for identifying
or extracting specific arguments supplied through ... in a given call.

Exercise 11.2

a. Accruing annual compound interest is a common financial
benefit for investors. Given a principal investment amount P,
an interest rate per annum i (expressed as a percentage), and a
frequency of interest paid per year t, the final amount F after y

years is given as follows:

F = P

(

1 +
i

100t

) t y
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Write a function that can compute F as per the following
notes:
– Arguments must be present for P, i, t, and y. The argument

for t should have a default value of 12.
– Another argument giving a logical value that determines

whether to plot the amount F at each integer time should be
included. For example, if plotit=TRUE (the default) and y is 5
years, the plot should show the amount F at y = 1,2,3,4,5.

– If this function is plotted, the plot should always be a step-
plot, so plot should always be called with type="s".

– If plotit=FALSE, the final amount F should be returned as a
numeric vector corresponding to the same integer times, as
shown earlier.

– An ellipsis should also be included to control other details of
plotting, if it takes place.

Now, using your function, do the following:
i. Work out the final amount after a 10-year investment of

a principal of $5000, at an interest rate of 4.4 percent per
annum compounded monthly.

ii. Re-create the following step-plot, which shows the result
of $100 invested at 22.9 percent per annum, compounded
monthly, for 20 years:

iii. Perform another calculation based on the same parameters
as in (ii), but this time, assume the interest is compounded
annually. Return and store the results as a numeric vector.
Then, use lines to add a second step-line, corresponding to
this annually accrued amount, to the plot created previously.
Use a different color or line type and make use of the legend

function so the two lines can be differentiated.

b. A quadratic equation in the variable x is often expressed in the
following form:

k1x2
+ k2x + k3 = 0
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Here, k1, k2, and k3 are constants. Given values for these
constants, you can attempt to find up to two real roots—values
of x that satisfy the equation. Write a function that takes k1, k2,
and k3 as arguments and finds and returns any solutions (as a
numeric vector) in such a situation. This is achieved as follows:
– Evaluate k2

2 − 4k1k3. If this is negative, there are no solu-
tions, and an appropriate message should be printed to the
console.

– If k2
2 − 4k1k3 is zero, then there is one solution, computed by

−k2/2k1.
– If k2

2 − 4k1k3 is positive, then there are two solutions, given by
(−k2 − (k2

2 − 4k1k3)0.5)/2k1 and (−k2 + (k2
2 − 4k1k3)0.5)/2k1.

– No default values are needed for the three arguments, but
the function should check to see whether any are missing.
If so, an appropriate character string message should be
returned to the user, informing the user that the calcula-
tions are not possible.

Now, test your function.
i. Confirm the following:

* 2x2 − x − 5 has roots 1.850781 and −1.350781.
* x2

+ x + 1 has no real roots.
ii. Attempt to find solutions to the following quadratic

equations:
* 1.3x2 − 8x − 3.13
* 2.25x2 − 3x + 1
* 1.4x2 − 2.2x − 5.1
* −5x2

+ 10.11x − 9.9
iii. Test your programmed response in the function if one of the

arguments is missing.

11.3 Specialized Functions

In this section, you’ll look at three kinds of specialized user-defined R func-
tions. First, you’ll look at helper functions, which are designed to be called
multiple times by another function (and they can even be defined inside the
body of a parent function). Next, you’ll look at disposable functions, which
can be directly defined as an argument to another function call. Finally,
you’ll look at recursive functions, which call themselves.

11.3.1 Helper Functions
It is common for R functions to call other functions from within their body
code. A helper function is a general term used to describe functions written
and used specifically to facilitate the computations carried out by another
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function. They’re a good way to improve the readability of complicated
functions.

A helper function can be either defined internally (within another func-
tion definition) or externally (within the global environment). In this sec-
tion, you’ll see an example of each.

Externally Defined

Building on the multiples2 function from Section 11.2.2, here’s a new version
that splits the functionality over two separate functions, one of which is an
externally defined helper function:

multiples_helper_ext <- function(x,matrix.flags,mat){

indexes <- which(matrix.flags)

counter <- 0

result <- list()

for(i in indexes){

temp <- x[[i]]

if(ncol(temp)==nrow(mat)){

counter <- counter+1

result[[counter]] <- temp%*%mat

}

}

return(list(result,counter))

}

multiples4 <- function(x,mat,str1="no valid matrices",str2=str1){

matrix.flags <- sapply(x,FUN=is.matrix)

if(!any(matrix.flags)){

return(str1)

}

helper.call <- multiples_helper_ext(x,matrix.flags,mat)

result <- helper.call[[1]]

counter <- helper.call[[2]]

if(counter==0){

return(str2)

} else {

return(result)

}

}

If you import and execute this code on the sample lists from earlier,
it behaves the same way as the previous version. All you’ve done here is
moved the matrix-checking loop to an external function. The multiples4

function now calls a helper function named multiples_helper_ext. Once the
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code in multiples4 makes sure that there are in fact matrices in the list x to
be checked, it calls multiples_helper_ext to execute the required loop. This
helper function is defined externally, meaning that it exists in the global
environment for any other function to call, making it easier to reuse.

Internally Defined

If the helper function is intended to be used for only one particular func-
tion, it makes more sense to define the helper function internally, within
the lexical environment of the function that calls it. The fifth version of the
matrix multiplication function does just that, shifting the definition to
within the body code.

multiples5 <- function(x,mat,str1="no valid matrices",str2=str1){

matrix.flags <- sapply(x,FUN=is.matrix)

if(!any(matrix.flags)){

return(str1)

}

multiples_helper_int <- function(x,matrix.flags,mat){

indexes <- which(matrix.flags)

counter <- 0

result <- list()

for(i in indexes){

temp <- x[[i]]

if(ncol(temp)==nrow(mat)){

counter <- counter+1

result[[counter]] <- temp%*%mat

}

}

return(list(result,counter))

}

helper.call <- multiples_helper_int(x,matrix.flags,mat)

result <- helper.call[[1]]

counter <- helper.call[[2]]

if(counter==0){

return(str2)

} else {

return(result)

}

}

Now the helper function multiples_helper_int is defined within
multiples5. That means it’s visible only within the lexical environment as
opposed to residing in the global environment like multiples_helper_ext. It
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makes sense to internally define a helper function when (a) it’s used only by
a single parent function, and (b) it’s called multiple times within the parent
function. (Of course, multiples5 satisfies only (a), and it’s provided here just
for the sake of illustration.)

11.3.2 Disposable Functions
Often, you may need a function that performs a simple, one-line task. For
example, when you use apply, you’ll typically just want to pass in a short,
simple function as an argument. That’s where disposable (or anonymous)
functions come in—they allow you to define a function intended for use
in a single instance without explicitly creating a new object in your global
environment.

Say you have a numeric matrix whose columns you want to repeat twice
and then sort.

R> foo <- matrix(c(2,3,3,4,2,4,7,3,3,6,7,2),3,4)

R> foo

[,1] [,2] [,3] [,4]

[1,] 2 4 7 6

[2,] 3 2 3 7

[3,] 3 4 3 2

This is a perfect task for apply, which can apply a function to each col-
umn of the matrix. This function simply has to take in a vector, repeat it,
and sort the result. Rather than define that short function separately, you
can define a disposable function right in the argument of apply using the
function command.

R> apply(foo,MARGIN=2,FUN=function(x){sort(rep(x,2))})

[,1] [,2] [,3] [,4]

[1,] 2 2 3 2

[2,] 2 2 3 2

[3,] 3 4 3 6

[4,] 3 4 3 6

[5,] 3 4 7 7

[6,] 3 4 7 7

The function is defined in the standard format directly in the call to
apply. This function is defined, called, and then immediately forgotten once
apply is complete. It is disposable in the sense that it exists only for the one
instance where it is actually used.

Using the function command this way is a shortcut more than anything
else; plus, it avoids the unnecessary creation and storage of a function object
in the global environment.
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11.3.3 Recursive Functions
Recursion is when a function calls itself. This technique isn’t commonly used
in statistical analyses, but it pays to be aware of it. This section will briefly
illustrate what it means for a function to call itself.

Suppose you want to write a function that takes a single positive inte-
ger argument n and returns the corresponding nth term of the Fibonacci
sequence (where n = 1 and n = 2 correspond to the initial two terms 1 and 1,
respectively). Earlier you built up the Fibonacci sequence in an iterative fash-
ion by using a loop. In a recursive function, instead of using a loop to repeat
an operation, the function calls itself multiple times. Consider the following:

myfibrec <- function(n){

if(n==1||n==2){

return(1)

} else {

return(myfibrec(n-1)+myfibrec(n-2))

}

}

The recursive myfibrec checks a single if statement that defines a stopping
condition. If either 1 or 2 is supplied to the function (requesting the first or
second Fibonacci number), then myfibrec directly returns 1. Otherwise, the
function returns the sum of myfibrec(n-1) and myfibrec(n-2). That means if
you call myfibrec with n greater than 2, the function generates two more calls
to myfibrec, using n-1 and n-2. The recursion continues until it reaches a call
for the 1st or 2nd term, triggering the stopping condition, if(n==1||n==2),
which simply returns 1. Here’s a sample call that retrieves the fifth Fibonacci
number:

R> myfibrec(5)

[1] 5

Figure 11-3 shows the structure of this recursive call.
Note that an accessible stopping rule is critical to any recursive function.

Without one, recursion will continue indefinitely. For example, the current
definition of myfibrec works as long as the user supplies a positive integer for
the argument n. But if n is negative, the stopping rule condition will never
be satisfied, and the function will recur indefinitely (though R has some
automated safeguards to help prevent this and should just return an error
message rather than getting stuck in an infinite loop).

Recursion is a powerful approach, especially when you don’t know
ahead of time how many times a function needs be called to complete a
task. For many sort and search algorithms, recursion provides the speedi-
est and most efficient solution. But in simpler cases, such as the Fibonacci
example here, the recursive approach often requires more computational
expense than an iterative looping approach. For beginners, I recommended
sticking with explicit loops unless recursion is strictly required.
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myfibrec(5)

����

myfibrec(4)

����

+ myfibrec(3)

����

myfibrec(3)

����

+ myfibrec(2) myfibrec(2) + myfibrec(1)

myfibrec(2) + myfibrec(1)

Figure 11-3: A visualization of the recursive calls made to myfibrec with n=5

Exercise 11.3

a. Given a list whose members are character string vectors of vary-
ing lengths, use a disposable function with lapply to paste an
exclamation mark onto the end of each element of each mem-
ber, with an empty string as the separation character (note that
the default behavior of paste when applied to character vectors
is to perform the concatenation on each element). Execute your
line of code on the list given by the following:

foo <- list("a",c("b","c","d","e"),"f",c("g","h","i"))

b. Write a recursive version of a function implementing the
non-negative integer factorial operator (see Exercise 10.4 on
page 203 for details of the factorial operator). The stopping rule
should return the value 1 if the supplied integer is 0. Confirm
that your function produces the same results as earlier.
i. 5 factorial is 120.
ii. 120 factorial is 479,001,600.
iii. 0 factorial is 1.

c. For this problem, I’ll introduce the geometric mean. The geometric
mean is a particular measure of centrality, different from the
more common arithmetic mean. Given n observations denoted
x1, x2, . . ., xn , their geometric mean ḡ is computed as follows:

ḡ = (x1 × x2 × . . . × xn )1/n
=
*,

n
∏

i=1

xi+-
1/n
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For example, to find the geometric mean of the data 4.3, 2.1,
2.2, 3.1, calculate the following:

ḡ = (4.3 × 2.1 × 2.2 × 3.1)1/4
= 61.58460.25

= 2.8

(This is rounded to 1 d.p.)
Write a function named geolist that can search through a

specified list and compute the geometric means of each member
per the following guidelines:

– Your function must define and use an internal helper func-
tion that returns the geometric mean of a vector argument.

– Assume the list can only have numeric vectors or numeric
matrices as its members. Your function should contain an
appropriate loop to inspect each member in turn.

– If the member is a vector, compute the geometric mean of
that vector, overwriting the member with the result, which
should be a single number.

– If the member is a matrix, use an implicit loop to compute
the geometric mean of each row of the matrix, overwriting the
member with the results.

– The final list should be returned to the user.

Now, as a quick test, check that your function matches the
following two calls:

i.

R> foo <- list(1:3,matrix(c(3.3,3.2,2.8,2.1,4.6,4.5,3.1,9.4),4,2),

matrix(c(3.3,3.2,2.8,2.1,4.6,4.5,3.1,9.4),2,4))

R> geolist(foo)

[[1]]

[1] 1.817121

[[2]]

[1] 3.896152 3.794733 2.946184 4.442972

[[3]]

[1] 3.388035 4.106080

ii.

R> bar <- list(1:9,matrix(1:9,1,9),matrix(1:9,9,1),matrix(1:9,3,3))

R> geolist(bar)

[[1]]

[1] 4.147166

[[2]]

[1] 4.147166
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[[3]]

[1] 1 2 3 4 5 6 7 8 9

[[4]]

[1] 3.036589 4.308869 5.451362

Important Code in This Chapter

Function/operator Brief description First occurrence

function Function creation Section 11.1.1, p. 216
return Function return objects Section 11.1.1, p. 219
missing Argument check Section 11.2.3, p. 227
... Ellipsis (as argument) Section 11.2.4, p. 228
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12
EXCEPTIONS, TIMINGS,

AND VISIBILITY

Now that you’ve seen how to write your
own functions in R, let’s examine some

common function augmentations and
behaviors. In this chapter, you’ll learn how

to make your functions throw an error or warning
when they receive unexpected input. You’ll also
see some simple ways to measure completion time and check progress
for computationally expensive functions. Finally, you’ll see how R masks
functions when two have the same name but reside in different packages.

12.1 Exception Handling

When there’s an unexpected problem during execution of a function, R will
notify you with either a warning or an error. In this section, I’ll demonstrate
how to build these constructs into your own functions where appropriate.
I’ll also show how to try a calculation to check whether it’s possible without
an error (that is, to see whether it’ll even work).



12.1.1 Formal Notifications: Errors and Warnings
In Chapter 11, you made your functions print a string (for example,
"no valid matrices") when they couldn’t perform certain operations. Warn-
ings and errors are more formal mechanisms designed to convey these types
of messages and handle subsequent operations. An error forces the function
to immediately terminate at the point it occurs. A warning is less severe. It
indicates that the function is being run in an atypical way but tries to work
around the issue and continue executing. In R, you can issue warnings with
the warning command, and you can throw errors with the stop command.
The following two functions show an example of each:

warn_test <- function(x){

if(x<=0){

warning("'x' is less than or equal to 0 but setting it to 1 and

continuing")

x <- 1

}

return(5/x)

}

error_test <- function(x){

if(x<=0){

stop("'x' is less than or equal to 0... TERMINATE")

}

return(5/x)

}

Both warn_test and error_test divide 5 by the argument x. They also both
expect x to be positive. In warn_test, if x is nonpositive, the function issues a
warning, and x is overwritten to be 1. In error_test, on the other hand, if x is
nonpositive, the function throws an error and terminates immediately. The
two commands warning and stop are used with a character string argument,
which becomes the message printed to the console.

You can see these notifications by importing and calling the functions as
follows:

R> warn_test(0)

[1] 5

Warning message:

In warn_test(0) :

'x' is less than or equal to 0 but setting it to 1 and continuing

R> error_test(0)

Error in error_test(0) : 'x' is less than or equal to 0... TERMINATE

Notice that warn_test has continued to execute and returned the
value 5—the result of 5/1 after setting x to 1. The call to error_test did not
return anything because R exited the function at the stop command.
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Warnings are useful when there’s a natural way for a function to try
to save itself even when it doesn’t get the input it expects. For example, in
Section 10.1.3, R issued a warning when you supplied a logical vector of ele-
ments to the if statement. Remember that the if statement expects a single
logical value, but rather than quit when a logical vector is provided instead,
it continues execution using just the first entry in the supplied vector. That
said, sometimes it’s more appropriate to actually throw an error and stop
execution altogether.

Let’s go back to myfibrec from Section 11.3.3. This function expects a
positive integer (the position of the Fibonacci number it should return).
Suppose you assume that if the user supplies a negative integer, the user
actually means the positive version of that term. You can add a warning to
handle this situation. Meanwhile, if the user enters 0, which doesn’t corre-
spond to any position in the Fibonacci series, the code will throw an error.
Consider these modifications:

myfibrec2 <- function(n){

if(n<0){

warning("Assuming you meant 'n' to be positive -- doing that instead")

n <- n*-1

} else if(n==0){

stop("'n' is uninterpretable at 0")

}

if(n==1||n==2){

return(1)

} else {

return(myfibrec2(n-1)+myfibrec2(n-2))

}

}

In myfibrec2, you now check whether n is negative or zero. If it’s negative,
the function issues a warning and continues executing after swapping the
argument’s sign. If n is zero, an error halts execution with a corresponding
message. Here you can see the responses for a few different arguments:

R> myfibrec2(6)

[1] 8

R> myfibrec2(-3)

[1] 2

Warning message:

In myfibrec2(-3) :

Assuming you meant 'n' to be positive -- doing that instead

R> myfibrec2(0)

Error in myfibrec2(0) : 'n' is uninterpretable at 0

Note that the call to myfibrec2(-3) has returned the third Fibonacci
number.
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Broadly speaking, both errors and warnings signal that something has
gone wrong. If you’re using a certain function or running chunks of code
and you encounter these kinds of messages, you should look carefully at
what has been run and what may have occurred to spark them.

NOTE Identifying and repairing erroneous code is referred to as debugging, for which there
are various strategies. One of the most basic strategies involves including print or cat

commands to inspect various quantities as they are calculated during live execution.
R does have some more sophisticated debugging tools; if you’re interested, check out the
excellent discussion of them provided in Chapter 13 of The Art of R Programming
by Matloff (2011). A more general discussion can be found in The Art of Debug-
ging by Matloff and Salzman (2008). As you gain more experience in R, understand-
ing error messages or locating potential problems in code before they arise becomes easier
and easier, a benefit you get partly because of R’s interpretative style.

12.1.2 Catching Errors with try Statements
When a function terminates from an error, it also terminates any parent
functions. For example, if function A calls function B and function B halts
because of an error, this halts execution of A at the same point. To avoid
this severe consequence, you can use a try statement to attempt a function
call and check whether it produces an error. You can also use an if state-
ment to specify alternative operations, rather than allowing all processes to
cease.

For example, if you call the myfibrec2 function from earlier and pass it 0,
the function throws an error and terminates. But watch what happens when
you pass that function call as the first argument to try:

R> attempt1 <- try(myfibrec2(0),silent=TRUE)

Nothing seems to happen. What’s happened to the error? In fact, the
error has still occurred, but try has suppressed the printing of an error mes-
sage to the console because you passed it the argument silent set to TRUE.
The error information is now stored in the object attempt1, which is of class
"try-error". To see the error, simply print attempt1 to the console:

R> attempt1

[1] "Error in myfibrec2(0) : 'n' is uninterpretable at 0\n"

attr(,"class")

[1] "try-error"

attr(,"condition")

<simpleError in myfibrec2(0): 'n' is uninterpretable at 0>

You would have seen this printed to the console if you’d left silent set
to FALSE. Catching an error this way can be really handy, especially when a
function produces the error in the body code of another function. Using
try, you can handle the error without terminating that parent function.
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Meanwhile, if you pass a function to try and it doesn’t throw an error,
then try has no effect, and you simply get the normal return value.

R> attempt2 <- try(myfibrec2(6),silent=TRUE)

R> attempt2

[1] 8

Here, you executed myfibrec2 with a valid argument, n=6. Since this call
doesn’t result in an error, the result passed to attempt2 is the normal return
value from myfibrec2, in this case 8.

Using try in the Body of a Function

Let’s see a more complete example of how you could use try in a larger
function. The following myfibvector function takes a vector of indexes as the
argument nvec and provides the corresponding terms from the Fibonacci
sequence:

myfibvector <- function(nvec){

nterms <- length(nvec)

result <- rep(0,nterms)

for(i in 1:nterms){

result[i] <- myfibrec2(nvec[i])

}

return(result)

}

This function uses a for loop to work through nvec element by element,
computing the corresponding Fibonacci number with the earlier function,
myfibrec2. As long as all the values in nvec are nonzero, myfibvector works just
fine. For example, the following call obtains the first, the second, the tenth,
and the eighth Fibonacci number:

R> foo <- myfibvector(nvec=c(1,2,10,8))

R> foo

[1] 1 1 55 21

Suppose, however, there’s a mistake and one of the entries in nvec ends
up being zero.

R> bar <- myfibvector(nvec=c(3,2,7,0,9,13))

Error in myfibrec2(nvec[i]) : 'n' is uninterpretable at 0

The internal call to myfibrec2 has thrown an error when it’s called on n=0,
and this has terminated execution of myfibvector. Nothing is returned, and
the entire call has failed.

You can prevent this outright failure by using try within the for loop
to check each call to myfibrec2 and have it catch any errors. The following
function, myfibvectorTRY, does just that.
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myfibvectorTRY <- function(nvec){

nterms <- length(nvec)

result <- rep(0,nterms)

for(i in 1:nterms){

attempt <- try(myfibrec2(nvec[i]),silent=T)

if(class(attempt)=="try-error"){

result[i] <- NA

} else {

result[i] <- attempt

}

}

return(result)

}

Here, within the for loop, you use attempt to store the result of trying
each call to myfibrec2. Then, you inspect attempt. If this object’s class is
"try-error", that means myfibrec2 produced an error, and you fill the corre-
sponding slot in the result vector with NA. Otherwise, attempt will represent a
valid return value from myfibrec2, so you place it in the corresponding slot of
the result vector. Now if you import and call myfibvectorTRY on the same nvec,
you see a complete set of results.

R> baz <- myfibvectorTRY(nvec=c(3,2,7,0,9,13))

R> baz

[1] 2 1 13 NA 34 233

The error that would have otherwise terminated everything was silently
caught, and the alternative response in this situation, NA, was inserted into
the result vector.

NOTE The try command is a simplification of R’s more complex tryCatch function, which is
beyond the scope of this book, but it provides more precise control over how you test and
execute chunks of code. If you’re interested in learning more, enter ?tryCatch in the
console.

Suppressing Warning Messages

In all the try calls I’ve shown so far, I’ve set the silent argument to TRUE,
which stops any error messages from being printed. If you leave silent set
to FALSE (the default value), the error message will be printed, but the error
will still be caught without terminating execution.

Note that setting silent=TRUE only suppresses error messages, not warn-
ings. Observe the following:

R> attempt3 <- try(myfibrec2(-3),silent=TRUE)

Warning message:

In myfibrec2(-3) :
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Assuming you meant 'n' to be positive -- doing that instead

R> attempt3

[1] 2

Although silent was TRUE, the warning (for negative values of n in this
example) is still issued and printed. Warnings are treated separately from
errors in this type of situation, as they should be—they can highlight other
unforeseen issues with your code during execution. If you are absolutely
sure you don’t want to see any warnings, you can use suppressWarnings.

R> attempt4 <- suppressWarnings(myfibrec2(-3))

R> attempt4

[1] 2

The suppressWarnings function should be used only if you are certain that
every warning in a given call can be safely ignored and you want to keep the
output tidy.

Exercise 12.1

a. In Exercise 11.3 (b) on page 238, your task was to write a recur-
sive R function to compute integer factorials, given some sup-
plied non-negative integer x. Now, modify your function so that
it throws an error (with an appropriate message) if x is negative.
Test your new function responses by using the following:
i. x as 5

ii. x as 8

iii. x as -8

b. The idea of matrix inversion, briefly discussed in Section 3.3.6, is
possible only for certain square matrices (those with an equal
number of columns as rows). These inversions can be computed
using the solve function, for example:

R> solve(matrix(1:4,2,2))

[,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

Note that solve throws an error if the supplied matrix can-
not be inverted. With this in mind, write an R function that
attempts to invert each matrix in a list, according to the follow-
ing guidelines:
– The function should take four arguments.

* The list x whose members are to be tested for matrix
inversion
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* A value noninv to fill in results where a given matrix
member of x cannot be inverted, defaulting to NA

* A character string nonmat to be the result if a given mem-
ber of x is not a matrix, defaulting to "not a matrix"

* A logical value silent, defaulting to TRUE, to be passed to
try in the body code

– The function should first check whether x is in fact a list. If
not, it should throw an error with an appropriate message.

– Then, the function should ensure that x has at least one
member. If not, it should throw an error with an appropriate
message.

– Next, the function should check whether nonmat is a character
string. If not, it should try to coerce it to a character string
using an appropriate “as-dot” function (see Section 6.2.4),
and it should issue an appropriate warning.

– After these checks, a loop should search each member i of
the list x.

* If member i is a matrix, attempt to invert it with try. If
it’s invertible without error, overwrite member i of x
with the result. If an error is caught, then member i of x
should be overwritten with the value of noninv.

* If member i is not a matrix, then member i of x should
be overwritten with the value of nonmat.

– Finally, the modified list x should be returned.
Now, test your function using the following argument values

to make sure it responds as expected:
i. x as

list(1:4,matrix(1:4,1,4),matrix(1:4,4,1),matrix(1:4,2,2))

and all other arguments at default.

ii. x as in (i), noninv as Inf, nonmat as 666, silent at default.
iii. Repeat (ii), but now with silent=FALSE.
iv. x as

list(diag(9),matrix(c(0.2,0.4,0.2,0.1,0.1,0.2),3,3),

rbind(c(5,5,1,2),c(2,2,1,8),c(6,1,5,5),c(1,0,2,0)),

matrix(1:6,2,3),cbind(c(3,5),c(6,5)),as.vector(diag(2)))

and noninv as "unsuitable matrix"; all other values at default.

Finally, test the error messages by attempting calls to your
function with the following:
v. x as "hello"

vi. x as list()
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12.2 Progress and Timing

R is often used for lengthy numeric exercises, such as simulation or random
variate generation. For these complex, time-consuming operations, it’s often
useful to keep track of progress or see how long a certain task took to com-
plete. For example, you may want to compare the speed of two different
programming approaches to a given problem. In this section, you’ll look
at ways to time code execution and show its progress.

12.2.1 Textual Progress Bars: Are We There Yet?
A progress bar shows how far along R is as it executes a set of operations. To
show how this works, you need to run code that takes a while to execute,
which you’ll do by making R sleep. The Sys.sleep command makes R pause
for a specified amount of time, in seconds, before continuing.

R> Sys.sleep(3)

If you run this code, R will pause for three seconds before you can con-
tinue using the console. Sleeping will be used in this section as a surrogate
for the delay caused by computationally expensive operations, which is
where progress bars are most useful.

To use Sys.sleep in a more common fashion, consider the following:

sleep_test <- function(n){

result <- 0

for(i in 1:n){

result <- result + 1

Sys.sleep(0.5)

}

return(result)

}

The sleep_test function is basic—it takes a positive integer n and adds
1 to the result value for n iterations. At each iteration, you also tell the loop
to sleep for a half second. Because of that sleep command, executing the
following code takes about four seconds to return a result:

R> sleep_test(8)

[1] 8

Now, say you want to track the progress of this type of function as it exe-
cutes. You can implement a textual progress bar with three steps: initialize
the bar object with txtProgressBar, update the bar with setTxtProgressBar,
and terminate the bar with close. The next function, prog_test, modifies
sleep_test to include those three commands.
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prog_test <- function(n){

result <- 0

progbar <- txtProgressBar(min=0,max=n,style=1,char="=")

for(i in 1:n){

result <- result + 1

Sys.sleep(0.5)

setTxtProgressBar(progbar,value=i)

}

close(progbar)

return(result)

}

Before the for loop, you create an object named progbar by call-
ing txtProgressBar with four arguments. The min and max arguments are
numeric values that define the limits of the bar. In this case, you set max=n,
which matches the number of iterations of the impending for loop. The
style argument (integer, either 1, 2, or 3) and the char argument (character
string, usually a single character) govern the appearance of the bar. Setting
style=1 means the bar will simply display a line of char; with char="=" it’ll be a
series of equal signs.

Once this object is created, you have to instruct the bar to actually
progress during execution with a call to setTxtProgressBar. You pass in the
bar object to update (progbar) and the value it should update to (in this
case, i). Once complete (after exiting the loop), the progress bar must be
terminated with a call to close, passing in the bar object of interest. Import
and execute prog_test, and you’ll see the line of "=" drawn in steps as the
loop completes.

R> prog_test(8)

================================================================

[1] 8

The width of the bar is, by default, determined by the width of the R
console pane upon execution of the txtProgressBar command. You can cus-
tomize the bar a bit by changing the style and char arguments. Choosing
style=3, for example, shows the bar as well as a “percent completed” counter.
Some packages offer more elaborate options too, such as pop-up widgets,
but the textual version is the simplest and most universally compatible ver-
sion across different systems.

12.2.2 Measuring Completion Time: How Long Did It Take?
If you want to know how long a computation takes to complete, you can use
the Sys.time command. This command outputs an object that details current
date and time information based on your system.
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R> Sys.time()

[1] "2016-03-06 16:39:27 NZDT"

You can store objects like these before and after some code and then
compare them to see how much time has passed. Enter this in the editor:

t1 <- Sys.time()

Sys.sleep(3)

t2 <- Sys.time()

t2-t1

Now highlight all four lines and execute them in the console.

R> t1 <- Sys.time()

R> Sys.sleep(3)

R> t2 <- Sys.time()

R> t2-t1

Time difference of 3.012889 secs

By executing this entire code block together, you get an easy measure of
the total completion time in a nicely formatted string printed to the console.
Note that there’s a small time cost for interpreting and invoking any com-
mands, in addition to the three seconds you tell R to sleep. This time will
vary between computers.

If you need more detailed timing reports, there are more sophisticated
tools. For example, you can use proc.time() to receive not just the total
elapsed “wall clock” time but also computer-related CPU timings (see the
definitions in the help file ?proc.time). To time a single expression, you can
also use the system.time function (which uses the same detail of output as
proc.time). There are also benchmarking tools (formal or systematic compar-
isons of different approaches) for timing your code; see, for example, the
rbenchmark package (Kusnierczyk, 2012). However, for everyday use, the time-
object differencing approach used here is easy to interpret and provides a
good indication of the computational expense.

Exercise 12.2

a. Modify prog_test from Section 12.2.1 to include an ellipsis in its
argument list, intended to take values for the additional argu-
ments in txtProgressBar; name the new function prog_test_fancy.
Time how long it takes a call to prog_test_fancy to execute. Set
50 as n, instruct the progress bar (through the ellipsis) to use
style=3, and set the bar character to be "r".

Exceptions, Timings, and Visibility 251



b. In Section 12.1.2, you defined a function named myfibvectorTRY

(which itself calls myfibrec2 from Section 12.1.1) to return mul-
tiple terms from the Fibonacci sequence based on a supplied
“term vector” nvec. Write a new version of myfibvectorTRY that
includes a progress bar of style=3 and a character of your choos-
ing that increments at each pass of the internal for loop. Then,
do the following:
i. Use your new function to reproduce the results from the text

where nvec=c(3,2,7,0,9,13).
ii. Time how long it takes to use your new function to return

the first 35 terms of the Fibonacci sequence. What do you
notice, and what does this say about your recursive Fibonacci
functions?

c. Remain with the Fibonacci sequence. Write a stand-alone for

loop that can compute, and store in a vector, the same first 35
terms as in (b)(ii). Time it. Which approach would you prefer?

12.3 Masking

With the plethora of built-in and contributed data and functionality avail-
able for R, it is virtually inevitable that at some point you will come across
objects, usually functions, that share the same name in distinctly different
loaded packages.

So, what happens in those instances? For example, say you define a func-
tion with the same name as a function in an R package that you have already
loaded. R responds by masking one of the objects—that is, one object or
function will take precedence over the other and assume the object or func-
tion name, while the masked function must be called with an additional
command. This protects objects from overwriting or blocking one another.
In this section, you’ll look at the two most common masking situations in R.

12.3.1 Function and Object Distinction
When two functions or objects in different environments have the same
name, the object that comes earlier in the search path will mask the later
one. That is, when the object is sought, R will use the object or function it
finds first, and you’ll need extra code to access the other, masked version.
Remember, you can see the current search path by executing search().

R> search()

[1] ".GlobalEnv" "tools:RGUI" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"
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When R searches, the function or object that falls closest to the start
of the search path (the global environment) is reached first and masks the
function or object of the same name that occurs somewhere later in the
search path. To see a simple example of masking, you’ll define a function
with the same name as a function in the base package: sum. Here’s how sum

works normally, adding up all the elements in the vector foo:

R> foo <- c(4,1.5,3)

R> sum(foo)

[1] 8.5

Now, suppose you were to enter the following function:

sum <- function(x){

result <- 0

for(i in 1:length(x)){

result <- result + x[i]^2

}

return(result)

}

This version of sum takes in a vector x and uses a for loop to square
each element before summing them and returning the result. This can be
imported into the R console without any problem, but clearly, it doesn’t
offer the same functionality as the (original) built-in version of sum. Now,
after importing the function, if you make a call to sum, your version is used.

R> sum(foo)

[1] 27.25

This happens because the user-defined function is stored in the global
environment (.GlobalEnv), which always comes first in the search path. R’s
built-in function is part of the base package, which comes at the end of the
search path. In this case, the user-defined function is masking the original.

Now, if you want R to run the base version of sum, you have to include the
name of its package in the call, with a double colon.

R> base::sum(foo)

[1] 8.5

This tells R to use the version in base, even though there’s another ver-
sion of the function in the global environment.

To avoid any confusion, let’s remove the sum function from the global
environment.

R> rm(sum)
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When Package Objects Clash

When you load a package, R will notify you if any objects in the package
clash with other objects that are accessible in the present session. To illus-
trate this, I’ll make use of two contributed packages: the car package (you
saw this earlier in Exercise 8.1 (b) on page 162) and the spatstat package
(you’ll use this in Part V). After ensuring these two packages are installed,
when I load them in the following order, I see this message:

R> library("spatstat")

spatstat 1.40-0 (nickname: 'Do The Maths')

For an introduction to spatstat, type 'beginner'

R> library("car")

Attaching package: 'car'

The following object is masked from 'package:spatstat':

ellipse

This indicates that the two packages each have an object with the same
name—ellipse. R has automatically notified you that this object is being
masked. Note that the functionality of both car and spatstat remains com-
pletely available; it’s just that the ellipse objects require some distinction
should they be needed. Using ellipse at the prompt will access car’s object
since that package was loaded more recently. To use spatstat’s version, you
must type spatstat::ellipse. These rules also apply to accessing the respec-
tive help files.

A similar notification occurs when you load a package with an object
that’s masked by a global environment object (a global environment object
will always take precedence over a package object). To see an example, you
can load the MASS package (Venables and Ripley, 2002), which is included
with R but isn’t automatically loaded. Continuing in the current R session,
create the following object:

R> cats <- "meow"

Now, suppose you need to load MASS.

R> library("MASS")

Attaching package: 'MASS'

The following object is masked _by_ '.GlobalEnv':

cats
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The following object is masked from 'package:spatstat':

area

Upon loading the package, you’re informed that the cats object you’ve
just created is masking an object of the same name in MASS. (As you can see
with ?MASS::cats, this object is a data frame with weight measurements of
household felines.) Furthermore, it appears MASS also shares an object name
with spatstat—area. The same kind of “package masking” message as shown
earlier is also displayed for that particular item.

Unmounting Packages

You can unmount loaded packages from the search path. With the packages
loaded in this discussion, my current search path looks like this:

R> search()

[1] ".GlobalEnv" "package:MASS" "package:car"

[4] "package:spatstat" "tools:RGUI" "package:stats"

[7] "package:graphics" "package:grDevices" "package:utils"

[10] "package:datasets" "package:methods" "Autoloads"

[13] "package:base"

Now, suppose you don’t need car anymore. You can remove it with the
detach function as follows.

R> detach("package:car",unload=TRUE)

R> search()

[1] ".GlobalEnv" "package:MASS" "package:spatstat"

[4] "tools:RGUI" "package:stats" "package:graphics"

[7] "package:grDevices" "package:utils" "package:datasets"

[10] "package:methods" "Autoloads" "package:base"

This removes the elected package from the path, unloading its name-
space. Now, the functionality of car is no longer immediately available, and
spatstat’s ellipsis function is no longer masked.

NOTE As contributed packages get updated by their maintainers, they may include new
objects that spark new maskings or remove or rename objects that previously caused
maskings (when compared with other contributed packages). The specific maskings
illustrated here among car, spatstat, and MASS occur at the time of writing with the
versions available and may change in the future.

12.3.2 Data Frame Variable Distinction
There’s one other common situation in which you’ll be explicitly notified
of masking: when you add a data frame to the search path. Let’s see how
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this works. Continuing in the current workspace, define the following data
frame:

R> foo <- data.frame(surname=c("a","b","c","d"),

sex=c(0,1,1,0),height=c(170,168,181,180),

stringsAsFactors=F)

R> foo

surname sex height

1 a 0 170

2 b 1 168

3 c 1 181

4 d 0 180

The data frame foo has three column variables: person, sex, and height.
To access one of these columns, normally you need to use the $ operator
and enter something like foo$surname. However, you can attach a data frame
directly to your search path, which makes it easier to access a variable.

R> attach(foo)

R> search()

[1] ".GlobalEnv" "foo" "package:MASS"

[4] "package:spatstat" "tools:RGUI" "package:stats"

[7] "package:graphics" "package:grDevices" "package:utils"

[10] "package:datasets" "package:methods" "Autoloads"

[13] "package:base"

Now the surname variable is directly accessible.

R> surname

[1] "a" "b" "c" "d"

This saves you from having to enter foo$ every time you want to access
a variable, which can be a handy shortcut if your analysis deals exclusively
with one static, unchanging data frame. However, if you forget about your
attached objects, they can cause problems later, especially if you continue to
mount more objects onto the search path in the same session. For example,
say you enter another data frame.

R> bar <- data.frame(surname=c("e","f","g","h"),

sex=c(1,0,1,0),weight=c(55,70,87,79),

stringsAsFactors=F)

R> bar

surname sex weight

1 e 1 55

2 f 0 70

3 g 1 87

4 h 0 79
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Then add it to the search path too.

R> attach(bar)

The following objects are masked from foo:

sex, surname

The notification tells you that the bar object now precedes foo in the
search path.

R> search()

[1] ".GlobalEnv" "bar" "foo"

[4] "package:MASS" "package:spatstat" "tools:RGUI"

[7] "package:stats" "package:graphics" "package:grDevices"

[10] "package:utils" "package:datasets" "package:methods"

[13] "Autoloads" "package:base"

As a result, any direct use of either sex or surname will now access bar’s
contents, not foo’s. Meanwhile, the unmasked variable height from foo is still
directly accessible.

R> height

[1] 170 168 181 180

This is a pretty simple example, but it highlights the potential for con-
fusion when data frames, lists, or other objects are added to the search path.
Mounting objects this way can quickly become difficult to track, especially
for large data sets with many different variables. For this reason, it’s best
to avoid attaching objects this way as a general guideline—unless, as stated
earlier, you’re working exclusively with one data frame.

Note that detach can be used to remove objects from the search path, in
a similar way as you saw with packages. In this case, you can simply enter the
object name itself.

R> detach(foo)

R> search()

[1] ".GlobalEnv" "bar" "package:MASS"

[4] "package:spatstat" "tools:RGUI" "package:stats"

[7] "package:graphics" "package:grDevices" "package:utils"

[10] "package:datasets" "package:methods" "Autoloads"

[13] "package:base"
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Important Code in This Chapter

Function/operator Brief description First occurrence

warning Issue warning Section 12.1.1, p. 242
stop Throw error Section 12.1.1, p. 242
try Attempt error catch Section 12.1.2, p. 244
Sys.sleep Sleep (pause) execution Section 12.2.1, p. 249
txtProgressBar Initialize progress bar Section 12.2.1, p. 249
setTxtProgressBar Increment progress bar Section 12.2.1, p. 249
close Close progress bar Section 12.2.1, p. 249
Sys.time Get local system time Section 12.2.2, p. 250
detach Remove library/object from path Section 12.3.1, p. 255
attach Attach object to search path Section 12.3.2, p. 256
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13
ELEMENTARY STATISTICS

Statistics is the practice of turning data
into information to identify trends and

understand features of populations. This
chapter will cover some basic definitions and

use R to demonstrate their application.

13.1 Describing Raw Data

Often, the first thing statistical analysts are faced with is raw data—in other
words, the records or observations that make up a sample. Depending on
the nature of the intended analysis, these data could be stored in a special-
ized R object, often a data frame (Chapter 5), possibly read in from an exter-
nal file using techniques from Chapter 8. Before you can begin summarizing
or modeling your data, however, it is important to clearly identify your avail-
able variables.

A variable is a characteristic of an individual in a population, the value
of which can differ between entities within that population. For example,
in Section 5.2, you experimented with an illustrative data frame mydata.



You recorded the age, sex, and humor level for a sample of people. These
characteristics are your variables; the values measured will differ between the
individuals.

Variables can take on a number of forms, determined by the nature of
the values they may take. Before jumping into R, you’ll look at some stan-
dard ways in which variables are described.

13.1.1 Numeric Variables
A numeric variable is one whose observations are naturally recorded as num-
bers. There are two types of numeric variables: continuous and discrete.

A continuous variable can be recorded as any value in some interval, up
to any number of decimals (which technically gives an infinite number of
possible values, even if the continuum is restricted in range). For example,
if you were observing rainfall amount, a value of 15 mm would make sense,
but so would a value of 15.42135 mm. Any degree of measurement precision
gives a valid observation.

A discrete variable, on the other hand, may take on only distinct numeric
values—and if the range is restricted, then the number of possible values is
finite. For example, if you were observing the number of heads in 20 flips of
a coin, only whole numbers would make sense. It would not make sense to
observe 15.42135 heads; the possible outcomes are restricted to the integers
from 0 to 20 (inclusive).

13.1.2 Categorical Variables
Though numeric observations are common for many variables, it’s also
important to consider categorical variables. Like some discrete variables, cate-
gorical variables may take only one of a finite number of possibilities. Unlike
discrete variables, however, categorical observations are not always recorded
as numeric values.

There are two types of categorical variables. Those that cannot be log-
ically ranked are called nominal. A good example of a categorical-nominal
variable is sex. In most data sets, it has two fixed possible values, male and
female, and the order of these categories is irrelevant. Categorical variables
that can be naturally ranked are called ordinal. An example of a categorical-
ordinal variable would be the dose of a drug, with the possible values low,
medium, and high. These values can be ordered in either increasing or
decreasing amounts, and the ordering might be relevant to the research.

NOTE Some statistical texts blur the definitions of discrete and categorical variables or even
use them interchangeably. While this practice is not necessarily incorrect, I prefer to
keep the definitions separate, for clarity. That is, I’ll say “discrete” when referring to a
naturally numeric variable that cannot be expressed on a continuous scale (such as a
count), and I’ll say “categorical” when the possible outcomes for a given individual
are not necessarily numeric and the number of possible values is always finite.
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Once you know what to look for, identifying the types of variables in a
given data set is straightforward. Take the data frame chickwts, which is avail-
able in the automatically loaded datasets package. At the prompt, directly
entering the following gives you the first five records of this data set.

R> chickwts[1:5,]

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

5 217 horsebean

R’s help file (?chickwts) describes these data as comprising the weights
of 71 chicks (in grams) after six weeks, based on the type of food provided to
them. Now let’s take a look at the two columns in their entirety as vectors:

R> chickwts$weight

[1] 179 160 136 227 217 168 108 124 143 140 309 229 181 141 260 203 148 169

[19] 213 257 244 271 243 230 248 327 329 250 193 271 316 267 199 171 158 248

[37] 423 340 392 339 341 226 320 295 334 322 297 318 325 257 303 315 380 153

[55] 263 242 206 344 258 368 390 379 260 404 318 352 359 216 222 283 332

R> chickwts$feed

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean

[8] horsebean horsebean horsebean linseed linseed linseed linseed

[15] linseed linseed linseed linseed linseed linseed linseed

[22] linseed soybean soybean soybean soybean soybean soybean

[29] soybean soybean soybean soybean soybean soybean soybean

[36] soybean sunflower sunflower sunflower sunflower sunflower sunflower

[43] sunflower sunflower sunflower sunflower sunflower sunflower meatmeal

[50] meatmeal meatmeal meatmeal meatmeal meatmeal meatmeal meatmeal

[57] meatmeal meatmeal meatmeal casein casein casein casein

[64] casein casein casein casein casein casein casein

[71] casein

Levels: casein horsebean linseed meatmeal soybean sunflower

weight is a numeric measurement that can fall anywhere on a con-
tinuum, so this is a numeric-continuous variable. The fact that the chick
weights appear to have been rounded or recorded to the nearest gram does
not affect this definition because in reality the weights can be any figure
(within reason). feed is clearly a categorical variable because it has only six
possible outcomes, which aren’t numeric. The absence of any natural or
easily identifiable ordering leads to the conclusion that feed is a categorical-
nominal variable.
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13.1.3 Univariate and Multivariate Data
When discussing or analyzing data related to only one dimension, you’re
dealing with univariate data. For example, the weight variable in the earlier
example is univariate since each measurement can be expressed with one
component—a single number.

When it’s necessary to consider data with respect to variables that
exist in more than one dimension (in other words, with more than one
component or measurement associated with each observation), your data
are considered multivariate. Multivariate measurements are arguably most
relevant when the individual components aren’t as useful when considered
on their own (in other words, as univariate quantities) in any given statistical
analysis.

An ideal example is that of spatial coordinates, which must be consid-
ered in terms of at least two components—a horizontal x-coordinate and a
vertical y-coordinate. The univariate data alone—for example, the x-axis val-
ues only—aren’t especially useful. Consider the quakes data set (like chickwts,
this is automatically available through the datasets package), which con-
tains observations on 1,000 seismic events recorded off the coast of Fiji. If
you look at the first five records and read the descriptions in the help file
?quakes, you quickly get a good understanding of what’s presented.

R> quakes[1:5,]

lat long depth mag stations

1 -20.42 181.62 562 4.8 41

2 -20.62 181.03 650 4.2 15

3 -26.00 184.10 42 5.4 43

4 -17.97 181.66 626 4.1 19

5 -20.42 181.96 649 4.0 11

The columns lat and long provide the latitude and longitude of the
event, depth provides the depth of the event (in kilometers), mag provides
the magnitude on the Richter scale, and stations provides the number of
observation stations that detected the event. If you’re interested in the spa-
tial dispersion of these earthquakes, then examining only the latitude or the
longitude is rather uninformative. The location of each event is described
with two components: a latitude and a longitude value. You can easily plot
these 1,000 events; Figure 13-1 shows the result of the following code:

R> plot(quakes$long,quakes$lat,xlab="Longitude",ylab="Latitude")
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Figure 13-1: Plotting the spatial locations of earthquakes using
a bivariate (multivariate with two components) variable

13.1.4 Parameter or Statistic?
As already noted, statistics as a discipline is concerned with understand-
ing features of an overall population, defined as the entire collection of
individuals or entities of interest. The characteristics of that population are
referred to as parameters. Because researchers are rarely able to access rele-
vant data on every single member of the population of interest, they typically
collect a sample of entities to represent the population and record relevant
data from these entities. They may then estimate the parameters of interest
using the sample data—and those estimates are the statistics.

For example, if you were interested in the average age of women in the
United States who own cats, the population of interest would be all women
residing in the United States who own at least one cat. The parameter of
interest is the true mean age of women in the United States who own at least
one cat. Of course, obtaining the age of every single female American with
a cat would be a difficult feat. A more feasible approach would be to ran-
domly identify a smaller number of cat-owning American women and take
data from them—this is your sample, and the mean age of the women in the
sample is your statistic.

Thus, the key difference between a statistic and a parameter is whether
the characteristic refers to the sample you drew your data from or the wider
population. Figure 13-2 illustrates this, with the mean µ of a measure for
individuals in a population as the parameter and with the mean x̄ of a
sample of individuals taken from that population as the statistic.
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POPULATION

True mean µ (parameter)

Sample mean x̄   (statistic)

Make inference Collect data

SAMPLE

Figure 13-2: A conceptualization of statistical practice
to illustrate the definitions of parameter and statistic,
using the mean as an example

Exercise 13.1

a. For each of the following, identify the type of variable described:
numeric-continuous, numeric-discrete, categorical-nominal, or
categorical-ordinal:
i. The number of blemishes on the hood of a car coming off a

production line
ii. A survey question that asks the participant to select from

Strongly agree, Agree, Neutral, Disagree, and Strongly
disagree

iii. The noise level (in decibels) at a concert
iv. The noise level out of three possible choices: high,

medium, low
v. A choice of primary color
vi. The distance between a cat and a mouse

b. For each of the following, identify whether the quantity discussed
is a population parameter or a sample statistic. If the latter, also
identify what the corresponding population parameter is.
i. The percentage of 50 New Zealanders who own a gaming

console
ii. The average number of blemishes found on the hoods of

three cars in the No Dodgy Carz yard
iii. The proportion of domestic cats in the United States that

wear a collar
iv. The average number of times per day a vending machine is

used in a year
v. The average number of times per day a vending machine is

used in a year, based on data collected on three distinct days
in that year
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13.2 Summary Statistics

Now that you’ve learned the basic terminology, you’re ready to calculate
some statistics with R. In this section, you’ll look at the most common types
of statistics used to summarize the different types of variables I’ve discussed.

13.2.1 Centrality: Mean, Median, Mode
Measures of centrality are commonly used to explain large collections of data
by describing where numeric observations are centered. One of the most
common measures of centrality is of course the arithmetic mean. It’s consid-
ered to be the central “balance point” of a collection of observations.

For a set of n numeric measurements labeled x = {x1, x2, . . . , xn }, you
find the sample mean x̄ as follows:

x̄ =
(x1 + x2 + . . . + xn )

n
=

1
n

n
∑

i=1

xi (13.1)

So, for example, if you observe the data 2,4.4,3,3,2,2.2,2,4, the mean is
calculated like this:

2 + 4.4 + 3 + 3 + 2 + 2.2 + 2 + 4
8

= 2.825

The median is the “middle magnitude” of your observations, so if you
place your observations in order from smallest to largest, you can find the
median by either taking the middle value (if there’s an odd number of
observations) or finding the mean of the two middle values (if there’s an
even number of observations). Using the notation for n measurements
labeled x = {x1, x2, . . . , xn }, you find the sample median m̄x as follows:

• Sort the observations from smallest to largest to give the “order statistics”
x

(1)

i
, x

(2)

j
, . . . , x

(n)

k
, where x

(t )

i
denotes the tth smallest observation, regard-

less of observation number i, j, k, . . . .

• Then, do the following:

m̄x =


x

( n+1
2 )

i
, if n is odd

(

x
( n

2 )

i
+ x

( n
2 +1)

j

)

/2, if n is even
(13.2)

For the same data, sorting them from smallest to largest yields 2, 2, 2,
2.2, 3, 3, 4, 4.4. With n = 8 observations, you have n/2 = 4. The median is
therefore as follows:

(

x
(4)

i
+ x

(5)

j

)

/2 = (2.2 + 3)/2 = 2.6

The mode is simply the “most common” observation. This statistic is
more often used with numeric-discrete data than with numeric-continuous,
though it is used with reference to intervals of the latter (commonly when
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discussing probability density functions—see Chapters 15 and 16). It’s pos-
sible for a collection of n numeric measurements x1, x2, . . . , xn to have no
mode (where each observation is unique) or to have more than one mode
(where more than one particular value occurs the largest number of times).
To find the mode d̄x , simply tabulate the frequency of each measurement.

Again using the eight observations from the example, you can see the
frequencies here:

Observation 2 2.2 3 4 4.4

Frequency 3 1 2 1 1

The value 2 occurs three times, which is more frequent than any other
value, so the single mode for these data is the value 2.

In R, it’s easy to compute the arithmetic mean and the median with
built-in functions of the same names. First, store the eight observations as
the numeric vector xdata.

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)

Then compute the statistics.

R> x.bar <- mean(xdata)

R> x.bar

[1] 2.825

R> m.bar <- median(xdata)

R> m.bar

[1] 2.6

Finding a mode is perhaps most easily achieved by using R’s table func-
tion, which gives you the frequencies you need.

R> xtab <- table(xdata)

R> xtab

xdata

2 2.2 3 4 4.4

3 1 2 1 1

Though this clearly shows the mode for a small data set, it’s good prac-
tice to write code that can automatically identify the most frequent obser-
vations for any table. The min and max functions will report the smallest and
largest values, with range returning both in a vector of length 2.

R> min(xdata)

[1] 2

R> max(xdata)

[1] 4.4

R> range(xdata)

[1] 2.0 4.4
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When applied to a table, these commands operate on the reported
frequencies.

R> max(xtab)

[1] 3

Finally, therefore, you can construct a logical flag vector to get the mode
from table.

R> d.bar <- xtab[xtab==max(xtab)]

R> d.bar

2

3

Here, 2 is the value and 3 is the frequency of that value.
Let’s return to the chickwts data set explored earlier in Section 13.1.2.

The mean and median weights of the chicks are as follows:

R> mean(chickwts$weight)

[1] 261.3099

R> median(chickwts$weight)

[1] 258

You can also look at the quakes data set explored in Section 13.1.3. The
most common magnitude of earthquake in the data set is identified with the
following, which indicates that there were 107 occurrences of a 4.5 magni-
tude event:

R> Qtab <- table(quakes$mag)

R> Qtab[Qtab==max(Qtab)]

4.5

107

NOTE Several methods are available to compute medians, though the impact on results
is usually negligible for most practical purposes. Here I’ve simply used the default
“sample” version used by R.

Many of the functions R uses to compute statistics from a numeric struc-
ture will not run if the data set includes missing or undefined values (NAs or
NaNs). Here’s an example:

R> mean(c(1,4,NA))

[1] NA

R> mean(c(1,4,NaN))

[1] NaN

To prevent unintended NaNs or forgotten NAs being ignored without the
user’s knowledge, R does not by default ignore these special values when
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running functions such as mean—and therefore will not return the intended
numeric results. You can, however, set an optional argument na.rm to TRUE,
which will force the function to operate only on the numeric values that are
present.

R> mean(c(1,4,NA),na.rm=TRUE)

[1] 2.5

R> mean(c(1,4,NaN),na.rm=TRUE)

[1] 2.5

You should use this argument only if you’re aware there might be miss-
ing values and that the result will be computed based on only those values
that have been observed. Functions that I’ve discussed already such as sum,
prod, mean, median, max, min, and range—essentially anything that calculates a
numeric statistic based on a numeric vector—all have the na.rm argument
available to them.

Lastly, in calculating simple summary statistics, it’s useful to remind
yourself of the tapply function (see Section 10.2.3), used to compute statis-
tics grouped by a specific categorical variable. Suppose, for example, you
wanted to find the mean weight of the chicks grouped by feed type. One
solution would be to use the mean function on each specific subset.

R> mean(chickwts$weight[chickwts$feed=="casein"])

[1] 323.5833

R> mean(chickwts$weight[chickwts$feed=="horsebean"])

[1] 160.2

R> mean(chickwts$weight[chickwts$feed=="linseed"])

[1] 218.75

R> mean(chickwts$weight[chickwts$feed=="meatmeal"])

[1] 276.9091

R> mean(chickwts$weight[chickwts$feed=="soybean"])

[1] 246.4286

R> mean(chickwts$weight[chickwts$feed=="sunflower"])

[1] 328.9167

This is cumbersome and lengthy. Using tapply, however, you can calcu-
late the same values by category using just one line of code.

R> tapply(chickwts$weight,INDEX=chickwts$feed,FUN=mean)

casein horsebean linseed meatmeal soybean sunflower

323.5833 160.2000 218.7500 276.9091 246.4286 328.9167

Here, the first argument is the numeric vector upon which to operate,
the INDEX argument specifies the grouping variable, and the FUN argument
gives the name of the function to be performed on the data in the first argu-
ment as per the subsets defined by INDEX. Like other functions you’ve seen
that request the user to specify another function to govern operations, tapply
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includes an ellipsis (see Sections 9.2.5 and 11.2.4) to allow the user to supply
further arguments directly to FUN if required.

13.2.2 Counts, Percentages, and Proportions
In this section, you’ll look at the summary of data that aren’t necessarily
numeric. It makes little sense, for example, to ask R to compute the mean
of a categorical variable, but it is sometimes useful to count the number of
observations that fall within each category—these counts or frequencies repre-
sent the most elementary summary statistic of categorical data.

This uses the same count summary that was necessary for the mode cal-
culation in Section 13.2.1, so again you can use the table command to obtain
frequencies. Recall there are six feed types making up the diet of the chicks
in the chickwts data frame. Getting these factor-level counts is as straightfor-
ward as this:

R> table(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower

12 10 12 11 14 12

You can gather more information from these counts by identifying the
proportion of observations that fall into each category. This will give you
comparable measures across multiple data sets. Proportions represent the
fraction of observations in each category, usually expressed as a decimal
(floating-point) number between 0 and 1 (inclusive). To calculate propor-
tions, you only need to modify the previous count function by dividing the
count (or frequency) by the overall sample size (obtained here by using nrow

on the appropriate data frame object; see Section 5.2).

R> table(chickwts$feed)/nrow(chickwts)

casein horsebean linseed meatmeal soybean sunflower

0.1690141 0.1408451 0.1690141 0.1549296 0.1971831 0.1690141

Of course, you needn’t do everything associated with counts via table. A
simple sum of an appropriate logical flag vector can be just as useful—recall
that TRUEs are automatically treated as 1 and FALSEs as 0 in any arithmetic
treatment of logical structures in R (refer to Section 4.1.4). Such a sum will
provide you with the desired frequency, but to get a proportion, you still
need to divide by the total sample size. Furthermore, this is actually equiv-
alent to finding the mean of a logical flag vector. For example, to find the
proportion of chicks fed soybean, note that the following two calculations
give identical results of around 0.197:

R> sum(chickwts$feed=="soybean")/nrow(chickwts)

[1] 0.1971831
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R> mean(chickwts$feed=="soybean")

[1] 0.1971831

You can also use this approach to calculate the proportion of entities
in combined groups, achieved easily through logical operators (see Sec-
tion 4.1.3). The proportion of chicks fed either soybean or horsebean is as
follows:

R> mean(chickwts$feed=="soybean"|chickwts$feed=="horsebean")

[1] 0.3380282

Yet again, the tapply function can prove useful. This time, to get the
proportions of chicks on each diet, you’ll define the FUN argument to be an
anonymous function (refer to Section 11.3.2) that performs the required
calculation.

R> tapply(chickwts$weight,INDEX=chickwts$feed,

FUN=function(x) length(x)/nrow(chickwts))

casein horsebean linseed meatmeal soybean sunflower

0.1690141 0.1408451 0.1690141 0.1549296 0.1971831 0.1690141

The disposable function here is defined with a dummy argument
x, which you’re using to represent the vector of weights in each feed
group to which FUN applies. Finding the desired proportion is therefore
a case of dividing the number of observations in x by the total number of
observations.

The last function to note is the round function, which rounds numeric
data output to a certain number of decimal places. You need only supply to
round your numeric vector (or matrix or any other appropriate data struc-
ture) and however many decimal places (as the argument digits) you want
your figures rounded to.

R> round(table(chickwts$feed)/nrow(chickwts),digits=3)

casein horsebean linseed meatmeal soybean sunflower

0.169 0.141 0.169 0.155 0.197 0.169

This provides output that’s easier to read at a glance. If you set digits=0
(the default), output is rounded to the nearest integer.

Before the next exercise, it’s worth briefly remarking on the relation-
ship between a proportion and a percentage. The two represent the same
thing. The only difference is the scale; the percentage is merely the propor-
tion multiplied by 100. The percentage of chicks on a soybean diet is there-
fore approximately 19.7 percent.

R> round(mean(chickwts$feed=="soybean")*100,1)

[1] 19.7
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Since proportions always lie in the interval [0,1], percentages always lie
within [0,100].

Most statisticians use proportions over percentages because of the role
proportions play in the direct representation of probabilities (discussed in
Chapter 15). However, there are situations in which percentages are pre-
ferred, such as basic data summaries or in the definition of percentiles, which
will be detailed in Section 13.2.3.

Exercise 13.2

a. Obtain, rounded to two decimal places, the proportion of seis-
mic events in the quakes data frame that occurred at a depth of
300 km or deeper.

b. Remaining with the quakes data set, calculate the mean and
median magnitudes of the events that occurred at a depth of
300 km or deeper.

c. Using the chickwts data set, write a for loop that gives you the
mean weight of chicks for each feed type—the same as the results
given by the tapply function in Section 13.2.1. Display the results
rounded to one decimal place and, when printing, ensure each
mean is labeled with the appropriate feed type.

Another ready-to-use data set (in the automatically loaded datasets

package) is InsectSprays. It contains data on the number of insects
found on various agricultural units, as well as the type of insect spray
that was used on each unit. Ensure you can access the data frame at
the prompt; then study the help file ?InsectSprays to get an idea of R’s
representation of the two variables.

d. Identify the two variable types in InsectSprays (as per the defini-
tions in Section 13.1.1 and Section 13.1.2).

e. Calculate the modes of the distribution of insect counts, regard-
less of spray type.

f. Use tapply to report the total insect counts by each spray type.

g. Using the same kind of for loop as in (c), compute the percent-
age of agricultural units in each spray type group that had at
least five bugs on them. When printing to the screen, round the
percentages to the nearest whole number.

h. Obtain the same numeric results as in (g), with rounding, but
use tapply and a disposable function.
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13.2.3 Quantiles, Percentiles, and the Five-Number Summary
Let’s return, once more, to thinking about raw numeric observations. An
understanding of how observations are distributed is an important statisti-
cal concept, and this will form a key feature of discussions in Chapter 15
onward.

You can gain more insight into the distribution of a set of observations
by examining quantiles. A quantile is a value computed from a collection
of numeric measurements that indicates an observation’s rank when com-
pared to all the other present observations. For example, the median (Sec-
tion 13.2.1) is itself a quantile—it gives you a value below which half of the
measurements lie—it’s the 0.5th quantile. Alternatively, quantiles can be
expressed as a percentile—this is identical but on a “percent scale” of 0 to 100.
In other words, the pth quantile is equivalent to the 100 × pth percentile.
The median, therefore, is the 50th percentile.

There are a number of different algorithms that can be used to com-
pute quantiles and percentiles. They all work by sorting the observations
from smallest to largest and using some form of weighted average to find the
numeric value that corresponds to p, but results may vary slightly in other
statistical software.

Obtaining quantiles and percentiles in R is done with the quantile func-
tion. Using the eight observations stored as the vector xdata, the 0.8th quan-
tile (or 80th percentile) is confirmed as 3.6:

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)

R> quantile(xdata,prob=0.8)

80%

3.6

As you can see, quantile takes the data vector of interest as its first argu-
ment, followed by a numeric value supplied to prob, giving the quantile of
interest. In fact, prob can take a numeric vector of quantile values. This is
convenient when multiple quantiles are desired.

R> quantile(xdata,prob=c(0,0.25,0.5,0.75,1))

0% 25% 50% 75% 100%

2.00 2.00 2.60 3.25 4.40

Here, you’ve used quantile to obtain what’s called the five-number sum-
mary of xdata, comprised of the 0th percentile (the minimum), the 25th per-
centile, the 50th percentile, the 75th percentile, and the 100th percentile
(the maximum). The 0.25th quantile is referred to as the first or lower quar-
tile, and the 0.75th quantile is referred to as the third or upper quartile. Also
note that the 0.5th quantile of xdata is equivalent to the median (2.6, calcu-
lated in Section 13.2.1 using median). The median is the second quartile, with
the maximum value being the fourth quartile.
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There are ways to obtain the five-number summary other than using
quantile; when applied to a numeric vector, the summary function also pro-
vides these statistics, along with the mean, automatically.

R> summary(xdata)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 2.000 2.600 2.825 3.250 4.400

To look at some examples using real data, let’s compute the lower and
upper quartiles of the weights of the chicks in the chickwts.

R> quantile(chickwts$weight,prob=c(0.25,0.75))

25% 75%

204.5 323.5

This indicates that 25 percent of the weights lie at or below 204.5 grams
and that 75 percent of the weights lie at or below 323.5 grams.

Let’s also compute the five-number summary (along with the mean) of
the magnitude of the seismic events off the coast of Fiji that occurred at a
depth of less than 400 km, using the quakes data frame.

R> summary(quakes$mag[quakes$depth<400])

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.00 4.40 4.60 4.67 4.90 6.40

This begins to highlight how useful quantiles are for interpreting the
distribution of numeric measurements. From these results, you can see that
most of the magnitudes of events at a depth of less than 400 km lie around
4.6, the median, and the first and third quartiles are just 4.4 and 4.9, respec-
tively. But you can also see that the maximum value is much further away
from the upper quartile than the minimum is from the lower quartile, sug-
gesting a skewed distribution, one that stretches more positively (in other
words, to the right) from its center than negatively (in other words, to the
left). This notion is also supported by the fact that the mean is greater than
the median—the mean is being “dragged upward” by the larger values.

You’ll explore this further in Chapter 14 when you investigate data sets
using basic statistical plots, and some of the associated terminology will be
formalized in Chapter 15.

13.2.4 Spread: Variance, Standard Deviation, and the Interquartile Range
The measures of centrality explored in Section 13.2.1 offer a good indi-
cation of where your numeric measurements are massed, but the mean,
median, and mode do nothing to describe how dispersed your data are. For
this, measures of spread are needed.
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In addition to your vector of eight hypothetical observations, given
again here,

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)

you’ll also look at another eight observations stored as follows:

R> ydata <- c(1,4.4,1,3,2,2.2,2,7)

Although these are two different collections of numbers, note that they
have an identical arithmetic mean.

R> mean(xdata)

[1] 2.825

R> mean(ydata)

[1] 2.825

Now let’s plot these two data vectors side by side, each one on a horizon-
tal line, by executing the following:

R> plot(xdata,type="n",xlab="",ylab="data vector",yaxt="n",bty="n")

R> abline(h=c(3,3.5),lty=2,col="gray")

R> abline(v=2.825,lwd=2,lty=3)

R> text(c(0.8,0.8),c(3,3.5),labels=c("x","y"))

R> points(jitter(c(xdata,ydata)),c(rep(3,length(xdata)),

rep(3.5,length(ydata))))

You saw how to use these base R graphics functions in Chapter 7,
though it should be explained that because some of the observations in
xdata and in ydata occur more than once, you can randomly alter them
slightly to prevent overplotting, which aids in the visual interpretation.
This step is known as jittering and is achieved by passing the numeric vec-
tor of interest to the jitter function prior to plotting with points. Addition-
ally, note that you can use yaxt="n" in any call to plot to suppress the y-axis;
similarly, bty="n" removes the typical box that’s placed around a plot (you’ll
focus more on this type of plot customization in Chapter 23).

The result, shown in Figure 13-3, provides you with valuable informa-
tion. Though the mean is the same for both xdata and ydata, you can easily
see that the observations in ydata are more “spread out” around the mea-
sure of centrality than the observations in xdata. To quantify spread, you use
values such as the variance, the standard deviation, and the interquartile
range.
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Figure 13-3: Comparing two hypothetical data vectors that share
an identical arithmetic mean (marked by the vertical dotted line)
but have different magnitudes of spread. Identical observations
are jittered slightly.

The sample variance measures the degree of the spread of numeric
observations around their arithmetic mean. The variance is a particular
representation of the average squared distance of each observation when
compared to the mean. For a set of n numeric measurements labeled
x = {x1, x2, . . . , xn }, the sample variance s2

x is given by the following,
where x̄ is the sample mean described in Equation (13.1):

s2
x =

(x1 − x̄)2
+ (x2 − x̄)2

+ . . . + (xn − x̄)2

n − 1
=

1
n − 1

n
∑

i=1

(xi − x̄)2 (13.3)

For example, if you take the eight illustrative observations 2, 4.4, 3, 3, 2,
2.2, 2, 4, their sample variance is as follows when rounded to three decimal
places (some terms are hidden with . . . for readability):

(2 − 2.825)2
+ (4.4 − 2.825)2

+ . . . + (4 − 2.825)2

7

=

(−0.825)2
+ (1.575)2

+ . . . + (1.175)2

7

=

6.355
7
= 0.908

The standard deviation is simply the square root of the variance. Since
the variance is a representation of the average squared distance, the stan-
dard deviation provides a value interpretable with respect to the scale of the
original observations. With the same notation for a sample of n observations,
the sample standard deviation s is found by taking the square root of Equa-
tion (13.3).

sx =
√

s2
=

√

√

1
n − 1

n
∑

i=1

(xi − x̄)2 (13.4)
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For example, based on the sample variance calculated earlier, the stan-
dard deviation of the eight hypothetical observations is as follows (to three
decimal places): √

0.908 = 0.953

Thus, a rough way to interpret this is that 0.953 represents the average
distance of each observation from the mean.

Unlike the variance and standard deviation, the interquartile range (IQR)
is not computed with respect to the sample mean. The IQR measures the
width of the “middle 50 percent” of the data, that is, the range of values that
lie within a 25 percent quartile on either side of the median. As such, the
IQR is computed as the difference between the upper and lower quartiles of
your data. Formally, where Qx ( · ) denotes the quantile function (as defined
in Section 13.2.3), the IQR is given as

IQRx = Qx (0.75) −Qx (0.25) (13.5)

The direct R commands for computing these measures of spread are var

(variance), sd (standard deviation), and IQR (interquartile range).

R> var(xdata)

[1] 0.9078571

R> sd(xdata)

[1] 0.9528154

R> IQR(xdata)

[1] 1.25

You can confirm the relationship between the sample variance and stan-
dard deviation using the square root function sqrt on the result from var,
and you can reproduce the IQR by calculating the difference between the
third and first quartiles.

R> sqrt(var(xdata))

[1] 0.9528154

R> as.numeric(quantile(xdata,0.75)-quantile(xdata,0.25))

[1] 1.25

Note that as.numeric (see Section 6.2.4) strips away the percentile
annotations (that label the results by default) from the returned object
of quantile.

Now, do the same with the ydata observations that had the same arith-
metic mean as xdata. The calculations give you the following:

R> sd(ydata)

[1] 2.012639

R> IQR(ydata)

[1] 1.6
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ydata is on the same scale as xdata, so the results confirm what you can
see in Figure 13-3—that the observations in the former are more spread out
than in the latter.

For two quick final examples, let’s return again to the chickwts and
quakes data sets. In Section 13.2.1, you saw that the mean weight of all the
chicks is 261.3099 grams. You can now find that the standard deviation of
the weights is as follows:

R> sd(chickwts$weight)

[1] 78.0737

Informally, this implies that the weight of each chick is, on average,
around 78.1 grams away from the mean weight (technically, though, remem-
ber it is merely the square root of a function of the squared distances—see
the following note).

In Section 13.2.3, you used summary to obtain the five-number sum-
mary of the magnitudes of some of the earthquakes in the quakes data set.
Looking at the first and third quartiles in these earlier results (4.4 and 4.9,
respectively), you can quickly determine that the IQR of this subset of the
events is 0.5. This can be confirmed using IQR.

R> IQR(quakes$mag[quakes$depth<400])

[1] 0.5

This gives you the width, in units of the Richter scale, of the middle
50 percent of the observations.

NOTE The definition of the variance (and hence the standard deviation) here has referred
exclusively to the “sample estimator,” the default in R, which uses the divisor of n − 1
in the formula. This is the formula used when the observations at hand represent a
sample of an assumed larger population. In these cases, use of the divisor n − 1 is
more accurate, providing what’s known as an unbiased estimate of the true popu-
lation value. Thus, you aren’t exactly calculating the “average squared distance,”
though it can loosely be thought of as such and does indeed approach this as the
sample size n increases.

Exercise 13.3

a. Using the chickwts data frame, compute the 10th, 30th, and
90th percentiles of all the chick weights and then use tapply to
determine which feed type is associated with the highest sample
variance of weights.
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b. Turn to the seismic event data in quakes and complete the follow-
ing tasks:
i. Find the IQR of the recorded depths.
ii. Find the five-number summary of all magnitudes of seismic

events that occur at a depth of 400 km or deeper. Compare
this to the summary values found in Section 13.2.3 of those
events occurring at less than 400 km and briefly comment
on what you notice.

iii. Use your knowledge of cut (Section 4.3.3) to create a new
factor vector called depthcat that identifies four evenly
spaced categories of quakes$depth so that when you use
levels(depthcat), it gives the following:

R> levels(depthcat)

[1] "[40,200)" "[200,360)" "[360,520)" "[520,680]"

iv. Find the sample mean and standard deviation of the mag-
nitudes of the events associated with each category of depth
according to depthcat.

v. Use tapply to compute the 0.8th quantile of the magnitudes
of the seismic events in quakes, split by depthcat.

13.2.5 Covariance and Correlation
When analyzing data, it’s often useful to be able to investigate the rela-
tionship between two numeric variables to assess trends. For example, you
might expect height and weight observations to have a noticeable positive
relationship—taller people tend to weigh more. Conversely, you might imag-
ine that handspan and length of hair would have less of an association. One
of the simplest and most common ways such associations are quantified
and compared is through the idea of correlation, for which you need the
covariance.

The covariance expresses how much two numeric variables “change
together” and the nature of that relationship, whether it is positive or neg-
ative. Suppose for n individuals you have a sample of observations for two
variables, labeled x = {x1, x2, . . . , xn } and y = {y1, y2, . . . , yn }, where xi corre-
sponds to yi for i = 1, . . . ,n. The sample covariance rxy is computed with the
following, where x̄ and ȳ represent the respective sample means of both sets
of observations:

rxy =
1

n − 1

n
∑

i−1

(xi − x̄)(yi − ȳ) (13.6)

When you get a positive result for rxy , it shows that there is a positive lin-
ear relationship—as x increases, y increases. When you get a negative result,
it shows a negative linear relationship—as x increases, y decreases, and
vice versa. When rxy = 0, this indicates that there is no linear relationship
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between the values of x and y. It is useful to note that the order of the vari-
ables in the formula itself doesn’t matter; in other words, rxy ≡ ryx .

To demonstrate, let’s use the original eight illustrative observations,
which I’ll denote here with x = {2,4.4,3,3,2,2.2,2,4}, and the additional
eight observations denoted with y = {1,4.4,1,3,2,2.2,2,7}. Remember that
both x and y have sample means of 2.825. The sample covariance of these
two sets of observations is as follows (rounded to three decimal places):

(2 − 2.825) × (1 − 2.285) + . . . + (4 − 2.825) × (7 − 2.825)

7

=

(−0.825)(−1.825) + . . . + (1.175)(4.175)

7

=

10.355
7

= 1.479

The figure is a positive number, so this suggests there is a positive rela-
tionship based on the observations in x and y.

Correlation allows you to interpret the covariance further by identifying
both the direction and the strength of any association. There are different
types of correlation coefficients, but the most common of these is Pearson’s
product-moment correlation coefficient, the default implemented by R (this is
the estimator I will use in this chapter). Pearson’s sample correlation coef-
ficient ρxy is computed by dividing the sample covariance by the product of
the standard deviation of each data set. Formally, where rxy corresponds to
Equation (13.6) and sx and sy to Equation (13.4),

ρxy =
rxy

sx sy
, (13.7)

which ensures that −1 ≤ ρxy ≤ 1.
When ρxy = −1, a perfect negative linear relationship exists. Any result

less than zero shows a negative relationship, and the relationship gets weaker
the nearer to zero the coefficient gets, until ρxy = 0, showing no relation-
ship at all. As the coefficient increases above zero, a positive relationship is
shown, until ρxy = 1, which is a perfect positive linear relationship.

If you take the standard deviations already computed for x and y in Sec-
tion 13.2.4 (sx = 0.953 and sy = 2.013 to three decimal places), you find the
following to three decimal places:

1.479
0.953 × 2.013

= 0.771

ρxy is positive just like rxy ; the value of 0.771 indicates a moderate-
to-strong positive association between the observations in x and y. Again,
ρxy ≡ ρyx .

The R commands cov and cor are used for the sample covariance and
correlation; you need only to supply the two corresponding vectors of data.

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)

R> ydata <- c(1,4.4,1,3,2,2.2,2,7)
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R> cov(xdata,ydata)

[1] 1.479286

R> cov(xdata,ydata)/(sd(xdata)*sd(ydata))

[1] 0.7713962

R> cor(xdata,ydata)

[1] 0.7713962

You can plot these bivariate observations as a coordinate-based plot (a
scatterplot—see more examples in Section 14.4). Executing the following
gives you Figure 13-4:

R> plot(xdata,ydata,pch=13,cex=1.5)

Figure 13-4: Plotting the xdata and ydata observations
as bivariate data points to illustrate the interpretation
of the correlation coefficient

As discussed earlier, the correlation coefficient estimates the nature
of the linear relationship between two sets of observations, so if you look at
the pattern formed by the points in Figure 13-4 and imagine drawing a per-
fectly straight line that best represents all the points, you can determine the
strength of the linear association by how close those points are to your line.
Points closer to a perfect straight line will have a value of ρxy closer to either
−1 or 1. The direction is determined by how the line is sloped—an increas-
ing trend, with the line sloping upward toward the right, indicates positive
correlation; a negative trend would be shown by the line sloping downward
toward the right. Considering this, you can see that the estimated correla-
tion coefficient for the data plotted in Figure 13-4 makes sense according
to the previous calculations. The points do appear to increase together as
a rough straight line in terms of the values in xdata and ydata, but this lin-
ear association is by no means perfect. How you can compute the “ideal” or
“best” straight line to fit such data is discussed in Chapter 20.
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To aid your understanding of the idea of correlation, Figure 13-5 dis-
plays different scatterplots, each showing 100 points. These observations
have been randomly and artificially generated to follow preset “true” values
of ρxy , labeled above each plot.

Figure 13-5: Artificial x and y observations, generated to illustrate a given value of the
correlation coefficient

The first row of scatterplots shows negatively correlated data; the sec-
ond shows positively correlated data. These match what you would expect to
see—the direction of the line shows the negative or positive correlation of
the trend, and the extremity of the coefficient corresponds to the closeness
to a “perfect line.”

The third and final row shows data sets generated with a correlation
coefficient set to zero, implying no linear relationship between the observa-
tions in x and y. The middle and rightmost plots are particularly important
because they highlight the fact that Pearson’s correlation coefficient identi-
fies only “straight-line” relationships; these last two plots clearly show some
kind of trend or pattern, but this particular statistic cannot be used to detect
such a trend.
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To wrap up this section, look again at the quakes data. Two of the vari-
ables are mag (the magnitude of each event) and stations (the number of
stations that reported detection of the event). A plot of stations on the y-axis
against mag on the x-axis can be produced with the following:

R> plot(quakes$mag,quakes$stations,xlab="Magnitude",ylab="No. of stations")

Figure 13-6 shows this image.

Figure 13-6: Plotting the number of stations reporting
the event (y) and the magnitude (x) of each event
in the quakes data frame

You can see by the vertical patterning that the magnitudes appear to
have been recorded to a certain specific level of precision (this is owed to
the difficulty associated with measuring earthquake magnitudes exactly).
Nevertheless, a positive relationship (more stations tend to detect events of
higher magnitude) is clearly visible in the scatterplot, a feature that is con-
firmed by a positive covariance.

R> cov(quakes$mag,quakes$stations)

[1] 7.508181

As you might expect from examining the pattern, Pearson’s correlation
coefficient confirms that the linear association is quite strong.

R> cor(quakes$mag,quakes$stations)

[1] 0.8511824

NOTE It is important to remember that correlation does not imply causation. When
you detect a high correlative effect between two variables, this does not mean that one
causes the other. Causation is difficult to prove in even the most controlled situations.
Correlation merely allows you to measure association.
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As mentioned earlier, there are other representations of correlation that
can be used; rank coefficients, such as Spearman’s and Kendall’s correlation
coefficients, differ from Pearson’s estimate in that they do not require the
relationship to be linear. These are also available through the cor function
by accessing the optional method argument (see ?cor for details). Pearson’s
correlation coefficient is the most commonly used, however, and is related
to linear regression methods, which you’ll start to examine in Chapter 20.

13.2.6 Outliers
An outlier is an observation that does not appear to “fit” with the rest of the
data. It is a noticeably extreme value when compared with the bulk of the
data, in other words, an anomaly. In some cases, you might suspect that such
an extreme observation has not actually come from the same mechanism
that generated the other observations, but there is no hard-and-fast numeric
rule as to what constitutes an outlier. For example, consider the 10 hypo-
thetical data points in foo.

R> foo <- c(0.6,-0.6,0.1,-0.2,-1.0,0.4,0.3,-1.8,1.1,6.0)

Using skills from Chapter 7 (and from creating Figure 13-3), you can
plot foo on a line as follows.

R> plot(foo,rep(0,10),yaxt="n",ylab="",bty="n",cex=2,cex.axis=1.5,cex.lab=1.5)

R> abline(h=0,col="gray",lty=2)

R> arrows(5,0.5,5.9,0.1,lwd=2)

R> text(5,0.7,labels="outlier?",cex=3)

The result is given on the left of Figure 13-7.

Figure 13-7: Illustrating the definition of outliers for univariate (left) and bivariate (right)
data. Should you include such values in your statistical analysis? The answer can be
difficult to determine.
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From this plot, you see that most of the observations are centered
around zero, but one value is way out at 6. To give a bivariate example, I’ll
use two further vectors, bar and baz, shown here:

R> bar <- c(0.1,0.3,1.3,0.6,0.2,-1.7,0.8,0.9,-0.8,-1.0)

R> baz <- c(-0.3,0.9,2.8,2.3,1.2,-4.1,-0.4,4.1,-2.3,-100.0)

I’ll plot these data using the following code; the result is on the right of
Figure 13-7.

R> plot(bar,baz,axes=T,cex=2,cex.axis=1.5,cex.lab=1.5)

R> arrows(-0.5,-80,-0.94,-97,lwd=2)

R> text(-0.45,-74,labels="outlier?",cex=3)

It’s important to identify outliers because of the potential impact they
can have on any statistical calculations or model fitting. For this reason,
many researchers will try to identify possible outliers before computing
results by conducting an “exploratory” analysis of their data using basic
summary statistics and data visualization tools (like those you’ll look at in
Chapter 14).

Outliers can occur naturally, where the outlier is a “true” or accurate
observation recorded from the population, or unnaturally, where something
has “contaminated” that particular contribution to the sample, such as incor-
rectly inputting data. As such, it is common to omit any outliers occurring
through unnatural sources prior to analysis, but in practice this is not always
easy because the cause of an outlier can be difficult to determine. In some
cases, researchers conduct their analysis both ways—presenting results
including and excluding any perceived outliers.

With this in mind, if you return to the example shown on the left in
Figure 13-7, you can see that when you include all observations, you get the
following:

R> mean(foo)

[1] 0.49

However, when the possible outlier of 6 (the 10th observation) is
deleted, you get the following:

R> mean(foo[-10])

[1] -0.1222222

This highlights the impact a single extreme observation can have. With-
out any additional information about the sample, it would be difficult to
say whether it’s sensible to exclude the outlier 6. The same kind of effect
is noticeable if you compute, say, the correlation coefficient of bar with baz,
shown on the right in Figure 13-7 (again, it’s the 10th observation that is the
possible outlier).
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R> cor(bar,baz)

[1] 0.4566361

R> cor(bar[-10],baz[-10])

[1] 0.8898639

You see the correlation becomes much stronger without that outlier.
Again, knowing whether to delete the outlier can be hard to correctly

gauge in practice. At this stage, it’s important simply to be aware of the
impact outliers can have on an analysis and to perform at least a cursory
inspection of the raw data before beginning more rigorous statistical
investigations.

NOTE The extent of the effect that extreme observations have on your data analysis depends
not only on their extremity but on the statistics you intend to calculate. The sample
mean, for example, is highly sensitive to outliers and will differ greatly when includ-
ing or excluding them, so any statistic that depends on the mean, like the variance or
covariance, will be affected too. Quantiles and related statistics, such as the median
or IQR, are relatively unaffected by outliers. In statistical parlance this property is
referred to as robustness.

Exercise 13.4

a. In Exercise 7.1 (b) on page 139, you plotted height against
weight measurements. Compute the correlation coefficient
based on the observed data of these two variables.

b. Another of R’s built-in, ready-to-use data sets is mtcars, contain-
ing a number of descriptive details on performance aspects of
32 automobiles.
i. Ensure you can access this data frame by entering mtcars at

the prompt. Then inspect its help file to get an idea of the
types of data present.

ii. Two of the variables describe a vehicle’s horsepower and
shortest time taken to travel a quarter-mile distance. Using
base R graphics, plot these two data vectors with horsepower
on the x-axis and compute the correlation coefficient.

iii. Identify the variable in mtcars that corresponds to transmis-
sion type. Use your knowledge of factors in R to create a new
factor from this variable called tranfac, where manual cars
should be labeled "manual" and automatic cars "auto".

iv. Now, use qplot from ggplot2 in conjunction with tranfac to
produce the same scatterplot as in (ii) so that you’re able to
visually differentiate between manual and automatic cars.
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v. Finally, compute separate correlation coefficients for horse-
power and quarter-mile time based on the transmission of
the vehicles and, comparing these estimates with the overall
value from (ii), briefly comment on what you note.

c. Return to chickwts to complete the following tasks:
i. Produce a plot like the left panel of Figure 13-7, based on the

weights of chicks on the sunflower diet only. Note that one
of the sunflower-fed chicks has a far lower weight than the
others.

ii. Compute the standard deviation and IQR of the weights of
the sunflower-fed chicks.

iii. Now, suppose you’re told that the lowest weight of the
sunflower-fed chicks was caused by a certain illness, irrele-
vant to your research. Delete this observation and recalculate
the standard deviation and IQR of the remaining sunflower
chicks. Briefly comment on the difference in calculated
values.

Important Code in This Chapter

Function/operator Brief description First occurrence

mean Arithmetic mean Section 13.2.1, p. 268
median Median Section 13.2.1, p. 268
table Tabulate frequencies Section 13.2.1, p. 268
min, max, range Minimum and maximum Section 13.2.1, p. 268
round Round numeric values Section 13.2.2, p. 272
quantile Quantiles/percentiles Section 13.2.3, p. 274
summary Five-number summary Section 13.2.3, p. 275
jitter Jitter points in plotting Section 13.2.4, p. 276
var, sd Variance, standard deviation Section 13.2.4, p. 278
IQR Interquartile range Section 13.2.4, p. 278
cov, cor Covariance, correlation Section 13.2.5, p. 281
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14
BASIC DATA VISUALIZATION

Data visualization is an important part of
a statistical analysis. The visualization tools

appropriate for a given data set are depen-
dent upon the types of variables (as per the def-

initions in Sections 13.1.1 and 13.1.2) for which you’ve
made observations. In this chapter, you’ll look at the
most commonly used data plots in statistical analy-
ses and see examples using both base R graphics and
ggplot2 functionality.

14.1 Barplots and Pie Charts

Barplots and pie charts are commonly used to visualize qualitative data
by category frequency. In this section you’ll learn how to generate both
using R.

14.1.1 Building a Barplot
A barplot draws either vertical or horizontal bars, typically separated by white
space, to visualize frequencies according to the relevant categories. Though



the raw frequencies themselves are usually displayed, a barplot can also
be used to visualize other quantities, such as means or proportions, which
directly depend upon these frequencies.

As an example, let’s use the mtcars data set from Exercise 13.4 (b) on
page 287. Detailing various characteristics of 32 classic performance cars in
the mid-1970s, the first five records can be viewed directly from the prompt.

R> mtcars[1:5,]

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

The documentation in ?mtcars explains the variables that have been
recorded. Of these, cyl provides the number of cylinders in each engine—
four, six, or eight. To find out how many cars were observed with each num-
ber of cylinders, you can use table, as shown here:

R> cyl.freq <- table(mtcars$cyl)

R> cyl.freq

4 6 8

11 7 14

The result is easily displayed as a barplot, as shown here:

R> barplot(cyl.freq)

You can find the resulting barplot on the left of Figure 14-1.

Figure 14-1: Two examples of barplots of data from mtcars using base R graphics.
Left: The simplest, default version, using one categorical variable. Right: A “dodged”
barplot illustrating various visual options and using two categorical variables.
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This plot displays the number of four-, six-, and eight-cylinder cars in the
data set but is admittedly rather uninteresting, and without annotations it’s
not clear what’s being summarized. Fortunately, it’s easy to annotate such
plots and further split up the frequencies of each bar according to an addi-
tional categorical variable. Consider the following code where, this time,
you’re finding the counts associated with cyl by transmission (am):

R> table(mtcars$cyl[mtcars$am==0])

4 6 8

3 4 12

R> table(mtcars$cyl[mtcars$am==1])

4 6 8

8 3 2

If you aim to produce a barplot that’s stacked (where bars are split up
vertically) or dodged (where bars are broken up and placed beside each
other), barplot requests its first argument as a suitably arranged matrix. You
could construct it from the previous two vectors using matrix, but it’s easier
to just continue using table.

R> cyl.freq.matrix <- table(mtcars$am,mtcars$cyl)

R> cyl.freq.matrix

4 6 8

0 3 4 12

1 8 3 2

As you can see, you can cross-tabulate counts by supplying two categor-
ical or discrete vectors of equal length to table; the first vector stipulates
row counts, and the second defines the columns. The outcome is a matrix
object; here it’s a 2 × 3 structure providing the quantities of the four-, six-,
and eight-cylinder automatic cars in the first row and the quantities of the
manual cars in the second. The rule is that each column of the barplot will
correspond to a column of the supplied matrix; these will be further split
with respect to each row of the supplied matrix. The plot on the right of
Figure 14-1 is the result of the following code:

R> barplot(cyl.freq.matrix,beside=TRUE,horiz=TRUE,las=1,

main="Performance car counts\nby transmission and cylinders",

names.arg=c("V4","V6","V8"),legend.text=c("auto","manual"),

args.legend=list(x="bottomright"))

The help file ?barplot explains the options here in detail. To label the
bars according to the categories of the column variable of the matrix that
was initially passed to barplot, you use a character vector of the appropriate
length passed to names.arg. The options beside=TRUE and horiz=TRUE select a
dodged, horizontal barplot. If both options were FALSE, a stacked, vertical
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barplot would be selected. The argument las=1 forces the labels on the verti-
cal axis to appear horizontally, rather than parallel to it. The final two argu-
ments, legend.text and args.legend, are used for the legend—you could have
drawn a legend separately as in Section 7.3 via legend, but this way automates
the color assignment to ensure the reference keys match the precise shading
of the bars themselves.

Similar plots may be produced using ggplot2. If you load the installed
package with library("ggplot2") and enter the following, it will produce the
most basic barplot, given on the left of Figure 14-2:

R> qplot(factor(mtcars$cyl),geom="bar")

Note here that the relevant geom is "bar" (or geom_bar if used separately,
as you’ll see in a moment) and that the default mapping variable in qplot

must be supplied as a factor (in mtcars the vector mtcars$cyl is just numeric,
which is fine for barplot, but ggplot2 functionality is a bit more strict).

Figure 14-2: Two examples of barplots of data from mtcars using ggplot2 functionality.
Left: The most simple qplot version, using one categorical variable. Right: A “dodged”
barplot, the same as in Figure 14-1, based on the supply of various additional geoms and
scaling options.

Again, you can create far more complicated images depending upon
what you want to display. To produce a ggplot2 version of the dodged
barplot from 14-1, call the following:

R> qplot(factor(mtcars$cyl),geom="blank",fill=factor(mtcars$am),xlab="",

ylab="",main="Performance car counts\nby transmission and cylinders")

+ geom_bar(position="dodge")

+ scale_x_discrete(labels=c("V4","V6","V8"))

+ scale_y_continuous(breaks=seq(0,12,2))

+ theme_bw() + coord_flip()

+ scale_fill_grey(name="Trans.",labels=c("auto","manual"))

You can find the result on the right in Figure 14-2.
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Note a number of new additions to the basic qplot setup. The default
mapping, by cyl, remains the same as earlier. You further specify that the
bars should be filled according to a factor created by using the transmission
variable am; so, each cyl bar is instructed to split according to that variable.
The initial call to qplot was “empty,” in the sense that geom="blank", and there-
fore drawing begins with the addition of geom_bar to the ggplot2 object. It
becomes a dodged barplot through position="dodge"; as in base R graphics,
the default behavior is to generate a stacked plot. The scale_x_discrete

modifier specifies labels for each category of the default cyl mapping; the
scale_y_continuous modifier is employed to control the axis labels for the
frequencies.

Further, adding theme_bw() to the object changes the visual theme of the
image; in the current example, I’ve chosen to remove the gray background
because it’s too similar in color to the manual car bars. Adding coord_flip to
the object flips the axes and provides horizontal bars rather than the default
vertical style (note that the calls to the scale_ functions are used with respect
to the unflipped image). The default behavior of fill is to use colors, so you
use the scale_fill_grey modifier to force this to be grayscale and to alter the
labels of the automatically generated legend to match at the same time.

The most prominent advantage of using ggplot2 over base R graphics
in this case lies in the fact that you don’t need to manually tabulate counts
or design specific matrix structures of these frequencies—the variable map-
pings do this automatically. For practice, I encourage you to experiment
with this code example, omitting or modifying some of the additions to the
qplot object to assess the impact on the resulting image.

14.1.2 A Quick Pie Chart
The venerable pie chart is an alternative option for visualizing frequency-
based quantities across levels of categorical variables, with appropriately
sized “slices” representing the relative counts of each categorical variable.

R> pie(table(mtcars$cyl),labels=c("V4","V6","V8"),

col=c("white","gray","black"),main="Performance cars by cylinders")

You can find the resulting plot in Figure 14-3.
Though it’s possible to achieve with some effort, there is no direct “pie”

geom in ggplot2. This may, at least in part, be due to the general preference
of statisticians for barplots over pie charts. That fact itself is even summa-
rized in the help file ?pie!

Pie charts are a bad way of displaying information. The eye is good
at judging linear measures and bad at judging relative areas.

Furthermore, barplots are of greater value than pie charts if you want
frequencies split by a second categorical variable or if the levels of a factor are
ordered.
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Figure 14-3: A pie chart of the
frequencies of total cylinders of
the cars in the mtcars data frame

14.2 Histograms

The barplot is intuitively sensible for counting observations in relation to
categorical variables but is of virtually no use if the variable you’re interested
in is numeric-continuous. To visualize the distribution of continuous mea-
surements, you can use a histogram—a tool that’s sometimes confused with
a barplot owing to its similar appearance. A histogram also measures fre-
quencies, but in targeting a numeric-continuous variable, it’s first necessary
to “bin” the observed data, meaning to define intervals and then count the
number of continuous observations that fall within each one. The size of this
interval is known as the binwidth.

For a simple example of a histogram, consider the horsepower data of
the 32 cars in mtcars, given in the fourth column, named hp.

R> mtcars$hp

[1] 110 110 93 110 175 105 245 62 95 123 123 180 180 180 205 215 230 66

[19] 52 65 97 150 150 245 175 66 91 113 264 175 335 109

For this section, define horsepowers of all performance cars from
that era as your population and assume that these observations repre-
sent a sample from that population. Using base R graphics, the hist com-
mand takes a vector of numeric-continuous observations and produces a
histogram, as shown on the left in Figure 14-4.

R> hist(mtcars$hp)
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Figure 14-4: Illustrating the default behavior of hist on the mtcars horsepower data (left);
customizing binwidth, color, and title options, as well as adding markers of centrality
(right)

You can immediately see that the histogram on the left has used bin-
widths of 50 units spanning the range of the data, providing you with a quick
and useful first impression of the distribution of horsepower measurements.
It seems to be centered roughly in the range of 75 to 150, tapering off on
the right (this is known as a right or positive skew; more terminology will be
covered in Section 15.2.4).

The accuracy of a histogram as a representation of the shape of a dis-
tribution of measurements depends solely upon the widths of the intervals
used to bin the data. Binwidths are controlled in hist by the breaks argu-
ment. You can manually set these by supplying a vector, giving each break-
point, to breaks. This is done in the following code by halving the width of
each bin from 50 to 25 and widening the overall range somewhat, using an
evenly spaced sequence.

R> hist(mtcars$hp,breaks=seq(0,400,25),col="gray",main="Horsepower",xlab="HP")

R> abline(v=c(mean(mtcars$hp),median(mtcars$hp)),lty=c(2,3),lwd=2)

R> legend("topright",legend=c("mean HP","median HP"),lty=c(2,3),lwd=2)

This plot, given on the right in Figure 14-4, shows the result of using the
narrower bins, as well as making the bars gray and adding a more readable
title. It also includes vertical lines denoting the mean and median, using
abline, and a legend (refer back to Section 7.3).

With the smaller binwidth, more detail is visible in the distribution.
However, using narrower bins risks highlighting “unimportant features”
(in other words, features of the histogram that represent natural varia-
tion as a consequence of the finite-sized sample). These typically occur at
locations on the scale where data are scarce. For example, the single 335
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horsepower car has produced an isolated bar on the right of the scale, but
you might reasonably conclude that this is not a precise, accurate reflec-
tion of a “true bump” at that location in terms of the overall population. It’s
therefore important to note that choosing the interval widths is a balancing
act of sorts.

You want to choose a width that gives you a good idea of the distribution
of measurements without emphasizing unimportant detail by using too small
a binwidth. Equivalently, you also want to avoid hiding important features
by using too large a binwidth. To address this, there are data-driven algo-
rithms that use the scale of the recorded observations to try to calculate an
appropriately balanced binwidth. You can supply a character string to breaks,
giving the name of the algorithm that you want to employ. The default
breaks="Sturges" often works well, though it’s worth trying a small number
of alternative widths when exploring data in this way. For further details on
this and other ways to use breaks, the documentation ?hist provides clear
and concise instruction.

The issues surrounding intervals and their widths is emphasized in a dif-
ferent way in ggplot2. By default, the qplot function produces a histogram
when you supply it with a single numeric vector but no value for the geom

argument:

R> qplot(mtcars$hp)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

You can find the result on the left in Figure 14-5. Note, however, that a
notification from qplot concerning the binwidths is printed to the console.

Figure 14-5: Illustrating the default behavior of qplot on the mtcars horsepower data
(left); customizing binwidth, color, and title options, as well as adding markers of centrality
(right)
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If you don’t explicitly specify the bins, exactly 30 intervals will be used
to span the range of the data. Inspecting the relevant geom documentation
given with a call to ?geom_histogram tells you the following:

By default, stat_bin uses 30 bins. This is not a good default, but the
idea is to get you experimenting with different binwidths. You may
need to look at a few to uncover the full story behind your data.

So, rather than defaulting to a data-driven algorithm such as hist,
ggplot2 encourages users to become aware of the issue and actively set their
own binwidths. You can see that 30 bins yields inappropriately narrow inter-
vals for this example—there are many gaps where no observations have
fallen. There are a number of ways to choose histogram intervals in qplot,
one of which is to use breaks as earlier, supplying it with an appropriate
numeric vector of interval endpoints. To re-create the plot on the right of
Figure 14-4 using ggplot2 functionality, use the following code, which pro-
duces the right-hand plot in Figure 14-5:

R> qplot(mtcars$hp,geom="blank",main="Horsepower",xlab="HP")

+ geom_histogram(color="black",fill="white",breaks=seq(0,400,25),

closed="right")

+ geom_vline(mapping=aes(xintercept=c(mean(mtcars$hp),median(mtcars$hp)),

linetype=factor(c("mean","median"))),show.legend=TRUE)

+ scale_linetype_manual(values=c(2,3)) + labs(linetype="")

Starting with a "blank" geom, geom_histogram completes most of the work,
with color governing the bar outline color and fill the internal color of the
bars. The argument closed="right" determines that each interval is “closed”
(in other words, exclusive) on the right and “open” (in other words, inclu-
sive) on the left, the same as the default noted in ?hist. The geom_vline func-
tion is used to add the vertical mean and median lines; here, the mapping

must be instructed to change using aes and the locations of these lines. To
ensure a correctly labeled legend is created for the mean and median, you
must also instruct linetype in aes to be mapped to the desired values. In this
case, this is simply a factor comprised of the two desired “levels.”

Since you’re manually adding these lines and the associated map-
ping to the ggplot2 object, the legend itself must be instructed to appear
with show.legend=TRUE. By default, the two lines will be drawn lty=1 (solid)
and lty=2 (dashed), but to match the earlier plot, you want lty=2 and
lty=3 (dotted). You can add the scale_linetype_manual modifier to make
this change; the desired line type numbers are passed as a vector to values.
Finally, to suppress the automatic inclusion of a title for your manually
added legend, the labs(linetype="") addition instructs the scale associated
with the variable mapped to linetype in the aes call to be displayed without
this title.
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The choice between using ggplot2 and base R graphics often comes
down to your intended goal. For automated handling of graphics, espe-
cially where categorical variables are used to separate subsets of the data
set, ggplot2 is particularly powerful. On the other hand, if you require man-
ual control over the creation of a given image, traditional R graphics can
be easier to handle, and you don’t need to keep track of multiple aesthetic
variable mappings.

14.3 Box-and-Whisker Plots

An especially popular alternative to the histogram is the box-and-whisker plot,
or simply boxplot for short. This is merely a visual representation of the five-
number summary discussed in Section 13.2.3.

14.3.1 Stand-Alone Boxplots
Let’s return to the built-in quakes data frame of the 1,000 seismic events near
Fiji. For the sake of comparison, you can examine both a histogram and a
boxplot of the magnitudes of these events using default base R behavior.
The following code produces the images given in Figure 14-6:

R> hist(quakes$mag)

R> boxplot(quakes$mag)

Figure 14-6: Default histogram (left) and boxplot (right) of the magnitude data from
quakes. On the boxplot, commentary (superimposed externally) points out the key informa-
tion displayed.

Like the histogram, a boxplot shows important features of the distribu-
tion, such as global (in other words, overall) centrality, spread, and skew-
ness. It’s not really possible to see local features, such as multiple significant
peaks in the distribution, however. As the labeling arrows point out, the line
in the middle of the box represents the median, the lower and upper edges
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of the box show the respective quartiles, perpendicular lines (the whiskers)
extending from the box indicate the minimum and the maximum, and any
dots drawn beyond the whiskers are deemed to be points of extremity or out-
liers. By default, boxplot defines an outlier as an observation that lies more
than 1.5 times the IQR below the lower quartile or above the upper quartile.
This is done to prevent the whiskers from extending too far and overempha-
sizing any skew. Thus, the “maximum” and “minimum” values marked by the
whiskers are not always the raw, overall maximum or minimum values in the
data set because a value that has been deemed an “outlier” might actually
represent the highest or lowest value. You can control the nature of this clas-
sification via the range argument in boxplot, though the default of range=1.5 is
usually sensible for basic data exploration.

14.3.2 Side-by-Side Boxplots
One particularly pleasing aspect of these plots is the ease with which you
can compare the five-number summary distributions of different groups
with side-by-side boxplots. Again using the quakes data, define the following
corresponding factor and inspect the first five elements (review use of the
cut command from Section 4.3.3 if necessary):

R> stations.fac <- cut(quakes$stations,breaks=c(0,50,100,150))

R> stations.fac[1:5]

[1] (0,50] (0,50] (0,50] (0,50] (0,50]

Levels: (0,50] (50,100] (100,150]

Recall that the stations variable records how many monitoring stations
detected each event. This code has produced a factor breaking up these
observations into one of three groups—events detected by 50 stations or
fewer, between 51 and 100 stations, and between 101 and 150 stations. Thus,
you can compare the distributions of the magnitudes of the events accord-
ing to these three groups. The following line produces the left image of
Figure 14-7:

R> boxplot(quakes$mag~stations.fac,

xlab="# stations detected",ylab="Magnitude",col="gray")

With this line of code, you should note new syntax in the form of a
tilde, ~, shown here in quakes$mag~stations.fac. You can read the ~ as “on,”
“by,” or “according to” (you’ll use the tilde notation frequently in Chap-
ters 20 through 22). Here you’re instructing boxplot to plot quakes$mag accord-
ing to station.fac so that a separate boxplot is produced for each group, nat-
urally given in the order listed in the grouping factor. Optional arguments
are also employed to control axis labeling and box color. Your interpreta-
tion of this plot mirrors what you can see in Figure 13-6, in that the higher
the recorded magnitude, the more stations that detected a given seismic
event.
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Figure 14-7: Side-by-side boxplots of the quakes magnitudes, split by the three groups
identified by station.fac, using base R graphics (left) and ggplot2 functionality (right)

Turning to ggplot2 functionality, qplot can produce the same type of plot
easily, with the following producing the image on the right in Figure 14-7:

R> qplot(stations.fac,quakes$mag,geom="boxplot",

xlab="# stations detected",ylab="Magnitude")

The default boxplots look a little different, though you can make the
same interpretations. In this use of qplot, you supply the boxplot grouping
factor as the x-axis variable (first argument) and the continuous variable for
which you require boxplots as the y-axis variable (second argument). Here
I’ve explicitly set geom="boxplot" to ensure a boxplot display, and I’ve added
axis labels.

14.4 Scatterplots

A scatterplot is most frequently used to identify a relationship between the
observed values of two different numeric-continuous variables, displayed as
x-y coordinate plots. The coordinate-wise nature of base R graphics lends
itself naturally to the creation of scatterplots, so you’ve seen several examples
already in this book. However, not every x-y coordinate-based plot is always
called a scatterplot; a scatterplot usually assumes there is some “relation-
ship of interest” present. For example, a plot of spatial coordinates like
Figure 13-1 might not be regarded as a scatterplot, but a plot of the earth-
quake magnitude against the number of stations detecting the event, like
Figure 13-6, would be.

I’ll finish this chapter by expanding on how you can use scatterplots to
explore more than two continuous variables. To do this, let’s access another
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ready-to-use R data set, namely, the famous iris data. Collected in the mid-
1930s, this data frame of 150 rows and 5 columns consists of petal and sepal
measurements for three species of perennial iris flowers—Iris setosa, Iris vir-
ginica, and Iris versicolor (Anderson, 1935; Fisher, 1936). You can view the
first five records here:

R> iris[1:5,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

Looking through ?iris, you can see that there are 50 observations for
each variable, recorded in centimeters (cm), for each species.

14.4.1 Single Plot
You can modify a simple scatterplot to split the plotted points according to a
categorical variable, exposing potential differences between any visible rela-
tionships with respect to the continuous variables. For example, using base
R graphics, you can examine the petal measurements according to the three
species. Using the “stepping-stone” approach first explained in Chapter 7,
you can manually build up this plot by first using type="n" to generate an
empty plotting region of the correct dimensions and subsequently adding
the points corresponding to each species, altering point character and color
as desired.

R> plot(iris[,4],iris[,3],type="n",xlab="Petal Width (cm)",

ylab="Petal Length (cm)")

R> points(iris[iris$Species=="setosa",4],

iris[iris$Species=="setosa",3],pch=19,col="black")

R> points(iris[iris$Species=="virginica",4],

iris[iris$Species=="virginica",3],pch=19,col="gray")

R> points(iris[iris$Species=="versicolor",4],

iris[iris$Species=="versicolor",3],pch=1,col="black")

R> legend("topleft",legend=c("setosa","virginica","versicolor"),

col=c("black","gray","black"),pch=c(19,19,1))

You can find the plot in Figure 14-8. Note that the Iris virginica
species has the largest petals, followed by Iris versicolor, and the smallest
petals belong to Iris setosa. However, this code, while functional, is fairly
cumbersome. You can generate the same image more simply by first setting
up vectors that specify the desired point character and color for each individ-
ual observation.
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Figure 14-8: A scatterplot of petal measurements
split by species from the built-in iris data frame

Consider the two objects created here:

R> iris_pch <- rep(19,nrow(iris))

R> iris_pch[iris$Species=="versicolor"] <- 1

R> iris_col <- rep("black",nrow(iris))

R> iris_col[iris$Species=="virginica"] <- "gray"

The first line creates a vector iris_pch of equal length to the number
of observations in iris, with every entry being 19. Vector subsetting then
overwrites the entries corresponding to Iris versicolor and sets the point char-
acter to 1. The same steps are followed to create iris_col; first an appropri-
ately sized vector is filled with the character strings "black", and then those
entries corresponding to Iris virginica are overwritten and set to "gray". With
that, note that the single line shown next, when followed by the same call to
legend as earlier, will produce an identical plot:

R> plot(iris[,4],iris[,3],col=iris_col,pch=iris_pch,

xlab="Petal Width (cm)",ylab="Petal Length (cm)")

14.4.2 Matrix of Plots
The “single” type of planar scatterplot is really useful only when comparing
two numeric-continuous variables. When there are more continuous vari-
ables of interest, it isn’t possible to display this information satisfactorily on
a single plot. A simple and common solution is to generate a two-variable
scatterplot for each pair of variables and show them together in a structured
way; this is referred to as a scatterplot matrix. Making use of the iris_pch and
iris_col vectors created earlier, you can generate a scatterplot matrix for all
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four continuous variables in iris, retaining the distinction between species.
Working with base R graphics, use the pairs function.

R> pairs(iris[,1:4],pch=iris_pch,col=iris_col,cex=0.75)

You can find the result of this line in Figure 14-9.

Figure 14-9: A scatterplot matrix with respect to all
four continuous measurements in the data frame

The easiest way to use pairs is to supply a matrix or data frame of the
raw observations as its first argument, done here by selecting all columns of
iris except the Species column (iris[,1:4]). The interpretation of the plots
depends upon the labeling of the diagonal panels, running from the top
left to the bottom right. They will appear in the same order as the columns
given as the first argument. These “label panels” allow you to determine
which individual plot in the matrix corresponds to each pair of variables.
For example, the first column of the scatterplot matrix in Figure 14-9 cor-
responds to an x-axis variable of Sepal Length; the third row of the matrix
corresponds to a y-axis variable of Petal Length, and each row and column
displays a scale that is constant moving left/right or up/down, respectively.
This means that plots above the diagonal are mirrored in those below it—
the plot of Petal Width (y) on Sepal Width (x) at position row 4, column 2
displays the same data as the scatterplot at position row 2, column 4 but
flipped on its axes. As such, pairs includes an option to display only those
scatterplots above or below the diagonal, by setting either lower.panel=NULL

or upper.panel=NULL to suppress one or the other.
Scatterplot matrices therefore allow for an easier comparison of the col-

lection of pairwise relationships formed by observations made on multiple
continuous variables. In this matrix, note there’s a strong positive linear
association between petal measurements but a weaker relationship between
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the sepal measurements. Furthermore, although Iris setosa may reasonably
be considered the smallest flower in terms of its petals, the same can’t be
said in terms of its sepals.

For those working with ggplot2, you know that it’s natural to split the
points according to a categorical variable, as in the following example.

R> qplot(iris[,4],iris[,3],xlab="Petal width",ylab="Petal length",

shape=iris$Species)

+ scale_shape_manual(values=4:6) + labs(shape="Species")

You can find the result in Figure 14-10.

Figure 14-10: Using ggplot2 functionality to plot petal dimensions
for the three iris species, with point shape as the aesthetic modifier

Here, I’ve split up the points using the Species variable mapped to
shape (the equivalent of the base R terminology pch), and I’ve modified
the point types using the scale_shape_manual modifier. I’ve also simplified
the title of the automatically generated legend with labs, as done in Sec-
tion 14.2. Scatterplot matrices, however, are not easily achievable using
only ggplot2. To generate a matrix in a ggplot2 style, it’s recommended
that you download the GGally package (Schloerke et al., 2014) to access the
ggpairs function. This package is designed to be an extension or add-on of
ggplot2. It’s installed from CRAN as per usual—for example, by running
install.packages("GGally")—and must be loaded via library("GGally") prior
to use. After this is done, as a quick example, the following code produces
the plot in Figure 14-11:

R> ggpairs(iris,mapping=aes(col=Species),axisLabels="internal")

Though you might see familiar warnings related to the histogram bin-
widths, ggpairs offers an impressive visual array for such a short line of code.
The output not only gives you the lower half of the scatterplot matrix pro-
duced with pairs but also provides equivalent histograms along the bottom
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and boxplots along the right. It also displays the estimates of the correlation
coefficients. As shown, you can map a variable to an aesthetic modifier to
split up the plotted observations based on factor levels. In Figure 14-11, this
is done by color, and you instruct ggpairs to operate on the Species variable.
Documentation found in ?ggpairs gives concise information on the various
options that control the presence and appearance of the individual plots.

Exercise 14.1

Recall the built-in InsectSprays data frame, containing counts of
insects on various agricultural units treated with one of six sprays.

a. Produce a histogram of the counts of insects using base R
graphics.

b. Obtain the total number of insects found according to each spray
(this was also asked in Exercise 13.2 (f) on page 273). Then, use
base R graphics to produce a vertical barplot and a pie chart of
these totals, labeling each plot appropriately.

c. Use ggplot2 functionality to generate side-by-side boxplots of
the counts of insects according to each spray type and include
appropriate axis labels and a title.

Yet another of R’s useful ready-to-use data sets is USArrests, contain-
ing data on the number of arrests for murder, rape, and assault per
100,000 individuals in each of the 50 states of the United States,
recorded in 1973 (see, for example, McNeil, 1977). It also includes
a variable giving the percentage of urban-based population in each
state. Briefly inspect the data frame object and the accompanying
documentation ?USArrests. Then complete the following:

d. Use ggplot2 functionality to generate a right-exclusive histogram
of the proportion of urban population for the states. Set your
breaks to be 10 units each, between 0 and 100. Have the histo-
gram show the first quartile, the median, and the third quartile;
then provide a matching legend. Use colors as you like and
include appropriate axis annotation.

e. The code t(as.matrix(USArrests[,-3])) creates a matrix of the
USArrests data without the urban population column, and the
built-in R object state.abb provides the two-letter state abbrevia-
tions, in alphabetical order, as a character vector. Use these two
structures and base R graphics to produce a horizontal, stacked
barplot with the horizontal bars labeled with state abbreviations
and with each bar split according to the type of crime (murder,
rape, and assault). Include a legend.
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f. Define a new factor vector urbancat that is set to 1 if the corre-
sponding state has an urban population percentage greater than
the median percentage and is set to 0 otherwise.

g. Create a new copy of USArrests in your workspace, after deleting
the UrbanPop column, leaving just the three crime rate variables.
Then insert a new, fourth column in this object with urbancat.

h. Use the data frame from (g) to produce a scatterplot matrix
and other associated plots of the three crime rates against one
another via GGally functionality. Use color to split the crime rates
according to the two levels of urbancat.

Return to the built-in quakes data set.

i. Create a factor vector corresponding to the magnitudes. Each
entry should assume one of three categories based on breaks
marked by the minimum magnitude, the 1

3 th quantile, the 2
3 th

quantile, and the maximum magnitude.

j. Re-create the plot shown next, where low-, medium-, and high-
magnitude events, according to your factor vector from (i), are
plotted with pch being assigned 1, 2, and 3, respectively.

k. Add a legend to the plot from (j) to reference the three pch

values.
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Important Code in This Chapter

Function/operator Brief description First occurrence

barplot Create a barplot Section 14.1.1, p. 290
geom_bar Barplot geom Section 14.1.1, p. 292
scale_x_discrete Modify discrete x -axis (ggplot2) Section 14.1.1, p. 292
scale_y_continuous Modify continuous y -axis Section 14.1.1, p. 292
theme_bw Black-and-white color theme Section 14.1.1, p. 292
coord_flip Switch x - and y -axes Section 14.1.1, p. 292
scale_fill_grey Filled colors as grayscale Section 14.1.1, p. 292
pie Create a pie chart Section 14.1.2, p. 293
hist Create a histogram Section 14.2, p. 294
geom_histogram Histogram geom Section 14.2, p. 297
geom_vline Add vertical lines geom Section 14.2, p. 297
scale_linetype_manual Alter ggplot2 line types Section 14.2, p. 297
labs ggplot2 legend labels Section 14.2, p. 297
boxplot Create boxplots Section 14.3.1, p. 298
~ Plot “according to” Section 14.3.2, p. 299
pairs Scatterplot matrix Section 14.4.2, p. 303
scale_shape_manual Alter ggplot2 point characters Section 14.4.2, p. 304
ggpairs Scatterplot matrix (GGally) Section 14.4.2, p. 304
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15
PROBABILITY

The concept of probability is central to
statistical reasoning. Even the most compli-

cated statistical techniques and models usu-
ally have the ultimate goal of making a proba-

bilistic statement about a phenomenon. In this chap-
ter, I’ll use simple, everyday examples to illustrate this
key idea in preparation for the remaining chapters. If you’re already familiar
with the basics of probability and random variables and the associated ter-
minology, you may want to skip ahead to Chapter 16, where R functionality
begins to feature more prominently.

15.1 What Is a Probability?

A probability is a number that describes the “magnitude of chance” associ-
ated with making a particular observation or statement. It’s always a number
between 0 and 1 (inclusive) and is often expressed as a fraction. Exactly how
you calculate a probability depends on the definition of an event.



15.1.1 Events and Probability
In statistics, an event typically refers to a specific outcome that can occur.
To describe the chance of event A actually occurring, you use a probability,
denoted by Pr(A). At the extremes, Pr(A) = 0 suggests A cannot occur, and
Pr(A) = 1 suggests that A occurs with complete certainty.

Let’s say you roll a six-sided, fair die. Let A be the event “you roll a 5 or
a 6.” You can assume that each outcome on a standard die has a probability
of occurring 1/6 in any given roll. Under these conditions, you have this:

Pr(A) =
1
6
+

1
6
=

1
3

This is what’s known as a frequentist, or classical, probability, and it is
assumed to be the relative frequency with which an event occurs over many
identical, objective trials.

As another example, say you’re married and arrive home much later
than usual. Let B be the event “your significant other is angry” because
of your tardiness. It’s a relatively straightforward process to observe A in
a mathematical sense, but B isn’t so objectively observed, and the quantity
can’t be easily computed. Instead, you might assign a number to Pr(B) given
your own past experience. For example, you might say “I think Pr(B) = 0.5”
if you think there’s a 50-50 chance your partner will be mad, but this would
be based on your personal impressions of the situation and knowledge
of your spouse’s temperament or mood, not on an impartial experiment
that could be easily reproduced for any two individuals. This is known as
a Bayesian probability, which uses prior knowledge or subjective belief to
inform the calculations.

Owing to its naturally implied objectivity, the frequentist interpreta-
tion is the generally assumed definition of probability; you’ll focus on this
kind of probability in this book. If you are interested in getting to grips with
Bayesian analyses using R, Kruschke (2010) represents a well-received text
on the subject.

NOTE Though it is tempting to define the concept of probability in terms of likelihood (and
colloquially, many do), likelihood is taken to mean something slightly different in sta-
tistical theory, so I’ll avoid this term for now.

The way in which you compute probabilities when considering multiple
events is determined by several important rules. These are similar in nature
to the concepts of AND and OR that are key to comparing the logical values
TRUE and FALSE in R via && and || (refer to Section 4.1.3). Just like these logi-
cal comparisons, calculation of probabilities based on several defined events
can usually be broken down into a specific calculation concerning two dis-
tinct events. To serve as a simple running example over the next few sec-
tions, assume you roll a standard die and define event A to be “you roll a 4
or more” and event B to be “you roll an even number.” You can therefore
conclude that both Pr(A) = 1

2 and Pr(B) = 1
2 .
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15.1.2 Conditional Probability
A conditional probability is the probability of one event occurring after taking
into account the occurrence of another event. The quantity Pr(A|B) repre-
sents “the probability that A occurs, given that B has already occurred,” and
vice versa if you write Pr(B |A).

If Pr(A|B) = Pr(A), then the two events are independent; if Pr(A|B) ,

Pr(A), then the two events are dependent. Generally, you can’t assume
that Pr(A|B) is equal to Pr(B |A).

Turn to A and B as defined previously for a roll of a die. You already
know that Pr(A) = 1

2 . Now think of Pr(A|B). What is the probability your
outcome is a 4 or more, given an even number has occurred? Since there are
three even numbers, 2, 4, and 6, the probability that you roll a 4 or more,
assuming an even number had occurred, is 2

3 . Thus, Pr(A|B) , Pr(A) in this
context, and the two events are therefore not independent.

15.1.3 Intersection
The intersection of two events is written as Pr(A ∩ B) and is read as “the prob-
ability that both A and B occur simultaneously.” It is common to represent
this as a Venn diagram, as shown here:

A B

Here, the disc labeled A represents the outcome (or outcomes) that
satisfies A, and disc B represents the outcomes for B. The shaded area rep-
resents the specific outcome (or outcomes) that satisfies both A and B, and
the area outside both discs represents the outcome (or outcomes) that satis-
fies neither A nor B. Theoretically, you have this:

Pr(A ∩ B) = Pr(A|B) × Pr(B) or Pr(B |A) × Pr(A) (15.1)

If Pr(A ∩ B) = 0, then you say the two events are mutually exclusive. In
other words, they cannot occur simultaneously. Also note that if the two
events are independent, then Equation (15.1) simplifies to Pr(A ∩ B) =

Pr(A) × Pr(B).
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Returning to the die example, what is the probability that on a single
toss you roll an even number and it’s a 4 or more? Using the fact that
Pr(A|B) = 2

3 and that Pr(B) = 1
2 , it is easy to compute Pr(A ∩ B) = 2

3 ×
1
2 =

1
3

and confirm this in R if you really want to.

R> (2/3)*(1/2)

[1] 0.3333333

You can see that the two events are not mutually exclusive because
Pr(A ∩ B) , 0. This makes sense—it’s perfectly possible in a die roll to
observe a number that’s both even and at least 4.

15.1.4 Union
The union of two events is written as Pr(A ∪ B) and is read as “the proba-
bility that A or B occurs.” Here is the representation of a union as a Venn
diagram:

A B

Theoretically, you have this:

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) (15.2)

The reason you need to subtract the intersection in this diagram is that
in summing Pr(A) and Pr(B) alone, you’d be incorrectly counting Pr(A ∩ B)

twice. Note, though, that if the two events are mutually exclusive, then Equa-
tion (15.2) does simplify to Pr(A ∪ B) = Pr(A) + Pr(B).

So, in rolling the die, what’s the probability that you observe an
even number or one that’s at least 4? Using (15.2), it’s easy to find that
Pr(A ∪ B) = 1

2 +
1
2 −

1
3 =

2
3 . The following confirms this in R:

R> (1/2)+(1/2)-(1/3)

[1] 0.6666667

15.1.5 Complement
Lastly, the probability of the complement of an event is written as Pr( Ā) and is
read as “the probability that A does not occur.”
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Here it is as a Venn diagram:

A B

From this diagram, you can see the following:

Pr( Ā) = 1 − Pr(A)

Wrapping up the running example, it’s straightforward to find the prob-
ability that you do not roll a 4 or greater: Pr( Ā) = 1 − 1

2 =
1
2 . Naturally, if

a 4, 5, or 6 is not obtained, then you must’ve rolled a 1, 2, or 3, so there are
three possible outcomes left out of the six.

Sure, the die-rolling example may not represent the most pressing need
facing statistical researchers today, but it has provided some clear illustra-
tions of the behavior and terminology associated with the very real rules
of probability. These rules apply across the board and play an important
role in the interpretation of arguably more pressing endeavors in statistical
modeling.

Exercise 15.1

You have a standard deck of 52 playing cards. There are two colors
(black and red) and four suits (spades are black, clubs are black,
hearts are red, and diamonds are red). Each suit has 13 cards, in
which there is an ace, numbered cards from 2 to 10, and three face
cards (jack, queen, and king).

a. You randomly draw and then replace a card. What’s the probabil-
ity it’s an ace? What’s the probability it’s the 4 of spades?

b. You randomly draw a card, and after replacing it, you draw
another. Let A be the event that the card is a club; let B be the
event that the card is red. What is Pr(A|B)? That is, what is the
probability the second card is a club, given the first one was a red
card? Are the two events independent?

c. Repeat (b), this time assuming that when the first (club) card is
drawn, it is not replaced. Would this change your answer to (b)
in terms of independence?
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d. Let C be the event a card is a face card, and let D be the event a
card is black. You draw a single card. Evaluate Pr(C ∩ D). Are the
two events mutually exclusive?

15.2 Random Variables and Probability Distributions

A random variable is a variable whose specific outcomes are assumed to arise
by chance or according to some random or stochastic mechanism.

You’ve already encountered variables—characteristics that describe an
individual entity based on data you’ve observed (Section 13.1). When you’re
considering random variables, however, assume you have not yet made an
observation. The chances of observing a specific value, or one within a spe-
cific interval, for that random variable has associated with it a probability.

It therefore makes sense to think of random variables as being tied to
a function that defines these probabilities, which is referred to as a probabil-
ity distribution. In this section, you’ll look at some elementary ways in which
random variables are summarized and how their corresponding probability
distributions are dealt with statistically.

15.2.1 Realizations
So, the concept of a random variable revolves around the consideration of
the possible outcomes of a variable in a probabilistic fashion. When you’ve
actually made observations of a random variable, these are referred to as
realizations.

Consider the following—suppose you roll your beloved die. Define
the random variable Y to be the result. The possible realizations are Y = 1,
Y = 2, Y = 3, Y = 4, Y = 5, and Y = 6.

Now, let’s say you’re planning to go on a picnic and monitor the max-
imum daily temperature at your preferred spot. Let the random variable
W be the temperature in degrees Fahrenheit you observe there. Techni-
cally, you might say that the possible realizations of W lie in the interval
−∞ < W < ∞.

These examples serve to illustrate two types of random variables. Y is a
discrete random variable; W is a continuous random variable. Whether any given
random variable is discrete or continuous has consequences for the way in
which you think about, and may utilize, the probabilities associated with
making realizations.
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15.2.2 Discrete Random Variables
A discrete random variable follows the same definitions as the variables cov-
ered in Chapter 13. Its realizations can take on only certain precise values,
for which no other degree of measurement accuracy is possible or inter-
pretable. Rolling a standard die can result in only those six distinct possi-
bilities described previously by Y , and it would make no sense to observe,
for example, “5.91.”

From Section 15.1.1, you know a probability is directly tied to defined
outcomes known as events. When discussing a discrete random variable,
events are therefore defined with respect to the distinct possible values the
variable can take, and the corresponding probability distribution is formed
when you consider the range of all the probabilities associated with all
possible realizations.

Probability distributions tied to discrete random variables are called
probability mass functions. Since these define the probabilities of all possible
outcomes, the sum of the probabilities in any complete probability mass
function must always equal exactly 1.

For example, suppose you go into a casino and play a simple gambling
game. At each turn, you can either lose $4 with probability 0.32, break even
(win or lose nothing) with probability 0.48, win $1 with probability 0.15, or
win $8 with probability 0.05. Because these are the only four possible out-
comes, the probabilities sum to 1. Let the discrete random variable X be
defined as the “amount earned” at each turn you have. The distribution
of these probabilities is expressed in Table 15-1; note that the loss of $4 is
represented as a negative earning as per the definition of X .

Table 15-1: Probabilities and Cumulative
Probabilities for the Amount Won, X,
in a Hypothetical Gambling Game

x –4 0 1 8

Pr(X = x) 0.32 0.48 0.15 0.05
Pr(X ≤ x) 0.32 0.80 0.95 1.00

Cumulative Probability Distributions of Discrete Random Variables

The cumulative probability is also an important part of the general idea of a
probability distribution. A cumulative probability for a random variable
X is “the probability of observing less than or equal to x” and written as
Pr(X ≤ x). In the discrete case, you obtain the distribution of cumulative
probabilities by summing the individual probabilities of the mass func-
tion up to and including any given value of x. This is shown in the bottom
row of Table 15-1. For example, though Pr(X = 0) is 0.48, Pr(X ≤ 0) =

0.32 + 0.48 = 0.80.
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Visualizing probability distributions is always useful, and because of the
discrete nature of X , it’s easy to use the barplot function for this. Using skills
from Section 14.1, the following code first stores vectors of the possible out-
comes and corresponding probabilities (X.outcomes and X.prob respectively)
and then produces the left image in Figure 15-1:

R> X.outcomes <- c(-4,0,1,8)

R> X.prob <- c(0.32,0.48,0.15,0.05)

R> barplot(X.prob,ylim=c(0,0.5),names.arg=X.outcomes,space=0,

xlab="x",ylab="Pr(X = x)")

The optional argument space=0 eliminates the gaps between the bars.
Next, you can use the built-in cumsum function to progressively sum the

entries in X.prob, as shown next, giving you the cumulative probabilities:

R> X.cumul <- cumsum(X.prob)

R> X.cumul

[1] 0.32 0.80 0.95 1.00

Lastly, using X.cumul, the cumulative probability distribution can be plot-
ted in the same way as earlier; the following line generates the right panel of
Figure 15-1:

R> barplot(X.cumul,names.arg=X.outcomes,space=0,xlab="x",ylab="Pr(X <= x)")

Figure 15-1: Visualizing the probability distribution associated with event-specific
probabilities of a hypothetical gambling game (left) and the corresponding cumulative
probability distribution (right)
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Generally, it’s important to remember the following for any probability
mass function based on a discrete random variable X :

• There are k distinct outcomes x1, . . . , xk .

• For each xi , where i = {1, . . . , k}, 0 ≤ Pr(X = xi ) ≤ 1.

•
∑k

i=1 Pr(X = xi ) = 1.

Mean and Variance of a Discrete Random Variable

It’s useful to be able describe or summarize properties of a random variable
of interest as you would for raw data. The most useful two properties are the
mean and variance, both of which depend upon the relevant distribution of
probabilities associated with that random variable.

For some discrete random variable X , the mean µX (also referred to as
the expectation or the expected value E[X]) is the “average outcome” that you
can expect over many realizations. Say X has k possible outcomes, labeled
x1, x2, . . ., xk . Then, you have the following:

µX = E[X] = x1 × Pr(X = x1) + . . . + xk × Pr(X = xk )

=

k
∑

i=1

xi Pr(X = xi ) (15.3)

To find the mean, simply multiply the numeric value of each outcome
by its corresponding probability and sum the results.

For a discrete random variable X , the variance σ2
X

, also written as
Var[X], quantifies the variability in the possible realizations of X . Theo-
retically, in terms of expectations, it can be shown that σ2

X
= Var[X] =

E[X2] − E[X]2
= E[X2] − µ2

X
. As you can see, calculation of the discrete

random variable variance depends upon its mean µX and is given as follows:

σ2
X
= Var[X] = (x1 − µX )2 × Pr(X = x1)

+ . . . + (xk − µX )2 × Pr(X = xk )

=

k
∑

i=1

(xi − µX ) Pr(X = xi ) (15.4)

Again, the procedure is straightforward—the variance is computed by
squaring the differences between each realization and mean and then multi-
plying by the corresponding probability of the occurrence before summing
these products.

In practice, the probabilities associated with each outcome are often
unknown and are estimated from observed data. Following that step, you
apply the formulas in (15.3) and (15.4) to obtain estimates of the respective
properties. Also, note that the general descriptions of mean and variance

Probability 317



are the same as in Section 13.2—only you’re now quantifying centrality and
spread with respect to a random phenomenon.

Let’s consider the gambling game with the possible realizations of
the amount earned, X , and the associated probabilities as specified in
Table 15-1. With vector-oriented behavior (refer to Section 2.3.4), using R
to calculate the mean and variance of X is easy. With the objects X.outcomes

and X.prob from earlier, you can get the mean of X from the element-wise
multiplication in the following:

R> mu.X <- sum(X.outcomes*X.prob)

R> mu.X

[1] -0.73

So, µX = −0.73. By the same token, the following provides the variance
of X :

R> var.X <- sum((X.outcomes-mu.X)^2*X.prob)

R> var.X

[1] 7.9371

You can also compute the standard deviation by taking the square root
of the variance (recall the definitions in Section 13.2.4). This is done with
the built-in sqrt command.

R> sd.X <- sqrt(var.X)

R> sd.X

[1] 2.817286

Based on these results, you can make several comments on the gambling
game and its outcomes. The expected outcome of −0.73 suggests that, on
average, you’ll lose $0.73 per turn, with a standard deviation of about $2.82.
These quantities are not, and need not be, one of the specifically defined
outcomes. They describe the behavior of the random mechanism over the
long run.

15.2.3 Continuous Random Variables
Again following from the definitions of variables from Chapter 13, a con-
tinuous random variable has no limit to the number of possible realiza-
tions. For a discrete random variable, it is natural to think of a specific
outcome as an event and assign it a corresponding probability. Things are
a little different when you’re dealing with a continuous random variable,
however. If you take the picnic example in Section 15.2.1, you can see that
even if you restrict the range of possible values of temperature measure-
ment that you assume W could take, say, to between 40 and 90 degrees
Fahrenheit (or, expressed more formally, 40 ≤ W ≤ 90), there are still
an infinite number of distinct values on that continuum. Measuring 59.1
degrees makes as much sense as observing something like 59.16742 degrees.
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As such, it isn’t possible to assign probabilities to specific, single tempera-
tures; instead, you assign a probability to intervals of values. For example,
based on W , asking Pr(W = 55.2)—“What is the probability the tempera-
ture is exactly 55.2 degrees Fahrenheit?”—is not a valid question. However,
asking Pr(W ≤ 55.2)—“What is the probability it’s less than or equal to 55.2
degrees?”—is answerable because it defines an interval.

This is easier to understand if you again think about precisely how the
probabilities will be distributed. With a discrete random variable, you can
straightforwardly envisage its mass function as discrete, namely, something
like Table 15-1, which can be plotted like Figure 15-1. However, with contin-
uous random variables, the function that describes the distribution of prob-
abilities must now therefore be continuous on the range of possible values.
Probabilities are computed as “areas underneath” that continuous func-
tion, and, as with discrete random variables, the “total area” underneath a
continuous probability distribution must evaluate to exactly 1. A probability
distribution tied to a continuous random variable is called a probability density
function.

These facts will become clearer when considering the following
example. Suppose you’re told the probabilities associated with the picnic
temperature random variable 40 ≤ W ≤ 90 follow the density function f (w),
where the following is true:

f (w) =



w−40
625 if 40 ≤ w ≤ 65;

90−w
625 if 65 < w ≤ 90;

0 otherwise.

(15.5)

The division by 625 is needed in this particular function to ensure a
total probability of 1. This will make more sense in a visualization. To plot
this density function, first consider the following code:

R> w <- seq(35,95,by=5)

R> w

[1] 35 40 45 50 55 60 65 70 75 80 85 90 95

R> lower.w <- w>=40 & w<=65

R> lower.w

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

[11] FALSE FALSE FALSE

R> upper.w <- w>65 & w<=90

R> upper.w

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

[11] TRUE TRUE FALSE

The first assignment sets up an even sequence of values to represent cer-
tain realizations of w simply called w; the second assignment uses relational
operators and the element-wise logical operator & to create a logical flag vec-
tor identifying those elements of w that form the “lower half” of values for
f (w) as defined by Equation (15.5); the third assignment does the same for
the “upper half” of values.
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The next lines make use of lower.w and upper.w to evaluate the correct
result of f (w) for the entries in w.

R> fw <- rep(0,length(w))

R> fw[lower.w] <- (w[lower.w]-40)/625

R> fw[upper.w] <- (90-w[upper.w])/625

R> fw

[1] 0.000 0.000 0.008 0.016 0.024 0.032 0.040 0.032 0.024 0.016

[11] 0.008 0.000 0.000

This doesn’t mean you’ve just written an R-coded function to return
f (w) for any w. You’ve merely created the vector w and obtained the cor-
responding values of the mathematical function as the vector fw. However,
these two vectors are sufficient for plotting. Using skills from Chapter 7,
you can plot a line representing the continuous density function f (w) for
35 ≤ w ≤ 95.

R> plot(w,fw,type="l",ylab="f(w)")

R> abline(h=0,col="gray",lty=2)

The plot is given in Figure 15-2; note the addition of a dashed horizon-
tal line at f (w) = 0 using abline.

Figure 15-2: Visualizing the probability density function as defined by Equation (15.5)
for the picnic temperature random variable W (left) and illustrating the computation of a
specific probability from the text (right)

You can see that the continuous function defined by Equation (15.5)
yields a triangular shape, with an apex at w = 65. The increasing line from
w = 40 to w = 65 represents the first of the three components of (15.5),
the decreasing line represents the second component, and for all w < 40
and w > 90, the line sits at zero, which is the third and final component
of (15.5).
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Generally, any function f (w) that defines a probability density for a ran-
dom variable W must possess the following properties:

• f (w) ≥ 0 for all −∞ < w < ∞; and

•
∫ ∞
−∞ f (w) dw = 1 (the total area underneath the function must be 1).

In terms of the temperature example, you can see from (15.5) that
f (w) ≥ 0 for any value of w. To calculate the total area underneath the
function, you need be concerned only with the function evaluated at
40 ≤ w ≤ 90 since it’s zero everywhere else.

You can do this geometrically by working out the area of the triangle
formed by the function and the horizontal line at zero. For this triangle, you
can use the standard “half base times height” rule. The base of the triangle is
90 − 40 = 50, and the apex is at a value of 0.04. So, in R, half the base width
times the height can be given with the following:

R> 0.5*50*0.04

[1] 1

This confirms it is indeed equal to 1; you can now see the reason behind
my specific definition in (15.5).

Let’s return to the question of obtaining the probability that the temper-
ature is less than or equal to 55.2 degrees Fahrenheit. For this you must find
the area underneath f (w), the probability density function, bounded by the
horizontal line at zero and an imaginary vertical line at 55.2. This particular
area forms another triangle, for which it is again appropriate to use the “half
base times height rule.” In Cartesian coordinates, this is the triangle formed
by the vertices at (40,0), (55.2,0), and (55.2, f (55.2)), as shown in the right
panel of Figure 15-2—you’ll see how this is plotted in a moment.

Therefore, you should first work out the value f (55.2). From Equa-
tion (15.5), this is provided by creating the following object:

R> fw.specific <- (55.2-40)/625

R> fw.specific

[1] 0.02432

Note that this isn’t a probability; it cannot be assigned to specific real-
izations. It’s just the height value of the triangle on the continuous density
function that you’re going to need in order to calculate the interval-based
probability Pr(W ≤ 55.2).

You can easily determine that the base of the triangle of interest in this
particular setting is 55.2 − 40 = 15.2. Then, along with fw.specific, note that
“half base times height” gives the following:

R> fw.specific.area <- 0.5*15.2*fw.specific

R> fw.specific.area

[1] 0.184832
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The answer is reached. You’ve shown geometrically, using f (w), that
Pr(W ≤ 55.2) = 0.185 (when rounded to three decimal places). In other
words, you can say that there is roughly an 18.5 percent chance that the
maximum temperature at the picnic spot will be less than or equal to
55.2 degrees Fahrenheit.

Again, all this is easier to digest visually. The following R code replots
the density function f (w) and marks off and shades the area of interest:

R> fw.specific.vertices <- rbind(c(40,0),c(55.2,0),c(55.2,fw.specific))

R> fw.specific.vertices

[,1] [,2]

[1,] 40.0 0.00000

[2,] 55.2 0.00000

[3,] 55.2 0.02432

R> plot(w,fw,type="l",ylab="f(w)")

R> abline(h=0,col="gray",lty=2)

R> polygon(fw.specific.vertices,col="gray",border=NA)

R> abline(v=55.2,lty=3)

R> text(50,0.005,labels=fw.specific.area)

The result is the right panel of Figure 15-2. The plotting commands
should be familiar from Chapter 7, barring polygon. The built-in polygon

function allows you to supply custom vertices in order to draw or shade a
polygon upon an existing plot. Here, a matrix with two columns is defined
using rbind, providing the x and y locations (first and second columns,
respectively) of the three corners of the triangle to shade. Note that cre-
ation of fw.specific.vertices has made use of fw.specific, the value of f (w)

at w = 55.2; this is the topmost vertex of the shaded triangle. Further argu-
ments to polygon control the shading (col="gray") and whether to draw a
border around the defined polygon (border=NA requests no border).

Not all density functions can be appraised in this simple geometric
fashion. Formally, integration is the mathematical operation used to find
areas under a continuous function, denoted with the

∫

symbol. That is, the
mathematically inclined familiar with this technique should find it straight-
forward to show that “the area under f (w) from w = 40 to w = 55.2, provid-
ing Pr(W ≤ 55.2)” is yielded by the following:

∫ 55.2

40
f (w) dw =

∫ 55.2

40

w − 40
625

dw

=

w
2 − 80w
1250

����
55.2

40

=

55.22 − 80 × 55.2 − 402
+ 80 × 40

1250
= 0.185 (rounded to 3 d.p.)
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In R, the third line of this calculation looks like this:

R> (55.2^2-80*55.2-40^2+80*40)/1250

[1] 0.184832

R finds the correct result. I’ll leave the mathematical details aside, but
it’s nice to confirm that the more general integral does match the intuitive
geometric solution based on the area of the triangle, computed earlier as
fw.specific.area.

It’s now becoming clearer why it doesn’t make sense to assign proba-
bilities to single, specific realizations associated with continuous random
variables. For example, evaluating the “area under the function f (w)” at a
single value is the same as finding the area of a polygon with a base width of
zero, and hence, the probability itself is technically zero for any Pr(W = w).
Furthermore, in the continuous setting, it makes no difference to your cal-
culations if you use < or ≤, or > or ≥. So although you found Pr(W ≤ 55.2)

earlier, if you had been tasked to find Pr(W < 55.2), you would have gotten
the same answer of 0.185. It may all seem a little unnatural at first, but it all
comes down to the idea of an infinite number of possible realizations so that
there’s no meaningful interpretation of “equality” to a specific value.

Cumulative Probability Distributions of Continuous Random Variables

The cumulative probability distribution for a continuous variable is inter-
preted in the same way as for a discrete variable. Given a certain value w,
the cumulative distribution function provides the probability of observing
w or less. This may seem familiar; the probability you worked out earlier,
Pr(W ≤ 55.2), based on the shaded triangle on the right of Figure 15-2 or
using analytical methods, is itself a cumulative probability. More gener-
ally, you find a cumulative probability for a continuous random variable by
calculating the area under the density function of interest from −∞ to w.
This general treatment therefore requires mathematical integration of the
relevant probability density function. Looking at Figure 15-2, you should
imagine a vertical line moving from left to right of the density plot and, at
every location, evaluating the area under the density function to the left of
that line.

For the picnic temperature example, it can be shown that the cumula-
tive distribution function F is given with the following:

F (w) =

∫ w

−∞
f (u) du

=



0 if w < 40;
w2−80w+1600

1250 if 40 ≤ w ≤ 65;
180w−w2−6850

1250 if 65 < w ≤ 90;
1 otherwise.

(15.6)
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Making use of the sequence w and the logical flag vectors lower.w and
upper.w from earlier, you can use the same vector subset-and-overwrite
approach to plot F (w); the following code creates the required vector Fw

and produces Figure 15-3:

R> Fw <- rep(0,length(w))

R> Fw[lower.w] <- (w[lower.w]^2-80*w[lower.w]+1600)/1250

R> Fw[upper.w] <- (180*w[upper.w]-w[upper.w]^2-6850)/1250

R> Fw[w>90] <- 1

R> plot(w,Fw,type="l",ylab="F(w)")

R> abline(h=c(0,1),col="gray",lty=2)

Figure 15-3: Plotting the cumulative distribution
function of the picnic temperature example, which is
given as Equation (15.6). The cumulative probability
of observing a temperature less than (or equal to)
55.2 is marked off.

Including these extra two lines following creation of this plot clearly
identifies the fact that at w = 55.2, the cumulative probability is located pre-
cisely on the curve of F:

R> abline(v=55.2,lty=3)

R> abline(h=fw.specific.area,lty=3)

Mean and Variance of a Continuous Random Variable

Naturally, it’s also possible, and useful, to determine the mean and variance
of a continuous random variable.

For a continuous random variable W with density f , the mean µW
(or expectation or expected value E[W]) is again interpreted as the “average
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outcome” that you can expect over many realizations. This is expressed
mathematically as follows:

µW = E[W] =
∫ ∞

−∞
w f (w) dw (15.7)

This equation represents the continuous analogue of Equation (15.3)
and can be read as “the total area underneath the function given by multipli-
cation of the density f (w) with the value of w itself.”

For W , the variance σ2
W

, also written as Var[W], quantifies the variability
inherent in realizations of W . Calculation of the continuous random vari-
able variance depends upon its mean µW and is given as follows:

µW = Var[W] =
∫ ∞

−∞
(w − µW )2 f (w) dw (15.8)

Again, the procedure is to find the area under the density function mul-
tiplied by a certain quantity—in this case, the squared difference of the value
of w with the overall expected value µW .

Evaluation of the mean and variance of the picnic temperature ran-
dom variable must follow (15.7) and (15.8), respectively. These calculations
become rather complex, so I won’t reproduce them here. However, Fig-
ure 15-2 shows that the mean of W must be µW = 65; it is the perfect center
of the symmetric density function f (w).

In terms of the required integrals, you can therefore use the previously
stored w and fw objects to view the two functions, w f (w) and (w − µW )2 f (w),
by executing the following, which produces the two images in Figure 15-4:

R> plot(w,w*fw,type="l",ylab="wf(w)")

R> plot(w,(w-65)^2*fw,type="l",ylab="(w-65)^2 f(w)")

Figure 15-4: Integrands for the expected value (left) and variance (right) of the probability
density function for the temperature example
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Rest assured that the following can be shown mathematically using
Equations (15.7) and (15.8).

µW = 65 and Var[W] = 104.1667

By visually approximating the area underneath each of the images in
Figure 15-4, you find these results are consistent. As earlier, the standard
deviation of the distribution of W is given with the square root of the vari-
ance, and the following readily provides this value:

R> sqrt(104.1667)

[1] 10.20621

15.2.4 Shape, Skew, and Modality
At this point, you’re familiar with both continuous and discrete random
variables and their natural pairings with a distribution of probabilities, and
you’ve had a look at visualizations of distributions of probability mass and
density functions. In this section, I’ll define some terminology used to
describe the appearance of these distributions—being able to describe
your visual impressions is just as important as being able to readily com-
pute them.

You’ll often hear or read about the following descriptors:

Symmetry A distribution is symmetric if you can draw a vertical line
down the center, and it is equally reflected with 0.5 probability falling
on either side of this center line (see Figure 15-2). A symmetric probabil-
ity distribution implies that the mean and the median of the distribution
are identical.

Skew If a distribution is asymmetric, you can qualify your description fur-
ther by discussing skew. When the “tail” of a distribution (in other words,
moving away from its measures of centrality) tapers off longer in one
direction than the other, it is in this direction that the distribution is said
to be skewed. Positive or right skew indicates a tail extending longer to
the right of center; negative or left skew refers to a tail extending longer
to the left of center. You could also qualify the strength or prominence
of the skew.

Modality A probability distribution doesn’t always necessarily have a
single peak. Modality describes the number of easily identifiable peaks in
the distribution of interest. Unimodal, bimodal, and trimodal, for example,
are the terms used to describe distributions with one, two, and three
peaks, respectively.
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Figure 15-5 provides some visual interpretations of symmetry, asymme-
try, skew, and modality. (Note that although they are drawn with a contin-
uous line, you can assume they represent the general shape of either a dis-
crete probability mass function or a continuous density function.)

Figure 15-5: General examples of the terms used to describe probability distributions.
The top three images are unimodal and highlight the notion of symmetry versus asymmetric
skew; the bottom two images emphasize the reference to modality.

You can use these descriptors when discussing the probability distribu-
tions for the gambling game and picnic temperature examples. The mass
function for X , on the left in Figure 15-1, is unimodal and asymmetric—it
appears to have a mild but noticeable right skew. The density function for
W , given in Figure 15-2, is also unimodal, though as noted earlier is perfectly
symmetric.

Exercise 15.2

a. For each of the following definitions, identify whether it’s best
described as a random variable or as a realization of a random
variable. Furthermore, identify whether each statement describes
a continuous or a discrete quantity.
i. The number of coffees x made by your local shop on

June 3, 2016
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ii. The number of coffees X made by your local shop on any
given day

iii. Y , whether or not it rains tomorrow
iv. Z , the amount of rain that falls tomorrow
v. How many crumbs k on your desk right now
vi. Total collective weight W of the crumbs on your desk at any

specified time

b. Suppose you construct the following table providing probabilities
associated with the random variable S, the total stars given to any
movie in a particular genre by a certain critic:

s 1 2 3 4 5

Pr(S = s ) 0.10 0.13 0.21 ??? 0.15

i. Assuming this table describes the complete set of outcomes,
evaluate the missing probability Pr(S = 4).

ii. Obtain the cumulative probabilities.
iii. What is the mean of S, the expected number of stars this

critic will award any given movie in this genre?
iv. What is the standard deviation of S?
v. What is the probability that any given movie in this genre will

be given at least three stars?
vi. Visualize, and briefly comment on the appearance of, the

probability mass function.

c. Return to the picnic temperature example based on the random
variable W defined in Section 15.2.3.
i. Write an R function to return f (w) as per Equation (15.5)

for any numeric vector of values supplied as w. Try to avoid
using a loop in favor of vector-oriented operations.

ii. Write an R function to return F (w) as per Equation (15.6)
for any numeric vector of values supplied as w. Again, try to
avoid using a loop, either explicit or implicit.

iii. Use your functions from (i) and (ii) to confirm the results
from the text, in other words, that f (55.2) = 0.02432 and
that F (55.2) = 0.184832.

iv. Make use of your function for F (w) to compute Pr(W > 60).
Hint: Note that because the total area underneath f (w) is
one, Pr(W > 60) = 1 − Pr(W ≤ 60).

v. Find Pr(60.3 < W < 76.89).
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d. Assume each of the following plots labeled (i)–(iv) shows the
general appearance of a probability distribution. Use terminol-
ogy from Section 15.2.4 to describe the shape of each.

Important Code in This Chapter

Function/operator Brief description First occurrence

polygon Add shaded polygon to plot Section 15.2.3, p. 322
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16
COMMON PROBABILITY

DISTRIBUTIONS

In this chapter, you’ll look at a number
of standard probability distributions that

exist for dealing with commonly occurring
random phenomena in statistical modeling.

These distributions follow the same natural rules as
the examples presented in Chapter 15, and they’re
useful because their properties are well understood
and documented. In fact, they are so ubiquitous that most statistical soft-
ware packages have corresponding built-in functionality for their evaluation,
and R is no exception. Several of these distributions represent an essential
ingredient in traditional statistical hypothesis testing, which is explored in
Chapters 17 and 18.

Just like the random variables they model, the common distributions
you’ll examine here are broadly categorized as either discrete or contin-
uous. Each distribution has four core R functions tied to it—a d-function,
providing specific mass or density function values; a p-function, providing
cumulative distribution probabilities; a q-function, providing quantiles; and
an r-function, providing random variate generation.



16.1 Common Probability Mass Functions

You’ll start here by looking at definitions and examples of some common
probability mass functions for discrete random variables. Continuous distri-
butions will be explored in in Section 16.2.

16.1.1 Bernoulli Distribution
The Bernoulli distribution is the probability distribution of a discrete random
variable that has only two possible outcomes, such as success or failure. This
type of variable can be referred to as binary or dichotomous.

Let’s say you’ve defined a binary random variable X for the success
or failure of an event, where X = 0 is failure, X = 1 is success, and p is the
known probability of success. Table 16-1 shows the probability mass function
for X .

Table 16-1: The Bernoulli
Probability Mass Function

x 0 1

Pr(X = x) 1 – p p

From Section 15.2.2 you know that the probabilities associated with all
possible outcomes must sum to 1. Therefore, if the probability of success is
p for a binary random variable, the only other alternative outcome, failure,
must occur with probability 1 − p.

In mathematical terms, for a discrete random variable X = x, the
Bernoulli mass function f is

f (x) = px (1 − p)1−x ; x = {0,1} (16.1)

where p is a parameter of the distribution. The notation

X ∼ BERN(p)

is often used to indicate that “X follows a Bernoulli distribution with param-
eter p.”

The following are the key points to remember:

• X is dichotomous and can take only the values 1 (“success”) or 0
(“failure”).

• p should be interpreted as “the probability of success,” and therefore
0 ≤ p ≤ 1.

The mean and variance are defined as follows, respectively:

µX = p and σ2
X
= p(1 − p)

Say you use the common example of rolling a die, with success defined
as getting a 4, and you roll once. You therefore have a binary random
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variable X that can be modeled using the Bernoulli distribution, with the
probability of success p = 1

6 . For this example, X ∼ BERN( 1
6 ). You can easily

determine, using (16.1), that

Pr(rolling a 4) = Pr(X = 1) = f (1) =

(

1
6

)1 (

5
6

)0

=

1
6

and, in much the same way, that f (0) = 5
6 . Furthermore, you’d have µX = 1

6
and σ2

X
=

1
6 ×

5
6 =

5
36 .

16.1.2 Binomial Distribution
The binomial distribution is the distribution of successes in n number of trials
involving binary discrete random variables. The role of the Bernoulli distri-
bution is typically one of a “building block” for more complicated distribu-
tions, like the binomial, that give you more interesting results.

For example, suppose you define a random variable X =
∑n

i=1 Yi , where
Y1, Y2, . . ., Yn are each Bernoulli random variables corresponding to the same
event, in other words, the die roll with success defined as rolling a 4. The
new random variable X , a sum of Bernoulli random variables, now describes
the number of successes in n trials of the defined action. Providing that cer-
tain reasonable assumptions are satisfied, the probability distribution that
describes this success count is the binomial distribution.

In mathematical terms, for a discrete random variable and a realization
X = x, the binomial mass function f is

f (x) =

(

n

x

)

px (1 − p)n−x ; x = {0,1, . . . ,n} (16.2)

where
(

n

x

)

=

n!
x!(n − x)!

(16.3)

is known as the binomial coefficient. (Recall the use of the integer factorial
operator !, as first discussed in Exercise 10.4 on page 203.) This coefficient,
also referred to as a combination, accounts for all different orders in which
you might observe x successes throughout n trials.

The parameters of the binomial distribution are n and p, and the
notation

X ∼ BIN(n,p)

is often used to indicate that X follows a binomial distribution for n trials
with parameter p.

The following are the key points to remember:

• X can take only the values 0, 1, . . ., n and represents the total number of
successes.

• p should be interpreted as “the probability of success at each trial.”
Therefore, 0 ≤ p ≤ 1, and n > 0 is an integer interpreted as “the
number of trials.”
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• Each of the n trials is a Bernoulli success and failure event, the trials are
independent (in other words, the outcome of one doesn’t affect the out-
come of any other), and p is constant.

The mean and variance are defined as follows:

µX = np and σ2
X
= np(1 − p)

Counting the number of successes of repeated trials of a binary-valued
test is one of the common random phenomena mentioned at the start
of this section. Consider the specific situation in which there’s only one
“trial,” that is, n = 1. Examining Equations (16.2) and (16.3), it should
become clear that (16.2) simplifies to (16.1). In other words, the Bernoulli
distribution is just a special case of the binomial. Clearly, this makes sense
with respect to the definition of a binomial random variable as a sum of n

Bernoulli random variables. In turn, R provides functionality for the bino-
mial distribution though not explicitly for the Bernoulli.

To illustrate this, I’ll return to the example of rolling a die with success
defined as getting a 4. If you roll the die independently eight times, what
is the probability of observing exactly five successes (five 4s) in total? Well,
you’d have X ∼ BIN(8, 16 ), and this probability can be worked through math-
ematically using (16.2).

Pr(get five 4s) = Pr(X = 5) = f (5)

=

8!
5! × 3!

(

1
6

)5 (

5
6

)3

= 0.004 (rounded to 3 d.p.)

The result tells you there is approximately a 0.4 percent chance that
you’ll observe exactly five 4s in eight rolls of the die. This is small and makes
sense—it’s far more probable that you might observe zero to two 4s in eight
rolls of a die.

Fortunately, R functions will handle the arithmetic in these situations.
The built-in functions dbinom, pbinom, qbinom, and rbinom are all relevant to the
binomial and Bernoulli distributions and are summarized in one help file
indexed by each of these function names.

• dbinom directly provides the mass function probabilities Pr(X = x) for any
valid x—that is, 0 ≤ x ≤ n.

• pbinom provides the cumulative probability distribution—given a valid x,
it yields Pr(X ≤ x).

• qbinom provides the inverse cumulative probability distribution (also
known as the quantile function of the distribution)—given a valid prob-
ability 0 ≤ p ≤ 1, it yields the value of x that satisfies Pr(X ≤ x) = p.

• rbinom is used to generate any number of realizations of X given a spe-
cific binomial distribution.
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The dbinom Function

With this knowledge, you can use R to confirm the result of Pr(X = 5) for
the die-roll example described a moment ago.

R> dbinom(x=5,size=8,prob=1/6)

[1] 0.004167619

To the dbinom function, you provide the specific value of interest as x; the
total number of trials, n, as size; and the probability of success at each trial,
p, as prob. True to R, a vector argument is possible for x. If you want the full
probability mass function table for X for this example, you can supply the
vector 0:8 to x.

R> X.prob <- dbinom(x=0:8,size=8,prob=1/6)

R> X.prob

[1] 2.325680e-01 3.721089e-01 2.604762e-01 1.041905e-01 2.604762e-02

[6] 4.167619e-03 4.167619e-04 2.381497e-05 5.953742e-07

These can be confirmed to sum to 1.

R> sum(X.prob)

[1] 1

The resulting vector of probabilities, which corresponds to the spe-
cific outcomes x = {0, 1, . . ., 8}, is returned using e-notation (refer to Sec-
tion 2.1.3). You can tidy this up by rounding the results using the round

function introduced in Section 13.2.2. Rounding to three decimal places,
the results are easier to read.

R> round(X.prob,3)

[1] 0.233 0.372 0.260 0.104 0.026 0.004 0.000 0.000 0.000

The achievement of one success in eight trials has the highest proba-
bility, at approximately 0.372. Furthermore, the mean (expected value)
and variance of X in this example are µX = np = 8 × 1

6 = 8/6 and σ2
X
=

np(1 − p) = 8 × 1
6 ×

5
6 .

R> 8/6

[1] 1.333333

R> 8*(1/6)*(5/6)

[1] 1.111111

You can plot the corresponding probability mass function in the same
way as for the example in Section 15.2.2; the following line produces Fig-
ure 16-1:

R> barplot(X.prob,names.arg=0:8,space=0,xlab="x",ylab="Pr(X = x)")
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Figure 16-1: The probability mass function
associated with the binomial distribution of
the die-rolling example

The pbinom Function

The other R functions for the binomial distribution work in much the same
way. The first argument is always the value (or values) of interest; n is sup-
plied as size and p as prob. To find, for example, the probability that you
observe three or fewer 4s, Pr(X ≤ 3), you either sum the relevant individual
entries from dbinom as earlier or use pbinom.

R> sum(dbinom(x=0:3,size=8,prob=1/6))

[1] 0.9693436

R> pbinom(q=3,size=8,prob=1/6)

[1] 0.9693436

Note that the pivotal argument to pbinom is tagged q, not x; this is
because, in a cumulative sense, you are searching for a probability based
on a quantile. The cumulative distribution results from pbinom can be used
in the same way to search for “upper-tail” probabilities (probabilities to the
right of a given value) since you know that the total probability mass is always
1. To find the probability that you observe at least three 4s in eight rolls of
the die, Pr(X ≥ 3) (which is equivalent to Pr(X > 2) in the context of this
discrete random variable), note that the following finds the correct result
because it’s the complement of Pr(X ≤ 2) that you’re looking for:

R> 1-pbinom(q=2,size=8,prob=1/6)

[1] 0.1348469
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The qbinom Function

Less frequently used is the qbinom function, which is the inverse of pbinom.
Where pbinom provides a cumulative probability when given a quantile value
q, the function qbinom provides a quantile value when given a cumulative
probability p. The discrete nature of a binomial random variable means
qbinom will return the nearest value of x below which p lies. For example,
note that

R> qbinom(p=0.95,size=8,prob=1/6)

[1] 3

provides 3 as the quantile value, even though you know from earlier that
the exact probability that lies at or below 3, Pr(X ≤ 3), is 0.9693436. You’ll
look at p- and q-functions more when dealing with continuous probability
distributions; see Section 16.2.

The rbinom Function

Lastly, the random generation of realizations of a binomially distributed vari-
able is retrieved using the rbinom function. Again, going with the BIN(8, 16 )

distribution, note the following:

R> rbinom(n=1,size=8,prob=1/6)

[1] 0

R> rbinom(n=1,size=8,prob=1/6)

[1] 2

R> rbinom(n=1,size=8,prob=1/6)

[1] 2

R> rbinom(n=3,size=8,prob=1/6)

[1] 2 1 1

The initial argument n doesn’t refer to the number of trials. The num-
ber of trials is still provided to size with p given to prob. Here, n requests
the number of realizations you want to generate for the random variable
X ∼ BIN(8, 16 ). The first three lines each request a single realization—in
the first eight rolls, you observe zero successes (4s), and in the second and
third sets of eight rolls, you observe two and two 4s, respectively. The fourth
line highlights the fact that multiple realizations of X are easily obtained and
stored as a vector by increasing n. As these are randomly generated realizations,
if you run these lines now, you’ll probably observe some different values.

Though not used often in standard statistical testing methods, the r-
functions for probability distributions, either discrete or continuous, play an
important role when it comes to simulation and various advanced numeric
algorithms in computational statistics.
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Exercise 16.1

A forested nature reserve has 13 bird-viewing platforms scattered
throughout a large block of land. The naturalists claim that at
any point in time, there is a 75 percent chance of seeing birds at
each platform. Suppose you walk through the reserve and visit
every platform. If you assume that all relevant conditions are sat-
isfied, let X be a binomial random variable representing the total
number of platforms at which you see birds.

a. Visualize the probability mass function of the binomial distribu-
tion of interest.

b. What is the probability you see birds at all sites?

c. What is the probability you see birds at more than 9 platforms?

d. What is the probability of seeing birds at between 8 and 11
platforms (inclusive)? Confirm your answer by using only the
d-function and then again using only the p-function.

e. Say that, before your visit, you decide that if you see birds at
fewer than 9 sites, you’ll make a scene and demand your entry
fee back. What’s the probability of your embarrassing yourself in
this way?

f. Simulate realizations of X that represent 10 different visits to the
reserve; store your resulting vector as an object.

g. Compute the mean and standard deviation of the distribution of
interest.

16.1.3 Poisson Distribution
In this section, you’ll use the Poisson distribution to model a slightly more
general, but just as important, discrete random variable—a count. For
example, the variable of interest might be the number of seismic tremors
detected by a certain station in a given year or the number of imperfections
found on square-foot pieces of sheet metal coming off a factory produc-
tion line.

Importantly, the events or items being counted are assumed to manifest
independently of one another. In mathematical terms, for a discrete ran-
dom variable and a realization X = x, the Poisson mass function f is given
as follows, where λp is a parameter of the distribution (this will be explained
further momentarily):

f (x) =
λxp exp(−λp)

x!
; x = {0,1, . . .} (16.4)

The notation
X ∼ POIS(λp)
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is often used to indicate that “X follows a Poisson distribution with parame-
ter λp.”

The following are the keys points to remember:

• The entities, features, or events being counted occur independently in a
well-defined interval at a constant rate.

• X can take only non-negative integers: 0,1, . . ..

• λp should be interpreted as the “mean number of occurrences” and
must therefore be finite and strictly positive; that is, 0 < λp < ∞.

The mean and variance are as follows:

µX = λp and σ2
X
= λp

Like the binomial random variable, the values taken by a Poisson ran-
dom variable are discrete, non-negative integers. Unlike the binomial, how-
ever, there’s typically no upper limit on a Poisson count. While this implies
that an “infinite count” is allowed to occur, it’s a distinct feature of the Pois-
son distribution that the probability mass associated with some value x goes
to zero as x itself goes to infinity.

As noted in Equation (16.4), any Poisson distribution depends upon the
specification of a single parameter, denoted here with λp. This parameter
describes the mean number of occurrences, which impacts the overall shape
of the mass function, as shown in Figure 16-2.

Figure 16-2: Three examples of the Poisson probability mass function, plotted for 0 ≤ x ≤
30. The “expected count” parameter λp is altered from 3.00 (left) to 6.89 (middle) and to
17.20 (right).

Again, it’s worth noting that the total probability mass over all possible
outcomes is 1, no matter what the value of λp is and regardless of the fact
that possible outcomes can, technically, range from 0 to infinity.

By definition, it’s easy to understand why the mean of X , µX , is equal
to λp; in fact, it turns out that the variance of a Poisson distributed random
variable is also equal to λp.

Consider the example of blemishes on 1-foot-square sheets of metal
coming off a production line, mentioned in the opening of this section. Sup-
pose you’re told that the number of blemishes found, X , is thought to follow
a Poisson distribution with λp = 3.22, as in X ∼ POIS(3.22). In other words,
you’d expect to see an average of 3.22 blemishes on your 1-foot sheets.
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The dpois and ppois Functions

The R dpois function provides the individual Poisson mass function probabil-
ities Pr(X = x) for the Poisson distribution. The ppois function provides the
left cumulative probabilities, as in Pr(X ≤ x). Consider the following lines
of code:

R> dpois(x=3,lambda=3.22)

[1] 0.2223249

R> dpois(x=0,lambda=3.22)

[1] 0.03995506

R> round(dpois(0:10,3.22),3)

[1] 0.040 0.129 0.207 0.222 0.179 0.115 0.062 0.028 0.011 0.004 0.001

The first call finds that Pr(X = 3) = 0.22 (to 2 d.p.); in other words, the
probability that you observe exactly three blemishes on a randomly selected
piece of sheet metal is equal to about 0.22. The second call indicates a less
than 4 percent chance that the piece is flawless. The third line returns a
rounded version of the relevant mass function for the values 0 ≤ x ≤ 10.
By hand you can confirm the first result like this:

R> (3.22^3*exp(-3.22))/prod(3:1)

[1] 0.2223249

You create a visualization of the mass function with the following:

R> barplot(dpois(x=0:10,lambda=3.22),ylim=c(0,0.25),space=0,

names.arg=0:10,ylab="Pr(X=x)",xlab="x")

This is shown on the left of Figure 16-3.

Figure 16-3: The Poisson probability mass function (left) and cumulative distribution
function (right) for λp = 3.22 plotted for the integers 0 ≤ x ≤ 10, with reference to the
sheet metal example
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To calculate cumulative results, you use ppois.

R> ppois(q=2,lambda=3.22)

[1] 0.3757454

R> 1-ppois(q=5,lambda=3.22)

[1] 0.1077005

These lines find that the probability you observe at most two imperfec-
tions, Pr(X ≤ 2), is about 0.38, and the probability you observe strictly more
than five blemishes, Pr(X ≥ 6), is roughly 0.11.

A visualization of the cumulative mass function is given on the right of
Figure 16-3, created with the following:

R> barplot(ppois(q=0:10,lambda=3.22),ylim=0:1,space=0,

names.arg=0:10,ylab="Pr(X<=x)",xlab="x")

The qpois Function

The q-function for the Poisson distribution, qpois, provides the inverse of
ppois, in the same way as qbinom in Section 16.1.2 provides the inverse of
pbinom.

The rpois Function

To produce random variates, you use rpois; you supply the number of vari-
ates you want as n and supply the all-important parameter as lambda. You can
imagine

R> rpois(n=15,lambda=3.22)

[1] 0 2 9 1 3 1 9 3 4 3 2 2 6 3 5

as selecting fifteen 1-foot-square metal sheets from the production line at
random and counting the number of blemishes on each. Note again that
this is random generation; your specific results are likely to vary.

Exercise 16.2

Every Saturday, at the same time, an individual stands by the side of
a road and tallies the number of cars going by within a 120-minute
window. Based on previous knowledge, she believes that the mean
number of cars going by during this time is exactly 107. Let X repre-
sent the appropriate Poisson random variable of the number of cars
passing her position in each Saturday session.

a. What is the probability that more than 100 cars pass her on any
given Saturday?

b. Determine the probability that no cars pass.
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c. Plot the relevant Poisson mass function over the values in
60 ≤ x ≤ 150.

d. Simulate 260 results from this distribution (about five years of
weekly Saturday monitoring sessions). Plot the simulated results
using hist; use xlim to set the horizontal limits from 60 to 150.
Compare your histogram to the shape of your mass function
from (c).

16.1.4 Other Mass Functions
There are many other well-defined probability mass functions in R’s built-in
suite of statistical calculations. All model a discrete random variable in a cer-
tain way under certain conditions and are defined with at least one param-
eter, and most are represented by their own set of d-, p-, q-, and r-functions.
Here I summarize a few more:

• The geometric distribution counts the number of failures before a success
is recorded and is dependent on a “probability of success parameter”
prob. Its functions are dgeom, pgeom, qgeom, and rgeom.

• The negative binomial distribution is a generalization of the geometric
distribution, dependent upon parameters size (number of trials) and
prob. Its functions are dnbinom, pnbinom, qnbinom, and rnbinom.

• The hypergeometric distribution is used to model sampling without
replacement (in other words, a “success” can change the probabilities
associated with further successes), dependent upon parameters m, n, and
k describing the nature of sampled items. Its functions are dhyper, phyper,
qhyper, and rhyper.

• The multinomial distribution is a generalization of the binomial, where a
success can occur in one of multiple categories at each trial, with param-
eters size and prob (this time, prob must be a vector of probabilities cor-
responding to the multiple categories). Its built-in functions are limited
to dmultinom and rmultinom.

As noted earlier, some familiar probability distributions are just simpli-
fications or special cases of functions that describe a more general class of
distributions.

16.2 Common Probability Density Functions

When considering continuous random variables, you need to deal with prob-
ability density functions. There are a number of common continuous proba-
bility distributions frequently used over many different types of problems. In
this section, you’ll be familiarized with some of these and R’s accompanying
d-, p-, q-, and r-functions.
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16.2.1 Uniform
The uniform distribution is a simple density function that describes a con-
tinuous random variable whose interval of possible values offers no fluc-
tuations in probability. This will become clear in a moment when you plot
Figure 16-4.

Figure 16-4: Two uniform distributions plotted on the same scale for comparability. Left:
X ∼ UNIF(−0.4,1.1); right: X ∼ UNIF(0.223,0.410). The total area underneath each
density function is, as always, 1.

For a continuous random variable a ≤ X ≤ b, the uniform density func-
tion f is

f (x) =


1
b−a if a ≤ x ≤ b;
0 otherwise

(16.5)

where a and b are parameters of the distribution defining the limits of the
possible values X can take. The notation

X ∼ UNIF(a,b)

is often used to indicate that “X follows a uniform distribution with limits a

and b.”
The following are the key points to remember:

• X can take any value in the interval bounded by a and b.

• a and b can be any values, provided that a < b, and they represent the
lower and upper limits, respectively, of the interval of possible values.

The mean and variance are as follows:

µX =
a + b

2
and σ2

X
=

(b − a)2

12

For the more complicated densities in this section, it’s especially useful
to visualize the functions in order to understand the probabilistic structure
associated with a continuous random variable. For the uniform distribution,
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given Equation (16.5), you can recognize the two different uniform distri-
butions shown in Figure 16-4. I’ll provide the code to produce these types of
plots shortly.

For the left plot in Figure 16-4, you can confirm the exact height of
the X ∼ UNIF(−0.4,1.1) density by hand: 1/{1.1 − (−0.4)} = 1/1.5 = 2

3 .
For the plot on the right, based on X ∼ UNIF(0.223,0.410), you can use R
to find that its height is roughly 5.35.

R> 1/(0.41-0.223)

[1] 5.347594

The dunif Function

You can use the built-in d-function for the uniform distribution, dunif, to
return these heights for any value within the defined interval. The dunif

command returns zero for values outside of the interval. The parameters of
the distribution, a and b, are provided as the arguments min and max, respec-
tively. For example, the line

R> dunif(x=c(-2,-0.33,0,0.5,1.05,1.2),min=-0.4,max=1.1)

[1] 0.0000000 0.6666667 0.6666667 0.6666667 0.6666667 0.0000000

evaluates the uniform density function of X ∼ UNIF(−0.4,1.1) at the values
given in the vector passed to x. You’ll notice that the first and last values fall
outside the bounds defined by min and max, and so they are zero. All others
evaluate to the height value of 2

3 , as previously calculated.
As a second example, the line

R> dunif(x=c(0.3,0,0.41),min=0.223,max=0.41)

[1] 5.347594 0.000000 5.347594

confirms the correct density values for the X ∼ UNIF(0.223,0.410) distribu-
tion, with the second value, zero, falling outside the defined interval.

This most recent example in particular should remind you that proba-
bility density functions for continuous random variables, unlike mass func-
tions for discrete variables, do not directly provide probabilities, as men-
tioned in Section 15.2.3. In other words, the results just returned by dunif

represent the respective density functions themselves and not any notion of
chance attached to the specific values of x at which they were evaluated.

To calculate some probabilities based on the uniform density function,
use the example of a faulty drill press. In a woodworker’s shop, imagine
there’s a drill press that cannot keep to a constant alignment when in use;
instead, it randomly hits the intended target at up to 0.4 cm to the left or
1.1 cm to the right. Let the random variable X ∼ UNIF(−0.4,1.1) repre-
sent where the drill hits the material relative to the target at 0. Figure 16-5
replots the left image of Figure 16-4 on a more detailed scale. You have
three versions, each marking off a different area under the density func-
tion: Pr(X ≤ −0.21), Pr(−0.21 ≤ X ≤ 0.6), and Pr(X ≥ 0.6).
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Figure 16-5: Three areas underneath the X ∼ UNIF(−0.4,1.1) density function for the drill
press example. Left: Pr(X ≤ −0.21); middle: Pr(−0.21 ≤ X ≤ 0.6); right: Pr(X ≥ 0.6).

These plots are created using the coordinate-based plotting skills cov-
ered in Chapter 7. The density itself is presented with the following:

R> a1 <- -4/10

R> b1 <- 11/10

R> unif1 <- 1/(b1-a1)

R> plot(c(a1,b1),rep(unif1,2),type="o",pch=19,xlim=c(a1-1/10,b1+1/10),

ylim=c(0,0.75),ylab="f(x)",xlab="x")

R> abline(h=0,lty=2)

R> segments(c(a1-2,b1+2,a1,b1),rep(0,4),rep(c(a1,b1),2),rep(c(0,unif1),each=2),

lty=rep(1:2,each=2))

R> points(c(a1,b1),c(0,0))

You can use much of the same code to produce the plots in Figure 16-4
by modifying the xlim and ylim arguments to adjust the scale of the axes.

You add the vertical lines denoting f (−0.21) and f (0.6) in Figure 16-5
with another call to segments.

R> segments(c(-0.21,0.6),c(0,0),c(-0.21,0.6),rep(unif1,2),lty=3)

Finally, you can shade the areas using the polygon function, which was
first explored in Section 15.2.3. For example, in the leftmost plot in Fig-
ure 16-5, use the previous plotting code followed by this:

R> polygon(rbind(c(a1,0),c(a1,unif1),c(-0.21,unif1),c(-0.21,0)),col="gray",

border=NA)

As mentioned earlier, the three shaded areas in Figure 16-5 represent,
from left to right, Pr(X < −0.21), Pr(−0.21 < X < 0.6), and Pr(X > 0.6),
respectively. In terms of the drill press example, you can interpret these
as the probability that the drill hits the target 0.21 cm to the left or more,
the probability that the drill hits the target between 0.21 cm to the left
and 0.6 cm to the right, and the probability that the drill hits the target
0.6 cm to the right or more, respectively. (Remember from Section 15.2.3
that it makes no difference if you use ≤ or < (or ≥ or >) for probabilities

Common Probability Distributions 345



associated with continuous random variables.) Though you could evaluate
these probabilities geometrically for such a simple density function, it’s still
faster to use R.

The punif Function

Remember that probabilities associated with continuous random variables
are defined as areas under the function, and therefore your study focuses on
the appropriate intervals of X rather than any specific value. The p-function
for densities, just like the p-function for discrete random variables, provides
the cumulative probability distribution Pr(X ≤ x). In the context of the uni-
form density, this means that given a specific value of x (supplied as a “quan-
tile” argument q), punif will provide the left-directional area underneath the
function from that specific value.

Accessing punif, the line

R> punif(-0.21,min=a1,max=b1)

[1] 0.1266667

tells you that the leftmost area in Figure 16-5 represents a probability of
about 0.127. The line

R> 1-punif(q=0.6,min=a1,max=b1)

[1] 0.3333333

tells you that Pr(X > 0.6) = 1
3 . The final result for Pr(−0.21 < X < 0.6), giv-

ing a 54 percent chance, is found with

R> punif(q=0.6,min=a1,max=b1) - punif(q=-0.21,min=a1,max=b1)

[1] 0.54

since the first call provides the area under the density from 0.6 all the way
left and the second call provides the area from −0.21 all the way left. There-
fore, this difference is the middle area as defined.

It’s essential to be able to manipulate cumulative probability results
like this when working with probability distributions in R, and the beginner
might find it useful to sketch out the desired area before using p-functions,
especially with respect to density functions.

The qunif Function

The q-functions for densities are used more often than they are for mass
functions because the continuous nature of the variable means that a unique
quantile value can be found for any valid probability p.

The qunif function is the inverse of punif:

R> qunif(p=0.1266667,min=a1,max=b1)

[1] -0.21

R> qunif(p=1-1/3,min=a1,max=b1)

[1] 0.6
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These lines confirm the values of X used earlier to get the lower- and
upper-tail probabilities Pr(X < −0.21) and Pr(X > 0.6), respectively. Any
q-function expects a cumulative (in other words, left-hand) probability as its
first argument, which is why you need to supply 1-1/3 in the second line to
recover 0.6. (The total area is 1. You know that you want the area to the right
of 0.6 to be 1

3 ; thus, the area on the left must be 1 − 1
3 .)

The runif Function

Lastly, to generate random realizations of a specific uniform distribution,
you use runif. Let’s say the woodworker drills 10 separate holes using the
faulty press; you can simulate one instance of the position of each of these
holes relative to their target with the following call.

R> runif(n=10,min=a1,max=b1)

[1] -0.2429272 -0.1226586 0.9318365 0.4829028 0.5963365

[6] 0.2009347 0.3073956 -0.1416678 0.5551469 0.4033372

Again, note that the specific values of r-function calls like runif will be
different each time they are run.

Exercise 16.3

You visit a national park and are informed that the height of a certain
species of tree found in the forest is uniformly distributed between 3
and 70 feet.

a. What is the probability you encounter a tree shorter than
5 1

2 feet?

b. For this probability density function, what is the height that
marks the cutoff point of the tallest 15 percent of trees?

c. Evaluate the mean and standard deviation of the tree height
distribution.

d. Using (c), confirm that the chance that you encounter a tree
with a height that is within half a standard deviation (that is,
below or above) of the mean height is roughly 28.9 percent.

e. At what height is the density function itself? Show it in a plot.

f. Simulate 10 observed tree heights. Based on these data, use
quantile (refer to Section 13.2.3) to estimate the answer you
arrived at in (b). Repeat your simulation, this time generating
1,000 variates, and estimate (b) again. Do this a handful of
times, taking a mental note of your two estimates each time.
Overall, what do you notice of your two estimates (one based on
10 variates at a time and the other based on 1,000) with respect
to the “true” value in (b)?
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16.2.2 Normal
The normal distribution is one of the most well-known and commonly applied
probability distributions in modeling continuous random variables. Char-
acterized by a distinctive “bell-shaped” curve, it’s also referred to as the
Gaussian distribution.

For a continuous random variable −∞ < X < ∞, the normal density
function f is

f (x) =
1

σ
√

2π
exp

{

− (x − µ)2

2σ2

}

(16.6)

where µ and σ are parameters of the distribution, π is the familiar geomet-
ric value 3.1415 . . ., and exp{ · } is the exponential function (refer to Sec-
tion 2.1.2). The notation

X ∼ N(µ,σ)

is often used to indicate that “X follows a normal distribution with mean µ
and standard deviation σ.”

The following are the key points to remember:

• Theoretically, X can take any value from −∞ to ∞.

• As hinted at earlier, the parameters µ and σ directly describe the mean
and the standard deviation of the distribution, with the square of the
latter, σ2, being the variance.

• In practice, the mean parameter is finite −∞ < µ < ∞, and the standard
deviation parameter is strictly positive and finite 0 < σ < ∞.

• If you have a random variable X ∼ N(µ,σ), then you can create a new
random variable Z = (X − µ)/σ, which means Z ∼ N(0,1). This is known
as standardization of X .

The two parameters noted earlier fully define a particular normal dis-
tribution. These are always perfectly symmetric, unimodal, and centered on
the mean µ, and they have a degree of “spread” defined using the standard
deviation σ.

The top image of Figure 16-6 provides the density functions for four
specific normal distributions. You can see that altering the mean results
in a translation, where the center of the distribution is simply shifted to sit
on the specific value of µ. The effect of a smaller standard deviation is to
reduce the spread, resulting in a taller, skinnier appearance of the density.
Increasing σ flattens the density out around the mean.

The bottom image zooms in on the N(0,1) distribution when you have
a normal density centered on µ = 0 and with a standard deviation of σ = 1.
This distribution, known as the standard normal, is frequently used as a stan-
dard reference to compare different normally distributed random variables
with one another on the same scale of probabilities. It’s common practice to
rescale, or standardize, some variable X ∼ N(µX ,σX ) to a new variable Z such
that Z ∼ N(0,1) (you’ll see this practiced in Chapter 18). Vertical lines in
the plot show plus or minus one, two, and three times the standard deviation
away from the mean of zero. This serves to highlight the fact that for any
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normal distribution, a probability of exactly 0.5 lies either above or below
the mean. Furthermore, note that there’s a probability of approximately
0.683 of a value falling within one standard deviation of the mean, approx-
imately 0.954 probability under the curve from −2σ to +2σ, and approxi-
mately 0.997 probability between −3σ and +3σ.

Figure 16-6: Illustrating the normal distribution. Top: Four
different instances of the density achieved by varying the mean
µ and standard deviation σ. Bottom: The “standard normal”
distribution, N(0,1), marking off the mean ±1σ, ±2σ, and ±3σ.

NOTE The mathematical definition of the normal density means that as you move further
away from the mean, the value of the density function itself will approach zero. In
actual fact, any normal density function never actually touches the horizontal line
at zero; it just gets closer and closer as you move to positive or negative infinity. This
behavior is formally referred to as asymptotic; in this case, you’d say that the normal
distribution f (x) has a horizontal asymptote at f (x) = 0. In discussing probabili-
ties as areas under the curve, you’d refer to the fact that “the total area under the curve
from negative to positive infinity” is 1, in other words,

∫ ∞
−∞ f (x) dx = 1.
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The dnorm Function

Being a probability density function, the dnorm function itself doesn’t provide
probabilities—merely the value of the desired normal function curve f (x) at
any x. To plot a normal density, you’d therefore be able to use seq (refer to
Section 2.3.2) to create a fine sequence of values for x, evaluate the density
at these values with dnorm, and then plot the result as a line. For example,
to produce an image of the standard normal distribution curve similar to
that in the bottom image of Figure 16-6, the following code will create the
desired x values as xvals.

R> xvals <- seq(-4,4,length=50)

R> fx <- dnorm(xvals,mean=0,sd=1)

R> fx

[1] 0.0001338302 0.0002537388 0.0004684284 0.0008420216 0.0014737603

[6] 0.0025116210 0.0041677820 0.0067340995 0.0105944324 0.0162292891

[11] 0.0242072211 0.0351571786 0.0497172078 0.0684578227 0.0917831740

[16] 0.1198192782 0.1523049307 0.1885058641 0.2271744074 0.2665738719

[21] 0.3045786052 0.3388479358 0.3670573564 0.3871565916 0.3976152387

[26] 0.3976152387 0.3871565916 0.3670573564 0.3388479358 0.3045786052

[31] 0.2665738719 0.2271744074 0.1885058641 0.1523049307 0.1198192782

[36] 0.0917831740 0.0684578227 0.0497172078 0.0351571786 0.0242072211

[41] 0.0162292891 0.0105944324 0.0067340995 0.0041677820 0.0025116210

[46] 0.0014737603 0.0008420216 0.0004684284 0.0002537388 0.0001338302

Then dnorm, which includes specification of µ as mean and σ as sigma,
produces the precise values of f (x) at those xvals. Finally, a call such as
plot(xvals,fx,type="l") achieves the bare bones of a density plot, which
you can easily enhance by adding titles and using commands such as abline

and segments to mark locations off (I’ll produce another plot in a moment,
so this basic one isn’t shown here).

Note that if you don’t supply any values to mean and sd, the default
behavior of R is to implement the standard normal distribution; the object
fx shown earlier could have been created with an even shorter call using just
dnorm(xvals).

The pnorm Function

The pnorm function obtains left-side probabilities under the specified normal
density. As with dnorm, if no parameter values are supplied, R automatically
sets mean=0 and sd=1. In the same way you used punif in Section 16.2.1, you
can find differences of results from pnorm to find any areas you want when
you provide the function with the desired values in the argument q.

For example, it was mentioned earlier that a probability of approxi-
mately 0.683 lies within one standard deviation of the mean. You can con-
firm this using pnorm for the standard normal.

R> pnorm(q=1)-pnorm(q=-1)

[1] 0.6826895
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The first call to pnorm evaluates the area under the curve from posi-
tive 1 left (in other words, all the way to −∞) and then finds the differ-
ence between that and the area from −1 left. The result reflects the pro-
portion between the two dashed lines in the bottom of Figure 16-6. These
kinds of probabilities will be the same for any normal distribution. Con-
sider the distribution where µ = −3.42 and σ = 0.2. Then the following
provides the same value:

R> mu <- -3.42

R> sigma <- 0.2

R> mu.minus.1sig <- mu-sigma

R> mu.minus.1sig

[1] -3.62

R> mu.plus.1sig <- mu+sigma

R> mu.plus.1sig

[1] -3.22

R> pnorm(q=mu.plus.1sig,mean=mu,sd=sigma) -

pnorm(q=mu.minus.1sig,mean=mu,sd=sigma)

[1] 0.6826895

It takes a little more work to specify the distribution of interest since it’s
not standard, but the principle is the same: plus and minus one standard
deviation away from the mean.

The symmetry of the normal distribution is also useful when it comes
to calculating probabilities. Sticking with the N(3.42,0.2) distribution, you
can see that the probability you make an observation greater than µ + σ =
−3.42 + 0.2 = −3.22 (an upper-tail probability) is identical to the probability
of making an observation less than µ − σ = −3.42 − 0.2 = −3.62 (a lower-tail
probability).

R> 1-pnorm(mu.plus.1sig,mu,sigma)

[1] 0.1586553

R> pnorm(mu.minus.1sig,mu,sigma)

[1] 0.1586553

You can also evaluate these values by hand, given the result you com-
puted earlier that says Pr(µ − σ < X < µ + σ) = 0.6826895. The remaining
probability outside of this middle area must be as follows:

R> 1-0.6826895

[1] 0.3173105

So, in each of the lower- and upper-tail areas marked off by µ − σ and
µ + σ, respectively, there must be a probability of the following:

R> 0.3173105/2

[1] 0.1586552
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This is what was just found using pnorm (note that there can be some
minor rounding errors in these types of calculations). You can see this in
Figure 16-7, which is, initially, plotted with the following:

R> xvals <- seq(-5,-2,length=300)

R> fx <- dnorm(xvals,mean=mu,sd=sigma)

R> plot(xvals,fx,type="l",xlim=c(-4.4,-2.5),main="N(-3.42,0.2) distribution",

xlab="x",ylab="f(x)")

R> abline(h=0,col="gray")

R> abline(v=c(mu.plus.1sig,mu.minus.1sig),lty=3:2)

R> legend("topleft",legend=c("-3.62\n(mean - 1 sd)","\n-3.22\n(mean + 1 sd)"),

lty=2:3,bty="n")

Figure 16-7: Illustrating the example in the text, where the sym-
metry of the normal distribution is used to point out features of
probabilities under the curve. Note that the total area under the
density is 1, which in conjunction with symmetry is useful for
making calculations.

To add the shaded area between µ ± σ, you can use polygon, for which
you need the vertices of the shape of interest. To get a smooth curve, make
use of the fine sequence xvals and corresponding fx as defined in the code,
and use logical vector subsetting to restrict attention to those locations of x

such that −3.62 ≤ x ≤ −3.22.
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R> xvals.sub <- xvals[xvals>=mu.minus.1sig & xvals<=mu.plus.1sig]

R> fx.sub <- fx[xvals>=mu.minus.1sig & xvals<=mu.plus.1sig]

You can then sandwich these between the two corners at the bottom
of the shaded polygon using the matrix structure that the polygon function
expects.

R> polygon(rbind(c(mu.minus.1sig,0),cbind(xvals.sub,fx.sub),c(mu.plus.1sig,0)),

border=NA,col="gray")

Finally, arrows and text indicate the areas discussed in the text.

R> arrows(c(-4.2,-2.7,-2.9),c(0.5,0.5,1.2),c(-3.7,-3.15,-3.4),c(0.2,0.2,1))

R> text(c(-4.2,-2.7,-2.9),c(0.5,0.5,1.2)+0.05,

labels=c("0.159","0.159","0.682"))

The qnorm Function

Let’s turn to qnorm. To find the quantile value that will give you a lower-tail
probability of 0.159, you use the following:

R> qnorm(p=0.159,mean=mu,sd=sigma)

[1] -3.619715

Given the earlier results and what you already know about previous q-
functions, it should be clear why the result is a value of approximately −3.62.
You find the upper quartile (the value above which you’d find a probability of
0.25) with this:

R> qnorm(p=1-0.25,mean=mu,sd=sigma)

[1] -3.285102

Remember that the q-function will operate based on the (left) lower-tail
probability, so to find a quantile based on an upper-tail probability, you must
first subtract it from the total probability of 1.

In some methods and models used in frequentist statistics, it’s common
to assume that your observed data are normal. You can test the validity of
this assumption by using your knowledge of the theoretical quantiles of
the normal distribution, found in the results of qnorm: calculate a range of
sample quantile values for your observed data and plot these against the
same quantiles for a correspondingly standardized normal distribution.
This visual tool is referred to as a normal quantile-quantile or QQ plot and is
useful when viewed alongside a histogram. If the plotted points don’t lie on
a straight line, then the quantiles from your data do not match the appear-
ance of those from a normal curve, and the assumption that your data are
normal may not be valid.
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The built-in qqnorm function takes in your raw data and produces the cor-
responding plot. Go back once more to the ready-to-use chickwts data set.
Let’s say you want to find out whether it’s reasonable to assume the weights
are normally distributed. To that end, you use

R> hist(chickwts$weight,main="",xlab="weight")

R> qqnorm(chickwts$weight,main="Normal QQ plot of weights")

R> qqline(chickwts$weight,col="gray")

to produce the histogram of the 71 weights and the normal QQ plot given in
Figure 16-8. The additional qqline command adds the “optimal” line that the
coordinates would lie along if the data were perfectly normal.

Figure 16-8: Histogram (left) and normal QQ plot (right) of the weights of chicks in the
chickwts data set. Are the data normally distributed?

If you inspect the histogram of the weights, you can see that the data
match the general appearance of a normal distribution, with a roughly sym-
metric unimodal appearance. That said, it doesn’t quite achieve the smooth-
ness and naturally decaying height that produces the familiar normal bell
shape. This is reflected in the QQ plot on the right; the central quantile
values appear to lie on the line relatively well, except for some relatively
minor “wiggles.” There are some clear discrepancies in the outer tails, but
note that it is typical to observe discrepancies in these extreme quantiles in
any QQ plot because fewer data points naturally occur there. Taking all of
this into consideration, for this example the assumption of normality isn’t
completely unreasonable.

NOTE It’s important to consider the sample size when assessing the validity of these kinds
of assumptions; the larger the sample size, the less random variability will creep into
the histogram and QQ plot, and you can more confidently reach a conclusion about
whether your data are normal. For instance, the assumption of normality in this
example may be complicated by the fact there’s a relatively small sample size of only 71.
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The rnorm Function

Random variates of any given normal distribution are generated with rnorm;
for example, the line

R> rnorm(n=7,mu,sigma)

[1] -3.764532 -3.231154 -3.124965 -3.490482 -3.884633 -3.192205 -3.475835

produces seven normally distributed values arising from N(−3.42,0.2). In
contrast to the QQ plot produced for the chick weights in Figure 16-8,
you can use rnorm, qqnorm, and qqline to examine the degree to which hypo-
thetically observed data sets that are truly normal vary in the context of a
QQ plot.

The following code generates 71 standard normal values and produces a
corresponding normal QQ plot and then does the same for a separate data
set of n = 710; these are displayed in Figure 16-9.

R> fakedata1 <- rnorm(n=71)

R> fakedata2 <- rnorm(n=710)

R> qqnorm(fakedata1,main="Normal QQ plot of generated N(0,1) data; n=71")

R> qqline(fakedata1,col="gray")

R> qqnorm(fakedata2,main="Normal QQ plot of generated N(0,1) data; n=710")

R> qqline(fakedata2,col="gray")

Figure 16-9: Normal QQ plots of 71 (left) and 710 (right) observations randomly gener-
ated from the standard normal distribution

You can see that the QQ plot for the simulated data set of size n = 71
shows similar deviation from the optimal line as does the chick weights data
set. Bumping the sample size up by a factor of 10 shows that the QQ plot
for the n = 710 normal observations offers up far less random variation,
although visible discrepancies in the tails do still occur. A good way to get
used to assessing these effects is to rerun these lines of code several times
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(in other words, generating new data sets each time) and examine how each
new QQ plot varies.

Normal Functions in Action: A Quick Example

Let’s finish this section with one more working problem. Assume the man-
ufacturer of a certain type of snack knows that the total net weight of the
snacks in its 80-gram advertised package, X , is normally distributed with a
mean of 80.2 grams and a standard deviation of 1.1 grams. The manufac-
turer weighs the contents of randomly selected individual packets. The prob-
ability a randomly selected packet is less than 78 grams (that is, Pr(X < 78))
is as follows:

R> pnorm(78,80.2,1.1)

[1] 0.02275013

The probability a packet is found to weigh between 80.5 and 81.5 grams
is as follows:

R> pnorm(81.5,80.2,1.1)-pnorm(80.5,80.2,1.1)

[1] 0.2738925

The weight below which the lightest 20 percent of packets lie is as
follows:

R> qnorm(0.2,80.2,1.1)

[1] 79.27422

A simulation of five randomly selected packets can be found with the
following:

R> round(rnorm(5,80.2,1.1),1)

[1] 78.6 77.9 78.6 80.2 80.8

Exercise 16.4

a. A tutor knows that the length of time taken to complete a certain
statistics question by first-year undergraduate students, X , is
normally distributed with a mean of 17 minutes and a standard
deviation of 4.5 minutes.
i. What is the probability a randomly selected undergraduate

takes more than 20 minutes to complete the question?
ii. What’s the chance that a student takes between 5 and 10

minutes to finish the question?
iii. Find the time that marks off the slowest 10 percent of

students.
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iv. Plot the normal distribution of interest between ±4σ and
shade in the probability area of (iii), the slowest 10 percent
of students.

v. Generate a realization of times based on a class of 10 stu-
dents completing the question.

b. A meticulous gardener is interested in the length of blades
of grass on his lawn. He believes that blade length X follows a
normal distribution centered on 10 mm with a variance of 2 mm.
i. Find the probability that a blade of grass is between 9.5 and

11 mm long.
ii. What are the standardized values of 9.5 and 11 in the context

of this distribution? Using the standardized values, confirm
that you can obtain the same probability you found in (i)
with the standard normal density.

iii. Below which value are the shortest 2.5 percent of blade
lengths found?

iv. Standardize your answer from (iii).

16.2.3 Student’s t-distribution
The Student’s t-distribution is a continuous probability distribution generally
used when dealing with statistics estimated from a sample of data. It will
become particularly relevant in the next two chapters, so I’ll briefly explain
it here first.

Any particular t-distribution looks a lot like the standard normal
distribution—it’s bell-shaped, symmetric, and unimodal, and it’s cen-
tered on zero. The difference is that while a normal distribution is typically
used to deal with a population, the t-distribution deals with sample from
a population.

For the t-distribution you don’t have to define any parameters per se,
but you must choose the appropriate t-distribution by way of a strictly pos-
itive integer ν > 0; this is referred to as the degrees of freedom (df), called
so because it represents the number of individual components in the calcu-
lation of a given statistic that are “free to change.” You’ll see in the upcom-
ing chapters that this quantity is usually directly related to sample sizes.

For the moment, though, you should just loosely think of the t-
distribution as the representation of a family of curves and think of the
degrees of freedom as the “selector” you use to tell you which particular
version of the density to use. The precise equation for the density of the t-
distribution is also not especially useful in an introductory setting, though
it is useful to remember that the total probability underneath any t curve is
naturally 1.

For a t-distribution, the dt, pt, qt, and rt functions represent the R
implementation of the density, the cumulative distribution (left prob-
abilities), the quantile, and the random variate generation functions,

Common Probability Distributions 357



respectively. The first arguments, x, q, p, and n, respectively, provide the rele-
vant value (or values) of interest to these functions; the second argument in
all of these is df, to which you must specify the degrees of freedom ν.

The best way to get an impression of the t family is through a visualiza-
tion. Figure 16-10 plots the standard normal distribution, as well as the t-
distribution curve with ν = 1, ν = 6, and ν = 20 df.

Figure 16-10: Comparing the standard normal distribution with
three instances of the t-distribution. Note that the higher the
degrees of freedom, the closer the t-distribution approximation
becomes to the normal.

The one important note to take away from Figure 16-10, and indeed
from this section, is the way in which the t density function changes with
respect to the N(0,1) distribution as you increase the df. For small values
of ν close to 1, the t-distribution is shorter, in terms of its mode, with more
probability occurring in noticeably fatter tails. It turns out that the t density
approaches the standard normal density as ν → ∞. As a case in point, note
that the upper 5 percent tail of the standard normal distribution is delin-
eated by the following value:

R> qnorm(1-0.05)

[1] 1.644854

The same upper tail of the t-distribution is provided with df values of
ν = 1, ν = 6, and ν = 20, respectively.

R> qt(1-0.05,df=1)

[1] 6.313752

R> qt(1-0.05,df=6)

[1] 1.94318
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R> qt(1-0.05,df=20)

[1] 1.724718

In direct comparison with the standard normal, the heavier weight in
the tails of the t density leads naturally to more extreme quantile values
given a specific probability. Notice that this extremity, however, is reduced
as the df is increased—fitting in with the aforementioned fact that the t-
distribution continues to improve in terms of its approximation to the stan-
dard normal as you raise the df.

16.2.4 Exponential
Of course, probability density functions don’t have to be symmetrical like
those you’ve encountered so far, nor do they need to allow for the random
variable to be able to take values from negative infinity to positive infinity
(like the normal or t-distributions). A good example of this is the exponential
distribution, for which realizations of a random variable X are valid only on a
0 ≤ X < ∞ domain.

For a continuous random variable 0 ≤ X < ∞, the exponential density
function f is

f (x) = λe exp{−λex}; 0 ≤ x < ∞ (16.7)

where λe is a parameter of the distribution and exp{ · } is the exponential
function. The notation

X ∼ EXP(λe)

is often used to indicate that “X follows an exponential distribution with
rate λe.”

The following are the key points to note:

• Theoretically, X can take any value in the range 0 to ∞, and f (x)

decreases as x increases.

• The “rate” parameter must be strictly positive; in other words, λe > 0.
It defines f (0) and the rate of decay of the function to the horizontal
asymptote at zero.

The mean and variance are as follows, respectively:

µX =
1
λe

and σ2
X
=

1

λ2
e

The dexp Function

The density function for the exponential distribution is a steadily decreasing
line beginning at f (0) = λ; the rate of this decay ensures a total area of 1
underneath the curve. You create Figure 16-11 with the relevant d-function
in the following code.

R> xvals <- seq(0,10,length=200)

R> plot(xvals,dexp(x=xvals,rate=1.65),xlim=c(0,8),ylim=c(0,1.65),type="l",

xlab="x",ylab="f(x)")
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R> lines(xvals,dexp(x=xvals,rate=1),lty=2)

R> lines(xvals,dexp(x=xvals,rate=0.4),lty=3)

R> abline(v=0,col="gray")

R> abline(h=0,col="gray")

R> legend("topright",legend=c("EXP(1.65)","EXP(1)","EXP(0.4)"),lty=1:3)

Figure 16-11: Three different exponential density functions.
Decreasing λe lowers the mode and extends the tail.

The parameter λe is provided to rate in dexp, which is evaluated at x,
provided to the first argument x (via the xvals object in this example). You
can see that a distinct feature of the exponential density function is that
aforementioned decay to zero, with larger values of λe translating to a taller
(yet sharper and more rapid) drop.

This naturally decreasing behavior helps identify the role the expo-
nential distribution often plays in applications—one of a “time-until-event”
nature. In fact, there’s a special relationship between the exponential distri-
bution and the Poisson distribution introduced in Section 16.1.3. When the
Poisson distribution is used to model the count of a certain event through
time, you use the exponential distribution to model the time between these
events. In such a setting, the exponential parameter λe defines the mean rate
at which the events occur over time.

The pexp Function

Let’s revisit the example from Exercise 16.2, where the average number of
cars passing an individual within a 120-minute window was said to be 107.
Define the random variable X to be the waiting time between two consecu-
tive cars passing and, using an exponential distribution for X on a minute
time scale, set λe = 107/120 ≈ 0.89 (rounded to 2 d.p.). If 107 cars are typi-
cally observed in a two-hour window, then you see cars at an average rate of
0.89 per minute.

Thus, you interpret λe as the “per-unit-time” measure of the λp param-
eter from the Poisson mass function. The interpretation of the mean as the
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reciprocal of the rate, µX = 1/λe, is also intuitive. For example, when observ-
ing cars at a rate of about 0.89 per minute, note that the average waiting
time between cars is roughly 1/0.89 ≈ 1.12 minutes.

So, in the current example, you want to examine the density
X ∼ EXP

(

107
120

)

.

R> lambda.e <- 107/120

R> lambda.e

[1] 0.8916667

Say a car has just passed the individual’s location and you want to find
the probability that they must wait more than two and a half minutes before
seeing another car, in other words, Pr(X > 2.5). You can do so using pexp.

R> 1-pexp(q=2.5,rate=lambda.e)

[1] 0.1076181

This indicates that you have just over a 10 percent chance of observing
at least a 2-minute 30-second gap before the next car appears. Remember
that the default behavior of the p-function is to find the cumulative, left-
hand probability from the provided value, so you need to subtract the result
from 1 to find an upper-tail probability. You find the probability of waiting
less than 25 seconds with the following, which gives a result of roughly 0.31:

R> pexp(25/60,lambda.e)

[1] 0.3103202

Note the need to first convert the value of interest from seconds to min-
utes since you’ve defined f (x) via λe ≈ 0.89 on the scale of the latter.

The qexp Function

Use the appropriate quantile function qexp to find, say, the cutoff point for
the shortest 15 percent of waits.

R> qexp(p=0.15,lambda.e)

[1] 0.1822642

This indicates that the value of interest is about 0.182 minutes, in other
words, roughly 0.182 × 60 = 10.9 seconds.

As usual, you can use rexp to generate random variates of any specific
exponential distribution.

NOTE It is important to distinguish between the “exponential distribution,” the “exponen-
tial family of distributions,” and the “exponential function.” The first refers to the
density function that’s just been studied, whereas the second refers to a general class
of probability distributions, including the Poisson, the normal, and the exponential
itself. The third is just the standard mathematical exponential function upon which
the exponential family members depend and is directly accessible in R via exp.
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Exercise 16.5

a. Situated in the central north island of New Zealand, the Pohutu
geyser is said to be the largest active geyser in the southern
hemisphere. Suppose that it erupts an average of 3,500 times
every year.
i. With the intention of modeling a random variable X as the

time between consecutive eruptions, evaluate the parameter
value λe with respect to a time scale in days (assume 365.25
days per year to account for leap years).

ii. Plot the density function of interest. What’s the mean wait in
days between eruptions?

iii. What’s the probability of waiting less than 30 minutes for the
next eruption?

iv. What waiting time defines the longest 10 percent of waits?
Convert your answer to hours.

b. You can also use the exponential distribution to model certain
product survival times, or “time-to-failure” type of variables. Say
a manufacturer of a particular air conditioning unit knows that
the product has an average life of 11 years before it needs any
type of repair callout. Let the random variable X represent the
time until the necessary repair of one of these units and assume
X follows an exponential distribution with λe = 1/11.
i. The company offers a five-year full repair warranty on this

unit. What’s the probability that a randomly selected air
conditioner owner makes use of the warranty?

ii. A rival company offers a six-year guarantee on its competing
air conditioning unit but knows that its units last, on average,
only nine years before requiring some kind of repair. What
are the chances of making use of that warranty?

iii. Determine the probabilities that the units in (i) and the
units in (ii) last more than 15 years.

16.2.5 Other Density Functions
There are a number of other common probability density functions used
for a wide variety of tasks involving continuous random variables. I’ll summa-
rize a few here:

• The chi-squared distribution models sums of squared normal variates and
is thus often related to operations concerning sample variances of nor-
mally distributed data. Its functions are dchisq, pchisq, qchisq, and rchisq,
and like the t-distribution (Section 16.2.3), it’s dependent upon specifi-
cation of a degrees of freedom provided as the argument df.
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• The F-distribution is used to model ratios of two chi-squared random
variables and is useful in, for example, regression problems (see Chap-
ter 20). Its functions are df, pf, qf, and rf, and as it involves two chi-
squared values, it’s dependent upon the specification of a pair of
degrees of freedom values supplied as the arguments df1 and df2.

• The gamma distribution is a generalization of both the exponential and
chi-squared distributions. Its functions are dgamma, pgamma, qgamma, and
rgamma, and it’s dependent upon “shape” and “scale” parameters pro-
vided as the arguments shape and scale, respectively.

• The beta distribution is often used in Bayesian modeling, and it has
implemented functions dbeta, pbeta, qbeta, and rbeta. It’s defined by two
“shape” parameters α and β, supplied as shape1 and shape2, respectively.

In particular, you’ll encounter the chi-squared and F -distributions over
the next couple of chapters.

NOTE In all of the common probability distributions you’ve examined over the past couple
of sections, I’ve emphasized the need to perform “one-minus” operations to find prob-
abilities or quantiles with respect to an upper- or right-tailed area. This is because
of the cumulative nature of the p- and q-functions—by definition, it’s the lower tail
that is dealt with. However, most p- and q-functions in R include an optional logi-
cal argument, lower.tail, which defaults to FALSE. Therefore, an alternative is to set
lower.tail=TRUE in any relevant function call, in which case R will expect or return
upper-tail areas specifically.

Important Code in This Chapter

Function/operator Brief description First occurrence

dbinom Binomial mass function Section 16.1.2, p. 335
pbinom Binomial cumulative problems Section 16.1.2, p. 336
qbinom Binomial quantiles function Section 16.1.2, p. 337
rbinom Binomial random realizations Section 16.1.2, p. 337
dpois Poisson mass function Section 16.1.3, p. 340
ppois Poisson cumulative problems Section 16.1.3, p. 341
rpois Poisson random realizations Section 16.1.3, p. 341
dunif Uniform density function Section 16.2.1, p. 344
punif Uniform cumulative problems Section 16.2.1, p. 346
qunif Uniform quantiles Section 16.2.1, p. 346
runif Uniform random realizations Section 16.2.1, p. 347
dnorm Normal density function Section 16.2.2, p. 350
pnorm Normal cumulative problems Section 16.2.2, p. 350
qnorm Normal quantiles Section 16.2.2, p. 353
rnorm Normal random realizations Section 16.2.2, p. 355
qt Student’s t quantiles Section 16.2.3, p. 358
dexp Exponential density function Section 16.2.4, p. 359
pexp Exponential cumulative problems Section 16.2.4, p. 361
qexp Exponential quantiles Section 16.2.4, p. 361
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17
SAMPLING DISTRIBUTIONS

AND CONFIDENCE

In Chapters 15 and 16, you applied
the idea of a probability distribution

to examples where a random variable is
defined as some measurement or observation

of interest. In this chapter, you’ll consider sample
statistics themselves as random variables to introduce
the concept of a sampling distribution—a probability distribution that is used
to account for the variability naturally present when you estimate popu-
lation parameters using sample statistics. I’ll then introduce the idea of a
confidence interval, which is a direct reflection of the variability in a sampling
distribution, used in a way that results in an interval estimate of a population
parameter. This will form the foundation for formal hypothesis testing in
Chapter 18.

17.1 Sampling Distributions

A sampling distribution is just like any other probability distribution, but
it is specifically associated with a random variable that is a sample statistic.
In Chapters 15 and 16, we assumed we knew the parameters of the relevant
example distribution (for example, the mean and the standard deviation



of a normal distribution or the probability of success in a binomial distribu-
tion), but in practice these kinds of quantities are often unknown. In these
cases, you’d typically estimate the quantities from a sample (see Figure 13-2
on page 266 for a visual illustration of this). Any statistic estimated from a
sample can be treated as a random variable, with the estimated value itself as
the realization of that random variable. It’s therefore entirely possible that
different samples from the same population will provide a different value for
the same statistic—realizations of random variables are naturally subject to
variability. Being able to understand and model this natural variability inher-
ent in estimated sample statistics (using relevant sampling distributions) is a
key part of many statistical analyses.

Like any other probability distribution, the central “balance” point of a
sampling distribution is its mean, but the standard deviation of a sampling
distribution is referred to as a standard error. The slight change in terminol-
ogy reflects the fact that the probabilities of interest are no longer tied to
raw measurements or observations per se, but rather to a quantity calculated
from a sample of such observations. The theoretical formulas for various
sampling distributions therefore depend upon (a) the original probability
distributions that are assumed to have generated the raw data and (b) the
size of the sample itself.

This section will explain the key ideas and provide some examples, and
I’ll focus on two simple and easily recognized statistics: a single sample mean
and a single sample proportion. I’ll then expand on this in Chapter 18 when
covering hypothesis testing, and you’ll need to understand the role of sam-
pling distributions in assessing important model parameters when you look
at regression methods in Chapters 20 to 22.

NOTE The validity of the theory of sampling distributions as discussed in this chapter makes
an important assumption. Whenever I talk about a sample of data from which a given
statistic is calculated, I assume those observations are independent of one another and
that they are identically distributed. You’ll see this notion—independent, identically
distributed observations—frequently abbreviated as iid in statistical material.

17.1.1 Distribution for a Sample Mean
The arithmetic mean is arguably the most common measure of centrality
(Section 13.2.1) used when summarizing a data set.

Mathematically, the variability inherent in an estimated sample mean
is described as follows: Formally, denote the random variable of interest as
X̄ . This represents the mean of a sample of n observations from the “raw
observation” random variable X , as in x1, x2, . . . , xn . Those observations are
assumed to have a true finite mean −∞ < µX < ∞ and a true finite standard
deviation 0 < σX < ∞. The conditions for finding the probability distribu-
tion of a sample mean vary depending on whether you know the value of the
standard deviation.
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Situation 1: Standard Deviation Known

When the true value of the standard deviation σX is known, then the follow-
ing are true:

• If X itself is normal, the sampling distribution of X̄ is a normal distribu-
tion, with mean µX and standard error σX/

√
n.

• If X is not normal, the sampling distribution of X̄ is still approximately
normal, with mean µX and standard error σX/

√
n, and this approxi-

mation improves arbitrarily as n → ∞. This is known as the central limit
theorem (CLT).

Situation 2: Standard Deviation Unknown

In practice, you commonly won’t know the true value of the standard devia-
tion of the raw measurement distribution that generated your sample data.
In this eventuality, it’s usual to just replace σX with sX , which is the stan-
dard deviation of the sampled data. However, this substitution introduces
additional variability that affects the distribution associated with the sample
mean random variable.

• Standardized values (Section 16.2.2) of the sampling distribution of X̄

follow a t-distribution with ν = n − 1 degrees of freedom; standardization
is performed using the standard error sX/

√
n.

• If, additionally, n is small, then it is necessary to assume the distribution
of X is normal for the validity of this t-based sampling distribution of X̄ .

The nature of the sampling distribution of X̄ therefore depends upon
whether the true standard deviation of the observations is known, as well
as the sample size n. The CLT states that normality occurs even if the raw
observation distribution is itself not normal, but this approximation is less
reliable if n is small. It’s a common rule of thumb to rely on the CLT only
if n ≥ 30. If sX , the sample standard deviation, is used to calculate the
standard error of X̄ , then the sampling distribution is the t-distribution
(following standardization). Again, this is generally taken to be reliable
only if n ≥ 30.

Example: Dunedin Temperatures

As an example, suppose that the daily maximum temperature in the month
of January in Dunedin, New Zealand, follows a normal distribution, with a
mean of 22 degrees Celsius and a standard deviation of 1.5 degrees. Then,
in line with the comments for situation 1, for samples of size n = 5, the sam-
pling distribution of X̄ will be normal, with mean 22 and standard error
1.5/
√

5 ≈ 0.671.
The top image of Figure 17-1 shows the raw measurement distribution

along with this sampling distribution. You can produce this with code that’s
familiar from Chapter 16.
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R> xvals <- seq(16,28,by=0.1)

R> fx.samp <- dnorm(xvals,22,1.5/sqrt(5))

R> plot(xvals,fx.samp,type="l",lty=2,lwd=2,xlab="",ylab="")

R> abline(h=0,col="gray")

R> fx <- dnorm(xvals,22,1.5)

R> lines(xvals,fx,lwd=2)

R> legend("topright",legend=c("raw obs. distbn.","sampling distbn. (mean)"),

lty=1:2,lwd=c(2,2),bty="n")

In this example, the sampling distribution of X̄ is clearly a taller, skin-
nier normal distribution than the one tied to the observations. This makes
sense—you expect less variability in an average of several measurements as
opposed to the raw, individual measurements. Furthermore, the presence
of n in the denominator of the standard error dictates a more precise distri-
bution around the mean if you increase the sample size. Again, this makes
sense—means will “vary less” between samples of a larger size.

You can now ask various probability questions; note that distinguishing
between the measurement distribution and the sampling distribution is
important. For example, the following code provides Pr(X < 21.5), the prob-
ability that a randomly chosen day in January has a maximum temperature
of less than 21.5 degrees:

R> pnorm(21.5,mean=22,sd=1.5)

[1] 0.3694413

The next bit of code provides the probability that the sample mean will
be less than 21.5 degrees, Pr(X̄ < 21.5), based on a sample of five random
days in January:

R> pnorm(21.5,mean=22,sd=1.5/sqrt(5))

[1] 0.2280283

The line-shaded areas on the top of Figure 17-1 show these two proba-
bilities. In R, these shaded areas can be added to that plot by running the
following lines directly after the earlier code:

R> abline(v=21.5,col="gray")

R> xvals.sub <- xvals[xvals<=21.5]

R> fx.sub <- fx[xvals<=21.5]

R> fx.samp.sub <- fx.samp[xvals<=21.5]

R> polygon(cbind(c(21.5,xvals.sub),c(0,fx.sub)),density=10)

R> polygon(cbind(c(21.5,xvals.sub),c(0,fx.samp.sub)),density=10,

angle=120,lty=2)

Note that in previous uses of polygon, you’ve simply specified a col; in this
example, I implemented shading lines instead, using the arguments density

(number of lines per inch) and angle (slope of lines in degrees; defaults to
angle=45).

370 Chapter 17



Figure 17-1: Illustrating the sampling distribution of a sample mean
for n = 5, based on an N(22,1.5) raw observation distribution. Top:
the normal-based version of the sampling distribution (assuming
σX is known) compared to the observation distribution. Bottom:
the t-based version of the sampling distribution, using 4 degrees
of freedom (in other words, assuming s has been used to calculate
the standard error), compared to a standard normal. Shaded areas
represent Pr(X < 21.5), Pr(X̄ < 21.5) (solid and dashed, topmost
plot) and Pr(T < (21.5 − x̄)/(s/

√
5)) (dotted, bottom plot).

To evaluate the probabilities, note that you’ve required knowledge of
the parameters governing X . In practice, you’ll rarely have these quantities
(as noted in situation 2). Instead, you obtain a sample of data and calculate
summary statistics.
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Running the following line produces five randomly generated Dunedin
temperatures from the X ∼ N(22,1.5) distribution:

R> obs <- rnorm(5,mean=22,sd=1.5)

R> obs

[1] 22.92233 23.09505 20.98653 20.10941 22.33888

Now, for the sake of the example, say these five values constitute all the
data you have for this particular problem; in other words, pretend you don’t
know that µX = 22 and σX = 1.5. Your best guesses of the true values of µX
and σX , denoted x̄ and s, respectively, are therefore as follows:

R> obs.mean <- mean(obs)

R> obs.mean

[1] 21.89044

R> obs.sd <- sd(obs)

R> obs.sd

[1] 1.294806

The estimated standard error can be calculated:

R> obs.mean.se <- obs.sd/sqrt(5)

R> obs.mean.se

[1] 0.5790549

Because n = 5 is relatively small, you must assume the values in obs are
realizations from a normal distribution, in line with the points made for sit-
uation 2. This allows you to handle the sampling distribution of X̄ using the
t-distribution with 4 degrees of freedom. Recall from Section 16.2.3, though,
that any t-distribution is typically placed on a standardized scale. Therefore,
for you to find the probability that the mean temperature (in a sample of
five days) is less than 21.5 based on your calculated sample statistics, you
must first standardize this value using the rules outlined in Section 16.2.2.
Label the corresponding random variable as T and the specific value as t4,
stored as the object t4 in R.

R> t4 <- (21.5-obs.mean)/obs.mean.se

R> t4

[1] -0.6742706

This has placed the value of interest, 21.5, on the standardized scale,
making it interpretable with respect to a standard normal distribution or,
as is correct in this setting (because you are using the estimate s rather than
the unknown σX in calculating the standard error), t4 follows the aforemen-
tioned t-distribution with 4 degrees of freedom. The estimated probability is
as follows.

372 Chapter 17



R> pt(t4,df=4)

[1] 0.26855

Note that when you calculated the “true” theoretical probability from
the sampling distribution of Pr(X̄ < 21.5), you got a result of about 0.23 (see
page 370), but the same probability based on standardization using sample
statistics of the data obs (in other words, estimates of the true theoretical
values Pr(T < t4)) has been computed as 0.27 (2 d.p.).

The bottom image of Figure 17-1 provides the t-distribution with ν = 4,
marking off the probability described. The N(0,1) density is also plotted for
comparison; this represents the standardized version of the N(22,1.5/

√
5)

sampling distribution from earlier, in situation 1. You can produce this
image with the following lines:

R> xvals <- seq(-5,5,length=100)

R> fx.samp.t <- dt(xvals,df=4)

R> plot(xvals,dnorm(xvals),type="l",lty=2,lwd=2,col="gray",xlim=c(-4,4),

xlab="",ylab="")

R> abline(h=0,col="gray")

R> lines(xvals,fx.samp.t,lty=3,lwd=2)

R> polygon(cbind(c(t4,-5,xvals[xvals<=t4]),c(0,0,fx.samp.t[xvals<=t4])),

density=10,lty=3)

R> legend("topright",legend=c("N(0,1) standard","t (4 df)"),

col=c("gray","black"),lty=2:3,lwd=c(2,2),bty="n")

Consideration of probability distributions associated with sample means
is clearly not a trivial exercise. Using sample statistics governs the nature
of the sampling distribution; in particular, it will be t based if you use the
sample standard deviation to calculate the standard error. However, as the
examples here have shown, once that’s been established, the calculation of
various probabilities is easy and follows the same general rules and R func-
tionality detailed in Section 16.2.

17.1.2 Distribution for a Sample Proportion
Sampling distributions for sample proportions are interpreted in much the
same way. If n trials of a success/failure event are performed, you can obtain
an estimate of the proportion of successes; if another n trials are performed,
the new estimate could vary. It’s this variability that you’re investigating.

The random variable of interest, P̂, represents the estimated propor-
tions of successes over any n trials, each resulting in some defined binary
outcome. It is estimated as p̂ = x

n
, where x is the number of successes in a

sample of size n. Let the corresponding true proportion of successes (often
unknown) simply be denoted with π.

NOTE Note that π as used in this setting doesn’t refer to the common geometric value 3.14
(2 d.p.). Rather, it’s simply standard notation to refer to a true population proportion
using the π symbol.
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The sampling distribution of P̂ is approximately normal with mean π
and standard error

√
π(1 − π)/n. The following are the key things to note:

• This approximation is valid if n is large and/or π is not too close to
either 0 or 1.

• There are rules of thumb to determine this validity; one such rule is to
assume the normal approximation is satisfactory if both nπ and n(1 − π)

are greater than 5.

• When the true π is unknown or is unassumed to be a certain value, it is
typically replaced by p̂ in all of the previous formulas.

As long as you can deem the approximation to the normal distribution
valid, this is the only probability distribution that you need to be concerned
with. However, it’s worth noting that the standard error of the sampling dis-
tribution of a sample proportion depends directly upon the proportion π.
This becomes important when constructing confidence intervals and carry-
ing out hypothesis tests, which you’ll begin to explore in Chapter 18.

Let’s look at a practical example. Suppose a political commentator in
the United States is interested in the proportion of voting-age citizens in
her home city that already know how they will vote in the next presidential
election. She obtains a yes or no answer from 118 suitable randomly selected
individuals. Of these individuals, 80 say they know how they’ll vote. To inves-
tigate the variability associated with the proportion of interest, you’ll there-
fore need to consider

P̂ ∼ N *,p̂,

√

p̂(1 − p̂)

n
+- , (17.1)

where p̂ = 80
118 . In R, the following gives you the estimate of interest:

R> p.hat <- 80/118

R> p.hat

[1] 0.6779661

In the sample, about 68 percent of the surveyed individuals know how
they will vote in the next election. Note also that, according to the afore-
mentioned rule of thumb, the approximation to the normal distribution is
valid because both values are greater than 5.

R> 118*p.hat

[1] 80

R> 118*(1-p.hat)

[1] 38

Estimate the standard error with the following:

R> p.se <- sqrt(p.hat*(1-p.hat)/118)

R> p.se

[1] 0.04301439
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Then, you can plot the corresponding sampling distribution using
this code:

R> pvals <- seq(p.hat-5*p.se,p.hat+5*p.se,length=100)

R> p.samp <- dnorm(pvals,mean=p.hat,sd=p.se)

R> plot(pvals,p.samp,type="l",xlab="",ylab="",

xlim=p.hat+c(-4,4)*p.se,ylim=c(0,max(p.samp)))

R> abline(h=0,col="gray")

Figure 17-2 gives the result.

Figure 17-2: Visualizing the sampling distribution for the
voting example as per Equation (17.1). The shaded area
represents Pr(0.7 < P̂ < 0.75), which is the probability
that the true sample proportion for samples of size
n = 118 lies between 0.7 and 0.75.

Now you can use this distribution to describe the variability in the
sample proportion of voters who already know how they will vote, for
other samples of this size.

For example, the shaded area in Figure 17-2 highlights the probability
that in another sample of the same size, the sample proportion of voters
in the given city who already know how they’re going to vote is somewhere
between 0.7 and 0.75. This shaded area can be added with the follow-
ing code:

R> pvals.sub <- pvals[pvals>=0.7 & pvals<=0.75]

R> p.samp.sub <- p.samp[pvals>=0.7 & pvals<=0.75]

R> polygon(cbind(c(0.7,pvals.sub,0.75),c(0,p.samp.sub,0)),

border=NA,col="gray")
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And with knowledge of pnorm, introduced in Section 16.2.2, you can use
the following code to calculate the probability of interest:

R> pnorm(0.75,mean=p.hat,sd=p.se) - pnorm(0.7,mean=p.hat,sd=p.se)

[1] 0.257238

This sampling distribution suggests that the chance of another sample
proportion, based on the same sample size, lying somewhere between these
two values is about 25.7 percent.

Exercise 17.1

A teacher wants to test all of the 10th-grade students at his school to
gauge their basic mathematical understanding, but the photocopier
breaks after making only six copies of the test. With no other choice,
he chooses six students at random to take the test. Their results,
recorded as a score out of 65, have a sample mean of 41.1. The
standard deviation of the marks of this test is known to be 11.3.

a. Find the standard error associated with the mean test score.

b. Assuming the scores themselves are normally distributed, evalu-
ate the probability that the mean score lies between 45 and 55 if
the teacher took another sample of the same size.

c. A student who gets less than half the questions correct receives a
failing grade (F). Find the probability that the average score is an
F based on another sample of the same size.

A marketing company wants to find out which of two energy drinks
teenagers prefer—drink A or drink B. It surveys 140 teens, and the
results indicate that only 35 percent prefer drink A.

d. Use a quick check to decide whether it is valid to use the nor-
mal distribution to represent the sampling distribution of this
proportion.

e. What is the probability that in another sample of the same
size, the proportion of teenagers who prefer drink A is greater
than 0.4?

f. Find the two values of this sampling distribution that identify the
central 80 percent of values of the proportion of interest.

In Section 16.2.4, the time between cars passing an individual’s
location was modeled using an exponential distribution. Say that on
the other side of town, her friend is curious about a similar problem.
Standing outside her house, she records 63 individual times between
cars passing. These sampled times have a mean of x̄ = 37.8 seconds
with a standard deviation of s = 34.51 seconds.
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g. The friend inspects a histogram of her raw measurements
and notices that her raw data are heavily right-skewed. Briefly
identify and describe the nature of the sampling distribution
with respect to the sample mean and calculate the appropriate
standard error.

h. Using the standard error from (g) and the appropriate probabil-
ity distribution, calculate the probability that in another sample
of the same size, the sample mean time between cars passing is as
follows:
i. More than 40 seconds
ii. Less than half a minute
iii. Between the given sample mean and 40 seconds

17.1.3 Sampling Distributions for Other Statistics
So far you’ve looked at sampling distributions in cases dealing with a single
sample mean or sample proportion, though it’s important to note that many
problems require more complicated measures. Nevertheless, you can apply
the ideas explored in this section to any statistic estimated from a finite-sized
sample. The key, always, is to be able to understand the variability associated
with your point estimates.

In some settings, such as those covered so far, the sampling distribu-
tion is parametric, meaning that the functional (mathematical) form of the
probability distribution itself is known and depends only on the provision of
specific parameter values. This is sometimes contingent upon the satisfac-
tion of certain conditions, as you’ve seen with the application of the normal
distribution covered in this chapter. For other statistics, it may be the case
that you do not know the form of the appropriate sampling distribution—
in these cases, you could use computer simulation to obtain the required
probabilities.

In the remainder of this chapter and over the next few chapters, you’ll
continue to explore statistics that are tied to parametric sampling distribu-
tions for common tests and models.

NOTE The variability of an estimated quantity is actually only one side of the coin. Just as
important is the issue of statistical bias. Where “natural variability” should be associ-
ated with random error, bias is associated with systematic error, in the sense that
a biased statistic does not settle on the corresponding true parameter value as the sam-
ple size increases. Bias can be caused by flaws in a study design or collection of data or
can be the result of a poor estimator of the statistic of interest. Bias is an undesirable
trait of any given estimator and/or statistical analysis unless it can be quantified and
removed, which is often difficult if not impossible in practice. I’ve therefore dealt so far
only with unbiased statistical estimators, many of which are those you may already be
familiar with (for example, the arithmetic mean), and I’ll continue to assume unbi-
asedness moving forward.
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17.2 Confidence Intervals

A confidence interval (CI) is an interval defined by a lower limit l and an upper
limit u, used to describe possible values of a corresponding true popula-
tion parameter in light of observed sample data. Interpretation of a con-
fidence interval therefore allows you to state a “level of confidence” that a
true parameter of interest falls between this upper and lower limit, often
expressed as a percentage. As such, it is a common and useful tool built
directly from the sampling distribution of the statistic of interest.

The following are the important points to note:

• The level of confidence is usually expressed as a percentage, such that
you’d construct a 100 × (1 − α) percent confidence interval, where
0 < α < 1 is an “amount of tail probability.”

• The three most common intervals are defined with either α = 0.1 (a
90 percent interval), α = 0.05 (a 95 percent interval), or α = 0.01
(a 99 percent interval).

• Colloquially, you’d state the interpretation of a confidence interval (l,u)

as “I am 100 × (1 − α) percent confident that the true parameter value
lies somewhere between l and u.”

Confidence intervals may be constructed in different ways, depending
on the type of statistic and therefore the shape of the corresponding sam-
pling distribution. For symmetrically distributed sample statistics, like those
involving means and proportions that will be used in this chapter, a general
formula is

statistic ± critical value × standard error, (17.2)

where statistic is the sample statistic under scrutiny, critical value is a value
from the standardized version of the sampling distribution that corresponds
to α, and standard error is the standard deviation of the sampling distribu-
tion. The product of the critical value and standard error is referred to
as the error component of the interval; subtraction of the error component
from the value of the statistic provides l, and addition provides u.

With reference to the appropriate sampling distribution, all that a CI
yields are the two values of the distribution that mark off the central 100 ×
(1 − α) percent of the area under the density. (This is the process that was
briefly mentioned in Exercise 17.1 (f).) You then use the CI to make further
interpretations concerning the true (typically unknown) parameter value
that’s being estimated by the statistic of interest.

17.2.1 An Interval for a Mean
You know from Section 17.1.1 that the sampling distribution of a single
sample mean depends primarily on whether you know the true standard
deviation of the raw measurements, σX . Then, provided the sample size for
this sample mean is roughly n ≥ 30, the CLT ensures a symmetric sampling
distribution—which will be normal if you know the true value of σX , or t
based with ν = n − 1 df if you must use the sample standard deviation, s, to
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estimate σX (as is more common in practice). You’ve seen that the standard
error is defined as the standard deviation divided by the square root of n.
For a small n, you must also assume that the raw observations are normally
distributed, since the CLT will not apply.

To construct an appropriate interval, you must first find the critical
value corresponding to α. By definition the CI is symmetric, so this translates
to a central probability of (1 − α) around the mean, which is exactly α/2 in
the lower tail and the same in the upper tail.

Return to the example from Section 17.1.1, dealing with the mean daily
maximum temperatures (degrees Celsius) in January for Dunedin, New
Zealand. Suppose you know the observations are normally distributed but
you don’t know the true mean µX (which is set at 22) or the true standard
deviation σX (which is set at 1.5). Setting it up in the same way as earlier,
assume you’ve made the following five independent observations:

R> temp.sample <- rnorm(n=5,mean=22,sd=1.5)

R> temp.sample

[1] 20.46097 21.45658 21.06410 20.49367 24.92843

As you’re interested in the sample mean and its sampling distribution,
you must calculate the sample mean x̄, the sample standard deviation s, and
the appropriate standard error of the sample mean, s/

√
n.

R> temp.mean <- mean(temp.sample)

R> temp.mean

[1] 21.68075

R> temp.sd <- sd(temp.sample)

R> temp.sd

[1] 1.862456

R> temp.se <- temp.sd/sqrt(5)

R> temp.se

[1] 0.8329155

Now, let’s say the aim is to construct a 95 percent confidence interval
for the true, unknown mean µX . This implies α = 0.05 (the total amount of
tail probability) for the relevant sampling distribution. Given the fact that
you know the raw observations are normal and that you’re using s (not σX),
the appropriate distribution is the t-distribution with n − 1 = 4 degrees of
freedom. For a central area of 0.95 under this curve, α/2 = 0.025 must be
in either tail. Knowing that R’s q functions operate based on a total lower tail
area, the (positive) critical value is therefore found by supplying a probabil-
ity of 1 − α/2 = 0.975 to the appropriate function.

R> 1-0.05/2

[1] 0.975

R> critval <- qt(0.975,df=4)

R> critval

[1] 2.776445
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Figure 17-3 shows why the qt function is used in this way (since I used
similar code throughout Chapter 16, I haven’t reproduced the code for Fig-
ure 17-3 here).

Figure 17-3: Illustrating the role of the critical value in a confidence
interval for a sample mean, using the Dunedin temperature example.
The sampling distribution is t with 4 df, and the use of qt with respect
to symmetric tail probabilities related to α/2 = 0.025 yields a central
area of 0.95.

Note that when viewed with respect to the negative version of the
same critical value (“reflected” around the mean and obtained by using
qt(0.025,4)), the central, symmetric area under the curve must be 0.95. You
can confirm this using pt.

R> pt(critval,4)-pt(-critval,4)

[1] 0.95

So, all the ingredients are present. You find the 95 percent confidence
interval for the true mean µX via Equation (17.2) with the following lines,
which give l and u, respectively:

R> temp.mean-critval*temp.se

[1] 19.36821

R> temp.mean+critval*temp.se

[1] 23.99329
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The CI given by (19.37,23.99) is therefore interpreted as follows: you
are 95 percent confident that the true mean maximum temperature in
Dunedin in January lies somewhere between 19.37 and 23.99 degrees
Celsius.

With this result, you’ve combined knowledge of the estimate of the
mean itself with the inherent variability of a sample to define an interval of
values in which you’re fairly sure the true mean will lie. As you know, the
true mean in this case is 22, which is indeed included in the calculated CI.

From this, it’s easy to alter the intervals to change the confidence levels.
You need to change only the critical value, which, as always, must define α/2
in each tail. For example, an 80 percent CI (α = 0.2) and a 99 percent CI
(α = 0.01) for the same example value given here can be found with these
two lines, respectively:

R> temp.mean+c(-1,1)*qt(p=0.9,df=4)*temp.se

[1] 20.40372 22.95778

R> temp.mean+c(-1,1)*qt(p=0.995,df=4)*temp.se

[1] 17.84593 25.51557

Note here the use of multiplication by the vector c(-1,1) so that the
lower and upper limits can be obtained at once and the result returned as
a vector of length 2. As usual, the qt function is used with respect to a com-
plete lower-tail area, so p is set at 1 − α/2.

These most recent intervals highlight the natural consequence of mov-
ing to a higher confidence level for a given CI. A higher probability in the
central area translates directly to a more extreme critical value, resulting in
a wider interval. This makes sense—in order to be “more confident” about
the true parameter value, you’d need to take into account a larger range of
possible values.

17.2.2 An Interval for a Proportion
Establishing a CI for a sample proportion follows the same rules as for the
mean. With knowledge of the sampling distribution as per Section 17.1.2,
you obtain critical values from the standard normal distribution, and for an
estimate of p̂ from a sample of size n, the interval itself is constructed with
the standard error

√

p̂(1 − p̂)/n.
Let’s return to the example from Section 17.1.2, where 80 of 118 sur-

veyed individuals said that they knew how they were going to vote in the next
US presidential election. Recall you have the following:

R> p.hat <- 80/118

R> p.hat

[1] 0.6779661

R> p.se <- sqrt(p.hat*(1-p.hat)/118)

R> p.se

[1] 0.04301439
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To construct a 90 percent CI (α = 0.1), the appropriate critical value
from the standardized sampling distribution of interest is as follows, imply-
ing Pr(−1.644854 < Z < 1.644854) = 0.9 for Z ∼ N(0,1):

R> qnorm(0.95)

[1] 1.644854

Now you again follow Equation (17.2):

R> p.hat+c(-1,1)*qnorm(0.95)*p.se

[1] 0.6072137 0.7487185

You can conclude that you’re 90 percent confident that the true pro-
portion of voters who know how they will vote in the next election lies some-
where between 0.61 and 0.75 (rounded to two decimal places).

17.2.3 Other Intervals
The two simple situations presented in Sections 17.2.1 and 17.2.2 serve to
highlight the importance of associating any point estimate (in other words,
a sample statistic) with the idea of its variability. Confidence intervals can of
course be constructed for other quantities, and over the following sections
(as part of testing hypotheses), I’ll expand on the discussion of confidence
intervals to investigate differences between two means and two proportions,
as well as ratios of categorical counts. These more complicated statistics
come with their own standard error formulas, though the corresponding
sampling distributions are still symmetric via the normal and t-curves (if,
again, some standard assumptions are met), which means that the now
familiar formulation of Equation (17.2) still applies.

Generally, a confidence interval seeks to mark off a central area of 1 − α
from the sampling distribution of interest, including sampling distributions
that are asymmetric. In those cases, however, it doesn’t make much sense
to have a symmetric CI based on a single, standardized critical value as per
Equation (17.2). Similarly, you might not know the functional, parametric
form of the sampling distribution and so may not be willing to make any
distributional assumptions, such as symmetry. In these cases, you can take
an alternative path based on the raw quantiles (or estimated raw quantiles;
see Section 13.2.3) of the supposed asymmetric sampling distribution. Using
specific quantile values to mark off identical α/2 upper- and lower-tail areas
is a valid method that remains sensitive to the shape of the sampling distri-
bution of interest, while still allowing you to construct a useful interval that
describes potential true parameter values.

17.2.4 Comments on Interpretation of a CI
The typical statement about the interpretation of any CI references a degree
of confidence in where the true parameter value lies, but a more formally
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correct interpretation should consider and clarify the probabilistic nature
of the construction. Technically, given a 100(1 − α) percent confidence
level, the more accurate interpretation is as follows: over many samples of
the same size and from the same population where a CI, of the same con-
fidence level, is constructed with respect to the same statistic from each
sample, you would expect the true corresponding parameter value to fall
within the limits of 100(1 − α) percent of those intervals.

This comes from the fact that the theory of a sampling distribution
describes the variability in multiple samples, not just the sample that has
been taken. At first glance it may be difficult to fully appreciate the differ-
ence between this and the colloquially used “confidence statement,” but it
is important to remain aware of the technically correct definition, particu-
larly given that a CI is typically estimated based on only one sample.

Exercise 17.2

A casual runner records the average time it takes him to sprint
100 meters. He completes the dash 34 times under identical con-
ditions and finds that the mean of these is 14.22 seconds. Assume
that he knows the standard deviation of his runs is σX = 2.9 seconds.

a. Construct and interpret a 90 percent confidence interval for the
true mean time.

b. Repeat (a), but this time, assume that the standard deviation is
not known and that s = 2.9 is estimated from the sample. How, if
at all, does this change the interval?

In a particular country, the true proportion of citizens who are left
handed or ambidextrous is unknown. A random sample of 400
people is taken, and each individual is asked to identify with one
of three options: right-handed only, left-handed only, or ambidex-
trous. The results show that 37 selected left-handed and 11 selected
ambidextrous.

c. Calculate and interpret a 99 percent CI for the true proportion
of left-handed-only citizens.

d. Calculate and interpret a 99 percent CI for the true proportion
of citizens who are either left-handed or ambidextrous.

In Section 17.2.4, the technical interpretation of a CI with respect to
its confidence level was described as the proportion of many similar
intervals (that is, when calculated for samples of the same size from
the same population) that contain the true value of the parameter of
interest.
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e. Your task is to write an example to demonstrate this behavior
of confidence intervals using simulation. To do so, follow these
instructions:
– Set up a matrix (see Chapter 3) filled with NAs (Chapter 6)

that has 5,000 rows and 3 columns.
– Use skills from Chapter 10 to write a for loop that, at each of

5,000 iterations, generates a random sample of size 300 from
an exponential distribution with rate parameter λe = 0.1
(Section 16.2.4).

– Evaluate the sample mean and sample standard deviation of
each sample, and use these quantities with the critical values
from the appropriate sampling distribution to calculate a
95 percent CI for the true mean of the distribution.

– Within the for loop, the matrix should now be filled, row
by row, with your results. The first column will contain the
lower limit, the second will contain the upper limit, and
the third column will be a logical value that is TRUE if the
corresponding interval contains the true mean of 1/λe and
that is FALSE otherwise.

– When the loop is completed, compute the proportion of
TRUEs in the third column of the filled matrix. You should
find that this proportion is close to 0.95; this will vary ran-
domly each time you rerun the loop.

f. Create a plot that draws the first 100 of your estimated confi-
dence intervals as separate horizontal lines drawn from l to u,
one on top of another. One way to do this is to first create an
empty plot with preset x- and y-limits (the latter as c(1,100)) and
then progressively add each line using lines with appropriate
coordinates (this could be done using another for loop). As a
final touch, add to the plot a red vertical line that denotes the
true mean. Confidence intervals that do not include the true
mean will not intersect that vertical line.

The following shows an example of this plot:
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18
HYPOTHESIS TESTING

In this chapter, you’ll build on your expe-
rience with confidence intervals and sam-

pling distributions to make more formal
statements about the value of a true, unknown

parameter of interest. For this, you’ll learn about fre-
quentist hypothesis testing, where a probability from
a relevant sampling distribution is used as evidence against some claim
about the true value. When a probability is used in this way, it is referred
to as a p-value. In this chapter, I talk about interpreting results for relatively
basic statistics, but you can apply the same concepts to statistics arising from
more complicated methods (such as regression modeling in Chapter 19).

18.1 Components of a Hypothesis Test

To give you an example of hypothesis testing, suppose I told you that 7 per-
cent of a certain population was allergic to peanuts. You then randomly
selected 20 individuals from that population and found that 18 of them were
allergic to peanuts. Assuming your sample was unbiased and truly reflective
of the population, what would you then think about my claim that the true
proportion of allergic individuals is 7 percent?



Naturally, you would doubt the correctness of my claim. In other words,
there is such a small probability of observing 18 or more successes out of
20 trials for a set success rate of 0.07 that you can state that you have sta-
tistical evidence against the claim that the true rate is 0.07. Indeed, when
defining X as the number of allergic individuals out of 20 by assuming
X ∼ BIN(20,0.07), evaluating Pr(X ≥ 18) gives you the precise p-value,
which is tiny.

R> dbinom(18,size=20,prob=0.07) + dbinom(19,size=20,prob=0.07) +

dbinom(20,size=20,prob=0.07)

[1] 2.69727e-19

This p-value represents the probability of observing the results in your
sample, X = 18, or a more extreme outcome (X = 19 or X = 20), if the
chance of success was truly 7 percent.

Before looking at specific hypothesis tests and their implementation in
R, this section will introduce terminology that you’ll come across often in
the reporting of such tests.

18.1.1 Hypotheses
As the name would suggest, in hypothesis testing, formally stating a claim
and the subsequent hypothesis test is done with a null and an alterna-
tive hypothesis. The null hypothesis is interpreted as the baseline or no-
change hypothesis and is the claim that is assumed to be true. The alter-
native hypothesis is the conjecture that you’re testing for, against the null
hypothesis.

In general, null and alternative hypotheses are denoted H0 and HA,
respectively, and they are written as follows:

H0 : . . .

HA : . . .

The null hypothesis is often (but not always) defined as an equality, =,
to a null value. Conversely, the alternative hypothesis (the situation you’re
testing for) is often defined in terms of an inequality to the null value.

• When HA is defined in terms of a less-than statement, with <, it is one-
sided; this is also called a lower-tailed test.

• When HA is defined in terms of a greater-than statement, with >, it is
one-sided; this is also called an upper-tailed test.

• When HA is merely defined in terms of a different-to statement, with ,,
it is two-sided; this is also called a two-tailed test.

These test variants are entirely situation specific and depend upon the
problem at hand.
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18.1.2 Test Statistic
Once the hypotheses are formed, sample data are collected, and statistics
are calculated according to the parameters detailed in the hypotheses. The
test statistic is the statistic that’s compared to the appropriate standardized
sampling distribution to yield the p-value.

A test statistic is typically a standardized or rescaled version of the
sample statistic of interest. The distribution and extremity (that is, dis-
tance from zero) of the test statistic are the sole drivers of the smallness of
the p-value (which indicates the strength of the evidence against the null
hypothesis—see Section 18.1.3). Specifically, the test statistic is determined
by both the difference between the original sample statistic and the null
value and the standard error of the sample statistic.

18.1.3 p-value
The p-value is the probability value that’s used to quantify the amount of
evidence, if any, against the null hypothesis. More formally, the p-value is
found to be the probability of observing the test statistic, or something more
extreme, assuming the null hypothesis is true.

The exact nature of calculating a p-value is dictated by the type of statis-
tics being tested and the nature of HA. In reference to this, you’ll see the
following terms:

• A lower-tailed test implies the p-value is a left-hand tail probability from
the sampling distribution of interest.

• For an upper-tailed test, the p-value is a right-hand tail probability.

• For a two-sided test, the p-value is the sum of a left-hand tail probabil-
ity and right-hand tail probability. When the sampling distribution is
symmetric (for example, normal or t, as in all examples coming up in
Sections 18.2 and 18.3), this is equivalent to two times the area in one
of those tails.

Put simply, the more extreme the test statistic, the smaller the p-value.
The smaller the p-value, the greater the amount of statistical evidence
against the assumed truth of H0.

18.1.4 Significance Level
For every hypothesis test, a significance level, denoted α, is assumed. This is
used to qualify the result of the test. The significance level defines a cutoff
point, at which you decide whether there is sufficient evidence to view H0 as
incorrect and favor HA instead.

• If the p-value is greater than or equal to α, then you conclude there
is insufficient evidence against the null hypothesis, and therefore you
retain H0 when compared to HA.
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• If the p-value is less than α, then the result of the test is statistically signifi-
cant. This implies there is sufficient evidence against the null hypothesis,
and therefore you reject H0 in favor of HA.

Common or conventional values of α are α = 0.1, α = 0.05, and
α = 0.01.

18.1.5 Criticisms of Hypothesis Testing
The terminology just presented becomes easier to understand once you
look at some examples in the upcoming sections. However, even at this early
stage, it’s important to recognize that hypothesis testing is susceptible to
justifiable criticism. The end result of any hypothesis test is to either retain
or reject the null hypothesis, a decision that is solely dependent upon the
rather arbitrary choice of significance level α; this is most often simply set at
one of the conventionally used values.

Before you begin looking at examples, it is also important to note that a
p-value never provides “proof” of either H0 or HA being truly correct. It can
only ever quantify evidence against the null hypothesis, which one rejects
given a sufficiently small p-value < α. In other words, rejecting a null hypoth-
esis is not the same as disproving it. Rejecting H0 merely implies that the
sample data suggest HA ought to be preferred, and the p-value merely indi-
cates the strength of this preference.

In recent years, there has been a push against emphasizing these aspects
of statistical inference in some introductory statistics courses owing at least
in part to the overuse, and even misuse, of p-values in some areas of applied
research. A particularly good article by Sterne and Smith (2001) discusses
the role of, and problems surrounding, hypothesis testing from the point of
view of medical research. Another good reference is Reinhart (2015), which
discusses common misinterpretations of p-values in statistics.

That being said, probabilistic inference with respect to sampling dis-
tributions is, and will always remain, a cornerstone of frequentist statistical
practice. The best way to improve the use and interpretation of statistical
tests and modeling is with a sound introduction to the relevant ideas and
methods so that, from the outset, you understand statistical significance and
what it can and cannot tell you.

18.2 Testing Means

The validity of hypothesis tests involving sample means is dependent upon
the same assumptions and conditions mentioned in Section 17.1.1. In par-
ticular, throughout this section you should assume that the central limit
theorem holds, and if the sample sizes are small (in other words, roughly
less than 30), the raw data are normally distributed. You’ll also focus on
examples where the sample standard deviation s is used to estimate the
true standard deviation, σX , because this is the most common situation
you’ll encounter in practice. Again, mirroring Section 17.1.1, this means
you need to use the t-distribution instead of the normal distribution when
calculating the critical values and p-values.
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18.2.1 Single Mean
As you’ve already met the standard error formula, s/

√
n, and the R function-

ality needed to obtain quantiles and probabilities from the t-distribution (qt
and pt), the only new concepts to introduce here are related to the defini-
tion of the hypotheses themselves and the interpretation of the result.

Calculation: One-Sample t-Test

Let’s dive straight into an example—a one-sample t-test. Recall the prob-
lem in Section 16.2.2 where a manufacturer of a snack was interested in the
mean net weight of contents in an advertised 80-gram pack. Say that a con-
sumer calls in with a complaint—over time they have bought and precisely
weighed the contents of 44 randomly selected 80-gram packs from different
stores and recorded the weights as follows:

R> snacks <- c(87.7,80.01,77.28,78.76,81.52,74.2,80.71,79.5,77.87,81.94,80.7,

82.32,75.78,80.19,83.91,79.4,77.52,77.62,81.4,74.89,82.95,

73.59,77.92,77.18,79.83,81.23,79.28,78.44,79.01,80.47,76.23,

78.89,77.14,69.94,78.54,79.7,82.45,77.29,75.52,77.21,75.99,

81.94,80.41,77.7)

The customer claims that they’ve been shortchanged because their data
cannot have arisen from a distribution with mean µ = 80, so the true mean
weight must be less than 80. To investigate this claim, the manufacturer con-
ducts a hypothesis test using a significance level of α = 0.05.

First, the hypotheses must be defined, with a null value of 80 grams.
Remember, the alternative hypothesis is “what you’re testing for”; in this
case, HA is that µ is smaller than 80. The null hypothesis, interpreted as “no
change,” will be defined as µ = 80: that the true mean is in fact 80 grams.
These hypotheses are formalized like this:

H0 : µ = 80

HA : µ < 80 (18.1)

Second, the mean and standard deviation must be estimated from the
sample.

R> n <- length(snacks)

R> snack.mean <- mean(snacks)

R> snack.mean

[1] 78.91068

R> snack.sd <- sd(snacks)

R> snack.sd

[1] 3.056023

The question your hypotheses seek to answer is this: given the estimated
standard deviation, what’s the probability of observing a sample mean (when
n = 44) of 78.91 grams or less if the true mean is 80 grams? To answer this,
you need to calculate the relevant test statistic.
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Formally, the test statistic T in a hypothesis test for a single mean with
respect to a null value of µ0 is given as

T =
x̄ − µ0

(s/
√

n)
(18.2)

based on a sample of size n, a sample mean of x̄, and a sample standard devi-
ation of s (the denominator is the estimated standard error of the mean).
Assuming the relevant conditions have been met, T follows a t-distribution
with ν = n − 1 degrees of freedom.

In R, the following provides you with the standard error of the sample
mean for the snacks data:

R> snack.se <- snack.sd/sqrt(n)

R> snack.se

[1] 0.4607128

Then, T can be calculated as follows:

R> snack.T <- (snack.mean-80)/snack.se

R> snack.T

[1] -2.364419

Finally, the test statistic is used to obtain the p-value. Recall that the
p-value is the probability that you observe T or something more extreme.
The nature of “more extreme” is determined by the alternative hypothesis
HA, which, as a less-than statement, directs you to find a left-hand, lower-tail
probability as the p-value. In other words, the p-value is provided as the area
under the sampling distribution (a t-distribution with 43 df in the current
example) to the left of a vertical line at T . From Section 16.2.3, this is easily
done, as shown here:

R> pt(snack.T,df=n-1)

[1] 0.01132175

Your result states that if the H0 were true, there would be only a little
more than a 1 percent chance that you’d observe the customer’s sample
mean of x̄ = 78.91, or less, as a random phenomenon. Since this p-value is
smaller than the predefined significance level of α = 0.05, the manufac-
turer concludes that there is sufficient evidence to reject the null hypothesis
in favor of the alternative, suggesting the true value of µ is in fact less than
80 grams.

Note that if you find the corresponding 95 percent CI for the single
sample mean, as described in Section 17.2.1 and given by

R> snack.mean+c(-1,1)*qt(0.975,n-1)*snack.se

[1] 77.98157 79.83980
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it does not include the null value of 80, mirroring the result of the hypothe-
sis test at the 0.05 level.

R Function: t.test

The result of the one-sample t-test can also be found with the built-in t.test

function.

R> t.test(x=snacks,mu=80,alternative="less")

One Sample t-test

data: snacks

t = -2.3644, df = 43, p-value = 0.01132

alternative hypothesis: true mean is less than 80

95 percent confidence interval:

-Inf 79.68517

sample estimates:

mean of x

78.91068

The function takes the raw data vector as x, the null value for the mean
as mu, and the direction of the test (in other words, how to find the p-value
under the appropriate t-curve) as alternative. The alternative argument
has three available options: "less" for HA with <; "greater" for HA with >;
and "two.sided" for HA with ,. The default value of α is 0.05. If you want a
different significance level than 0.05, this must be provided to t.test as 1−α,
passed to the argument conf.level.

Note that the value of T is reported in the output of t.test, as are the
degrees of freedom and the p-value. You also get a 95 percent “interval,”
but its values of -Inf and 79.68517 do not match the interval calculated
just a moment ago. The manually calculated interval is in fact a two-sided
interval—a bounded interval formed by using an error component that’s
equal on both sides.

The CI in the t.test output, on the other hand, takes instruction from
the alternative argument. It provides a one-sided confidence bound. For a lower-
tailed test, it provides an upper bound on the statistic such that the entire
lower-tail area of the sampling distribution of interest is 0.95, as opposed to
a central area as the traditional two-sided interval does. One-sided bounds
are less frequently used than the fully bounded two-sided interval, which can
be obtained (as the component conf.int) from a relevant call to t.test by
setting alternative="two.sided".

R> t.test(x=snacks,mu=80,alternative="two.sided")$conf.int

[1] 77.98157 79.83980

attr(,"conf.level")

[1] 0.95
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This result matches your manually computed version from earlier. Note
also that the corresponding confidence level, 1 − α, is stored alongside this
component as an attribute (refer to Section 6.2.1).

In examining the result for the snack example, with a p-value of around
0.011, remember to be careful when interpreting hypothesis tests. With α set
at 0.05 for this particular test, H0 is rejected. But what if the test were carried
out with α = 0.01? The p-value is greater than 0.01, so in that case, H0 would
be retained, for no reason other than the arbitrary movement of the value of
α. In these situations, it’s helpful to comment on the perceived strength of
the evidence against the null hypothesis. For the current example, you could
reasonably state that there exists some evidence to support HA but that this
evidence is not especially strong.

Exercise 18.1

a. Adult domestic cats of a certain breed are said to have an average
weight of 3.5 kilograms. A feline enthusiast disagrees and collects
a sample of 73 weights of cats of this breed. From her sample,
she calculates a mean of 3.97 kilograms and a standard deviation
of 2.21 kilograms. Perform a hypothesis test to test her claim
that the true mean weight µ is not 3.5 kilograms by setting up the
appropriate hypothesis, carrying out the analysis, and interpret-
ing the p-value (assume the significance level is α = 0.05).

b. Suppose it was previously believed that the mean magnitude of
seismic events off the coast of Fiji is 4.3 on the Richter scale. Use
the data in the mag variable of the ready-to-use quakes data set,
providing 1,000 sampled seismic events in that area, to test the
claim that the true mean magnitude is in fact greater than 4.3.
Set up appropriate hypotheses, use t.test (conduct the test at a
significance level of α = 0.01), and draw a conclusion.

c. Manually compute a two-sided confidence interval for the true
mean of (b).

18.2.2 Two Means
Often, testing a single sample mean isn’t enough to answer the question
you’re interested in. In many settings, a researcher wants to directly com-
pare the means of two distinct groups of measurements, which boils down
to a hypothesis test for the true difference between two means; call them µ1
and µ2.

The way in which two groups of data relate to each other affects the spe-
cific form of standard error for the difference between two sample means
and therefore the test statistic itself. The actual comparison of the two
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means, however, is often of the same nature—the typical null hypothesis is
usually defined as µ1 and µ2 being equal. In other words, the null value of
the difference between the two means is often zero.

Unpaired/Independent Samples: Unpooled Variances

The most general case is where the two sets of measurements are based on
two independent, separate groups (also referred to as unpaired samples).
You compute the sample means and sample standard deviations of both data
sets, define the hypotheses of interest, and then calculate the test statistic.

When you cannot assume the variances of the two populations are
equal, then you perform the unpooled version of the two-sample t-test; this
will be discussed first. If, however, you can safely assume equal variances,
then you can perform a pooled two-sample t-test, which improves the preci-
sion of the results. You’ll look at the pooled version of the test in a moment.

For an unpooled example, return to the 80-gram snack packet example
from Section 18.2.1. After collecting a sample of 44 packs from the original
manufacturer (label this sample size n1), the disgruntled consumer goes out
and collects n2 = 31 randomly selected 80-gram packs from a rival snack
manufacturer. This second set of measurements is stored as snacks2.

R> snacks2 <- c(80.22,79.73,81.1,78.76,82.03,81.66,80.97,81.32,80.12,78.98,

79.21,81.48,79.86,81.06,77.96,80.73,80.34,80.01,81.82,79.3,

79.08,79.47,78.98,80.87,82.24,77.22,80.03,79.2,80.95,79.17,81)

From Section 18.2.1, you already know the mean and standard deviation
of the first sample of size n1 = 44—these are stored as snack.mean (around
78.91) and snack.sd (around 3.06), respectively—think of these as x̄1 and s1.
Compute the same quantities, x̄2 and s2, respectively, for the new data.

R> snack2.mean <- mean(snacks2)

R> snack2.mean

[1] 80.1571

R> snack2.sd <- sd(snacks2)

R> snack2.sd

[1] 1.213695

Let the true mean of the original sample be denoted with µ1 and the
true mean of the new sample from the rival company packs be denoted with
µ2. You’re now interested in testing whether there is statistical evidence to
support the claim that µ2 is greater than µ1. This suggests the hypotheses of
H0 : µ1 = µ2 and HA : µ1 < µ2, which can be written as follows:

H0 : µ2 − µ1 = 0

HA : µ2 − µ1 > 0

That is, the difference between the true mean of the rival company
packs and the original manufacturer’s packs, when the original is subtracted
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from the rival, is bigger than zero. The “no-change” scenario, the null
hypothesis, is that the two means are the same, so their difference is
truly zero.

Now that you’ve constructed the hypotheses, let’s look at how to actu-
ally test them. The difference between two means is the quantity of interest.
For two independent samples arising from populations with true means µ1
and µ2, sample means x̄1 and x̄2, and sample standard deviations s1 and s2,
respectively (and that meet the relevant conditions for the validity of the
t-distribution), the standardized test statistic T for testing the difference
between µ2 and µ1, in that order, is given as

T =
x̄2 − x̄1 − µ0

√

s2
1/n1 + s2

2/n2

, (18.3)

whose distribution is approximated by a t-distribution with ν degrees of free-
dom, where

ν =

⌊
(s2

1/n1 + s2
2/n2)2

(s2
1/n1)2/(n1 − 1) + (s2

2/n2)2/(n2 − 1)

⌋
(18.4)

In (18.3), µ0 is the null value of interest—typically zero in tests con-
cerned with “difference” statistics. This term would therefore disappear
from the numerator of the test statistic. The denominator of T is the stan-
dard error of the difference between two means in this setting.

The ⌊ · ⌋ on the right of Equation (18.4) denotes a floor operation—
rounding strictly down to the nearest integer.

NOTE This two-sample t-test, conducted using Equation (18.3), is also called Welch’s
t-test. This refers to use of Equation (18.4), called the Welch-Satterthwaite equa-
tion. Crucially, it assumes that the two samples have different true variances, which
is why it’s called the unpooled variance version of the test.

It’s important to be consistent when defining your two sets of param-
eters and when constructing the hypotheses. In this example, since the test
aims to find evidence for µ2 being greater than µ1, a difference of µ2−µ1 > 0
forms HA (a greater-than, upper-tailed test), and this order of subtraction
is mirrored when calculating T . The same test could be carried out if you
defined the difference the other way around. In that case, your alternative
hypothesis would suggest a lower-tailed test because if you’re testing for
µ2 being bigger than µ1, HA would correctly be written as µ1 − µ2 < 0.
Again, this would modify the order of subtraction in the numerator of Equa-
tion (18.3) accordingly.

The same care must apply to the use of t.test for two-sample compar-
isons. The two samples must be supplied as the arguments x and y, but the
function interprets x as greater than y when doing an upper-tailed test and
interprets x as less than y when doing a lower-tailed test. Therefore, when
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performing the test with alternative="greater" for the snack pack example,
it’s snacks2 that must be supplied to x:

R> t.test(x=snacks2,y=snacks,alternative="greater",conf.level=0.9)

Welch Two Sample t-test

data: snacks2 and snacks

t = 2.4455, df = 60.091, p-value = 0.008706

alternative hypothesis: true difference in means is greater than 0

90 percent confidence interval:

0.5859714 Inf

sample estimates:

mean of x mean of y

80.15710 78.91068

With a small p-value of 0.008706, you’d conclude that there is sufficient
evidence to reject H0 in favor of HA (indeed, the p-value is certainly smaller
than the stipulated α = 0.1 significance level as implied by conf.level=0.9).
The evidence suggests that the mean net weight of snacks from the rival
manufacturer’s 80-gram packs is greater than the mean net weight for the
original manufacturer.

Note that the output from t.test has reported a df value of 60.091,
which is the unfloored result of (18.4). You also receive a one-sided confi-
dence bound (based on the aforementioned confidence level), triggered by
the one-sided nature of this test. Again, the more common two-sided 90 per-
cent interval is also useful; knowing that ν = ⌊60.091⌋ = 60 and using the
statistic and the standard error of interest (numerator and denominator of
Equation (18.3), respectively), you can calculate it.

R> (snack2.mean-snack.mean) +

c(-1,1)*qt(0.95,df=60)*sqrt(snack.sd^2/44+snack2.sd^2/31)

[1] 0.3949179 2.0979120

Here, you’ve used the previously stored sample statistics snack.mean,
snack.sd (the mean and standard deviation of the 44 raw measurements
from the original manufacturer’s sample), snack2.mean, and snack2.sd (the
same quantities for the 31 observations corresponding to the rival manufac-
turer). Note that the CI takes the same form as detailed by Equation (17.2)
on page 378 and that to provide the correct 1 − α central area, the q-function
for the appropriate t-distribution requires 1 − α/2 as its supplied probability
value. You can interpret this as being “90 percent confident that the true dif-
ference in mean net weight between the rival and the original manufacturer
(in that order) is somewhere between 0.395 and 2.098 grams.” The fact that
zero isn’t included in the interval, and that the interval is wholly positive,
supports the conclusion from the hypothesis test.
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Unpaired/Independent Samples: Pooled Variance

In the unpooled variance example just passed, there was no assumption that
the variances of the two populations whose means were being compared
were equal. This is an important note to make because it leads to the use of
(18.3) for the test statistic calculation and (18.4) for the associated degrees
of freedom in the corresponding t-distribution. However, if you can assume
equivalence of variances, the precision of the test is improved—you use a
different formula for the standard error of the difference and for calculating
the associated df.

Again, the quantity of interest is the difference between two means, writ-
ten as µ2 − µ1. Assume you have two independent samples of sizes n1 and n2
arising from populations with true means µ1 and µ2, sample means x̄1 and
x̄2, and sample standard deviations s1 and s2, respectively, and assume that
the relevant conditions for the validity of the t-distribution have been met.
Additionally, assume that the true variances of the samples, σ2

1 and σ2
2, are

equal such that σ2
p = σ

2
1 = σ

2
2.

NOTE There is a simple rule of thumb to check the validity of the “equal variance” assump-
tion. If the ratio of the larger sample standard deviation to the smaller sample stan-
dard deviation is less than 2, you can assume equal variances. For example, if
s1 > s2, then if s1

s2
< 2, you can use the pooled variance test statistic that follows.

The standardized test statistic T for this scenario is given as

T =
x̄2 − x̄1 − µ0

√

s2
p (1/n1 + 1/n2)

, (18.5)

whose distribution is a t-distribution with ν = n1 + n2 − 2 degrees of freedom,
where

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(18.6)

is the pooled estimate of the variance of all the raw measurements. This is substi-
tuted in place of s1 and s2 in the denominator of Equation (18.3), resulting
in Equation (18.5).

All other aspects of the two-sample t-test remain as earlier, including the
construction of appropriate hypotheses, the typical null value of µ0, and the
calculation and interpretation of the p-value.

For the comparison of the two means in the snack pack example, you’d
find it difficult to justify using the pooled version of the t-test. Applying
the rule of thumb, the two estimated standard deviations (s1 ≅ 3.06 and
s2 ≅ 1.21 for the original and rival manufacturer’s samples, respectively)
have a large-to-small ratio that is greater than 2.

R> snack.sd/snack2.sd

[1] 2.51795
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Though this is rather informal, if the assumption cannot reasonably be
made, it’s best to stick with the unpooled version of the test.

To illustrate this, let’s consider a new example. The intelligence quo-
tient (IQ) is a quantity commonly used to measure how clever a person
is. IQ scores are reasonably assumed to be normally distributed, and the
average IQ of the population is said to be 100. Say that you’re interested in
assessing whether there is a difference in mean IQ scores between men and
women, suggesting the following hypotheses where you have nmen = 12 and
nwomen = 20:

H0 : µmen − µwomen = 0

HA : µmen − µwomen , 0

You randomly sample the following data:

R> men <- c(102,87,101,96,107,101,91,85,108,67,85,82)

R> women <- c(73,81,111,109,143,95,92,120,93,89,119,79,90,126,62,92,77,106,

105,111)

As usual, let’s calculate the basic statistics required.

R> mean(men)

[1] 92.66667

R> sd(men)

[1] 12.0705

R> mean(women)

[1] 98.65

R> sd(women)

[1] 19.94802

These give the sample averages x̄men and x̄women, as well as their respec-
tive sample standard deviations smen and swomen. Enter the following to
quickly check the ratio of the standard deviations:

R> sd(women)/sd(men)

[1] 1.652626

You can see that the ratio of the larger sample standard deviation to the
smaller is less than 2, so you could assume equal variances in carrying out
the hypothesis test.

The t.test command also enables the pooled two-sample t-test as per
Equations (18.5) and (18.6). To execute it, you provide the optional argu-
ment var.equal=TRUE (as opposed to the default var.equal=FALSE, which trig-
gers Welch’s t-test).

R> t.test(x=men,y=women,alternative="two.sided",conf.level=0.95,var.equal=TRUE)

Two Sample t-test
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data: men and women

t = -0.9376, df = 30, p-value = 0.3559

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-19.016393 7.049727

sample estimates:

mean of x mean of y

92.66667 98.65000

Note also that HA for this example implies a two-tailed test, hence the
provision of alternative="two.sided".

The resulting p-value of this test, 0.3559, is certainly larger than the
conventional cutoff level of 0.05. Thus, your conclusion here is that there
is no evidence to reject H0—there is insufficient evidence to support a true
difference in the mean IQ scores of men compared to women.

Paired/Dependent Samples

Finally, we’ll look comparing two means in paired data. This setting is dis-
tinctly different from that of both unpaired t-tests because it concerns the
way the data have been collected. The issue concerns dependence between
pairs of observations across the two groups of interest—previously, the mea-
surements in each group have been defined as independent. This notion
has important consequences for how the test can be carried out.

Paired data occur if the measurements forming the two sets of obser-
vations are recorded on the same individual or if they are related in some
other important or obvious way. A classic example of this is “before” and
“after” observations, such as two measurements made on each person before
and after some kind of intervention treatment. These situations still focus on
the difference between the mean outcomes in each group, but rather than
working with the two data sets separately, a paired t-test works with a single
mean—the true mean of the individual paired differences µd .

As an example, consider a company interested in the efficacy of a drug
designed to reduce resting heart rates in beats per minute (bpm). The rest-
ing heart rates of 16 individuals are measured. The individuals are then
administered a course of the treatment, and their resting heart rates are
again measured. The data are provided in the two vectors rate.before and
rate.after as follows:

R> rate.before <- c(52,66,89,87,89,72,66,65,49,62,70,52,75,63,65,61)

R> rate.after <- c(51,66,71,73,70,68,60,51,40,57,65,53,64,56,60,59)

It quickly becomes clear why any test comparing these two groups must
take dependence into account. Heart rate is affected by an individual’s age,
build, and level of physical fitness. An unfit individual older than 60 is likely
to have a higher baseline resting heart rate than a fit 20-year-old, and if both
are given the same drug to lower their heart rate, their final heart rates are
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still likely to reflect the baselines. Any true effect of the drug therefore has
the potential to be hidden if you approached the analysis using either of the
unpaired t-tests.

To overcome this problem, the paired two-sample t-test considers the
difference between each pair of values. Labeling one set of n measurements
as x1, . . ., xn and the other set of n observations as y1, . . ., yn , the difference,
d, is defined as di = yi − xi ; i = 1, . . ., n. In R, you can easily compute the
pairwise differences:

R> rate.d <- rate.after-rate.before

R> rate.d

[1] -1 0 -18 -14 -19 -4 -6 -14 -9 -5 -5 1 -11 -7 -5 -2

The following code calculates the sample mean d̄ and standard devia-
tion sd of these differences:

R> rate.dbar <- mean(rate.d)

R> rate.dbar

[1] -7.4375

R> rate.sd <- sd(rate.d)

R> rate.sd

[1] 6.196437

You want to see how much the heart rate is reduced by, so the test at
hand will be concerned with the following hypotheses:

H0 : µd = 0

HA : µd < 0

Given the order or subtraction used to obtain the differences, detection
of a successful reduction in heart rate will be represented by an “after” mean
that is smaller than the “before” mean.

Expressing all this mathematically, the value of interest is the true mean
difference, µd , between two means of dependent pairs of measurements.
There are two sets of n measurements, x1, . . ., xn and y1, . . ., yn , with pair-
wise differences d1, . . ., dn . The relevant conditions for the validity of the
t-distribution must be met; in this case, if the number of pairs n is less than
30, then you must be able to assume the raw data are normally distributed.
The test statistic T is given as

T =
d̄ − µ0

sd/
√

n
, (18.7)

where d̄ is the mean of the pairwise differences, sd is the sample standard
deviation of the pairwise differences, and µ0 is the null value (usually zero).
The statistic T follows a t-distribution with n − 1 df.

The form of Equation (18.7) is actually the same as the form of the
test statistic in (18.2), once the sample statistics for the individual paired
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differences have been calculated. Furthermore, it’s important to note that
n represents the total number of pairs, not the total number of individual
observations.

For the current example hypotheses, you can find the test statistic and
p-value with rate.dbar and rate.sd.

R> rate.T <- rate.dbar/(rate.sd/sqrt(16))

R> rate.T

[1] -4.801146

R> pt(rate.T,df=15)

[1] 0.000116681

These results suggest evidence to reject H0. In t.test, the optional logi-
cal argument paired must be set to TRUE.

R> t.test(x=rate.after,y=rate.before,alternative="less",conf.level=0.95,

paired=TRUE)

Paired t-test

data: rate.after and rate.before

t = -4.8011, df = 15, p-value = 0.0001167

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -4.721833

sample estimates:

mean of the differences

-7.4375

Note that the order you supply your data vectors to the x and y argu-
ments follows the same rules as for the unpaired tests, given the desired
value of alternative. The same p-value as was calculated manually is con-
firmed through the use of t.test, and since this is less than an assumed con-
ventional significance level of α = 0.05, a valid conclusion would be to state
that there is statistical evidence that the medication does reduce the mean
resting heart rate. You could go on to say you’re 95 percent confident that
the true mean difference in heart rate after taking the course of medication
lies somewhere between

R> rate.dbar-qt(0.975,df=15)*(rate.sd/sqrt(16))

[1] -10.73935

and

R> rate.dbar+qt(0.975,df=15)*(rate.sd/sqrt(16))

[1] -4.135652
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NOTE On some occasions, such as when your data strongly indicate non-normality, you may
not be comfortable assuming the validity of the CLT (refer back to Section 17.1.1). An
alternative approach to the tests discussed here is to employ a nonparametric tech-
nique that relaxes these distributional requirements. In the two-sample case, you could
employ the Mann-Whitney U test (also known as the Wilcoxon rank-sum test).
This is a hypothesis test that compares two medians, as opposed to two means. You
can use the R function wilcox.test to access this methodology; its help page provides
useful commentary and references on the particulars of the technique.

Exercise 18.2

In the package MASS you’ll find the data set anorexia, which contains
data on pre- and post-treatment weights (in pounds) of 72 young
women suffering from the disease, obtained from Hand et al. (1994).
One group of women is the control group (in other words, no inter-
vention), and the other two groups are the cognitive behavioral
program and family support intervention program groups. Load the
library and ensure you can access the data frame and understand its
contents. Let µd denote the mean difference in weight, computed as
(post-weight − pre-weight).

a. Regardless of which treatment group the participants fall
into, conduct and conclude an appropriate hypothesis test
with α = 0.05 for the entire set of weights for the following
hypotheses:

H0 : µd = 0

HA : µd > 0

b. Next, conduct three separate hypothesis tests using the same
defined hypotheses, based on which treatment group the partici-
pants fall into. What do you notice?

Another ready-to-use data set in R is PlantGrowth (Dobson, 1983),
which records a continuous measure of the yields of a certain plant,
looking at the potential effect of two supplements administered
during growth to increase the yield when compared to a control
group with no supplement.

c. Set up hypotheses to test whether the mean yield for the control
group is less than the mean yield from a plant given either of the
treatments. Determine whether this test should proceed using a
pooled estimate of the variance or whether Welch’s t-test would
be more appropriate.

d. Conduct the test and make a conclusion (assuming normality of
the raw observations).
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As discussed, there is a rule of thumb for deciding whether to use a
pooled estimate of the variance in an unpaired t-test.

e. Your task is to write a wrapper function that calls t.test after
deciding whether it should be executed with var.equal=FALSE

according to the rule of thumb. Use the following guidelines:
– Your function should take four defined arguments: x and y

with no defaults, to be treated in the same way as the same
arguments in t.test; and var.equal and paired, with defaults
that are the same as the defaults of t.test.

– An ellipsis (Section 9.2.5) should be included to represent
any additional arguments to be passed to t.test.

– Upon execution, the function should determine whether
paired=FALSE.
* If paired is TRUE, then there is no need to proceed with

the check of a pooled variance.
* If paired is FALSE, then the function should determine

the value for var.equal automatically by using the rule of
thumb.

– If the value of var.equal was set automatically, you can assume
it will override any value of this argument initially supplied
by the user.

– Then, call t.test appropriately.

f. Try your new function on all three examples in the text of Sec-
tion 18.2.2, ensuring you reach identical results.

18.3 Testing Proportions

A focus on means is especially common in statistical modeling and hypothe-
sis testing, and therefore you must also consider sample proportions, inter-
preted as the mean of a series of n binary trials, in which the results are
success (1) or failure (0). This section focuses on the parametric tests of
proportions, which assume normality of the target sampling distributions
(otherwise referred to as Z -tests).

The general rules regarding the setup and interpretation of hypothesis
tests for sample proportions remain the same as for sample means. In this
introduction to Z -tests, you can consider these as tests regarding the true
value of a single proportion or the difference between two proportions.

18.3.1 Single Proportion
Section 17.1.2 introduced the sampling distribution of a single sample
proportion to be normally distributed, with a mean centered on the
true proportion π and with a standard error of

√
π(1 − π)/n. Provided

the trials are independent and that n isn’t “too small” and π isn’t “too
close” to 0 or 1, those formulas are applicable here.
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NOTE A rule of thumb to check the latter condition on n and π simply involves checking that
np̂ and n(1 − p̂) are both greater than 5, where p̂ is the sample estimate of π.

It’s worth noting that the standard error in the case of hypothesis
tests involving proportions is itself dependent upon π. This is important—
remember that any hypothesis test assumes satisfaction of H0 in the relevant
calculations. In dealing with proportions, that means when computing the
test statistic, the standard error must make use of the null value π0 rather
than the estimated sample proportion p̂.

I’ll clarify this in an example. Suppose an individual fond of a particular
fast-food chain notices that he tends to have an upset stomach within a cer-
tain amount of time after having his usual lunch. He comes across the web-
site of a blogger who believes that the chance of getting an upset stomach
shortly after eating that particular food is 20 percent. The individual is curi-
ous to determine whether his true rate of stomach upset π is any different
from the blogger’s quoted value and, over time, visits these fast-food outlets
for lunch on n = 29 separate occasions, recording the success (TRUE) or fail-
ure (FALSE) of experiencing an upset stomach. This suggests the following
pair of hypotheses:

H0 : π = 0.2

HA : π , 0.2

These may be tested according to the general rules discussed in the fol-
lowing sections.

Calculation: One-Sample Z-Test

In testing for the true value of some proportion of success, π, let p̂ be the
sample proportion over n trials, and let the null value be denoted with π0.
You find the test statistic with the following:

Z =
p̂ − π0

√

π0 (1−π0)

n

(18.8)

Provided the aforementioned conditions on the size of n and the value
of π can be assumed, Z ∼ N(0,1).

The denominator of Equation (18.8), the standard error of the propor-
tion, is calculated with respect to the null value π0, not p̂. As mentioned just
a moment ago, this is to satisfy the assumption of “truth” of H0 as the test is
carried out, so it allows interpretation of the resulting p-value as usual. The
standard normal distribution is used to find the p-value with respect to Z ;
the direction underneath this curve is governed by the nature of HA just as
before.

Getting back to the fast-food example, suppose these are the observed
data, where 1 is recorded for an upset stomach and is 0 otherwise.

sick <- c(0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1)
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The number of successes and probability of success in this sample are as
follows:

R> sum(sick)

[1] 8

R> p.hat <- mean(sick)

R> p.hat

[1] 0.2758621

A quick check indicates that as per the rule of thumb, the test is reason-
able to carry out:

R> 29*0.2

[1] 5.8

R> 29*0.8

[1] 23.2

Following Equation (18.8), the test statistic Z for this example is as
follows:

R> Z <- (p.hat-0.2)/sqrt(0.2*0.8/29)

R> Z

[1] 1.021324

The alternative hypothesis is two-sided, so you compute the correspond-
ing p-value as a two-tailed area under the standard normal curve. With a
positive test statistic, this can be evaluated by doubling the upper-tailed area
from Z .

R> 2*(1-pnorm(Z))

[1] 0.3071008

Assume a conventional α level of 0.05. The high p-value given as 0.307
suggests the results in the sample of size 29 are not unusual enough, under
the assumption that the null hypothesis is true, to reject H0. There is insuf-
ficient evidence to suggest that the proportion of instances of an upset
stomach that this individual experiences is any different from 0.2 as noted
by the blogger.

You can support this conclusion with a confidence interval. At the level
of 95 percent, you calculate the CI:

R> p.hat+c(-1,1)*qnorm(0.975)*sqrt(p.hat*(1-p.hat)/29)

[1] 0.1131927 0.4385314

This interval easily includes the null value of 0.2.
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R Function: prop.test

Once more, R rescues you from tedious step-by-step calculation. The
ready-to-use prop.test function allows you to perform, among other things,
a single sample proportion test. The function actually performs the test
in a slightly different way, using the chi-squared distribution (which will be
explored more in Section 18.4). However, the test is equivalent, and the
resulting p-value from prop.test is identical to the one reached using the Z -
based test.

To the prop.test function, as used for a single sample test of a propor-
tion, you provide the number of successes observed as x, the total number
of trials as n, and the null value as p. The two further arguments, alternative
(defining the nature of HA) and conf.level (defining 1 − α), are identical
to the same arguments in t.test and have defaults of "two.sided" and 0.95,
respectively. Lastly, it is recommended to explicitly set the optional argu-
ment correct=FALSE if your data satisfy the np̂ and n(1 − p̂) rule of thumb.

For the current example, you perform the test with this code:

R> prop.test(x=sum(sick),n=length(sick),p=0.2,correct=FALSE)

1-sample proportions test without continuity correction

data: sum(sick) out of length(sick), null probability 0.2

X-squared = 1.0431, df = 1, p-value = 0.3071

alternative hypothesis: true p is not equal to 0.2

95 percent confidence interval:

0.1469876 0.4571713

sample estimates:

p

0.2758621

The p-value is the same as you got earlier. Note, however, that the
reported CI is not quite the same (the normal-based interval, dependent
upon the CLT). The CI produced by prop.test is referred to as the Wilson
score interval, which takes into account the direct association that a “prob-
ability of success” has with the binomial distribution. For simplicity, you’ll
continue to work with normal-based intervals when performing hypothesis
tests involving proportions here.

Note also that, just like t.test, any one-sided test performed with
prop.test will provide only a single-limit confidence bound; you’ll see this
in the following example.

18.3.2 Two Proportions
With a basic extension to the previous procedure, by way of a modification
to the standard error, you can compare two estimated proportions from
independent populations. As with the difference between two means, you’re
often testing whether the two proportions are the same and thus have a dif-
ference of zero. Therefore, the typical null value is zero.
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For an example, consider a group of students taking a statistics exam. In
this group are n1 = 233 students majoring in psychology, of whom x1 = 180
pass, and n2 = 197 students majoring in geography, of whom 175 pass. Sup-
pose it is claimed that the geography students have a higher pass rate in
statistics than the psychology students.

Representing the true pass rates for psychology students as π1 and geog-
raphy students as π2, this claim can be statistically tested using a pair of
hypotheses defined as follows:

H0 : π2 − π1 = 0

HA : π2 − π1 > 0

Just as with a comparison between two means, it’s important to keep
the order of differencing consistent throughout the test calculations. This
example shows an upper-tailed test.

Calculation: Two-Sample Z-Test

In testing for the true difference between two proportions mathematically,
π1 and π2, let p̂1 = x1/n1 be the sample proportion for x1 successes in n1
trials corresponding to π1, and the same quantities as p̂2 = x2/n2 for π2.
With a null value of the difference denoted π0, the test statistic is given by
the following:

Z =
p̂2 − p̂1 − π0

√

p∗(1 − p∗)
(

1
n1
+

1
n2

)

(18.9)

Provided you can assume to apply the aforementioned conditions for a
proportion with respect to n1, n2 and π1, π2, you can treat Z ∼ N(0,1).

There is a new quantity, p∗, present in the denominator of (18.9). This
is a pooled proportion, given as follows:

p∗ =
x1 + x2

n1 + n2
(18.10)

As noted, in this kind of test it is common for the null value, the true
difference in proportions, to be set to zero (in other words, π0 = 0).

The denominator of Equation (18.9) is itself the standard error of
the difference between two proportions as used in a hypothesis test. The
need to use p∗ lies once more in the fact that H0 is assumed to be true.
Using p̂1 and p̂2 separately in the denominator of (18.9), in the form of
√

p̂1(1 − p̂1)/n1 + p̂2(1 − p̂2)/n2 (the standard error of the difference between
two proportions outside the confines of a hypothesis test), would violate the
assumed “truth” of H0.

So, returning to the statistics exam taken by the psychology and geogra-
phy students, you can evaluate the required quantities as such:

R> x1 <- 180

R> n1 <- 233
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R> p.hat1 <- x1/n1

R> p.hat1

[1] 0.7725322

R> x2 <- 175

R> n2 <- 197

R> p.hat2 <- x2/n2

R> p.hat2

[1] 0.8883249

The results indicate sample pass rates of around 77.2 percent for the
psychology students and 88.8 percent for the geography students; this is
a difference of roughly 11.6 percent. From examining the values of p̂1, n1
and p̂2, n2, you can see that the rule of thumb is satisfied for this test; again,
assume a standard significance level of α = 0.05.

The pooled proportion p∗, following (18.10), is as follows:

R> p.star <- (x1+x2)/(n1+n2)

R> p.star

[1] 0.8255814

With that you calculate the test statistic Z as per Equation (18.9) with
the following:

R> Z <- (p.hat2-p.hat1)/sqrt(p.star*(1-p.star)*(1/n1+1/n2))

R> Z

[1] 3.152693

In light of the hypotheses, you find the corresponding p-value as a right-
hand, upper-tail area from Z underneath the standard normal curve as
follows:

R> 1-pnorm(Z)

[1] 0.0008088606

You observe a p-value that’s substantially smaller than α, so the formal
decision is of course to reject the null hypothesis in favor of the alternative.
The sample data provide sufficient evidence against H0 such that you can
conclude that evidence exists to support the pass rate for geography students
being higher than the pass rate for psychology students.

R Function: prop.test

Once more, R allows you to perform the test with one line of code using
prop.test. For comparisons of two proportions, you pass the number of suc-
cesses in each group as a vector of length 2 to x and the respective sample
sizes as another vector of length 2 to n. Note that the order of the entries
must reflect the order of alternative if this is one-sided (in other words,
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here, the proportion that is to be tested as “greater” corresponds to the
first elements of x and n). Once more, correct is set to FALSE.

R> prop.test(x=c(x2,x1),n=c(n2,n1),alternative="greater",correct=FALSE)

2-sample test for equality of proportions without continuity correction

data: c(x2, x1) out of c(n2, n1)

X-squared = 9.9395, df = 1, p-value = 0.0008089

alternative hypothesis: greater

95 percent confidence interval:

0.05745804 1.00000000

sample estimates:

prop 1 prop 2

0.8883249 0.7725322

The p-value is identical to the one generated by the previous series of
calculations, suggesting a rejection of H0. Since prop.test was called as a
one-sided test, the confidence interval returned provides a single bound.
To provide a two-sided CI for the true difference, it makes sense, consider-
ing the outcome of the test, to construct this using the separate p̂1 and p̂2
instead of using the denominator of (18.9) specifically (which assumes truth
of H0). The “separate-estimate” version of the standard error of the differ-
ence between two proportions was given earlier (in the text beneath Equa-
tion (18.10)), and a 95 percent CI is therefore calculated with the following:

R> (p.hat2-p.hat1) +

c(-1,1)*qnorm(0.975)*sqrt(p.hat1*(1-p.hat1)/n1+p.hat2*(1-p.hat2)/n2)

[1] 0.04628267 0.18530270

With that, you’re 95 percent confident that the true difference between
the proportion of geography students passing the exam and the proportion
of psychology students passing the exam lies somewhere between 0.046 and
0.185. Naturally, the interval also reflects the result of the hypothesis test—it
doesn’t include the null value of zero and is wholly positive.

Exercise 18.3

An advertisement for a skin cream claims nine out of ten women who
use it would recommend it to a friend. A skeptical salesperson in a
department store believes the true proportion of women users who’d
recommend it, π, is much smaller than 0.9. She follows up with 89
random customers who had purchased the skin cream and asks if
they would recommend it to others, to which 71 answer yes.
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a. Set up an appropriate pair of hypotheses for this test and
determine whether it will be valid to carry out using the normal
distribution.

b. Compute the test statistic and the p-value and state your conclu-
sion for the test using a significance level of α = 0.1.

c. Using your estimated sample proportion, construct a two-sided
90 percent confidence interval for the true proportion of women
who would recommend the skin cream.

The political leaders of a particular country are curious as to the
proportion of citizens in two of its states that support the decrimi-
nalization of marijuana. A small pilot survey taken by officials reveals
that 97 out of 445 randomly sampled voting-age citizens residing in
state 1 support the decriminalization and that 90 out of 419 voting-
age citizens residing in state 2 support the same notion.

d. Letting π1 denote the true proportion of citizens in support of
decriminalization in state 1, and π2 the same measure in state 2,
conduct and conclude a hypothesis test under a significance level
of α = 0.05 with reference to the following hypotheses:

H0 : π2 − π1 = 0

HA : π2 − π1 , 0

e. Compute and interpret a corresponding CI.

Though there is standard, ready-to-use R functionality for the t-test,
at the time of this writing, there is no similar function for the Z -test
(in other words, the normal-based test of proportions described
here) except in contributed packages.

f. Your task is to write a relatively simple R function, Z.test, that
can perform a one- or two-sample Z -test, using the following
guidelines:
– The function should take the following arguments: p1 and

n1 (no default) to pose as the estimated proportion and
sample size; p2 and n2 (both defaulting to NULL) that contain
the second sample proportion and sample size in the event
of a two-sample test; p0 (no default) as the null value; and
alternative (default "two.sided") and conf.level (default 0.95),
to be used in the same way as in t.test.

– When conducting a two-sample test, it should be p1

that is tested as being smaller or larger than p2 when
alternative="less" or alternative="greater", the same as in
the use of x and y in t.test.

– The function should perform a one-sample Z -test using p1,
n1, and p0 if either p2 or n2 (or both) is NULL.
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– The function should contain a check for the rule of thumb
to ensure the validity of the normal distribution in both
one- and two-sample settings. If this is violated, the func-
tion should still complete but should issue an appropriate
warning message (see Section 12.1.1).

– All that need be returned is a list containing the members
Z (test statistic), P (appropriate p-value—this can be deter-
mined by alternative; for a two-sided test, determining
whether Z is positive or not can help), and CI (two-sided
CI with respect to conf.level).

g. Replicate the two examples in the text of Sections 18.3.1 and
18.3.2 using Z.test; ensure you reach identical results.

h. Call Z.test(p1=0.11,n1=10,p0=0.1) to try your warning message in
the one-sample setting.

18.4 Testing Categorical Variables

The normal-based Z -test is particular to data that are binary in nature. To
statistically test claims regarding more general categorical variables, with
more than two distinct levels, you use the ubiquitous chi-squared test. Pro-
nounced kai, “chi” refers to the Greek symbol χ and is sometimes noted in
shorthand as the χ2 test.

There are two common variants of the chi-squared test. The first—a chi-
squared test of distribution, also called a goodness of fit (GOF) test—is used
when assessing the frequencies in the levels of a single categorical variable.
The second—a chi-squared test of independence—is employed when you’re
investigating the relationship between frequencies in the levels of two such
variables.

18.4.1 Single Categorical Variable
Like the Z -test, the one-dimensional chi-squared test is also concerned with
comparing proportions but in a setting where there are more than two pro-
portions. A chi-squared test is used when you have k levels (or categories) of
a categorical variable and want to hypothesize about their relative frequen-
cies to find out what proportion of n observations fall into each defined cat-
egory. In the following examples, it must be assumed that the categories are
mutually exclusive (in other words, an observation cannot take more than one
of the possible categories) and exhaustive (in other words, the k categories
cover all possible outcomes).

I’ll illustrate how hypotheses are constructed and introduce the relevant
ideas and methods with the following example. Suppose a researcher in soci-
ology is interested in the dispersion of rates of facial hair in men of his local
city and whether they are uniformly represented in the male population. He
defines a categorical variable with three levels: clean shaven (1), beard only
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or moustache only (2), and beard and moustache (3). He collects data on 53
randomly selected men and finds the following outcomes:

R> hairy <- c(2,3,2,3,2,1,3,3,2,2,3,2,2,2,3,3,3,2,3,2,2,2,1,3,2,2,2,1,2,2,3,

2,2,2,2,1,2,1,1,1,2,2,2,3,1,2,1,2,1,2,1,3,3)

Now, the research question asks whether the proportions in each cat-
egory are equally represented. Let π1, π2, and π3 represent the true pro-
portion of men in the city who fall into groups 1, 2, and 3, respectively. You
therefore seek to test these hypotheses:

H0 : π1 = π2 = π3 =
1
3

HA : H0 is incorrect

For this test, use a standard significance level of 0.05.
The appearance of the alternative hypothesis is a little different from

what you’ve seen so far but is an accurate reflection of the interpretation of
a chi-squared goodness of fit test. In these types of problems, H0 is always
that the proportions in each group are equal to the stated values, and HA
is that the data, as a whole, do not match the proportions defined in the
null. The test is conducted assuming the null hypothesis is true, and evi-
dence against the no-change, baseline setting will be represented as a small
p-value.

Calculation: Chi-Squared Test of Distribution

The quantities of interest are the proportion of n observations in each of k

categories, π1, . . ., πk , for a single mutually exclusive and exhaustive categor-
ical variable. The null hypothesis defines hypothesized null values for each
proportion; label these respectively as π0(1) , . . ., π0(k ) . The test statistic χ2 is
given as

χ2
=

k
∑

i=1

(Oi − Ei )
2

Ei

, (18.11)

where Oi is the observed count and Ei is the expected count in the ith cate-
gory; i = 1, . . ., k. The Oi are obtained directly from the raw data, and the
expected counts, Ei = nπ0(i) , are merely the product of the overall sample
size n with the respective null proportion for each category. The result of
χ2 follows a chi-squared distribution (explained further momentarily) with
ν = k − 1 degrees of freedom. You usually consider the test to be valid based
on an informal rule of thumb stating that at least 80 percent of the expected
counts Ei should be at least 5.

In this type of chi-squared test, it is important to note the following:

• The term goodness of fit refers to the proximity of the observed data to
the distribution hypothesized in H0.
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• Positive extremity of the result of (18.11) provides evidence against H0.
As such, the corresponding p-value is always computed as an upper-tail area.

• As in the current example, a test for uniformity simplifies the null
hypothesis slightly by having equivalent null proportions π0 = π0(1) =

. . . = π0(k ) .

• A rejected H0 doesn’t tell you about the true values of πi . It merely sug-
gests that they do not follow H0 specifically.

The chi-squared distribution relies on specification of a degree of free-
dom, much like the t-distribution. Unlike a t curve, however, a chi-squared
curve is unidirectional in nature, being defined for non-negative values and
with a positive (right-hand) horizontal asymptote (tail going to zero).

It’s this unidirectional distribution that leads to p-values being defined
as upper-tail areas only; decisions like one- or two-tailed areas have no rel-
evance in these types of chi-squared tests. To get an idea of what the den-
sity functions actually look like, Figure 18-1 shows three particular curves
defined with ν = 1, ν = 5, and ν = 10 degrees of freedom.

Figure 18-1: Three instances of the chi-squared density
function using differing degrees of freedom values. Note
the positive domain of the function and the “flattening”
and “right-extending” behavior as ν is increased.

This image was produced using the relevant d-function, dchisq, with ν
passed to the argument df.

R> x <- seq(0,20,length=100)

R> plot(x,dchisq(x,df=1),type="l",xlim=c(0,15),ylim=c(0,0.5),ylab="density")

R> lines(x,dchisq(x,df=5),lty=2)

R> lines(x,dchisq(x,df=10),lty=3)

R> abline(h=0,col="gray")
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R> abline(v=0,col="gray")

R> legend("topright",legend=c("df=1","df=5","df=10"),lty=1:3)

The current facial hair example is a test for the uniformity of the distri-
bution of frequencies in the three categories. You can obtain the observed
counts and corresponding proportions with table.

R> n <- length(hairy)

R> n

[1] 53

R> hairy.tab <- table(hairy)

R> hairy.tab

hairy

1 2 3

11 28 14

R> hairy.tab/n

hairy

1 2 3

0.2075472 0.5283019 0.2641509

For computation of the test statistic χ2, you have the observed counts
Oi in hairy.tab. The expected count Ei is a straightforward arithmetic cal-
culation of the total number of observations multiplied by the null propor-
tion 1/3 (the result stored as expected), giving you the same value for each
category.

These, as well as the contribution of each category to the test statistic,
are nicely presented in a matrix constructed with cbind (Section 3.1.2).

R> expected <- 1/3*n

R> expected

[1] 17.66667

R> hairy.matrix <- cbind(1:3,hairy.tab,expected,

(hairy.tab-expected)^2/expected)

R> dimnames(hairy.matrix) <- list(c("clean","beard OR mous.",

"beard AND mous."),

c("i","Oi","Ei","(Oi-Ei)^2/Ei"))

R> hairy.matrix

i Oi Ei (Oi-Ei)^2/Ei

clean 1 11 17.66667 2.5157233

beard OR mous. 2 28 17.66667 6.0440252

beard AND mous. 3 14 17.66667 0.7610063

Note that all the expected counts are comfortably greater than 5, which
satisfies the informal rule of thumb mentioned earlier. In terms of R cod-
ing, note also that the single number expected is implicitly recycled to match
the length of the other vectors supplied to cbind and that you’ve used the
dimnames attribute (refer to Section 6.2.1) to annotate the rows and columns.
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The test statistic, as per (18.11), is given as the sum of the (Oi − Ei )
2/Ei

contributions in the fourth column of hairy.matrix.

R> X2 <- sum(hairy.matrix[,4])

R> X2

[1] 9.320755

The corresponding p-value is the appropriate upper-tail area from the
chi-squared distribution with ν = 3 − 1 = 2 degrees of freedom.

R> 1-pchisq(X2,df=2)

[1] 0.009462891

This small p-value provides evidence to suggest that the true frequencies
in the defined categories of male facial hair are not uniformly distributed
in a 1/3,1/3,1/3 fashion. Remember that the test result doesn’t give you the
true proportions but only suggests that they do not follow those in H0.

R Function: chisq.test

Like t.test and prop.test, R provides a quick-use function for perform-
ing a chi-squared GOF test. The chisq.test function takes the vector of
observed frequencies as its first argument x. For the facial hair example,
this simple line therefore provides the same results as found previously:

R> chisq.test(x=hairy.tab)

Chi-squared test for given probabilities

data: hairy.tab

X-squared = 9.3208, df = 2, p-value = 0.009463

By default, the function performs a test for uniformity, taking the num-
ber of categories as the length of the vector supplied to x. However, sup-
pose that the researcher collecting the facial hair data realizes that he was
doing so in November, a month during which many men grow mustaches in
support of “Mo-vember” to raise awareness of men’s health. This changes
thoughts on the true rates in terms of his clean-shaven (1), beard-only or
moustache-only (2), and beard and moustache (3) categories. He now wants
to test the following:

H0 : π0(1) = 0.25; π0(2) = 0.5; π0(3) = 0.25

HA : H0 is incorrect.

If a GOF test of uniformity is not desired, when the “true” rates across
the categories are not all the same, the chisq.test function requires you
to supply the null proportions as a vector of the same length as x to the p

argument. Naturally, each entry in p must correspond to the categories tabu-
lated in x.
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R> chisq.test(x=hairy.tab,p=c(0.25,0.5,0.25))

Chi-squared test for given probabilities

data: hairy.tab

X-squared = 0.5094, df = 2, p-value = 0.7751

With a very high p-value, there is no evidence to reject H0 in this sce-
nario. In other words, there is no evidence to suggest that the proportions
hypothesized in H0 are incorrect.

18.4.2 Two Categorical Variables
The chi-squared test can also apply to the situation in which you have two
mutually exclusive and exhaustive categorical variables at hand—call them
variable A and variable B. It is used to detect whether there might be some
influential relationship (in other words, dependence) between A and B by
looking at the way in which the distribution of frequencies change together
with respect to their categories. If there is no relationship, the distribution
of frequencies in variable A will have nothing to do with the distribution of
frequencies in variable B. As such, this particular variant of the chi-squared
test is called a test of independence and is always performed with the following
hypotheses:

H0 : Variables A and B are independent.

(or, There is no relationship between A and B.)

HA : Variables A and B are not independent.

(or, There is a relationship between A and B.)

To carry out the test, therefore, you compare the observed data to the
counts you’d expect to see if the distributions were completely unrelated
(satisfying the assumption that H0 is true). An overall large departure from
the expected frequencies will result in a small p-value and thus provide evi-
dence against the null.

So, how are such data best presented? For two categorical variables, a
two-dimensional structure is appropriate; in R, this is a standard matrix.
For example, suppose some dermatologists at a certain clinical practice
are interested in their successes in treating a common skin affliction. Their
records show N = 355 patients have been treated at their clinic using one of
four possible treatments—a course of tablets, a series of injections, a laser
treatment, and an herbal-based remedy. The level of success in curing the
affliction is also recorded—none, partial success, and full success. The data
are given in the constructed matrix skin.

R> skin <- matrix(c(20,32,8,52,9,72,8,32,16,64,30,12),4,3,

dimnames=list(c("Injection","Tablet","Laser","Herbal"),

c("None","Partial","Full")))
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R> skin

None Partial Full

Injection 20 9 16

Tablet 32 72 64

Laser 8 8 30

Herbal 52 32 12

A two-dimensional table presenting frequencies in this fashion is called a
contingency table.

Calculation: Chi-Squared Test of Independence

To compute the test statistic, presume data are presented as a kr × kc con-
tingency table, in other words, a matrix of counts, based on two categorical
variables (both mutually exclusive and exhaustive). The focus of the test is
the way in which the frequencies of N observations between the kr levels
of the “row” variable and the kc levels of the “column” variable are jointly
distributed. The test statistic χ2 is given with

χ2
=

kr
∑

i=1

kc
∑

j=1

(O[i, j] − E[i, j])2

E[i, j]
, (18.12)

where O[i, j] is the observed count and E[i, j] is the expected count at row
position i and column position j. Each E[i, j] is found as the sum total of row
i multiplied by the sum total of column j, all divided by N .

E[i, j] =

(

∑kr
u=1 O[u, j]

)

×
(

∑kc
v=1 O[i,v]

)

N
(18.13)

The result, χ2, follows a chi-squared distribution with ν = (kr − 1) ×
(kc − 1) degrees of freedom. Again, the p-value is always an upper-tailed
area, and you can consider the test valid with the satisfaction of the condi-
tion that at least 80 percent of the E[i, j] are at least 5.

For this calculation, it’s important to note the following:

• It’s not necessary to assume that kr = kc .

• The functionality of Equation (18.12) is the same as that of (18.11)—an
overall sum involving the squared differences between the observed and
expected values of each cell.

• The double-sum in (18.12) just represents the total sum over all the
cells, in the sense that you can compute the total sample size N with
∑kr

i=1
∑kc

j=1 O[i, j].

• A rejected H0 doesn’t tell you about the nature of how the frequencies
depend on one another, just that there is evidence to suggest that some
kind of dependency between the two categorical variables exists.
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Continuing with the example, the dermatologists want to determine
whether their records suggest there is statistical evidence to indicate some
relationship between the type of treatment and the level of success in curing
the skin affliction. For convenience, store the total number of categories kr
and kc for the row and column variables, respectively.

R> kr <- nrow(skin)

R> kc <- ncol(skin)

You have the O[i, j] in skin, so now you must now compute the E[i, j]. In
light of Equation (18.13), which deals with row and column sums, you can
evaluate these using the built-in rowSums and colSums functions.

R> rowSums(skin)

Injection Tablet Laser Herbal

45 168 46 96

R> colSums(skin)

None Partial Full

112 121 122

These results indicate the totals in each group, regardless of the
other variable. To get the expected counts for all cells of the matrix, Equa-
tion (18.13) requires each row sum to be multiplied by each column sum
once. You could write a for loop, but this would be inefficient and rather
inelegant. It is better to use rep with the optional each argument (refer to
Section 2.3.2). By repeating each element of the column totals (level of suc-
cess) four times, you can then use vector-oriented behavior to multiply that
repeated vector by the shorter vector produced by rowSums. You can then call
sum(skin) to divide this by N and rearrange it into a matrix. The following
lines show how this example works step-by-step:

R> rep(colSums(skin),each=kr)

None None None None Partial Partial Partial Partial Full

112 112 112 112 121 121 121 121 122

Full Full Full

122 122 122

R> rep(colSums(skin),each=kr)*rowSums(skin)

None None None None Partial Partial Partial Partial Full

5040 18816 5152 10752 5445 20328 5566 11616 5490

Full Full Full

20496 5612 11712

R> rep(colSums(skin),each=kr)*rowSums(skin)/sum(skin)

None None None None Partial Partial Partial Partial

14.19718 53.00282 14.51268 30.28732 15.33803 57.26197 15.67887 32.72113

Full Full Full Full

15.46479 57.73521 15.80845 32.99155

R> skin.expected <- matrix(rep(colSums(skin),each=kr)*rowSums(skin)/sum(skin),

nrow=kr,ncol=kc,dimnames=dimnames(skin))
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R> skin.expected

None Partial Full

Injection 14.19718 15.33803 15.46479

Tablet 53.00282 57.26197 57.73521

Laser 14.51268 15.67887 15.80845

Herbal 30.28732 32.72113 32.99155

Note that all the expected values are greater than 5, as preferred.
It’s best to construct a single object to hold the results of the different

stages of calculations leading to the test statistic, as you did for the one-
dimensional example. Since each stage is a matrix, you can bind the rele-
vant matrices together with cbind and produce an array of the appropriate
dimensions (refer to Section 3.4 for a refresher).

R> skin.array <- array(data=cbind(skin,skin.expected,

(skin-skin.expected)^2/skin.expected),

dim=c(kr,kc,3),

dimnames=list(dimnames(skin)[[1]],dimnames(skin)[[2]],

c("O[i,j]","E[i,j]",

"(O[i,j]-E[i,j])^2/E[i,j]")))

R> skin.array

, , O[i,j]

None Partial Full

Injection 20 9 16

Tablet 32 72 64

Laser 8 8 30

Herbal 52 32 12

, , E[i,j]

None Partial Full

Injection 14.19718 15.33803 15.46479

Tablet 53.00282 57.26197 57.73521

Laser 14.51268 15.67887 15.80845

Herbal 30.28732 32.72113 32.99155

, , (O[i,j]-E[i,j])^2/E[i,j]

None Partial Full

Injection 2.371786 2.6190199 0.01852279

Tablet 8.322545 3.7932587 0.67978582

Laser 2.922614 3.7607992 12.74002590

Herbal 15.565598 0.0158926 13.35630339

418 Chapter 18



The final steps are easy—the test statistic given by (18.12) is just the
grand total of all elements of the matrix that is the third layer of skin.array.

R> X2 <- sum(skin.array[,,3])

R> X2

[1] 66.16615

The corresponding p-value for this test of independence is as follows:

R> 1-pchisq(X2,df=(kr-1)*(kc-1))

[1] 2.492451e-12

Recall that the relevant degrees of freedom are defined as ν = (kr − 1) ×
(kc − 1).

The extremely small p-value provides strong evidence against the null
hypothesis. The appropriate conclusion would be to reject H0 and state that
there does appear to be a relationship between the type of treatment for the
skin affliction and the level of success in curing it.

R Function: chisq.test

Yet once more, no section in this chapter would be complete without show-
casing the built-in functionality R possesses for these fundamental proce-
dures. The default behavior of chisq.test, when supplied a matrix as x, is
to perform a chi-squared test of independence with respect to the row and
column frequencies—just as performed manually here for the skin affliction
example. The following result easily confirms your previous calculations:

R> chisq.test(x=skin)

Pearson's Chi-squared test

data: skin

X-squared = 66.1662, df = 6, p-value = 2.492e-12

Exercise 18.4

HairEyeColor is a ready-to-use data set in R that you haven’t yet come
across. This 4× 4× 2 array provides frequencies of hair and eye colors
of 592 statistics students, split by sex (Snee, 1974).

a. Perform and interpret, at a significance level of α = 0.01, a chi-
squared test of independence for hair against eye color for all
students, regardless of their sex.
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In Exercise 8.1 on page 161, you accessed the Duncan data set of the
contributed package car, which contains markers of job prestige
collected in 1950. Install the package if you haven’t already and load
the data frame.

b. The first column of Duncan is the variable type, recording the
type of job as a factor with three levels: prof (professional or
managerial), bc (blue collar), and wc (white collar). Construct
appropriate hypotheses and perform a chi-squared GOF test to
determine whether the three job types are equally represented in
the data set.
i. Interpret the resulting p-value with respect to a significance

level of α = 0.05.
ii. What conclusion would you reach if you used a significance

level of α = 0.01?

18.5 Errors and Power

In discussing all these forms of statistical hypothesis testing, there has been
one common thread: the interpretation of a p-value and what it tells you
about your problem in terms of the hypotheses. Frequentist statistical
hypothesis testing is ubiquitous in many fields of research, so it is impor-
tant to at least briefly explore directly related concepts.

18.5.1 Hypothesis Test Errors
Hypothesis testing is performed with the objective of obtaining a p-value in
order to quantify evidence against the null statement H0. This is rejected in
favor of the alternative, HA, if the p-value is itself less than a predefined sig-
nificance level α, which is conventionally 0.05 or 0.01. As touched upon, this
approach is justifiably criticized since the choice of α is essentially arbitrary;
a decision to reject or retain H0 can change depending solely upon the α
value.

Consider for the moment, given a specific test, what the correct outcome
is. If H0 is really true, then you’d want to retain it. If HA is really true, you’d
want to reject the null. This “truth,” one way or another, is impossible to
know in practice. That being said, it’s useful to consider in a theoretical
sense just how good (or bad) a given hypothesis test is at yielding a result
that leads to the correct conclusion.

To be able to test the validity of your rejection or retention of the null
hypothesis, you must be able to identify two kinds of errors:

• A Type I error occurs when you incorrectly reject a true H0. In any given
hypothesis test, the probability of a Type I error is equivalent to the sig-
nificance level α.
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• A Type II error occurs when you incorrectly retain a false H0 (in other
words, fail to accept a true HA). Since this depends upon what the true
HA actually is, the probability of committing such an error, labeled β, is
not usually known in practice.

18.5.2 Type I Errors
If your p-value is less than α, you reject the null statement. If the null is
really true, though, the α directly defines the probability that you incorrectly
reject it. This is referred to as a Type I error.

Figure 18-2 provides a conceptual illustration of a Type I error probabil-
ity for a supposed hypothesis test of a sample mean, where the hypotheses
are set up as H0 : µ = µ0 and HA : µ > µ0.

Figure 18-2: A conceptual diagram of the Type I error
probability α

The null hypothesis distribution is centered on the null value µ0; the
alternative hypothesis distribution is centered to its right at some mean µA
in Figure 18-2. As you can see, if the null hypothesis is really true, then the
probability it is incorrectly rejected for this test will be equal to the signifi-
cance level α, located in the upper tail of the null distribution.

Simulating Type I Errors

To demonstrate the Type I error rate via numerical simulation (here, this
refers to randomly generating hypothetical data samples), you can write
code that does the equivalent of repeating a hypothesis test under known
conditions. So that you can use this code multiple times, in the R script edi-
tor define the following function:

typeI.tester <- function(mu0,sigma,n,alpha,ITERATIONS=10000){

pvals <- rep(NA,ITERATIONS)

for(i in 1:ITERATIONS){

temporary.sample <- rnorm(n=n,mean=mu0,sd=sigma)
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temporary.mean <- mean(temporary.sample)

temporary.sd <- sd(temporary.sample)

pvals[i] <- 1-pt((temporary.mean-mu0)/(temporary.sd/sqrt(n)),df=n-1)

}

return(mean(pvals<alpha))

}

The typeI.tester function is designed to generate ITERATIONS samples
from a particular normal distribution. With each sample, you’ll perform an
upper-tailed test of the mean (refer to Section 18.2.1) in the spirit of Fig-
ure 18-2, assuming the hypotheses of H0 : µ = µ0 and HA : µ > µ0.

You can decrease ITERATIONS to generate fewer entire samples, and this
will speed up computation time but will result in simulated rates that are
more variable. Each entire sample of size n of hypothetical raw measure-
ments is generated using rnorm with the mean equal to the mu0 argument
(and standard deviation equal to the sigma argument). The desired signif-
icance level is set by alpha. In the for loop, the sample mean and sample
standard deviation are calculated for each generated sample.

Were each sample subjected to a “real” hypothesis test, the p-value
would be taken from the right-hand area of the t-distribution with n-1

degrees of freedom (using pt), with respect to the standardized test statis-
tic given earlier in Equation (18.2).

The calculated p-value, at each iteration, is stored in a predefined vec-
tor pvals. The logical vector pvals<alpha therefore contains corresponding
TRUE/FALSE values; the former logical value flags rejection of the null hypoth-
esis, and the latter flags retention. The Type I error rate is determined by
calling mean on that logical vector, which yields the proportion of TRUEs (in
other words, the overall proportion of “null hypothesis rejections”) arising
from the simulated samples. Remember, the samples are generated ran-
domly, so your results are liable to change slightly each time you run the
function.

This function works because, by definition of the problem, the samples
that are being generated come from a distribution that truly has the mean
set at the null value, in other words, µA = µ0. Therefore, any statistical rejec-
tion of this statement, obtained with a p-value less than the significance level
α, is clearly incorrect and is purely a result of random variation.

To try this, import the function and execute it generating the default
ITERATIONS=10000 samples. Use the standard normal as the null (and “true” in
this case!) distribution; make each sample of size 40 and set the significance
level at the conventional α = 0.05. Here’s an example:

R> typeI.tester(mu0=0,sigma=1,n=40,alpha=0.05)

[1] 0.0489
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This indicates that 10,000 × 0.0489 = 489 of the samples taken yielded a
corresponding test statistic that provided a p-value, which would incorrectly
result in rejection of H0. This simulated Type I error rate lies close to the
preset alpha=0.05.

Here’s another example, this time for nonstandard normal data samples
with α = 0.01:

R> typeI.tester(mu0=-4,sigma=0.3,n=60,alpha=0.01)

[1] 0.0108

Note that again, the numerically simulated rate of Type I error reflects
the significance level.

These results are not difficult to understand theoretically—if the true
distribution does indeed have a mean equal to the null value, you’ll naturally
observe those “extreme” test statistic values in practice at a rate equal to α.
The catch, of course, is that in practice the true distribution is unknown,
highlighting once more the fact that a rejection of any H0 can never be
interpreted as proof of the truth of HA. It might simply be that the sample
you observed followed the null hypothesis but produced an extreme test
statistic value by chance, however small that chance might be.

Bonferroni Correction

The fact that Type I errors naturally occur because of random variation is
particularly important and leads us to consider the multiple testing problem. If
you’re conducting many hypothesis tests, you should be cautious in simply
reporting the “number of statistically significant outcomes”—as you increase
the number of hypothesis tests, you increase the chance of receiving an erro-
neous result. In, say, 20 tests conducted under α = 0.05, on average one will
be a so-called false positive; if you conduct 40 or 60 tests, you are inevitably
more likely to find more false positives.

When several hypothesis tests are conducted, you can curb the multiple
testing problem with respect to committing a Type I error by using the Bon-
ferroni correction. The Bonferroni correction suggests that when performing
a total of N independent hypothesis tests, each under a significance level of
α, you should instead use αB = α/N for any interpretation of statistical sig-
nificance. Be aware, however, that this correction to the level of significance
represents the simplest solution to the multiple testing problem and can be
criticized for its conservative nature, which is potentially problematic when
N is large.

The Bonferroni and other corrective measures were developed in an
attempt to formalize remedies to making a Type I error in multiple tests. In
general, though, it suffices to be aware of the possibility that H0 may be true,
even if the p-value is considered small.
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18.5.3 Type II Errors
The issues with Type I errors might suggest that it’s desirable to perform a
hypothesis test with a smaller α value. Unfortunately, it’s not quite so simple;
reducing the significance level for any given test leads directly to an increase
in the chance of committing a Type II error.

A Type II error refers to incorrect retention of the null hypothesis—in
other words, obtaining a p-value greater than the significance level when it’s
the alternative hypothesis that’s actually true. For the same scenario you’ve
been looking at so far (an upper-tailed test for a single sample mean), Fig-
ure 18-3 illustrates the probability of a Type II error, shaded and denoted β.

Figure 18-3: A conceptual diagram of the Type II error
probability β

It’s not as easy to find β as it is to find the probability of making a Type I
error because β depends, among other things, on what the true value of
µA is (which in general you won’t know). If µA is closer to the hypothesized
null value of µ0, you can imagine the alternative distribution in Figure 18-3
translating (shifting) to the left, resulting in an increase in β. Similarly, stay-
ing with Figure 18-3, imagine decreasing the significance level α. Doing so
means the vertical dashed line (denoting the corresponding critical value)
moves to the right, also increasing the shaded area of β. Intuitively, this
makes sense—the closer the true alternative value is to the null and/or the
smaller the significance level, the harder HA is to detect by rejection of H0.

As noted, β usually can’t be calculated in practice because of the need
to know what the true distribution actually is. This quantity is, however, use-
ful in giving you an idea of how prone a test is to the incorrect retention of
a null hypothesis under particular conditions. Suppose, for example, you’re
performing a one-sample t-test for H0 : µ = µ0 and HA : µ > µ0 with µ0 = 0
but that the (true) alternative distribution of the raw measurements has
mean µA = 0.5 and standard deviation σ = 1. Given a random sample of
size n = 30 and using α = 0.05, what is the probability of committing a
Type II error in any given hypothesis test (using the same standard deviation
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for the null distribution)? To answer this, look again at Figure 18-3; you
need the critical value marked off by the significance level (the dashed
vertical line). If you assume σ is known, then the sampling distribution of
interest will be normal with mean µ0 = 0 and a standard error of 1/

√
30 (see

Section 17.1.1). Therefore, with an upper-tail area of 0.05, you can find the
critical value with the following:

R> critval <- qnorm(1-0.05,mean=0,sd=1/sqrt(30))

R> critval

[1] 0.3003078

This represents the vertical dashed line in this specific setting (see
Section 16.2.2 for a refresher on use of qnorm). The Type II error in this
example is found as the left-hand tail area under the alternative, “true” dis-
tribution, from that critical value:

R> pnorm(critval,mean=0.5,sd=1/sqrt(30))

[1] 0.1370303

From this, you can see that a hypothesis test under these conditions has
roughly a 13.7 percent chance of incorrect retention of the null.

Simulating Type II Errors

Simulation is especially useful here. In the editor, consider the function
typeII.tester defined as follows:

typeII.tester <- function(mu0,muA,sigma,n,alpha,ITERATIONS=10000){

pvals <- rep(NA,ITERATIONS)

for(i in 1:ITERATIONS){

temporary.sample <- rnorm(n=n,mean=muA,sd=sigma)

temporary.mean <- mean(temporary.sample)

temporary.sd <- sd(temporary.sample)

pvals[i] <- 1-pt((temporary.mean-mu0)/(temporary.sd/sqrt(n)),df=n-1)

}

return(mean(pvals>=alpha))

}

This function is similar to typeI.tester. The null value, standard devi-
ation of raw measurements, sample size, significance level, and number of
iterations are all as before. Additionally, you now have muA, providing the
“true” mean µA under which to generate the samples. Again, at each iter-
ation, a random sample of size n is generated, its mean and standard devi-
ation are calculated, and the appropriate p-value for the test is computed
using pt from the usual standardized test statistic with df=n-1. (Remember,
since you’re estimating the true standard deviation of the measurements
σ with the sample standard deviation s, it’s technically correct to use the
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t-distribution.) Following completion of the for loop, the proportion of
p-values that were greater than or equal to the significance level alpha is
returned.

After importing the function into the workspace, you can simulate β for
this test.

R> typeII.tester(mu0=0,muA=0.5,sigma=1,n=30,alpha=0.05)

[1] 0.1471

My result indicates something close to the theoretical β evaluated pre-
viously, albeit slightly larger because of the additional uncertainty that is
naturally present when using a t-based sampling distribution instead of a
normal. Again, each time you run typeII.tester, the results will vary slightly
since everything is based on randomly generated hypothetical data samples.

Turning your attention to Figure 18-3, you can see (in line with a com-
ment made earlier) that if, in an effort to decrease the chance of a Type I
error, you use α = 0.01 instead of 0.05, the vertical line moves to the right,
thereby increasing the probability of a Type II error, with all other condi-
tions being held constant.

R> typeII.tester(mu0=0,muA=0.5,sigma=1,n=30,alpha=0.01)

[1] 0.3891

Other Influences on the Type II Error Rate

The significance level isn’t the only contributing factor in driving β. Keep-
ing α at 0.01, this time see what happens if the standard deviation of the raw
measurements is increased from σ = 1 to σ = 1.1 and then σ = 1.2.

R> typeII.tester(mu0=0,muA=0.5,sigma=1.1,n=30,alpha=0.01)

[1] 0.4815

R> typeII.tester(mu0=0,muA=0.5,sigma=1.2,n=30,alpha=0.01)

[1] 0.5501

Increasing the variability of the measurements, without touching any-
thing else in the scenario, also increases the chance of a Type II error. You
can imagine the curves in Figure 18-3 becoming flatter and more widely dis-
persed owing to a larger standard error of the mean, which would result in
more probability weight in the left-hand tail marked off by the critical value.
Conversely, if the variability of the raw measurements is smaller, then the
sampling distributions of the sample mean will be taller and skinnier, mean-
ing a reduction in β.

A smaller or larger sample size will have a similar impact. Located in
the denominator of the standard error formula, a smaller n will result in a
larger standard error and hence that flatter curve and an increased β;
a larger sample size will have the opposite effect. If you remain with the
latest values of µ0 = 0, µA = 0.5, σ = 1.2, and α = 0.01, note that reducing
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the sample size to 20 (from 30) results in an increased simulated Type II
error rate compared with the most recent result of 0.5501, but increasing
the sample size to 40 improves the rate.

R> typeII.tester(mu0=0,muA=0.5,sigma=1.2,n=20,alpha=0.01)

[1] 0.7319

R> typeII.tester(mu0=0,muA=0.5,sigma=1.2,n=40,alpha=0.01)

[1] 0.4219

Finally, as noted at the beginning of the discussion, the specific value of
µA itself affects β just as you’d expect. Again, keeping the latest values for
all other components, which resulted in my case in β = 0.4219, note that
shifting the “true” mean closer to µ0 by changing from µA = 0.5 to µA = 0.4
means the probability of committing a Type II error is increased; the oppo-
site is true if the difference is increased to µA = 0.6.

R> typeII.tester(mu0=0,muA=0.4,sigma=1.2,n=40,alpha=0.01)

[1] 0.6147

R> typeII.tester(mu0=0,muA=0.6,sigma=1.2,n=40,alpha=0.01)

[1] 0.2287

To summarize, although these simulated rates have been applied to
the specific situation in which the hypothesis test is an upper-tailed test for
a single mean, the general concepts and ideas discussed here hold for any
hypothesis test. It’s easy to establish that the Type I error rate matches the
predefined significance level and so can be decreased by reducing α. In
contrast, controlling the Type II error rate is a complex balancing act that
can involve sample size, significance level, observation variability, and magni-
tude of the difference between the true value and the null. This problem is
largely academic since the “truth” is typically unknown in practice. However,
the Type II error rate’s direct relationship to statistical power often plays a
critical role in preparing for data collection, especially when you’re consid-
ering sample size requirements, as you’ll see in the next section.

Exercise 18.5

a. Write a new version of typeI.tester called typeI.mean. The new
function should be able to simulate the Type I error rate for
tests of a single mean in any direction (in other words, one-
or two-sided). The new function should take an additional
argument, test, which takes a character string "less", "greater",
or "two.sided" depending on the type of desired test. You can
achieve this by modifying typeI.tester as follows:
– Instead of calculating and storing the p-values directly in the

for loop, simply store the test statistic.
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– When the loop is complete, set up stacked if-else statements
that cater to each of the three types of test, calculating the
p-value as appropriate.

– For the two-sided test, remember that the p-value is defined
as twice the area “more extreme” than the null. Computa-
tionally, this means you must use the upper-tail area if the
test statistic is positive and the lower-tail area otherwise.
If this area is less than half of α (since it is subsequently
multiplied by 2 in a “real” hypothesis test), then a rejection
of the null should be flagged.

– If the value of test is not one of the three possibilities, the
function should throw an appropriate error using stop.

i. Experiment with your function using the first example set-
ting in the text with µ0 = 0, σ = 1, n = 40, and α = 0.05.
Call typeI.mean three times, using each of the three possible
options for test. You should find that all simulated results sit
close to 0.05.

ii. Repeat (i) using the second example setting in the text with
µ0 = −4, σ = 0.3, n = 60, and α = 0.01. Again, you should
find that all simulated results sit close to the value of α.

b. Modify typeII.tester in the same way as you did typeI.tester; call
the new function typeII.mean. Simulate the Type II error rates
for the following hypothesis tests. As per the text, assume µA,
σ, α, and n denote the true mean, standard deviation of raw
observations, significance level, and sample size, respectively.
i. H0 : µ = −3.2; HA : µ , −3.2

with µA = −3.3, σ = 0.1, α = 0.05, and n = 25.
ii. H0 : µ = 8994; HA : µ < 8994

with µA = 5600, σ = 3888, α = 0.01, and n = 9.
iii. H0 : µ = 0.44; HA : µ > 0.44

with µA = 0.4, σ = 2.4, α = 0.05, and n = 68.

18.5.4 Statistical Power
For any hypothesis test, it is useful to consider its potential statistical power.
Power is the probability of correctly rejecting a null hypothesis that is untrue.
For a test that has a Type II error rate of β, the statistical power is found
simply with 1 − β. It’s desirable for a test to have a power that’s as high as
possible. The simple relationship with the Type II error probability means
that all factors impacting the value of β also directly affect power.

For the same one-sided H0 : µ = µ0 and HA : µ > µ0 example discussed
in the previous section, Figure 18-4 shades the power of the test—the com-
plement to the Type II error rate. By convention, a hypothesis test that has a
power greater than 0.8 is considered statistically powerful.
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Figure 18-4: A conceptual diagram of statistical power 1 − β

You can numerically evaluate power under specific testing conditions
using simulation. For the previous discussion on Type II errors, you’re able
to subtract all simulated results of β from 1 to evaluate the power of that par-
ticular test. For example, the power of detection of µA = 0.6 when µ0 = 0,
taking samples of size n = 40 and with σ = 1.2 and α = 0.01, is simulated as
1 − 0.2287 = 0.7713 (using my most recent result of β from earlier). This
means there’s roughly a 77 percent chance of correctly detecting the true
mean of 0.6 in a hypothesis test based on a sample of measurements gener-
ated under those conditions.

Researchers are often interested in the relationship between power and
sample size (though it is important to bear in mind that this is only one of
the influential ingredients in the determination of power). Before you begin
to collect data to examine a particular hypothesis, you might have an idea of
the potential true value of the parameter of interest from past research or
pilot studies. This is useful in helping to determine your sample size, such as
in helping to answer questions like “How big does my sample need to be in
order to be able to conduct a statistically powerful test to correctly reject H0,
if the true mean is actually µA?”

Simulating Power

For the most recent testing conditions, with a sample size of n = 40, you’ve
seen that there’s a power of around 0.77 of detecting µA = 0.6. For the
purposes of this example, let’s say you want to find how much you should
increase n by in order to conduct a statistically powerful test. To answer this,
define the following function power.tester in the editor:

power.tester <- function(nvec,...){

nlen <- length(nvec)

result <- rep(NA,nlen)

pbar <- txtProgressBar(min=0,max=nlen,style=3)

for(i in 1:nlen){
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result[i] <- 1-typeII.tester(n=nvec[i],...)

setTxtProgressBar(pbar,i)

}

close(pbar)

return(result)

}

The power.tester function uses the typeII.tester function defined in Sec-
tion 18.5.3 to evaluate the power of a given upper-tailed hypothesis test of
a single sample mean. It takes a vector of sample sizes supplied as the nvec

argument (you pass all other arguments to typeII.tester using an ellipsis—
refer to Section 11.2.4). A for loop defined in power.tester cycles through
the entries of nvec one at a time, simulates the power for each sample size,
and stores them in a corresponding vector that’s returned to the user.
Remember, through typeII.tester, this function is using random genera-
tion of hypothetical data samples, so there may be some fluctuation in the
results you observe each time you run power.tester.

There can be a slight delay when evaluating the power for many individ-
ual sample sizes, so this function also provides a good opportunity to show-
case a progress bar in a practical implementation (refer to Section 12.2.1 for
details).

Set up the following vector, which uses the colon operator (see Sec-
tion 2.3.2) to construct a sequence of integers between 5 and 100 inclusive
for the sample sizes to be examined:

R> sample.sizes <- 5:100

Importing the power.tester function, you can then simulate the power
for each of these integers for this particular test (ITERATIONS is halved to 5000

to reduce the overall completion time).

R> pow <- power.tester(nvec=sample.sizes,

mu0=0,muA=0.6,sigma=1.2,alpha=0.01,ITERATIONS=5000)

|====================================================================| 100%

R> pow

[1] 0.0630 0.0752 0.1018 0.1226 0.1432 0.1588 0.1834 0.2162 0.2440 0.2638

[11] 0.2904 0.3122 0.3278 0.3504 0.3664 0.3976 0.4232 0.4478 0.4680 0.4920

[21] 0.5258 0.5452 0.5552 0.5616 0.5916 0.6174 0.6326 0.6438 0.6638 0.6844

[31] 0.6910 0.7058 0.7288 0.7412 0.7552 0.7718 0.7792 0.7950 0.8050 0.8078

[41] 0.8148 0.8316 0.8480 0.8524 0.8600 0.8702 0.8724 0.8800 0.8968 0.8942

[51] 0.8976 0.9086 0.9116 0.9234 0.9188 0.9288 0.9320 0.9378 0.9370 0.9448

[61] 0.9436 0.9510 0.9534 0.9580 0.9552 0.9648 0.9656 0.9658 0.9684 0.9756

[71] 0.9742 0.9770 0.9774 0.9804 0.9806 0.9804 0.9806 0.9854 0.9848 0.9844

[81] 0.9864 0.9886 0.9890 0.9884 0.9910 0.9894 0.9906 0.9930 0.9926 0.9938

[91] 0.9930 0.9946 0.9948 0.9942 0.9942 0.9956

As expected, the power of detection rises steadily as n increases; the
conventional cutoff of 80 percent is visible in these results as lying between
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0.7950 and 0.8050. If you don’t want to identify the value visually, you can
find which entry of sample.sizes corresponds to the 80 percent cutoff by first
using which to identify the indexes of pow that are at least 0.8 and then return-
ing the lowest value in that category with min. The identified index may then
be specified in square brackets to sample.sizes to give you the value of n that
corresponds to that simulated power (0.8050 in this case). These commands
can be nested as follows:

R> minimum.n <- sample.sizes[min(which(pow>=0.8))]

R> minimum.n

[1] 43

The result indicates that if your sample size is at least 43, a hypothesis
test under these particular conditions should be statistically powerful (based
on the randomly simulated output in pow in this instance).

What if the significance level for this test were relaxed? Say you wanted
to conduct the test (still upper-tailed under the condition of µ0 = 0,
µA = 0.6, and σ = 1.2) using a significance level of α = 0.05 rather than
0.01. If you look again at Figure 18-4, this alteration means the vertical line
(critical value) moves to the left, decreasing β and so increasing power. That
would therefore suggest you’d require a smaller sample size than earlier, in
other words, n < 43, in order to perform a statistically powerful test when α
is increased.

To simulate this situation for the same range of sample sizes and store
the resulting powers in pow2, examine the following:

R> pow2 <- power.tester(nvec=sample.sizes,

mu0=0,muA=0.6,sigma=1.2,alpha=0.05,ITERATIONS=5000)

|====================================================================| 100%

R> minimum.n2 <- sample.sizes[min(which(pow2>0.8))]

R> minimum.n2

[1] 27

This result indicates a sample size of at least 27 is required, which is a
noticeable reduction from the 43 noted if α = 0.01. However, relaxing α
means an increased risk of committing a Type I error!

Power Curves

For comparison, you can plot your simulated powers as a kind of power
curve using both pow and pow2 with the following code:

R> plot(sample.sizes,pow,xlab="sample size n",ylab="simulated power")

R> points(sample.sizes,pow2,col="gray")

R> abline(h=0.8,lty=2)

R> abline(v=c(minimum.n,minimum.n2),lty=3,col=c("black","gray"))

R> legend("bottomright",legend=c("alpha=0.01","alpha=0.05"),

col=c("black","gray"),pch=1)
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My particular image is given in Figure 18-5. A horizontal line marks off
the power of 0.8, and the vertical line marks the minimum sample size values
identified and stored in minimum.n and minimum.n2. As a final touch, a legend is
added to reference the α values of each curve.

Figure 18-5: Simulated power curves for the upper-tailed
hypothesis test of a single sample mean

The curves themselves indicate exactly what you’d expect—the power
of detection increases as the sample size is incremented. You can also note
the flattening off occurring as the power rises ever closer to the “perfect”
rate of 1, which is typical of a power curve. For α = 0.05, the curve sits almost
consistently above the curve for α = 0.01, though the difference looks negli-
gible as n rises above 75 or so.

The preceding discussion of errors and power highlights the need for
care in interpreting the results of even the most basic of statistical tests.
A p-value is merely a probability, and as such, no matter how small it may
be in any circumstance, it can never prove or disprove a claim on its own.
Issues surrounding the quality of a hypothesis test (parametric or otherwise)
should be considered, though this is arguably difficult in practice. Never-
theless, an awareness of Type I and Type II errors, as well as the concept of
statistical power, is extremely useful in the implementation and appraisal of
any formal statistical testing procedure.
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Exercise 18.6

a. For this exercise you’ll need to have written typeII.mean from
Exercise 18.5 (b). Using this function, modify power.tester so
that a new function, power.mean, calls typeII.mean instead of calling
typeII.tester.
i. Confirm that the power of the test given by H0 : µ = 10;

HA : µ , 10, with µA = 10.5, σ = 0.9, α = 0.01, and n = 50, is
roughly 88 percent.

ii. Remember the hypothesis test in Section 18.2.1 for the mean
net weight of an 80-gram pack of snacks, based on the n = 44
observations provided in the snack vector. The hypotheses
were as follows:

H0 : µ = 80

HA : µ < 80

If the true mean is µA = 78.5 g and the true standard
deviation of the weights is σ = 3.1 g, use power.mean to deter-
mine whether the test is statistically powerful, assuming
α = 0.05. Does your answer to this change if α = 0.01?

b. Staying with the snacks hypothesis test, using the sample.sizes vec-
tor from the text, determine the minimum sample size required
for a statistically powerful test using both α = 0.05 and α = 0.01.
Produce a plot showing the two power curves.

Important Code in This Chapter

Function/operator Brief description First occurrence

t.test One- and two-sample t -test Section 18.2.1, p. 391
prop.test One- and two-sample Z -test Section 18.3.1, p. 405
pchisq χ2 cumulative problems Section 18.4.1, p. 414
chisq.test χ2 test of distribution/independence Section 18.4.1, p. 414
rowSums Matrix row totals Section 18.4.2, p. 417
colSums Matrix column totals Section 18.4.2, p. 417
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19
ANALYSIS OF VARIANCE

Analysis of variance (ANOVA), in its simplest
form, is used to compare multiple means

in a test for equivalence. In that sense, it’s a
straightforward extension of the hypothesis test

comparing two means. There’s a continuous variable
from which the means of interest are calculated, and
there’s at least one categorical variable that tells you how to define the
groups for those means. In this chapter, you’ll explore the ideas surround-
ing ANOVA and look at comparing means first split by one categorical
variable (one-way ANOVA) and then split by multiple categorical variables
(multiple-factor ANOVA).

19.1 One-Way ANOVA

The simplest version of ANOVA is referred to as one-way or one-factor analysis.
Simply put, the one-way ANOVA is used to test two or more means for equal-
ity. Those means are split by a categorical group or factor variable. ANOVA is
often used to analyze experimental data to assess the impact of an interven-
tion. You might, for example, be interested in comparing the mean weights
of the chicks in the built-in chickwts data set, split according to the different
food types they were fed.



19.1.1 Hypotheses and Diagnostic Checking
Say you have a categorical-nominal variable that splits a total of N numeric
observations into k distinct groups, where k ≥ 2. You’re looking to statisti-
cally compare the k groups’ means, µ1, . . . , µk , to see whether they can be
claimed to be equal. The standard hypotheses are as follows:

H0 : µ1 = µ2 = . . . = µk

HA : µ1, µ2, . . . , µk are not all equal

(alternatively, at least one mean differs).

In fact, when k = 2, the two-sample t-test is equivalent to ANOVA; for
that reason, ANOVA is most frequently employed when k > 2.

The following assumptions need to be satisfied in order for the results of
the basic one-way ANOVA test to be considered reliable:

Independence The samples making up the k groups must be inde-
pendent of one another, and the observations in each group must be
independent and identically distributed (iid).

Normality The observations in each group should be normally dis-
tributed, or at least approximately so.

Equality of variances The variance of the observations in each group
should be equal, or at least approximately so.

If the assumptions of equality of variances or normality are violated, it
doesn’t necessarily mean your results will be completely worthless, but it will
impact the overall effectiveness of detecting a true difference in the means
(refer to the discussion on statistical power in Section 18.5.4). It’s always a
good idea to assess the validity of these assumptions before using ANOVA;
I’ll do this informally for the upcoming example.

It’s also worth noting that you don’t need to have an equal number of
observations in each group to perform the test (in which case it is referred
to as unbalanced). However, having unbalanced groups does render the test
more sensitive to potentially detrimental effects if your assumptions of equal-
ity of variances and normality are not sound.

Let’s return to the chickwts data for the example—the weights of chicks
based on k = 6 different feeds. You’re interested in comparing the mean
weights according to feed type to see whether they’re all equal. Use table

to summarize the six sample sizes and use tapply (see, for example, Sec-
tion 13.2.1) to get each group mean, as follows:

R> table(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower

12 10 12 11 14 12

R> chick.means <- tapply(chickwts$weight,INDEX=chickwts$feed,FUN=mean)

R> chick.means

casein horsebean linseed meatmeal soybean sunflower

323.5833 160.2000 218.7500 276.9091 246.4286 328.9167

436 Chapter 19



Your skills from Section 14.3.2 allow you to produce side-by-side box-
plots of the distributions of weights. The next two lines give you the plot on
the left of Figure 19-1:

R> boxplot(chickwts$weight~chickwts$feed)

R> points(1:6,chick.means,pch=4,cex=1.5)

Figure 19-1: Exploring the chickwts data. Left: Side-by-side boxplots of chick weight split
by feed type, with the mean marked by ×. Right: Normal QQ plot of the mean-centered
data of each feed group.

Because boxplots display the median, not the mean, the second line of
code adds the feed-specific means (stored in the chick.means object you just
created) to each box using points.

Inspecting the left plot of Figure 19-1, it certainly looks as though
there’s a difference in the mean weights. Is any apparent difference statis-
tically significant, though? To find out, the ANOVA test for this example
concerns the following hypotheses:

H0 : µcasein = µhorsebean = µlinseed = µmeatmeal = µsoybean = µsunflower

HA : The means are not all equal.

Assuming independence of the data, before implementing the test, you
must first check that the other assumptions are valid. To examine equality of
variances, you can use the same informal rule of thumb as used in the two-
sample t-test. That is, you can assume equality of variances if the ratio of the
largest sample standard deviation to the smallest is less than 2. For the chick
weights data, the following code will determine this:

R> chick.sds <- tapply(chickwts$weight,INDEX=chickwts$feed,FUN=sd)

R> chick.sds

casein horsebean linseed meatmeal soybean sunflower

64.43384 38.62584 52.23570 64.90062 54.12907 48.83638

R> max(chick.sds)/min(chick.sds)

[1] 1.680238
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This informal result indicates that it’s reasonable to make the
assumption.

Next, consider the assumption of normality of the raw observations.
This can be difficult to determine in many real-data examples. At the least,
though, it’s worthwhile to inspect histograms and QQ plots for signs of non-
normality. You already inspected histograms and QQ plots for all 71 weights
in Section 16.2.2, but for an ANOVA, you need to do this with respect to the
grouping of the observations (that is, not just “overall” for the whole set of
weights regardless of groups).

To achieve this for the chickwts data, you need to first mean-center each
weight by its respective sample mean. You can do this by taking the orig-
inal vector of weights and subtracting from it the chick.means vector, but
first you must rearrange and replicate the latter elements to correspond to
the elements in the former. This is done by using as.numeric on the factor
vector that represents feed type, giving the numeric value of the levels of
chickwts$feed for each record in the original data frame. When that numeric
vector is passed via the square brackets to chick.means, you get the correct
group mean matched to each observation. As an exercise, you can inspect
all the ingredients that go into creating the following chick.meancen object to
satisfy yourself of what’s going on:

R> chick.meancen <- chickwts$weight-chick.means[as.numeric(chickwts$feed)]

In the context of the current analysis, these group-wise, mean-centered
values are also referred to as residuals, a term you’ll come across frequently
when you study regression methods in the next few chapters.

You can now assess normality of the observations as a whole using the
residuals. To inspect a normal QQ plot, the relevant functions are qqnorm

and qqline, which you first met in Section 16.2.2. The following two lines
produce the image on the right of Figure 19-1.

R> qqnorm(chick.meancen,main="Normal QQ plot of residuals")

R> qqline(chick.meancen)

Based on this plot (the proximity of the plotted points to the perfect
straight line), it doesn’t seem unreasonable to assume normality for these
data, particularly when compared to QQ plots of generated normal data of
the same sample size (an example was given on the left of Figure 16-9 on
page 355).

Investigating the validity of any required assumptions is referred to as
diagnostic checking. If you wanted to perform a more rigorous diagnostic
check for an ANOVA, other visual diagnostics could involve inspecting QQ
plots split by group (you’ll do this in an example in Section 19.3) or plotting
the sample standard deviation for each group against the corresponding
sample means. Indeed, there are also general hypothesis tests for normality
(such as the Shapiro-Wilk test or Anderson-Darling test—you’ll see the for-
mer used in Section 22.3.2), as well as tests for equality of variances (such as
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Levene’s test), but I’ll stick with the basic rule of thumb and visual checks in
this example.

19.1.2 One-Way ANOVA Table Construction
Turning your attention back to the left of Figure 19-1, remember that the
goal is to statistically evaluate the equality of the means marked by ×. This
task will therefore require you to consider not only the variability within each
of the k samples but the variability between the samples; this is why the test is
referred to as an analysis of variance.

The test proceeds by first calculating various metrics associated with
the overall variability and then calculating the within- and between-group
variability. These figures involve sums of squared quantities and associated
degrees of freedom values. All this culminates in a single test statistic and
p-value targeting the aforementioned hypotheses. These ingredients are
typically presented in a table, which is defined as follows.

Let x1, . . . , xN represent all N observations, regardless of group; let
x1( j ) , . . . , xn j ( j ) denote the specific group observations in group j = 1, . . . , k

such that n1 + . . . + nk = N . Let the “grand mean” of all observations be
defined as x̄ = 1

N

∑N
i=1 xi . The ANOVA table is then constructed, where SS

stands for sum-of-squares, df stands for degrees of freedom, MS stands for
mean square, F refers to the F test statistic, and p refers to the p-value.

df SS MS F p

Overall 1 (1)

Group (or “Factor”) k − 1 (2) (5) (5)÷(6) p-value
Error (or “Residual”) N − k (3) (6)

TOTAL N (4)

You calculate the values with these formulas:

(1): N x̄2

(2):
∑k

j=1

(

∑n j

i=1 xi ( j )

)2

n j

(3): (4)−(2)−(1)

(4):
∑N

i=1 x2
i

(5): (2)÷(k − 1)

(6): (3)÷(N − k)

There are three input sources that are assumed to make up the observed
data, which, when added together, result in the TOTAL row. Let’s think
about these in a little more detail:

Overall row This relates to the scale on which the data as a whole sit.
It doesn’t affect the outcome of the hypothesis test (since you’re inter-
ested only in the relative differences between means) and is sometimes
removed from the table, affecting the TOTAL values accordingly.
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Group row/Factor row This relates to the data in the individual groups
of interest, thereby accounting for the between-group variability.

Error row/Residual row This accounts for the random deviation from
the estimated means of each group, thereby accounting for the within-
group variability.

TOTAL row This represents the raw data, based on the previous three
ingredients. It is used to find the Error SS by differencing.

The three input sources each have a corresponding degrees of freedom
(df) value in the first column and a sum-of-squares (SS) value attached to
the df in the second column. Between- and within-group variability is aver-
aged by dividing the SS by the df, giving the mean squared (MS) compo-
nent for these two items. The test statistic, F, is found by dividing the mean
squared group (MSG) effect by the mean squared error (MSE) effect. This
test statistic follows the F-distribution (refer to Section 16.2.5), which itself
requires a pair of degrees of freedom values ordered as df1 (which repre-
sents the Group df, k−1) and df2 (which represents the Error df, N−k). Like
the chi-squared distribution, the F-distribution is unidirectional in nature,
and the p-value is obtained as the upper-tail area from the test statistic F.

19.1.3 Building ANOVA Tables with the aov Function
As you might expect, R allows you to easily construct an ANOVA table for
the chick weight test using the built-in aov function as follows:

R> chick.anova <- aov(weight~feed,data=chickwts)

Then, the table is printed to the console screen using summary.

R> summary(chick.anova)

Df Sum Sq Mean Sq F value Pr(>F)

feed 5 231129 46226 15.37 5.94e-10 ***
Residuals 65 195556 3009

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There are several comments to make here. Note that you employ for-
mula notation weight~feed to specify the measurement variable of interest,
weight, as modeled by the categorical-nominal variable of interest, feed type.
In this case, the variable names weight and feed are not required to be pref-
aced by chickwts$ since the optional data argument has been passed the data
frame of interest.

Remember from Section 14.3.2 that for the notation in the expression
weight~feed, the “outcome” of interest must always appear on the left of the ~

(this notation will become particularly relevant in Chapters 20 to 22).
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To actually view the table, you must apply the summary command to the
object resulting from the call to aov. R omits the first and last rows (Overall
and TOTAL) since these are not directly involved in calculating the p-value.
Other than that, it’s easy to identify that the feed row refers to the Group row
and the Residuals row refers to the Error row.

NOTE By default, R annotates model-based summary output like this with significance stars.
These show intervals of significance, and the number of stars increases as the p-value
decreases beyond a cutoff mark of 0.1. This can be useful when you’re examining more
complicated analyses where multiple p-values are summarized, though not everyone
likes this feature. If you want, you can turn off this feature in a given R session by
entering options(show.signif.stars=FALSE) at the prompt. Alternatively, you can
turn off the feature directly in the call to summary by setting the additional argument
signif.stars=FALSE. In this book, I’ll leave them be.

From the contents of the ANOVA for this example, you can quickly con-
firm the calculations. Note that the MSE, 3009, was defined as the Error SS
divided by the Error df. Indeed, in R, the same result is achieved manually
(the table output has been rounded to the nearest integer).

R> 195556/65

[1] 3008.554

You can confirm all the other results in the table output using the rele-
vant equations from earlier.

Interpreting a hypothesis test based on ANOVA follows the same rules
as any other test. With the understanding of a p-value as “the probability
that you observe the sample statistics at hand or something more extreme,
if H0 is true,” a small p-value indicates evidence against the null hypothe-
sis. In the current example, a tiny p-value provides strong evidence against
the null that the mean chick weights are the same for the different diets.
In other words, you reject H0 in favor of HA; the latter states that there is a
difference.

In a similar fashion as in the chi-squared tests, rejection of the null in
one-way ANOVA doesn’t tell you exactly where a difference lies, merely that
there’s evidence one exists. Further scrutiny of the data in the individual
groups is necessary to identify the offending means. At the simplest level,
you could turn back to pairwise two-sample t-tests, in which case you could
also use the MSE from the ANOVA table as an estimate of the pooled vari-
ance. The substitution is valid if the assumption of equal variance holds, and
such a step is beneficial because the corresponding t-based sampling distri-
bution will utilize the Error df (this is naturally higher than would otherwise
be the case if the df was based on just the sample sizes of the two groups of
specific interest).
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Exercise 19.1

Consider the following data:

Site I Site II Site III Site IV

93 85 100 96

120 45 75 58

65 80 65 95

105 28 40 90

115 75 73 65

82 70 65 80

99 65 50 85

87 55 30 95

100 50 45 82

90 40 50

78 45

95 55

93

88

110

These figures provide the depths (in centimeters) at which
important archaeological finds were made at four sites in New Mex-
ico (see Woosley and Mcintyre, 1996). Store these data in your R
workspace, with one vector containing depth and the other vector
containing the site of each observation.

a. Produce side-by-side boxplots of the depths split by group, and
use additional points to mark the locations of the sample means.

b. Assuming independence, execute diagnostic checks for normal-
ity and equality of variances.

c. Perform and conclude a one-way ANOVA test for evidence of a
difference between the means.

In Section 14.4, you looked at the data set providing measurements
on petal and sepal sizes for three species of iris flowers. This is avail-
able in R as iris.

d. Based on diagnostic checks for normality and equality of vari-
ances, decide which of the four outcome measurements (sepal
length/width and petal length/width) would be suitable for
ANOVA (using the species as the group variable).

e. Carry out one-way ANOVA for any suitable measurement
variables.
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19.2 Two-Way ANOVA

In many studies, the numeric outcome variable you’re interested in will
be categorized by more than just one grouping variable. In these cases,
you would use the multiple-factor ANOVA rather than the one-way ANOVA.
This technique is directly referred to by the number of grouping variables
used, with two- and three-way ANOVA being the next and most common
extensions.

Increasing the number of grouping variables complicates matters
somewhat—performing just a one-way ANOVA for each variable sepa-
rately is inadequate. In dealing with more than one categorical grouping
factor, you must consider the main effects of each factor on the numeric out-
come, while simultaneously accounting for the presence of the other group-
ing factor(s). That’s not all, though. It’s just as important to additionally
investigate the idea of an interactive effect; if an interactive effect exists, then
it suggests that the impact one of the grouping variables has on the outcome
of interest, specified by its main effect, varies according to the levels of the
other grouping variable(s).

19.2.1 A Suite of Hypotheses
For this explanation, denote your numeric outcome variable with O and
your two grouping variables as G1 and G2. In two-way ANOVA, the hypothe-
ses should be set along the following lines:

H0 : G1 has no main (marginal) effect on the mean of O.

G2 has no main (marginal) effect on the mean of O.

There is no interactive effect of G1 with G2 on the mean of O.

HA : Separately, each statement in H0 is incorrect.

You can see from these general hypotheses that you now have to obtain
a p-value for each of the three components.

For the example, let’s use the built-in warpbreaks data frame (Tippett,
1950), which provides the number of “warp break” imperfections (column
breaks) observed in 54 pieces of yarn of equal length. Each piece of yarn is
classified according to two categorical variables: wool (the type of yarn, with
levels A and B) and tension (the level of tension applied to that piece—L, M, or
H for low, medium, or high). Using tapply, you can inspect the mean number
of warp breaks for each classification.

R> tapply(warpbreaks$breaks,INDEX=list(warpbreaks$wool,warpbreaks$tension),

FUN=mean)

L M H

A 44.55556 24.00000 24.55556

B 28.22222 28.77778 18.77778
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You can supply more than one grouping variable to the INDEX argu-
ment as separate members of a list (any factor vectors given to this argument
should be the same length as the first argument that specifies the data of
interest). The results are returned as a matrix for two grouping variables, a
3D array for three grouping variables, and so on.

For some analyses, however, you might need the same information pro-
vided earlier in a different format. The aggregate function is similar to tapply,
but it returns a data frame, the results in stacked format according to the
specified grouping variables (as opposed to an array as returned by tapply).
It’s called in much the same way. The first argument takes the data vector of
interest. The second argument, by, should be a list of the desired grouping
variables, and in FUN, you specify the function to operate on each subset.

R> wb.means <- aggregate(warpbreaks$breaks,

by=list(warpbreaks$wool,warpbreaks$tension),FUN=mean)

R> wb.means

Group.1 Group.2 x

1 A L 44.55556

2 B L 28.22222

3 A M 24.00000

4 B M 28.77778

5 A H 24.55556

6 B H 18.77778

Here I’ve stored the result of the call to aggregate as the object wb.means
for later use.

19.2.2 Main Effects and Interactions
I mentioned earlier that you could perform just a one-way ANOVA on each
grouping variable separately, but this, in general, isn’t a good idea. I’ll
demonstrate this now with the warpbreaks data (a quick inspection of the
relevant diagnostics shows no obvious cause for concern):

R> summary(aov(breaks~wool,data=warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 451 450.7 2.668 0.108

Residuals 52 8782 168.9

R> summary(aov(breaks~tension,data=warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

tension 2 2034 1017.1 7.206 0.00175 **
Residuals 51 7199 141.1

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This output tells you that if you ignore tension, there is no evidence to
suggest that there is any difference in the mean number of imperfections
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based on the type of wool alone (p-value 0.108). If you ignore wool, how-
ever, there is evidence to suggest a difference in warp breaks according to
tension only.

The problem here is that by ignoring one of the variables, you lose the
ability to detect differences (or, more generally, statistical relationships) that
may occur at a finer level. For example, though the wool type alone seems to
have no remarkable impact on the mean number of warp breaks, you can-
not tell whether this would be the case if you just looked at wool types at one
particular level of tension.

Instead, you investigate this kind of question using two-way ANOVA. The
following executes a two-way ANOVA for the warp breaks data based only on
the main effects of the two grouping variables:

R> summary(aov(breaks~wool+tension,data=warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 451 450.7 3.339 0.07361 .

tension 2 2034 1017.1 7.537 0.00138 **
Residuals 50 6748 135.0

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Take a look at the formula. Specifying wool+tension to the right of the
outcome variable and the ~ allows you to take both grouping variables into
account at the same time. The results reveal a small drop in the size of
the p-values now attached to each grouping variable; indeed, the p-value
for wool is around 0.073, approaching the conventional cutoff significance
level of α = 0.05. To interpret the results, you hold one grouping variable
constant—if you focus on just one type of wool, there is still statistically sig-
nificant evidence to suggest a difference in the mean number of warp breaks
between the different tension levels. If you focus on just one level of tension,
the evidence of a difference considering the two wool types has increased a
little but is still not statistically significant (assuming the aforementioned
α = 0.05).

There’s still a limitation with considering only main effects. While the
previous analysis shows that there’s variation in the outcome between the
different levels of the two categorical variables, it doesn’t address the pos-
sibility that a difference in the mean number of warp breaks might vary
further according to precisely which level of either tension or wool is being
used when holding the other variable constant. This relatively subtle yet
important consideration is known as an interaction. Specifically, if there is
an interactive effect present between tension and wool with respect to warp
breaks, then this would imply that the magnitude and/or direction of the
difference in the mean number of warp breaks is not the same at different
levels of the two grouping factors.

To account for interactions, you make a slight adjustment to the two-way
ANOVA model code.
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R> summary(aov(breaks~wool+tension+wool:tension,data=warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 451 450.7 3.765 0.058213 .

tension 2 2034 1017.1 8.498 0.000693 ***
wool:tension 2 1003 501.4 4.189 0.021044 *
Residuals 48 5745 119.7

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can explicitly specify the interaction as the main effects model
formula plus the notation wool:tension, where the two grouping variables
are separated by a :. (Note, in this setting, the : operator has nothing to
do with the shortcut for creating an integer sequence first discussed in
Section 2.3.2.)

You can see from the ANOVA table output that, statistically, there is evi-
dence of an interactive effect; that is, the very nature of the difference in
the means is dependent upon the factor levels themselves, even though that
evidence is relatively weak. Of course, the p-value of around 0.021 tells you
only that, overall, there might be an interaction but not the precise features
of the interaction.

To help with this, you can interpret such a two-way interaction effect in
more detail with an interaction plot, provided in R with interaction.plot.

R> interaction.plot(x.factor=wb.means[,2],trace.factor=wb.means[,1],

response=wb.means$x,trace.label="wool",

xlab="tension",ylab="mean warp breaks")

When interaction.plot is called, the outcome means should be supplied
to the argument response, and the vectors providing the corresponding levels
of each of the two factors should be supplied to the arguments x.factor (for
the variable on the horizontal axis that refers to moving between levels from
the left to the right) and trace.factor (each level of which will produce a dif-
ferent line, referenced in an automatically produced legend; the title of this
legend is passed to trace.label). It doesn’t matter which grouping variable is
which; the appearance of the plot will change accordingly, but your interpre-
tations will (should!) be the same. The result is shown in Figure 19-2.

The two-way interaction plot displays the outcome variable on the ver-
tical axis and splits the recorded means by the levels of the two grouping
variables. This allows you to inspect the potential effect that varying the
levels of the grouping variables has on the outcome. In general, when the
lines (or segments thereof) are not parallel, it suggests an interaction could
be present. Vertical separations between the plotted locations indicate the
individual main effects of the grouping variables.

It turns out that the columns returned by a call to aggregate are actually
perfectly suited to interaction.plot. As usual, you can specify the common
graphical parameters, like those you initially encountered in Section 7.2, to
control specific features of the plot and axis annotation. For Figure 19-2,

446 Chapter 19



you’ve specified that x.factor should be the second column of the wb.means

matrix, meaning that the tension levels vary horizontally. The trace.factor

here is the type of wool, so there are only two distinct lines corresponding to
the two levels A and B. The response is that third column of wb.means, extracted
using $x (take a look at the wb.means object; you’ll see the column containing
the results of interest is labeled x by default after a call to aggregate).

Figure 19-2: An interaction plot for the full two-way ANOVA
model of the warpbreaks data set

Considering the actual appearance of the plot in Figure 19-2, it does
indeed appear that the mean number of warp breaks for wool type A is
higher if tension is low, but the nature of the difference changes if you move
to a medium tension, where B has a higher point estimate than A. Moving to
a high tension, type A again has a higher estimate of the mean number of
breaks than B, though here the difference between A and B is nowhere near
as big as it is at a low tension. (Note, however, that the interaction plot does
not display any kind of standard error measurements, so you must remem-
ber that all point estimates of the means are subject to variability.)

Interactions are certainly not a concept unique to multiple-factor
ANOVA; they form an important consideration in many different types of
statistical models. For the moment, it’s good just to gain a basic appreciation
of interactions.

19.3 Kruskal-Wallis Test

When comparing multiple means, there may be situations when you’re
unwilling to assume normality or have even found the assumption of nor-
mality invalid in diagnostic checks. In this case, you can use the Kruskal-
Wallis test, an alternative to the one-way ANOVA that relaxes the dependence
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on the necessity for normality. This method tests for “equality of distribu-
tions” of the measurements in each level of the grouping factor. If you make
the usual assumption of equal variances across these groups, you can there-
fore think of this test as one that compares multiple medians rather than
means.

The hypotheses governing the test alter accordingly.

H0 : Group medians are all equal.

HA : Group medians are not all equal

(alternatively, at least one group median differs).

The Kruskal-Wallis test is a nonparametric approach since it does not
rely on quantiles of a standardized parametric distribution (in other
words, the normal distribution) or any of its functions. In the same way
that the ANOVA is a generalization of the two-sample t-test, the Kruskal-
Wallis ANOVA is a generalization of the Mann-Whitney test for two medians.
It’s also referred to as the Kruskal-Wallis rank sum test, and you use the chi-
squared distribution to calculate the p-value.

Turn your attention to the data frame survey, located in the MASS pack-
age. These data record particular characteristics of 237 first-year undergrad-
uate statistics students collected from a class at the University of Adelaide,
South Australia. Load the required package first with a call to library("MASS")

and then enter ?survey at the prompt. You can read the help file to under-
stand which variables are present in the data frame.

Suppose you’re interested to see whether the age of the students, Age,
tends to differ with respect to four smoking categories reported in Smoke.
An inspection of the relevant side-by-side boxplots and a normal QQ plot
of the residuals (mean-centered observations with respect to each group)
suggests a straightforward one-way ANOVA isn’t necessarily a good idea. The
following code (which mimics the steps you saw in Section 19.1.1) produces
the two images in Figure 19-3, which show normality is questionable:

R> boxplot(Age~Smoke,data=survey)

R> age.means <- tapply(survey$Age,survey$Smoke,mean)

R> age.meancen <- survey$Age-age.means[as.numeric(survey$Smoke)]

R> qqnorm(age.meancen,main="Normal QQ plot of residuals")

R> qqline(age.meancen)

With this possible violation of normality, you could therefore apply the
Kruskal-Wallis test instead of the parametric ANOVA. A quick check for
equality of variances further supports this, with the ratio of the largest to
the smallest group standard deviations clearly being less than 2.

R> tapply(survey$Age,survey$Smoke,sd)

Heavy Never Occas Regul

6.332628 6.675257 5.861992 5.408822

448 Chapter 19



Figure 19-3: Side-by-side boxplots (left) and a normal QQ plot of the residuals (right) for
the student age observations split by smoking status

In R, a Kruskal-Wallis test is performed using kruskal.test.

R> kruskal.test(Age~Smoke,data=survey)

Kruskal-Wallis rank sum test

data: Age by Smoke

Kruskal-Wallis chi-squared = 3.9262, df = 3, p-value = 0.2695

The syntax for this test is the same as for aov. As you might suspect from
Figure 19-3, the large p-value suggests there’s no evidence against the null
hypothesis that states that the medians are all equal. In other words, there
doesn’t seem to be an overall age difference between the students in the
four smoking categories.

Exercise 19.2

Bring up the quakes data frame again, which describes the loca-
tions, magnitudes, depths, and number of observation stations that
detected 1,000 seismic events off the coast of Fiji.

a. Use cut (see Section 4.3.3) to create a new factor vector defin-
ing the depths of each event according to the following three
categories: (0,200], (200,400], and (400,680].

b. Decide whether a one-way ANOVA or a Kruskal-Wallis test is
more appropriate to use to compare the distributions of the
number of detecting stations, split according to the three cate-
gories in (a).
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c. Perform your choice of test in (b) (assume a α = 0.01 level of sig-
nificance) and conclude.

Load the MASS package with a call to library("MASS") if you haven’t
already done so in the current R session. This package includes
the ready-to-use Cars93 data frame, which contains detailed data on
93 cars for sale in the United States in 1993 (Lock, 1993; Venables
and Ripley, 2002).

d. Use aggregate to compute the mean length of the 93 cars, split by
two categorical variables: AirBags (type of airbags available—levels
are Driver & Passenger, Driver only, and None), and Man.trans.avail

(whether the car comes in a manual transmission—levels are Yes

and No).

e. Produce an interaction plot using the results in (d). Does there
appear to be an interactive effect of AirBags with Man.trans.avail

on the mean length of these cars (if you consider only these
variables)?

f. Fit a full two-way ANOVA model for the mean lengths according
to the two grouping variables (assume satisfaction of all relevant
assumptions). Is the interactive effect statistically significant? Is
there evidence of any main effects?

Important Code in This Chapter

Function/operator Brief description First occurrence

aov Produce ANOVA table Section 19.1.3, p. 440
aggregate Stacked statistics by factor Section 19.2.1, p. 444
interaction.plot Two-factor interaction plot Section 19.2.2, p. 446
kruskal.test Kruskal-Wallis test Section 19.3, p. 449
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20
SIMPLE LINEAR REGRESSION

Though straightforward comparative tests
of individual statistics are useful in their

own right, you’ll often want to learn more
from your data. In this chapter, you’ll look at

linear regression models: a suite of methods used to eval-
uate precisely how variables relate to each other.

Simple linear regression models describe the effect that a particular vari-
able, called the explanatory variable, might have on the value of a continuous
outcome variable, called the response variable. The explanatory variable may
be continuous, discrete, or categorical, but to introduce the key concepts,
I’ll concentrate on continuous explanatory variables for the first several sec-
tions in this chapter. Then, I’ll cover how the representation of the model
changes if the explanatory variable is categorical.

20.1 An Example of a Linear Relationship

As an example to start with, let’s continue with the data used in Section 19.3
and look at the student survey data (the survey data frame in the package
MASS) a little more closely. If you haven’t already done so, with the required
package loaded (call library("MASS")), you can read the help file ?survey for
details on the variables present.



Plot the student heights on the y-axis and their handspans (of their writ-
ing hand) on the x-axis.

R> plot(survey$Height~survey$Wr.Hnd,xlab="Writing handspan (cm)",

ylab="Height (cm)")

Figure 20-1 shows the result.

Figure 20-1: A scatterplot of height against writing handspan
for a sample of first-year statistics students

Note that the call to plot uses formula notation (also referred to as
symbolic notation) to specify “height on handspan.” You can produce the
same scatterplot by using the coordinate vector form of (x, y), that is,
plot(survey$Wr.Hnd,survey$Height,...), but I’m using the symbolic notation
here because it nicely reflects how you’ll fit the linear model in a moment.

As you might expect, there’s a positive association between a student’s
handspan and their height. That relationship appears to be linear in nature.
To assess the strength of the linear relationship (refer to Section 13.2.5), you
can find the estimated correlation coefficient.

R> cor(survey$Wr.Hnd,survey$Height,use="complete.obs")

[1] 0.6009909

Though there are 237 records in the data frame, the plot doesn’t
actually show 237 points. This is because there are missing observations
(coded NA; see Section 6.1.3). By default, R removes any “incomplete” pairs
when producing a plot like this. To find out how many offending obser-
vations have been deleted, you can use the short-form logical operator |
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(Section 4.1.3) in conjunction with is.na (Section 6.1.3) and which (Sec-
tion 4.1.5). You then use length to discover there are 29 missing observation
pairs.

R> incomplete.obs <- which(is.na(survey$Height)|is.na(survey$Wr.Hnd))

R> length(incomplete.obs)

[1] 29

NOTE Because there are NAs in the vectors supplied to the correlation coefficient function cor,
you must also specify the optional argument use="complete.obs". This means that the
calculated statistic takes into account only those observation pairs in the Wr.Hnd and
Height vectors where neither element is NA. You can think of this argument as doing
much the same thing as na.rm=TRUE in univariate summary statistic functions such as
mean and sd.

20.2 General Concepts

The purpose of a linear regression model is to come up with a function
that estimates the mean of one variable given a particular value of another
variable. These variables are known as the response variable (the “outcome”
variable whose mean you are attempting to find) and the explanatory variable
(the “predictor” variable whose value you already have).

In terms of the student survey example, you might ask something like
“What’s the expected height of a student if their handspan is 14.5 cm?”
Here the response variable is the height, and the explanatory variable is the
handspan.

20.2.1 Definition of the Model
Assume you’re looking to determine the value of response variable Y given
the value of an explanatory variable X . The simple linear regression model states
that the value of a response is expressed as the following equation:

Y |X = β0 + β1X + ǫ (20.1)

On the left side of Equation (20.1), the notation Y |X reads as “the value
of Y conditional upon the value of X .”

Residual Assumptions

The validity of the conclusions you can draw based on the model in (20.1) is
critically dependent on the assumptions made about ǫ , which are defined as
follows:

• The value of ǫ is assumed to be normally distributed such that
ǫ ∼ N(0,σ).

• That ǫ is centered (that is, has a mean of) zero.

• The variance of ǫ , σ2, is constant.
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The ǫ term represents random error. In other words, you assume that
any raw value of the response is owed to a linear change in a given value
of X , plus or minus some random, residual variation or normally distributed
noise.

Parameters

The value denoted by β0 is called the intercept, and that of β1 is called the
slope. Together, they are also referred to as the regression coefficients and are
interpreted as follows:

• The intercept, β0, is interpreted as the expected value of the response
variable when the predictor is zero.

• Generally, the slope, β1, is the focus of interest. This is interpreted as
the change in the mean response for each one-unit increase in the pre-
dictor. When the slope is positive, the regression line increases from left
to right (the mean response is higher when the predictor is higher);
when the slope is negative, the line decreases from left to right (the
mean response is lower when the predictor is higher). When the slope
is zero, this implies that the predictor has no effect on the value of the
response. The more extreme the value of β1 (that is, away from zero),
the steeper the increasing or decreasing line becomes.

20.2.2 Estimating the Intercept and Slope Parameters
The goal is to use your data to estimate the regression parameters, yielding
the estimates β̂0 and β̂1; this is referred to as fitting the linear model. In this
case, the data comprise n pairs of observations for each individual. The fit-
ted model of interest concerns the mean response value, denoted ŷ, for a
specific value of the predictor, x, and is written as follows:

ŷ = β̂0 + β̂1x (20.2)

Sometimes, alternative notation such as E[Y] or E[Y |X = x] is used on
the left side of (20.2) to emphasize the fact that the model gives the mean
(that is, the expected value) of the response. For compactness, many simply
use something like ŷ, as shown here.

Let your n observed data pairs be denoted xi and yi for the predictor
and response variables, respectively; i = 1, . . . , n. Then, the parameter esti-
mates for the simple linear regression function are

β̂1 = ρxy
sy

sx
and β̂0 = ȳ − β̂1 x̄ (20.3)

where

• x̄ and ȳ are the sample means of the xis and yis.

• sx and sy are the sample standard deviations of the xis and yis.

• ρxy is the estimate of correlation between X and Y based on the data
(see Section 13.2.5).
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Estimating the model parameters in this way is referred to as least-squares
regression; the reason for this will become clear in a moment.

20.2.3 Fitting Linear Models with lm
In R, the command lm performs the estimation for you. For example, the fol-
lowing line creates a fitted linear model object of the mean student height
by handspan and stores it in your global environment as survfit:

R> survfit <- lm(Height~Wr.Hnd,data=survey)

The first argument is the now-familiar response ~ predictor formula,
which specifies the desired model. You don’t have to use the survey$ prefix
to extract the vectors from the data frame because you specifically instruct
lm to look in the object supplied to the data argument.

The fitted linear model object itself, survfit, has a special class in R—
one of "lm". An object of class "lm" can essentially be thought of as a list con-
taining several components that describe the model. You’ll look at these in a
moment.

If you simply enter the name of the "lm" object at the prompt, it will
provide the most basic output: a repeat of your call and the estimates of the
intercept ( β̂0) and slope ( β̂1).

R> survfit

Call:

lm(formula = Height ~ Wr.Hnd, data = survey)

Coefficients:

(Intercept) Wr.Hnd

113.954 3.117

This reveals that the linear model for this example is estimated as
follows:

ŷ = 113.954 + 3.117x (20.4)

If you evaluate the mathematical function for ŷ—Equation (20.2)—at
a range of different values for x, you end up with a straight line when you
plot the results. Considering the definition of intercept given earlier as the
expected value of the response variable when the predictor is zero, in the
current example, this would imply that the mean height of a student with
a handspan of 0 cm is 113.954 cm (an arguably less-than-useful statement
since a value of zero for the explanatory variable doesn’t make sense; you’ll
consider these and related issues in Section 20.4). The slope, the change
in the mean response for each one-unit increase in the predictor, is 3.117.
This states that, on average, for every 1 cm increase in handspan, a student’s
height is estimated to increase by 3.117 cm.
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With all this in mind, once more run the line to plot the raw data as
given in Section 20.1 and shown in Figure 20-1, but now add the fitted
regression line using abline. So far, you’ve only used the abline command
to add perfectly horizontal and vertical lines to an existing plot, but when
passed an object of class "lm" that represents a simple linear model, like
survfit, the fitted regression line will be added instead.

R> abline(survfit,lwd=2)

This adds the slightly thickened diagonally increasing line shown in
Figure 20-2.

Figure 20-2: The simple linear regression line (solid, bold)
fitted to the observed data. Two dashed vertical line
segments provide examples of a positive (leftmost) and
negative (rightmost) residual.

20.2.4 Illustrating Residuals
When the parameters are estimated as shown here, using (20.3), the fitted
line is referred to as an implementation of least-squares regression because it’s
the line that minimizes the average squared difference between the observed
data and itself. This concept is easier to understand by drawing the distances
between the observations and the fitted line, formally called residuals, for a
couple of individual observations within Figure 20-2.

First, let’s extract two specific records from the Wr.Hnd and Height data
vectors and call the resulting vectors obsA and obsB.

R> obsA <- c(survey$Wr.Hnd[197],survey$Height[197])

R> obsA

[1] 15.00 170.18
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R> obsB <- c(survey$Wr.Hnd[154],survey$Height[154])

R> obsB

[1] 21.50 172.72

Next, briefly inspect the names of the members of the survfit object.

R> names(survfit)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "na.action" "xlevels" "call" "terms"

[13] "model"

These members are the components that automatically make up a fit-
ted model object of class "lm", mentioned briefly earlier. Note that there’s
a component called "coefficients". This contains a numeric vector of the
estimates of the intercept and slope.

You can extract this component (and indeed any of the other ones listed
here) in the same way you would perform a member reference on a named
list: by entering survfit$coefficients at the prompt. Where possible, though,
it’s technically preferable for programming purposes to extract such compo-
nents using a “direct-access” function. For the coefficients component of an
"lm" object, the function you use is coef.

R> mycoefs <- coef(survfit)

R> mycoefs

(Intercept) Wr.Hnd

113.953623 3.116617

R> beta0.hat <- mycoefs[1]

R> beta1.hat <- mycoefs[2]

Here, the regression coefficients are extracted from the object and then
separately assigned to the objects beta0.hat and beta1.hat. Other common
direct-access functions include resid and fitted; these two pertain to the
"residuals" and "fitted.values" components, respectively.

Finally, I use segments to draw the vertical dashed lines present in
Figure 20-2.

R> segments(x0=c(obsA[1],obsB[1]),y0=beta0.hat+beta1.hat*c(obsA[1],obsB[1]),

x1=c(obsA[1],obsB[1]),y1=c(obsA[2],obsB[2]),lty=2)

Note that the dashed lines meet the fitted line at the vertical axis loca-
tions passed to y0, which, with the use of the regression coefficients beta0.hat

and beta1.hat, reflects Equation (20.4).
Now, imagine a collection of alternative regression lines drawn through

the data (achieved by altering the value of the intercept and slope). Then,
for each of the alternative regression lines, imagine you calculate the residu-
als (vertical distances) between the response value of every observation and
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the fitted value of that line. The simple linear regression line estimated as
per (20.3) is the line that lies “closest to all observations.” By this, it is meant
that the fitted regression model is represented by the estimated line that
passes through the coordinate provided by the variable means ( x̄, ȳ), and
it’s the line that yields the smallest overall measure of the squared residual
distances. For this reason, another name for a least-squares-estimated regres-
sion equation like this is the line of best fit.

20.3 Statistical Inference

The estimation of a regression equation is relatively straightforward, but this
is merely the beginning. You should now think about what can be inferred
from your result. In simple linear regression, there’s a natural question that
should always be asked: Is there statistical evidence to support the presence
of a relationship between the predictor and the response? To put it another
way, is there evidence that a change in the explanatory variable affects the
mean outcome? You investigate this following the same ideas that were intro-
duced in Chapter 17 when you began thinking about the variability present
in estimated statistics and then continued to infer from your results using
confidence intervals and, in Chapter 18, hypothesis testing.

20.3.1 Summarizing the Fitted Model
This kind of model-based inference is automatically carried out by R when lm

objects are processed. Using the summary function on an object created by lm

provides you with output far more detailed than simply printing the object
to the console. For the moment, you’ll focus on just two aspects of the infor-
mation presented in summary: the significance tests associated with the regres-
sion coefficients and the interpretation of the so-called coefficient of determina-
tion (labeled R-squared in the output), which I’ll explain shortly.

Use summary on the current model object survfit, and you’ll see the
following:

R> summary(survfit)

Call:

lm(formula = Height ~ Wr.Hnd, data = survey)

Residuals:

Min 1Q Median 3Q Max

-19.7276 -5.0706 -0.8269 4.9473 25.8704

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 113.9536 5.4416 20.94 <2e-16 ***
Wr.Hnd 3.1166 0.2888 10.79 <2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 7.909 on 206 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.3612, Adjusted R-squared: 0.3581

F-statistic: 116.5 on 1 and 206 DF, p-value: < 2.2e-16

20.3.2 Regression Coefficient Significance Tests
Let’s begin by focusing on the way the estimated regression coefficients are
reported. The first column of the coefficients table contains the point esti-
mates of the intercept and slope (the intercept is labeled as such, and the
slope is labeled after the name of the predictor variable in the data frame);
the table also includes estimates of the standard errors of these statistics.
It can be shown that simple linear regression coefficients, when estimated
using least-squares, follow a t-distribution with n − 2 degrees of freedom
(when given the number of observations, n, used in the model fit). The
standardized t value and a p-value are reported for each parameter. These
represent the results of a two-tailed hypothesis test formally defined as

H0 : β j = 0

HA : β j , 0

where j = 0 for the intercept and j = 1 for the slope, using the notation in
Equation (20.1).

Focus on the row of results for the predictor. With a null value of zero,
truth of H0 implies that the predictor has no effect on the response. The
claim here is interested in whether there is any effect of the covariate, not
the direction of this effect, so HA is two-sided (via ,). As with any hypothesis
test, the smaller the p-value, the stronger the evidence against H0. With a
small p-value (< 2 × 10−16) attached to this particular test statistic (which
you can confirm using the formula in Chapter 18: T = (3.116 − 0)/0.2888 =
10.79), you’d therefore conclude there is strong evidence against the claim
that the predictor has no effect on the mean level of the response.

The same test is carried out for the intercept, but the test for the
slope parameter β1 is typically more interesting (since rejection of the null
hypothesis for β0 simply indicates evidence that the regression line does
not strike the vertical axis at zero), especially when the observed data don’t
include x = 0, as is the case here.

From this, you can conclude that the fitted model suggests there is evi-
dence that an increase in handspan is associated with an increase in height
among the population being studied. For each additional centimeter of
handspan, the average increase in height is approximately 3.12 cm.

You could also produce confidence intervals for your estimates using
Equation (17.2) on page 378 and knowledge of the sampling distributions
of the regression parameters; however, yet again, R provides a convenient
function for an object of class "lm" to do this for you.
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R> confint(survfit,level=0.95)

2.5 % 97.5 %

(Intercept) 103.225178 124.682069

Wr.Hnd 2.547273 3.685961

To the confint function you pass your model object as the first argument
and your desired level of confidence as level. This indicates that you should
be 95 percent confident the true value of β1 lies somewhere between 2.55
and 3.69 (to 2 d.p.). As usual, the exclusion of the null value of zero reflects
the statistically significant result from earlier.

20.3.3 Coefficient of Determination
The output of summary also provides you with the values of Multiple R-squared

and Adjusted R-squared, which are particularly interesting. Both of these are
referred to as the coefficient of determination; they describe the proportion of
the variation in the response that can be attributed to the predictor.

For simple linear regression, the first (unadjusted) measure is simply
obtained as the square of the estimated correlation coefficient (refer to
Section 13.2.5). For the student height example, first store the estimated
correlation between Wr.Hnd and Height as rho.xy, and then square it:

R> rho.xy <- cor(survey$Wr.Hnd,survey$Height,use="complete.obs")

R> rho.xy^2

[1] 0.3611901

You get the same result as the Multiple R-squared value (usually written
mathematically as R2). This tells you that about 36.1 percent of the variation
in the student heights can be attributed to handspan.

The adjusted measure is an alternative estimate that takes into account
the number of parameters that require estimation. The adjusted measure is
generally important only if you’re using the coefficient of determination to
assess the overall “quality” of the fitted model in terms of a balance between
goodness of fit and complexity. I’ll cover this in Chapter 22, so I won’t go
into any more detail just yet.

20.3.4 Other summary Output
The summary of the model object provides you with even more useful informa-
tion. The “residual standard error” is the estimated standard error of the ǫ
term (in other words, the square root of the estimated variance of ǫ , namely,
σ2); below that it also reports any missing values. (The 29 observation pairs
“deleted due to missingness” here matches the number of incomplete obser-
vations determined in Section 20.1.)

The output also provides a five-number summary (Section 13.2.3) for
the residual distances—I’ll cover this further in Section 22.3. As the final
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result, you’re provided with a certain hypothesis test performed using the
F -distribution. This is a global test of the impact of your predictor(s) on
the response; this will be explored alongside multiple linear regression in
Section 21.3.5.

You can access all the output provided by summary directly, as individual
R objects, rather than having to read them off the screen from the entire
printed summary. Just as names(survfit) provides you with an indication
of the contents of the stand-alone survfit object, the following code gives
you the names of all the components accessible after summary is used to pro-
cess survfit.

R> names(summary(survfit))

[1] "call" "terms" "residuals" "coefficients"

[5] "aliased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic" "cov.unscaled" "na.action"

It’s fairly easy to match most of the components with the printed summary

output, and they can be extracted using the dollar operator as usual. The
residual standard error, for example, can be retrieved directly with this:

R> summary(survfit)$sigma

[1] 7.90878

There are further details on this in the ?summary.lm help file.

20.4 Prediction

To wrap up these preliminary details of linear regression, you’ll now look at
using your fitted model for predictive purposes. The ability to fit a statistical
model means that you not only can understand and quantify the nature of
relationships in your data (like the estimated 3.1166 cm increase in mean
height per 1 cm increase in handspan for the student example) but can also
predict values of the outcome of interest, even where you haven’t actually
observed the values of any explanatory variables in the original data set. As
with any statistic, though, there is always a need to accompany any point esti-
mates or predictions with a measure of spread.

20.4.1 Confidence Interval or Prediction Interval?
With a fitted simple linear model you’re able to calculate a point estimate of
the mean response value, conditional upon the value of an explanatory vari-
able. To do this, you simply plug in (to the fitted model equation) the value
of x you’re interested in. A statistic like this is always subject to variation, so
just as with sample statistics explored in earlier chapters, you use a confidence
interval for the mean response (CI) to gauge this uncertainty.
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Assume a simple linear regression line has been fitted to n observations
such that ŷ = β̂0+ β̂1x. A 100(1−α) percent confidence interval for the mean
response given a value of x is calculated with

ŷ ± t (1−α/2,n−2) sǫ

√

1
n
+

(x − x̄)2

(n − 1)s2
x

(20.5)

where you obtain the lower limit by subtraction, the upper limit by addition.
Here, ŷ is the fitted value (from the regression line) at x; t (1−α/2,n−2) is

the appropriate critical value from a t-distribution with n − 2 degrees of free-
dom (in other words, resulting in an upper-tail area of exactly α/2); sǫ is the
estimated residual standard error; and x̄ and s2

x represent the sample mean
and the variance of the observations of the predictor, respectively.

A prediction interval (PI) for an observed response is different from the
confidence interval in terms of context. Where CIs are used to describe the
variability of the mean response, a PI is used to provide the possible range of
values that an individual realization of the response variable might take, given
x. This distinction is subtle but important: the CI corresponds to a mean,
and the PI corresponds to an individual observation.

Let’s remain with the previous notation. It can be shown that 100(1 − α)

percent prediction interval for an individual response given a value of x is
calculated with the following:

ŷ ± t (1−α/2,n−2) sǫ

√

1 +
1
n
+

(x − x̄)2

(n − 1)s2
x

(20.6)

It turns out that the only difference from (20.5) is the 1+ that appears in
the square root. As such, a PI at x is wider than a CI at x.

20.4.2 Interpreting Intervals
Continuing with our example, let’s say you want to determine the mean
height for students with a handspan of 14.5 cm and for students with a
handspan of 24 cm. The point estimates themselves are easy—just plug the
desired x values into the regression equation (20.4).

R> as.numeric(beta0.hat+beta1.hat*14.5)

[1] 159.1446

R> as.numeric(beta0.hat+beta1.hat*24)

[1] 188.7524

According to the model, you can expect mean heights to be around
159.14 and 188.75 cm for handspans of 14.5 and 24 cm, respectively. The
as.numeric coercion function (first encountered in Section 6.2.4) is used
simply to strip the result of the annotative names that are otherwise present
from the beta0.hat and beta1.hat objects.

462 Chapter 20



Confidence Intervals for Mean Heights

To find confidence intervals for these estimates, you could calculate them
manually using (20.5), but of course R has a built-in predict command to do
it for you. To use predict, you first need to store your x values in a particular
way: as a column in a new data frame. The name of the column must match
the predictor used in the original call to create the fitted model object. In
this example, I’ll create a new data frame, xvals, with the column named
Wr.Hnd, which contains only two values of interest—the handspans of 14.5
and 24 cm.

R> xvals <- data.frame(Wr.Hnd=c(14.5,24))

R> xvals

Wr.Hnd

1 14.5

2 24.0

Now, when predict is called, the first argument must be the fitted model
object of interest, survfit for this example. Next, in the argument newdata,
you pass the specially constructed data frame containing the specified pre-
dictor values. To the interval argument you must specify "confidence" as
a character string value. The confidence level, here set for 95 percent, is
passed (on the scale of a probability) to level.

R> mypred.ci <- predict(survfit,newdata=xvals,interval="confidence",level=0.95)

R> mypred.ci

fit lwr upr

1 159.1446 156.4956 161.7936

2 188.7524 185.5726 191.9323

This call will return a matrix with three columns, whose number (and
order) of rows correspond to the predictor values you supplied in the newdata

data frame. The first column, with a heading of fit, is the point estimate on
the regression line; you can see that these numbers match the values you
worked out earlier. The other columns provide the lower and upper CI lim-
its as the lwr and upr columns, respectively. In this case, you’d interpret this
as 95 percent confidence that the mean height of a student with a handspan
of 14.5 cm lies somewhere between 156.5 cm and 161.8 cm and lies between
185.6 cm and 191.9 cm for a handspan of 24 cm (when rounded to 1 d.p.).
Remember, these CIs, calculated as per (20.5) through predict, are for the
mean response value.

Prediction Intervals for Individual Observations

The predict function will also provide your prediction intervals. To find the
prediction interval for possible individual observations with a certain proba-
bility, you simply need to change the interval argument to "prediction".

R> mypred.pi <- predict(survfit,newdata=xvals,interval="prediction",level=0.95)

R> mypred.pi
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fit lwr upr

1 159.1446 143.3286 174.9605

2 188.7524 172.8390 204.6659

Notice that the fitted values remain the same, as Equations (20.5) and
(20.6) indicate. The widths of the PIs, however, are significantly larger than
those of the corresponding CIs—this is because raw observations themselves,
at a specific x value, will naturally be more variable than their mean.

Interpretation changes accordingly. The intervals describe where raw
student heights are predicted to lie “95 percent of the time.” For a handspan
of 14.5 cm, the model predicts individual observations to lie somewhere
between 143.3 cm and 175.0 cm with a probability of 0.95; for a handspan
of 24 cm, the same PI is estimated at 172.8 cm and 204.7 cm (when rounded
to 1 d.p.).

20.4.3 Plotting Intervals
Both CIs and PIs are well suited to visualization for simple linear regression
models. With the following code, you can start off Figure 20-3 by plotting the
data and estimated regression line just as for Figure 20-2, but this time using
xlim and ylim in plot to widen the x- and y-limits a little in order to accom-
modate the full length and breadth of the CI and PI.

R> plot(survey$Height~survey$Wr.Hnd,xlim=c(13,24),ylim=c(140,205),

xlab="Writing handspan (cm)",ylab="Height (cm)")

R> abline(survfit,lwd=2)

To this you add the locations of the fitted values for x = 14.5 and x = 24,
as well as two sets of vertical lines showing the CIs and PIs.

R> points(xvals[,1],mypred.ci[,1],pch=8)

R> segments(x0=c(14.5,24),y0=c(mypred.pi[1,2],mypred.pi[2,2]),

x1=c(14.5,24),y1=c(mypred.pi[1,3],mypred.pi[2,3]),col="gray",lwd=3)

R> segments(x0=c(14.5,24),y0=c(mypred.ci[1,2],mypred.ci[2,2]),

x1=c(14.5,24),y1=c(mypred.ci[1,3],mypred.ci[2,3]),lwd=2)

The call to points marks the fitted values for these two particular values
of x. The first call to segments lays down the PIs as thickened vertical gray
lines, and the second lays down the CIs as the shorter vertical black lines.
The coordinates for these plotted line segments are taken directly from the
mypred.pi and mypred.ci objects, respectively.

You can also produce “bands” around the fitted regression line that
mark one or both of these intervals over all values of the predictor. From
a programming standpoint, this isn’t technically possible for a continuous
variable, but you can achieve it practically by defining a fine sequence of val-
ues along the x-axis (using seq with a high length value) and evaluating the
CI and PI at every point in this fine sequence. Then you just join resulting
points as lines when plotting.
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Figure 20-3: The student height regression example, with a fitted
regression line and point estimates at x = 14.5 and x = 24 and
with corresponding 95 percent CIs (black vertical lines) and PIs
(gray vertical lines). The dashed black and dashed gray lines
provide 95 percent confidence and prediction bands for the
response variable over the visible range of x values.

In R, this requires you to rerun the predict command as follows:

R> xseq <- data.frame(Wr.Hnd=seq(12,25,length=100))

R> ci.band <- predict(survfit,newdata=xseq,interval="confidence",level=0.95)

R> pi.band <- predict(survfit,newdata=xseq,interval="prediction",level=0.95)

The first line in this code creates the fine sequence of predictor values
and stores it in the format required by the newdata argument. The y-axis
coordinates for CI and PI bands are stored as the second and third columns
of the matrix objects ci.band and pi.band. Finally, lines is used to add each of
the four dashed lines corresponding to the upper and lower limits of the two
intervals, and a legend adds a final touch.

R> lines(xseq[,1],ci.band[,2],lty=2)

R> lines(xseq[,1],ci.band[,3],lty=2)

R> lines(xseq[,1],pi.band[,2],lty=2,col="gray")

R> lines(xseq[,1],pi.band[,3],lty=2,col="gray")

R> legend("topleft",legend=c("Fit","95% CI","95% PI"),lty=c(1,2,2),

col=c("black","black","gray"),lwd=c(2,1,1))

Note that the black dashed CI bands meet the vertical black lines and
the gray dashed PI bands meet the vertical gray lines for the two individual x

values from earlier, just as you’d expect.
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Figure 20-3 shows the end result of all these additions to the plot. The
“bowing inwards” curvature of the intervals is characteristic of this kind of
plot and is especially visible in the CI. This curve occurs because there is
naturally less variation if you’re predicting where there are more data. For
more information on predict for linear model objects, take a look at the
?predict.lm help file.

20.4.4 Interpolation vs. Extrapolation
Before finishing this introduction to prediction, it’s important to clar-
ify the definitions of two key terms: interpolation and extrapolation. These
terms describe the nature of a given prediction. A prediction is referred
to as interpolation if the x value you specify falls within the range of your
observed data; extrapolation is when the x value of interest lies outside this
range. From the point-predictions you just made, you can see that the loca-
tion x = 14.5 is an example of interpolation, and x = 24 is an example of
extrapolation.

In general, interpolation is preferable to extrapolation—it makes more
sense to use a fitted model for prediction in the vicinity of data that have
already been observed. Extrapolation that isn’t too far out of that vicinity
may still be considered reliable, though. The extrapolation for the student
height example at x = 24 is a case in point. This is outside the range of the
observed data, but not by much in terms of scale, and the estimated inter-
vals for the expected value of ŷ = 188.75 cm appear, at least visually, not
unreasonable given the distribution of the other observations. In contrast,
it would make less sense to use the fitted model to predict student height at
a handspan of, say, 50 cm:

R> predict(survfit,newdata=data.frame(Wr.Hnd=50),interval="confidence",

level=0.95)

fit lwr upr

1 269.7845 251.9583 287.6106

Such an extreme extrapolation suggests that the mean height of an indi-
vidual with a handspan of 50 cm is almost 270 cm, both being fairly unrealis-
tic measurements. The same is true in the other direction; the intercept β̂0
doesn’t have a particularly useful practical interpretation, indicating that the
mean height of a student with a handspan of 0 cm is around 114 cm.

The main message here is to use common sense when making any pre-
diction from a linear model fit. In terms of the reliability of the results, pre-
dictions made at values within an appropriate proximity of the observed data
are preferable.
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Exercise 20.1

Continue to use the survey data frame from the package MASS for the
next few exercises.

a. Using your fitted model of student height on writing handspan,
survfit, provide point estimates and 99 percent confidence
intervals for the mean student height for handspans of 12, 15.2,
17, and 19.9 cm.

b. In Section 20.1, you defined the object incomplete.obs, a numeric
vector that provides the records of survey that were automati-
cally removed from consideration when estimating the model
parameters. Now, use the incomplete.obs vector along with survey

and Equation (20.3) to calculate β̂0 and β̂1 in R. (Remember
the functions mean, sd, and cor. Ensure your answers match the
output from survfit.)

c. The survey data frame has a number of other variables present
aside from Height and Wr.Hnd. For this exercise, the end aim is
to fit a simple linear model to predict the mean student height,
but this time from their pulse rate, given in Pulse (continue to
assume the conditions listed in Section 20.2 are satisfied).

i. Fit the regression model and produce a scatterplot with the
fitted line superimposed upon the data. Make sure you can
write down the fitted model equation and keep the plot
open.

ii. Identify and interpret the point estimate of the slope, as well
as the outcome of the test associated with the hypotheses
H0 : β1 = 0; HA : β1 , 0. Also find a 90 percent CI for the
slope parameter.

iii. Using your model, add lines for 90 percent confidence and
prediction interval bands on the plot from (i) and add a
legend to differentiate between the lines.

iv. Create an incomplete.obs vector for the current “height on
pulse” data. Use that vector to calculate the sample mean of
the height observations that were used for the model fitted
in (i). Then add a perfectly horizontal line to the plot at this
mean (use color or line type options to avoid confusion with
the other lines present). What do you notice? Does the plot
support your conclusions from (ii)?
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Next, examine the help file for the mtcars data set, which you first saw
in Exercise 13.4 on page 287. For this exercise, the goal is to model
fuel efficiency, measured in miles per gallon (MPG), in terms of the
overall weight of the vehicle (in thousands of pounds).

d. Plot the data—mpg on the y-axis and wt on the x-axis.

e. Fit the simple linear regression model. Add the fitted line to the
plot from (d).

f. Write down the regression equation and interpret the point
estimate of the slope. Is the effect of wt on mean mpg estimated
to be statistically significant?

g. Produce a point estimate and associated 95 percent PI for a
car that weighs 6,000 lbs. Do you trust the model to predict
observations accurately for this value of the explanatory variable?
Why or why not?

20.5 Understanding Categorical Predictors

So far, you’ve looked at simple linear regression models that rely on contin-
uous explanatory variables, but it’s also possible to use a discrete or categor-
ical explanatory variable, made up of k distinct groups or levels, to model
the mean response. You must be able to make the same assumptions noted
in Section 20.2: that observations are all independent of one another and
residuals are normally distributed with an equal variance. To begin with,
you’ll look at the simplest case in which k = 2 (a binary-valued predictor),
which forms the basis of the slightly more complicated situation in which
the categorical predictor has more than two levels (a multilevel predic-
tor: k > 2).

20.5.1 Binary Variables: k = 2
Turn your attention back to Equation (20.1), where the regression model is
specified as Y |X = β0 + β1X + ǫ for a response variable Y and predictor X ,
and ǫ ∼ N(0,σ2). Now, suppose your predictor variable is categorical, with
only two possible levels (binary; k = 2) and observations coded either 0 or 1.
For this case, (20.1) still holds, but the interpretation of the model param-
eters, β0 and β1, isn’t really one of an “intercept” and a “slope” anymore.
Instead, it’s better to think of them as being something like two intercepts,
where β0 provides the baseline or reference value of the response when X = 0
and β1 represents the additive effect on the mean response if X = 1. In other
words, if X = 0, then Y = β0 + ǫ ; if X = 1, then Y = β0 + β1 + ǫ . As usual,
estimation is in terms of finding the mean response ŷ ≡ E[Y |X = x] as per
Equation (20.2), so the equation becomes ŷ = β̂0 + β̂1x.
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Go back to the survey data frame and note that you have a Sex variable,
where the students recorded their gender. Look at the documentation on
the help page ?survey or enter something like this:

R> class(survey$Sex)

[1] "factor"

R> table(survey$Sex)

Female Male

118 118

You’ll see that the sex data column is a factor vector with two levels,
Female and Male, and that there happens to be an equal number of the two
(one of the 237 records has a missing value for this variable).

You’re going to determine whether there is statistical evidence that the
height of a student is affected by sex. This means that you’re again inter-
ested in modeling height as the response variable, but this time, it’s with the
categorical sex variable as the predictor.

To visualize the data, if you make a call to plot as follows, you’ll get a
pair of boxplots.

R> plot(survey$Height~survey$Sex)

This is because the response variable specified to the left of the ~

is numeric and the explanatory variable to the right is a factor, and the
default behavior of R in that situation is to produce side-by-side boxplots.

To further emphasize the categorical nature of the explanatory vari-
able, you can superimpose the raw height and sex observations on top of
the boxplots. To do this, just convert the factor vector to numeric with a call
to as.numeric; this can be done directly in a call to points.

R> points(survey$Height~as.numeric(survey$Sex),cex=0.5)

Remember that boxplots mark off the median as the central bold line
but that least-squares linear regressions are defined by the mean outcome,
so it’s useful to also display the mean heights according to sex.

R> means.sex <- tapply(survey$Height,INDEX=survey$Sex,FUN=mean,na.rm=TRUE)

R> means.sex

Female Male

165.6867 178.8260

R> points(1:2,means.sex,pch=4,cex=3)

You were introduced to tapply in Section 10.2.3; in this call, the argu-
ment na.rm=TRUE is matched to the ellipsis in the definition of tapply and is
passed to mean (you need it to ensure the missing values present in the data
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do not end up producing NAs as the results). A further call to points adds
those coordinates (as × symbols) to the image; Figure 20-4 gives the final
result.

Figure 20-4: Boxplots of the student heights split by sex,
with the raw observations and sample means (small ◦ and
large × symbols, respectively) superimposed

The plot indicates, overall, that males tend to be taller than females—
but is there statistical evidence of a difference to back this up?

Linear Regression Model of Binary Variables

To answer this with a simple linear regression model, you can use lm to pro-
duce least-squares estimates just like with every other model you’ve fitted
so far.

R> survfit2 <- lm(Height~Sex,data=survey)

R> summary(survfit2)

Call:

lm(formula = Height ~ Sex, data = survey)

Residuals:

Min 1Q Median 3Q Max

-23.886 -5.667 1.174 4.358 21.174

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 165.687 0.730 226.98 <2e-16 ***
SexMale 13.139 1.022 12.85 <2e-16 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.372 on 206 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.4449, Adjusted R-squared: 0.4422

F-statistic: 165.1 on 1 and 206 DF, p-value: < 2.2e-16

However, because the predictor is a factor vector instead of a numeric
vector, the reporting of the coefficients is slightly different. The estimate of
β0 is again reported as (Intercept); this is the estimate of the mean height
if a student is female. The estimate of β1 is reported as SexMale. The corre-
sponding regression coefficient of 13.139 is the estimated difference that
is imparted upon the mean height of a student if male. If you look at the
corresponding regression equation

ŷ = β̂0 + β̂1x = 165.687 + 13.139x (20.7)

you can see that the model has been fitted assuming the variable x is defined
as “the individual is male”—0 for no/false, 1 for yes/true. In other words,
the level of “female” for the sex variable is assumed as a reference, and it
is the effect of “being male” on mean height that is explicitly estimated. The
hypothesis test for β0 and β1 is performed with the same hypotheses defined
in Section 20.3.2:

H0 : β j = 0

HA : β j , 0

Again, it’s the test for β1 that’s generally of the most interest since it’s
this value that tells you whether there is statistical evidence that the mean
response variable is affected by the explanatory variable, that is, if β1 is sig-
nificantly different from zero.

Predictions from a Binary Categorical Variable

Because there are only two possible values for x, prediction is straight-
forward here. When you evaluate the equation, the only decision that needs
to be made is whether β̂1 needs to be used (in other words, if an individ-
ual is male) or not (if an individual is female). For example, you can enter
the following code to create a factor of five extra observations with the same
level names as the original data and store the new data in extra.obs:

R> extra.obs <- factor(c("Female","Male","Male","Male","Female"))

R> extra.obs

[1] Female Male Male Male Female

Levels: Female Male

Then, use predict in the now-familiar fashion to find the mean heights
at those extra values of the predictor. (Remember that when you pass in new
data to predict using the newdata argument, the predictors must be in the
same form as the data that were used to fit the model in the first place.)
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R> predict(survfit2,newdata=data.frame(Sex=extra.obs),interval="confidence",

level=0.9)

fit lwr upr

1 165.6867 164.4806 166.8928

2 178.8260 177.6429 180.0092

3 178.8260 177.6429 180.0092

4 178.8260 177.6429 180.0092

5 165.6867 164.4806 166.8928

You can see from the output that the predictions are different only
between the two sets of values—the point estimates of the two instances of
Female are identical, simply β̂0 with 90 percent CIs. The point estimates and
CIs for the instances of Male are also all the same as each other, based on a
point estimate of β̂0 + β̂1.

On its own, admittedly, this example isn’t too exciting. However, it’s
critical to understand how R presents regression results when using cat-
egorical predictors, especially when considering multiple regression in
Chapter 21.

20.5.2 Multilevel Variables: k > 2
It’s common to work with data where the categorical predictor variables
have more than two levels so that (k > 2). These can also be referred to as
multilevel categorical variables. To deal with this more complicated situation
while retaining interpretability of your parameters, you must first dummy
code your predictor into k − 1 binary variables.

Dummy Coding Multilevel Variables

To see how this is done, assume that you want to find the value of response
variable Y when given the value of a categorical variable X , where X has
k > 2 levels (also assume the conditions for validity of the linear regression
model—Section 20.2—are satisfied).

In regression modeling, dummy coding is the procedure used to create
several binary variables from a categorical variable like X . Instead of the
single categorical variable with possible realizations

X = 1,2,3, . . . , k

you recode it into several yes/no variables—one for each level—with
possible realizations:

X(1) = 0,1; X(2) = 0,1; X(3) = 0,1; . . . ; X(k ) = 0,1

As you can see, X(i) represents a binary variable for the ith level of the
original X . For example, if an individual has X = 2 in the original categori-
cal variable, then X(2) = 1 (yes) and all of the others (X(1) , X(3) , . . . , X(k )) will
be zero (no).
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Suppose X is a variable that can take any one of the k = 4 values 1,
2, 3, or 4, and you’ve made six observations of this variable: 1, 2, 2, 1, 4, 3.
Table 20-1 shows these observations and their dummy-coded equivalents
X(1) , X(2) , X(3) , and X(4) .

Table 20-1: Illustrative Example of
Dummy Coding for Six Observations of a
Categorical Variable with k = 4 Groups

X X(1) X(2) X(3) X(4)

1 1 0 0 0
2 0 1 0 0
2 0 1 0 0
1 1 0 0 0
4 0 0 0 1
3 0 0 1 0

In fitting the subsequent model, you usually only use k − 1 of the dummy
binary variables—one of the variables acts as a reference or baseline level, and
it’s incorporated into the overall intercept of the model. In practice, you
would end up with an estimated model like this,

ŷ = β̂0 + β̂1X(2) + β̂2X(3) + . . . + β̂k−1X(k ) (20.8)

assuming 1 is the reference level. As you can see, in addition to the overall
intercept term β̂0, you have k−1 other estimated intercept terms that modify
the baseline coefficient β̂0, depending on which of the original categories an
observation takes on. For example, in light of the coding imposed in (20.8),
if an observation has X(3) = 1 and all other binary values are therefore zero
(so that observation would’ve had a value of X = 3 for the original categori-
cal variable), the predicted mean value of the response would be ŷ = β̂0 + β̂2.
On the other hand, because the reference level is defined as 1, if an observa-
tion has values of zero for all the binary variables, it implies the observation
originally had X = 1, and the prediction would be simply ŷ = β̂0.

The reason it’s necessary to dummy code for categorical variables of
this nature is that, in general, categories cannot be related to each other in
the same numeric sense as continuous variables. It’s often not appropriate,
for example, to think that an observation in category 4 is “twice as much”
as one in category 2, which is what the estimation methods would assume.
Binary presence/absence variables are valid, however, and can be easily
incorporated into the modeling framework. Choosing the reference level is
generally of secondary importance—the specific values of the estimated co-
efficients will change accordingly, but any overall interpretations you make
based on the fitted model will be the same regardless.
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NOTE Implementing this dummy-coding approach is technically a form of multiple regres-
sion since you’re now including several binary variables in the model. It’s important,
however, to be aware of the somewhat artificial nature of dummy coding—you should
still think of the multiple coefficients as representing a single categorical variable since
the binary variables X(1), . . . , X(k ) are not independent of one another. This is why
I’ve chosen to define these models in this chapter; multiple regression will be formally
discussed in Chapter 21.

Linear Regression Model of Multilevel Variables

R makes working with categorical predictors in this way quite simple since
it automatically dummy codes for any such explanatory variable when you
call lm. There are two things you should check before fitting your model,
though.

1. The categorical variable of interest should be stored as a (formally
unordered) factor.

2. You should check that you’re happy with the category assigned as the
reference level (for interpretative purposes—see Section 20.5.3).

You must also of course be happy with the validity of the familiar
assumptions of normality and independence of ǫ .

To demonstrate all these definitions and ideas, let’s return to the stu-
dent survey data from the MASS package and keep “student height” as the
response variable of interest. Among the data is the variable Smoke. This
variable describes the kind of smoker each student reports themselves as,
defined by frequency and split into four categories: “heavy,” “never,” “occa-
sional,” and “regular.”

R> is.factor(survey$Smoke)

[1] TRUE

R> table(survey$Smoke)

Heavy Never Occas Regul

11 189 19 17

R> levels(survey$Smoke)

[1] "Heavy" "Never" "Occas" "Regul"

Here, the result from is.factor(survey$Smoke) indicates that you do
indeed have a factor vector at hand, the call to table yields the number of
students in each of the four categories, and as per Chapter 5, you can explic-
itly request the levels attribute of any R factor via levels.

Let’s ask whether there’s statistical evidence to support a difference in
mean student height according to smoking frequency. You can create a set
of boxplots of these data with the following two lines; Figure 20-5 shows the
result.

R> boxplot(Height~Smoke,data=survey)

R> points(1:4,tapply(survey$Height,survey$Smoke,mean,na.rm=TRUE),pch=4)
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Figure 20-5: Boxplots of the observed student heights split by
smoking frequency; respective sample means marked with ×

Note from earlier R output that unless explicitly defined at creation, the
levels of a factor appear in alphabetical order by default—as is the case for
Smoke—and R will automatically set the first one (as shown in the output of a
call to levels) as the reference level when that factor is used as a predictor in
subsequent model fitting. Fitting the linear model in mind using lm, you can
see from a subsequent call to summary that indeed the first level of Smoke, for
“heavy”, has been used as the reference:

R> survfit3 <- lm(Height~Smoke,data=survey)

R> summary(survfit3)

Call:

lm(formula = Height ~ Smoke, data = survey)

Residuals:

Min 1Q Median 3Q Max

-25.02 -6.82 -1.64 8.18 28.18

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 173.7720 3.1028 56.005 <2e-16 ***
SmokeNever -1.9520 3.1933 -0.611 0.542

SmokeOccas -0.7433 3.9553 -0.188 0.851

SmokeRegul 3.6451 4.0625 0.897 0.371

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.812 on 205 degrees of freedom

(28 observations deleted due to missingness)
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Multiple R-squared: 0.02153, Adjusted R-squared: 0.007214

F-statistic: 1.504 on 3 and 205 DF, p-value: 0.2147

As outlined in Equation (20.8), you get estimates of coefficients corre-
sponding to the dummy binary variables for three of the four possible cat-
egories in this example—the three nonreference levels. The observation
in the reference category Heavy is represented solely by β̂0, designated first
as the overall (Intercept), with the other coefficients providing the effects
associated with an observation in one of the other categories.

Predictions from a Multilevel Categorical Variable

You find point estimates through prediction, as usual.

R> one.of.each <- factor(levels(survey$Smoke))

R> one.of.each

[1] Heavy Never Occas Regul

Levels: Heavy Never Occas Regul

R> predict(survfit3,newdata=data.frame(Smoke=one.of.each),

interval="confidence",level=0.95)

fit lwr upr

1 173.7720 167.6545 179.8895

2 171.8200 170.3319 173.3081

3 173.0287 168.1924 177.8651

4 177.4171 172.2469 182.5874

Here, I’ve created the object one.of.each for illustrative purposes; it
represents one observation in each of the four categories, stored as an
object matching the class (and levels) of the original Smoke data. A student
in the Occas category, for example, is predicted to have a mean height of
173.772 − 0.7433 = 173.0287.

The output from the model summary earlier, however, shows that none
of the binary dummy variable coefficients are considered statistically signif-
icant from zero (because all the p-values are too large). The results indi-
cate, as you might have suspected, that there’s no evidence that smoking
frequency (or more specifically, having a smoking frequency that’s different
from the reference level) affects mean student heights based on this sample
of individuals. As is common, the baseline coefficient β̂0 is highly statistically
significant—but that only suggests that the overall intercept probably isn’t
zero. (Because your response variable is a measurement of height and will
clearly not be centered anywhere near 0 cm, that result makes sense.) The
confidence intervals supplied are calculated in the usual t-based fashion.

The small R-Squared value reinforces this conclusion, indicating that
barely any of the variation in the response can be explained by changing
the category of smoking frequency. Furthermore, the overall F -test p-value
is rather large at around 0.215, suggesting an overall nonsignificant effect of
the predictor on the response; you’ll look at this in more detail in a moment
in Section 20.5.5 and later on in Section 21.3.5.
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As noted earlier, it’s important that you interpret these results—indeed
any based on a k-level categorical variable in regression—in a collective fash-
ion. You can claim only that there is no discernible effect of smoking on
height because all the p-values for the binary dummy coefficients are non-
significant. If one of the levels was in fact highly significant (through a small
p-value), it would imply that the smoking factor as defined here, as a whole,
does have a statistically detectable effect on the response (even if the other
two levels were still associated with very high p-values). This will be discussed
further in several more examples in Chapter 21.

20.5.3 Changing the Reference Level
Sometimes you might decide to change the automatically selected reference
level, compared to which the effects of taking on any of the other levels are
estimated. Changing the baseline will result in the estimation of different
coefficients, meaning that individual p-values are subject to change, but
the overall result (in terms of global significance of the factor) will not be
affected. Because of this, altering the reference level is only done for inter-
pretative purposes—sometimes there’s an intuitively natural baseline of the
predictor (for example, “Placebo” versus “Drug A” and “Drug B” as a treat-
ment variable in the analysis of some clinical trial) from which you want to
estimate deviation in the mean response with respect to the other possible
categories.

Redefining the reference level can be achieved quickly using the built-in
relevel function in R. This function allows you to choose which level comes
first in the definition of a given factor vector object and will therefore be
designated as the reference level in subsequent model fitting. In the current
example, let’s say you’d rather have the nonsmokers as the reference level.

R> SmokeReordered <- relevel(survey$Smoke,ref="Never")

R> levels(SmokeReordered)

[1] "Never" "Heavy" "Occas" "Regul"

The relevel function has moved the Never category into the first posi-
tion in the new factor vector. If you go ahead fit the model again using
SmokeReordered instead of the original Smoke column of survey, it’ll provide
estimates of coefficients associated with the three different levels of smokers.

It’s worth noting the differences in the treatment of unordered versus
ordered factor vectors in regression applications. It might seem sensible
to formally order the smoking variable by, for example, increasing the fre-
quency of smoking when creating a new factor vector. However, when an
ordered factor vector is supplied in a call to lm, R reacts in a different way—it
doesn’t perform the relatively simple dummy coding discussed here, where
an effect is associated with each optional level to the baseline (technically
referred to as orthogonal contrasts). Instead, the default behavior is to fit the
model based on something called polynomial contrasts, where the effect of the
ordered categorical variable on the response is defined in a more compli-
cated functional form. That discussion is beyond the scope of this text, but
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it suffices to say that this approach can be beneficial when your interest lies
in the specific functional nature of “moving up” through an ordered set of
categories. For more on the technical details, see Kuhn and Johnson (2013).
For all relevant regression examples in this book, we’ll work exclusively with
unordered factor vectors.

20.5.4 Treating Categorical Variables as Numeric
The way in which lm decides to define the parameters of the fitted model
depends primarily on the kind of data you pass to the function. As discussed,
lm imposes dummy coding only if the explanatory variable is an unordered
factor vector.

Sometimes the categorical data you want to analyze haven’t been stored
as a factor in your data object. If the categorical variable is a character vec-
tor, lm will implicitly coerce it into a factor. If, however, the intended cate-
gorical variable is numeric, then lm performs linear regression exactly as if it
were a continuous numeric predictor; it estimates a single regression coeffi-
cient, which is interpreted as a “per-one-unit-change” in the mean response.

This may seem inappropriate if the original explanatory variable is sup-
posed to be made up of distinct groups. In some settings, however, especially
when the variable can be naturally treated as numeric-discrete, this treat-
ment is not only valid statistically but also helps with interpretation.

Let’s take a break from the survey data and go back to the ready-to-use
mtcars data set. Say you’re interested in the variables mileage, mpg (continu-
ous), and number of cylinders, cyl (discrete; the data set contains cars with
either 4, 6, or 8 cylinders). Now, it’s perfectly sensible to automatically think
of cyl as a categorical variable. Taking mpg to be the response variable, box-
plots are well suited to reflect the grouped nature of cyl as a predictor; the
result of the following line is given on the left of Figure 20-6:

R> boxplot(mtcars$mpg~mtcars$cyl,xlab="Cylinders",ylab="MPG")

When fitting the associated regression model, you must be aware of what
you’re instructing R to do. Since the cyl column of mtcars is numeric, and
not a factor vector per se, lm will treat it as continuous if you just directly
access the data frame.

R> class(mtcars$cyl)

[1] "numeric"

R> carfit <- lm(mpg~cyl,data=mtcars)

R> summary(carfit)

Call:

lm(formula = mpg ~ cyl, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-4.9814 -2.1185 0.2217 1.0717 7.5186
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.8846 2.0738 18.27 < 2e-16 ***
cyl -2.8758 0.3224 -8.92 6.11e-10 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.206 on 30 degrees of freedom

Multiple R-squared: 0.7262, Adjusted R-squared: 0.7171

F-statistic: 79.56 on 1 and 30 DF, p-value: 6.113e-10

Just as in earlier sections, you’ve received an intercept and a slope esti-
mate; the latter is highly statistically significant, indicating that there is evi-
dence against the true value of the slope being zero. Your fitted regression
line is

ŷ = β̂0 + β̂1x = 37.88 − 2.88x

where ŷ is the average mileage and x is numeric—the number of cylin-
ders. For each single additional cylinder, the model says your mileage will
decrease by 2.88 MPG, on average.

It’s important to recognize the fact that you’ve fitted a continuous line
to what is effectively categorical data. The right panel of Figure 20-6, created
with the following lines, highlights this fact:

R> plot(mtcars$mpg~mtcars$cyl,xlab="Cylinders",ylab="MPG")

R> abline(carfit,lwd=2)

Figure 20-6: Left: Boxplots of mileage split by cylinders for the mtcars data set.
Right: Scatterplot of the same data with fitted regression line (treating cyl as
numeric-continuous) superimposed.
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Some researchers fit categorical or discrete predictors as continuous
variables purposefully. First, it allows interpolation; for example, you could
use this model to evaluate the average MPG for a 5-cylinder car. Second, it
means there are fewer parameters that require estimation; in other words,
instead of k − 1 intercepts for a categorical variable with k groups, you
need only one parameter for the slope. Finally, it can be a convenient way
to control for so-called nuisance variables; this will become clearer in Chap-
ter 21. On the other hand, it means that you no longer get group-specific
information. It can be misleading to proceed in this way if any differences
in the mean response according to the predictor category of an observation
are not well represented linearly—detection of significant effects can be lost
altogether.

At the very least, it’s important to recognize this distinction when fitting
models. If you had only just now recognized that R had fitted the cyl vari-
able as continuous and wanted to actually fit the model with cyl as categor-
ical, you’d have to explicitly convert it into a factor vector beforehand or in
the actual call to lm.

R> carfit <- lm(mpg~factor(cyl),data=mtcars)

R> summary(carfit)

Call:

lm(formula = mpg ~ factor(cyl), data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-5.2636 -1.8357 0.0286 1.3893 7.2364

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.6636 0.9718 27.437 < 2e-16 ***
factor(cyl)6 -6.9208 1.5583 -4.441 0.000119 ***
factor(cyl)8 -11.5636 1.2986 -8.905 8.57e-10 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.223 on 29 degrees of freedom

Multiple R-squared: 0.7325, Adjusted R-squared: 0.714

F-statistic: 39.7 on 2 and 29 DF, p-value: 4.979e-09

Here, by wrapping cyl in a call to factor when specifying the formula
for lm, you can see you’ve obtained regression coefficient estimates for the
levels of cyl corresponding to 6- and 8-cylinder cars (with the reference level
automatically set to 4-cylinder cars).
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20.5.5 Equivalence with One-Way ANOVA
There’s one final observation to make about regression models with a
single nominal categorical predictor. Think about the fact that these mod-
els describe a mean response value for the k different groups. Does this
remind you of anything? In this particular setting, you’re actually doing the
same thing as in one-way ANOVA (Section 19.1): comparing more than two
means and determining whether there is statistical evidence that at least one
mean is different from the others. You need to be able to make the same key
assumptions of independence and normality for both techniques.

In fact, simple linear regression with a single categorical predictor,
implemented using least-squares estimation, is just another way to perform
one-way ANOVA. Or, perhaps more concisely, ANOVA is a special case of
least-squares regression. The outcome of a one-way ANOVA test is a single
p-value quantifying a level of statistical evidence against the null hypothesis
that states that group means are equal. When you have one categorical pre-
dictor in a regression, it’s exactly that p-value that’s reported at the end of
the summary of an lm object—something I’ve referred to a couple of times now
as the “overall” or “global” significance test (for example, in Section 20.3.3).

Look back to the final result of that global significance test for the
student height modeled by smoking status example—you had a p-value
of 0.2147. This came from an F test statistic of 1.504 with df1 = 3 and
df2 = 205. Now, suppose you were just handed the data and asked to per-
form a one-way ANOVA of height on smoking. Using the aov function as
introduced in Section 19.1, you’d call something like this:

R> summary(aov(Height~Smoke,data=survey))

Df Sum Sq Mean Sq F value Pr(>F)

Smoke 3 434 144.78 1.504 0.215

Residuals 205 19736 96.27

28 observations deleted due to missingness

Those same values are returned here; you can also find the square root
of the MSE:

R> sqrt(96.27)

[1] 9.811728

This is in fact the “residual standard error” given in the lm summary.
The two conclusions you’d draw about the impact of smoking status on
height (one for the lm output, the other for the ANOVA test) are of course
also the same.

The global test that lm provides isn’t just there for the benefit of con-
firming ANOVA results. As a generalization of ANOVA, least-squares regres-
sion models provide more than just coefficient-specific tests. That global test
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is formally referred to as the omnibus F-test, and while it is indeed equivalent
to one-way ANOVA in the “single categorical predictor” setting, it’s also a
useful overall, stand-alone test of the statistical contribution of several pre-
dictors to the outcome value. You’ll explore this further in Section 21.3.5
after you’ve begun modeling your response variable using multiple explana-
tory variables.

Exercise 20.2

Continue using the survey data frame from the package MASS for the
next few exercises.

a. The survey data set has a variable named Exer, a factor with k = 3
levels describing the amount of physical exercise time each
student gets: none, some, or frequent. Obtain a count of the
number of students in each category and produce side-by-side
boxplots of student height split by exercise.

b. Assuming independence of the observations and normality as
usual, fit a linear regression model with height as the response
variable and exercise as the explanatory variable (dummy
coding). What’s the default reference level of the predictor?
Produce a model summary.

c. Draw a conclusion based on the fitted model from (b)—does it
appear that exercise frequency has any impact on mean height?
What is the nature of the estimated effect?

d. Predict the mean heights of one individual in each of the three
exercise categories, accompanied by 95 percent prediction
intervals.

e. Do you arrive at the same result and interpretation for the
height-by-exercise model if you construct an ANOVA table
using aov?

f. Is there any change to the outcome of (e) if you alter the model
so that the reference level of the exercise variable is “none”?
Would you expect there to be?

Now, turn back to the ready-to-use mtcars data set. One of the vari-
ables in this data frame is qsec, described as the time in seconds it
takes to race a quarter mile; another is gear, the number of forward
gears (cars in this data set have either 3, 4, or 5 gears).

g. Using the vectors straight from the data frame, fit a simple linear
regression model with qsec as the response variable and gear as
the explanatory variable and interpret the model summary.
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h. Explicitly convert gear to a factor vector and refit the model.
Compare the model summary with that from (g). What do
you find?

i. Explain, with the aid of a relevant plot in the same style as the
right image of Figure 20-6, why you think there is a difference
between the two models (g) and (h).

Important Code in This Chapter

Function/operator Brief description First occurrence

lm Fit linear model Section 20.2.3, p. 455
coef Get estimated coefficients Section 20.2.4, p. 457
summary Summarize linear model Section 20.3.1, p. 458
confint Get CIs for estimated coefficients Section 20.3.2, p. 460
predict Predict from linear model Section 20.4.2, p. 463
relevel Change factor reference level Section 20.5.3, p. 477
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21
MULTIPLE LINEAR REGRESSION

Multiple linear regression is a straight-
forward generalization of the single-

predictor models discussed in the previous
chapter. It allows you to model your continu-

ous response variable in terms of more than one pre-
dictor so you can measure the joint effect of several
explanatory variables on the response variable. In this chapter, you’ll see
how to model your response variable in this way, and you’ll use R to fit the
model using least-squares. You’ll also explore other key statistical aspects of
linear modeling in the R environment, such as transforming variables and
including interactive effects.

Multiple linear regression represents an important part of the practice
of statistics. It lets you control or adjust for multiple sources of influence
on the value of the response, rather than just measuring the effect of one
explanatory variable (in most situations, there is more than one contribu-
tor to the outcome measurements). At the heart of this class of methods
is the intention to uncover potentially causal relationships between your
response variable and the (joint) effect of any explanatory variables. In real-
ity, causality itself is extremely difficult to establish, but you can strengthen
any evidence of causality by using a well-designed study supported by sound



data collection and by fitting models that might realistically gauge the rela-
tionships present in your data.

21.1 Terminology

Before you look at the theory behind multiple regression models, it’s impor-
tant to have a clear understanding of some terminology associated with
variables.

• A lurking variable influences the response, another predictor, or both,
but goes unmeasured (or is not included) in a predictive model. For
example, say a researcher establishes a link between the volume of trash
thrown out by a household and whether the household owns a tram-
poline. The potential lurking variable here would be the number of
children in the household—this variable is more likely to be positively
associated with an increase in trash and chances of owning a trampo-
line. An interpretation that suggests owning a trampoline is a cause of
increased waste would be erroneous.

• The presence of a lurking variable can lead to spurious conclusions
about causal relationships between the response and the other predic-
tors, or it can mask a true cause-and-effect association; this kind of error
is referred to as confounding. To put it another way, you can think of con-
founding as the entanglement of the effects of one or more predictors
on the response.

• A nuisance or extraneous variable is a predictor of secondary or no interest
that has the potential to confound relationships between other variables
and so affect your estimates of the other regression coefficients. Extra-
neous variables are included in the modeling as a matter of necessity,
but the specific nature of their influence on the response is not the pri-
mary interest of the analysis.

These definitions will become clearer once you begin fitting and inter-
preting the regression models in Section 21.3. The main message I want to
emphasize here, once more, is that correlation does not imply causation. If
a fitted model finds a statistically significant association between a predictor
(or predictors) and a response, it’s important to consider the possibility that
lurking variables are contributing to the results and to attempt to control
any confounding before you draw conclusions. Multiple regression models
allow you to do this.

21.2 Theory

Before you start using R to fit regression models, you’ll examine the tech-
nical definitions of a linear regression model with multiple predictors.
Here, you’ll look at how the models work in a mathematical sense and get
a glimpse of the calculations that happen “behind the scenes” when estimat-
ing the model parameters in R.
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21.2.1 Extending the Simple Model to a Multiple Model
Rather than having just one predictor, you want to determine the value of
a continuous response variable Y given the values of p > 1 independent
explanatory variables X1, X2, . . ., Xp . The overarching model is defined as

Y = β0 + β1X1 + β2X2 + . . . + βpXp + ǫ, (21.1)

where β0, . . . , βp are the regression coefficients and, as before, you assume
independent, normally distributed residuals ǫ ∼ N(0,σ) around the mean.

In practice, you have n data records; each record provides values for
each of the predictors X j ; j = {1, . . ., p}. The model to be fitted is given
in terms of the mean response, conditional upon a particular realization of
the set of explanatory variables

ŷ = E[Y |X1 = x1,X2 = x2, . . . ,Xp = xp] = β̂0 + β̂1x1 + β̂2x2 + . . . + β̂p xp ,

where the β̂ j s represent estimates of the regression coefficients.
In simple linear regression, where you have only one predictor variable,

recall that the goal is to find the “line of best fit.” The idea of least-squares
estimation for linear models with multiple independent predictors follows
much the same motivation. Now, however, in an abstract sense you can think
of the relationship between response and predictors as a multidimensional
plane or surface. You want to find the surface that best fits your multivariate
data in terms of minimizing the overall squared distance between itself and
the raw response data.

More formally, for your n data records, the β̂ j s are found as the values
that minimize the sum

n
∑

i=1

{

yi − (β0 + β1x1, i + β2x2, i + . . . + β̂p xp, i )
}2
, (21.2)

where x j, i is the observed value of individual i for explanatory variable X j

and yi is their response value.

21.2.2 Estimating in Matrix Form
The computations involved in minimizing this squared distance (21.2) are
made much easier by a matrix representation of the data. When dealing with n

multivariate observations, you can write Equation (21.1) as follows,

Y = X · β + ǫ,

where Y and ǫ denote n × 1 column matrices such that

Y =



y1
y2
...

yn


and ǫ =



ǫ1
ǫ2
...

ǫn


.
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Here, yi and ǫ i refer to the response observation and random error
term for the ith individual. The quantity β is a (p + 1) × 1 column matrix
of the regression coefficients, and then the observed predictor data for all
individuals and explanatory variables are stored in an n × (p + 1) matrix X ,
called the design matrix:

β =



β0
β1
...

βp


and X =



1 x1,1 . . . xp,1
1 x1,2 . . . xp,2
...

...
. . .

...

1 x1,n . . . xp,n


The minimization of (21.2) providing the estimated regression coeffi-

cient values is then found with the following calculation:

β̂ =



β̂0

β̂1
...

β̂p


= (X⊤ · X )−1 · X⊤ ·Y (21.3)

It’s important to note the following:

• The symbol · represents matrix multiplication, the superscript ⊤ rep-
resents the transpose, and −1 represents the inverse when applied to
matrices (as per Section 3.3).

• Extending the size of β and X (note the leading column of 1s in X) to
create structures of size p + 1 (as opposed to just the number of predic-
tors p) allows for the estimation of the overall intercept β0.

• As well as (21.3), the design matrix plays a crucial role in the estimation
of other quantities, such as the standard errors of the coefficients.

21.2.3 A Basic Example
You can manually estimate the β j ( j = 0, 1, . . ., p) in R using the functions
covered in Chapter 3: %*% (matrix multiplication), t (matrix transposition),
and solve (matrix inversion). As a quick demonstration, let’s say you have
two predictor variables: X1 as continuous and X2 as binary. Your target
regression equation is therefore ŷ = β̂0 + β̂1x1 + β̂2x2. Suppose you collect
the following data, where the response data, data for X1, and data for X2, for
n = 8 individuals, are given in the columns y, x1, and x2, respectively.

R> demo.data <- data.frame(y=c(1.55,0.42,1.29,0.73,0.76,-1.09,1.41,-0.32),

x1=c(1.13,-0.73,0.12,0.52,-0.54,-1.15,0.20,-1.09),

x2=c(1,0,1,1,0,1,0,1))

R> demo.data

y x1 x2

1 1.55 1.13 1

2 0.42 -0.73 0

3 1.29 0.12 1
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4 0.73 0.52 1

5 0.76 -0.54 0

6 -1.09 -1.15 1

7 1.41 0.20 0

8 -0.32 -1.09 1

To get your point estimates in β = [β0, β1, β2]⊤ for the linear model,
you first have to construct X and Y as required by (21.3).

R> Y <- matrix(demo.data$y)

R> Y

[,1]

[1,] 1.55

[2,] 0.42

[3,] 1.29

[4,] 0.73

[5,] 0.76

[6,] -1.09

[7,] 1.41

[8,] -0.32

R> n <- nrow(demo.data)

R> X <- matrix(c(rep(1,n),demo.data$x1,demo.data$x2),nrow=n,ncol=3)

R> X

[,1] [,2] [,3]

[1,] 1 1.13 1

[2,] 1 -0.73 0

[3,] 1 0.12 1

[4,] 1 0.52 1

[5,] 1 -0.54 0

[6,] 1 -1.15 1

[7,] 1 0.20 0

[8,] 1 -1.09 1

Now all you have to do is execute the line corresponding to (21.3).

R> BETA.HAT <- solve(t(X)

R> BETA.HAT

[,1]

[1,] 1.2254572

[2,] 1.0153004

[3,] -0.6980189

You’ve just used least-squares to fit your model based on the observed
data in demo.data, which results in the estimates β̂0 = 1.225, β̂1 = 1.015, and
β̂2 = −0.698.
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21.3 Implementing in R and Interpreting

Ever helpful, R automatically builds the matrices and carries out all the nec-
essary calculations when you instruct it to fit a multiple linear regression
model. As in simple regression models, you use lm and just include any addi-
tional predictors when you specify the formula in the first argument. So that
you can focus on the R syntax and on interpretation, I’ll focus only on main
effects for the moment, and then you’ll explore more complex relationships
later in the chapter.

When it comes to output and interpretation, working with multiple
explanatory variables follows the same rules as you’ve seen in Chapter 20.
Any numeric-continuous variables (or a categorical variable being treated
as such) have a slope coefficient that provides a “per-unit-change” quantity.
Any k-group categorical variables (factors, formally unordered) are dummy
coded and provide k − 1 intercepts.

21.3.1 Additional Predictors
Let’s first confirm the manual matrix calculations from a moment ago.
Using the demo.data object, fit the multiple linear model and examine the
coefficients from that object as follows:

R> demo.fit <- lm(y~x1+x2,data=demo.data)

R> coef(demo.fit)

(Intercept) x1 x2

1.2254572 1.0153004 -0.6980189

You’ll see that you obtain exactly the point estimates stored earlier in
BETA.HAT.

With the response variable on the left as usual, you specify the multiple
predictors on the right side of the ~ symbol; altogether this represents the
formula argument. To fit a model with several main effects, use + to separate
any variables you want to include. In fact, you’ve already seen this notation
in Section 19.2.2, when investigating two-way ANOVA.

To study the interpretation of the parameter estimates of a multiple
linear regression model, let’s return to the survey data set in the MASS pack-
age. In Chapter 20, you explored several simple linear regression models
based on a response variable of student height, as well as stand-alone predic-
tors of handspan (continuous) and sex (categorical, k = 2). You found that
handspan was highly statistically significant, with the estimated coefficient
suggesting an average increase of about 3.12 cm for each 1 cm increase in
handspan. When you looked at the same t-test using sex as the explanatory
variable, the model also suggested evidence against the null hypothesis, with
“being male” adding around 13.14 cm to the mean height when compared
to the mean for females (the category used as the reference level).
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What those models can’t tell you is the joint effect of sex and handspan
on predicting height. If you include both predictors in a multiple linear
model, you can (to some extent) reduce any confounding that might other-
wise occur in the isolated fits of the effect of either single predictor on
height.

R> survmult <- lm(Height~Wr.Hnd+Sex,data=survey)

R> summary(survmult)

Call:

lm(formula = Height ~ Wr.Hnd + Sex, data = survey)

Residuals:

Min 1Q Median 3Q Max

-17.7479 -4.1830 0.7749 4.6665 21.9253

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 137.6870 5.7131 24.100 < 2e-16 ***
Wr.Hnd 1.5944 0.3229 4.937 1.64e-06 ***
SexMale 9.4898 1.2287 7.724 5.00e-13 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.987 on 204 degrees of freedom

(30 observations deleted due to missingness)

Multiple R-squared: 0.5062, Adjusted R-squared: 0.5014

F-statistic: 104.6 on 2 and 204 DF, p-value: < 2.2e-16

The coefficient for handspan is now only about 1.59, almost half of its
corresponding value (3.12 cm) in the stand-alone simple linear regression
for height. Despite this, it’s still highly statistically significant in the presence
of sex. The coefficient for sex has also reduced in magnitude when com-
pared with its simple linear model and is also still significant in the presence
of handspan. You’ll interpret these new figures in a moment.

As for the rest of the output, the Residual standard error still provides
you with an estimate of the standard error of the random noise term ǫ , and
you’re also provided with an R-squared value. When associated with more
than one predictor, the latter is formally referred to as the coefficient of
multiple determination. The calculation of this coefficient, as in the single
predictor setting, comes from the correlations between the variables in the
model. I’ll leave the theoretical intricacies to more advanced texts, but it’s
important to note that R-squared still represents the proportion of variability
in the response that’s explained by the regression; in this example, it sits at
around 0.51.
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You can continue to add explanatory variables in the same way if you
need to do so. In Section 20.5.2, you examined smoking frequency as a
stand-alone categorical predictor for height and found that this explanatory
variable provided no statistical evidence of an impact on the mean response.
But could the smoking variable contribute in a statistically significant way if
you control for handspan and sex?

R> survmult2 <- lm(Height~Wr.Hnd+Sex+Smoke,data=survey)

R> summary(survmult2)

Call:

lm(formula = Height ~ Wr.Hnd + Sex + Smoke, data = survey)

Residuals:

Min 1Q Median 3Q Max

-17.4869 -4.7617 0.7604 4.3691 22.1237

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 137.4056 6.5444 20.996 < 2e-16 ***
Wr.Hnd 1.6042 0.3301 4.860 2.36e-06 ***
SexMale 9.3979 1.2452 7.547 1.51e-12 ***
SmokeNever -0.0442 2.3135 -0.019 0.985

SmokeOccas 1.5267 2.8694 0.532 0.595

SmokeRegul 0.9211 2.9290 0.314 0.753

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.023 on 201 degrees of freedom

(30 observations deleted due to missingness)

Multiple R-squared: 0.5085, Adjusted R-squared: 0.4962

F-statistic: 41.59 on 5 and 201 DF, p-value: < 2.2e-16

Since it’s a categorical variable with k > 2 levels, Smoke is dummy coded
(with heavy smokers as the default reference level), giving you three extra
intercepts for the three nonreference levels of the variable; the fourth is
incorporated into the overall intercept.

In the summary of the latest fit, you can see that while handspan and sex
continue to yield very small p-values, smoking frequency suggests no such
evidence against the hypotheses of zero coefficients. The smoking variable
has had little effect on the values of the other coefficients compared with the
previous model in survmult, and the R-squared coefficient of multiple determi-
nation has barely increased.

One question you might now ask is, if smoking frequency doesn’t bene-
fit your ability to predict mean height in any substantial way, should you
remove that variable from the model altogether? This is the primary goal of
model selection: to find the “best” model for predicting the outcome, without
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fitting one that is unnecessarily complex (by including more explanatory
variables than is required). You’ll look at some common ways researchers
attempt to achieve this in Section 22.2.

21.3.2 Interpreting Marginal Effects
In multiple regression, the estimation of each predictor takes into account
the effect of all other predictors present in the model. A coefficient for a
specific predictor Z should therefore be interpreted as the change in the
mean response for a one-unit increase in Z , while holding all other predic-
tors constant.

As you’ve determined that smoking frequency still appears to have no
discernible impact on mean height when taking sex and handspan into con-
sideration, return your focus to survmult, the model that includes only the
explanatory variables of sex and handspan. Note the following:

• For students of the same sex (that is, focusing on either just males
or just females), a 1 cm increase in handspan leads to an estimated
increase of 1.5944 cm in mean height.

• For students of similar handspan, males on average will be 9.4898 cm
taller than females.

• The difference in the values of the two estimated predictor coefficients
when compared with their respective simple linear model fits, plus the
fact that both continue to indicate evidence against the null hypothe-
sis of “being zero” in the multivariate fit, suggests that confounding (in
terms of the effect of both handspan and sex on the response variable of
height) is present in the single-predictor models.

The final point highlights the general usefulness of multiple regression.
It shows that, in this example, if you use only single predictor models, the
determination of the “true” impact that each explanatory variable has in
predicting the mean response is misleading since some of the change in
height is determined by sex, but some is also attributed to handspan. It’s
worth noting that the coefficient of determination (refer to Section 20.3.3)
for the survmult model is noticeably higher than the same quantity in either
of the single-variate models, so you’re actually accounting for more of the
variation in the response by using multiple regression.

The fitted model itself can be thought of as

“Mean height” = 137.687 + 1.594 × “handspan” + 9.49 × “sex” (21.4)

where “handspan” is the writing handspan supplied in centimeters and “sex”
is supplied as either 1 (if male) or 0 (if female).

NOTE The baseline (overall) intercept of around 137.687 cm represents the mean height of a
female with a handspan of 0 cm—again, this is clearly not directly interpretable in the
context of the application. For this kind of situation, some researchers center the offend-
ing continuous predictor (or predictors) on zero by subtracting the sample mean of all
the observations on that predictor from each observation prior to fitting the model. The
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centered predictor data are then used in place of the original (untranslated) data. The
resulting fitted model allows you to use the mean value of the untranslated predictor
(in this case handspan) rather than a zero value in order to directly interpret the inter-
cept estimate β̂0.

21.3.3 Visualizing the Multiple Linear Model
As shown here, “being male” simply changes the overall intercept by around
9.49 cm:

R> survcoefs <- coef(survmult)

R> survcoefs

(Intercept) Wr.Hnd SexMale

137.686951 1.594446 9.489814

R> as.numeric(survcoefs[1]+survcoefs[3])

[1] 147.1768

Because of this, you could also write (21.4) as two equations. Here’s the
equation for female students:

“Mean height” = 137.687 + 1.594 × “handspan”

Here’s the equation for male students:

“Mean height” = (137.687 + 9.4898) + 1.594 × “handspan”

= 147.177 + 1.594 × “handspan”

This is handy because it allows you to visualize the multivariate model in
much the same way as you can the simple linear models. This code produces
Figure 21-1:

R> plot(survey$Height~survey$Wr.Hnd,

col=c("gray","black")[as.numeric(survey$Sex)],

pch=16,xlab="Writing handspan",ylab="Height")

R> abline(a=survcoefs[1],b=survcoefs[2],col="gray",lwd=2)

R> abline(a=survcoefs[1]+survcoefs[3],b=survcoefs[2],col="black",lwd=2)

R> legend("topleft",legend=levels(survey$Sex),col=c("gray","black"),pch=16)

First, a scatterplot of the height and handspan observations, split by sex,
is drawn. Then, abline adds the line corresponding to females and adds a
second one corresponding to males, based on those two equations.

Although this plot might look like two separate simple linear model
fits, one for each level of sex, it’s important to recognize that isn’t the case.
You’re effectively looking at a representation of a multivariate model on a
two-dimensional canvas, where the statistics that determine the fit of the two
visible lines have been estimated “jointly,” in other words, when considering
both predictors.
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Figure 21-1: Visualizing the observed data and fitted multiple
linear model of student height modeled by handspan and sex

21.3.4 Finding Confidence Intervals
As in Chapter 20, you can easily find confidence intervals for any of the
regression parameters in multiple regression models with confint. Using
survmult2, the object of the fitted model for student height including the
smoking frequency predictor, the output of a call to confint looks like this:

R> confint(survmult2)

2.5 % 97.5 %

(Intercept) 124.5010442 150.310074

Wr.Hnd 0.9534078 2.255053

SexMale 6.9426040 11.853129

SmokeNever -4.6061148 4.517705

SmokeOccas -4.1312384 7.184710

SmokeRegul -4.8543683 6.696525

Note that the Wr.Hnd and SexMale variables were shown to be statistically
significant at the 5 percent level in the earlier model summary and that their
95 percent confidence levels do not include the null value of zero. On the
other hand, all the coefficients for the dummy variables associated with the
smoking frequency predictor are all nonsignificant, and their confidence
intervals clearly include zero. This reflects the fact that the smoking variable
isn’t, as a whole, considered statistically significant in this particular model.
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21.3.5 Omnibus F-Test
First encountered in Section 20.5.2 in the context of multilevel predictors,
you can think of the omnibus F-test more generally for multiple regression
models as a test with the following hypotheses:

H0 : β1 = β2 = . . . = βp = 0

HA : At least one of the β j , 0 (for j = 1, . . ., p) (21.5)

The test is effectively comparing the amount of error attributed to the
“null” model (in other words, one with an intercept only) with the amount
of error attributed to the predictors when all the predictors are present. In
other words, the more the predictors are able to model the response, the
more error they explain, giving you a more extreme F statistic and therefore
a smaller p-value. The single result makes the test especially useful when you
have many explanatory variables. The test works the same regardless of the
mix of predictors you have in a given model: one or more might be contin-
uous, discrete, binary, and/or categorical with k > 2 levels. When multiple
regression models are fitted, the amount of output alone can take time to
digest and interpret, and care must be taken to avoid Type I errors (incor-
rect rejection of a true null hypothesis—refer to Section 18.5).

The F-test helps boil all that down, allowing you to conclude either of
the following:

1. Evidence against H0 if the associated p-value is smaller than your chosen
significance level α, which suggests that your regression—your combi-
nation of the explanatory variables—does a significantly better job of
predicting the response than if you removed all those predictors.

2. No evidence against H0 if the associated p-value is larger than α, which
suggests that using the predictors has no tangible benefit over having an
intercept alone.

The downside is that the test doesn’t tell you which of the predictors (or
which subset thereof) is having a beneficial impact on the fit of the model,
nor does it tell you anything about their coefficients or respective standard
errors.

You can compute the F-test statistic using the coefficient of determina-
tion, R2, from the fitted regression model. Let p be the number of regres-
sion parameters requiring estimation, excluding the intercept β0. Then,

F = R2(n − p − 1)

(1 − R2)p
, (21.6)

where n is the number of observations used in fitting the model (after
records with missing values have been deleted). Then, under H0 in (21.5),
F follows an F distribution (see Section 16.2.5 and also Section 19.1.2) with
df1 = p, df2 = n−p−1 degrees of freedom. The p-value associated with (21.6)
is yielded as the upper-tail area of that F distribution.

As a quick exercise to confirm this, turn your attention back to the fitted
multiple regression model survmult2 in Section 21.3.1, which is the model
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for student height by handspan, sex, and smoking status from survey. You
can extract the coefficient of multiple determination from the summary report
(using the technique noted in Section 20.3.4).

R> R2 <- summary(survmult2)$r.squared

R> R2

[1] 0.508469

This matches the multiple R-squared value from Section 21.3.1. Then,
you can get n as the original size of the data set in survey minus any missing
values (reported as 30 in the earlier summary output).

R> n <- nrow(survey)-30

R> n

[1] 207

You get p as the number of estimated regression parameters (minus 1
for the intercept).

R> p <- length(coef(survmult2))-1

R> p

[1] 5

You can then confirm the value of n − p − 1, which matches the summary

output (201 degrees of freedom):

R> n-p-1

[1] 201

Finally, you find the test statistic F as dictated by (21.6), and you can
use the pf function as follows to obtain the corresponding p-value for
the test:

R> Fstat <- (R2*(n-p-1))/((1-R2)*p)

R> Fstat

[1] 41.58529

R> 1-pf(Fstat,df1=p,df2=n-p-1)

[1] 0

You can see that the omnibus F-test for this example gives a p-value
that’s so small, it’s effectively zero. These calculations match the relevant
results reported in the output of summary(survmult2) completely.

Looking back at the student height multiple regression fit based on
handspan, sex, and smoking in survmult2 in Section 21.3.1, it’s little surprise
that with two of the predictors yielding small p-values, the omnibus F-test
suggests strong evidence against H0 based on (21.5). This highlights the
“umbrella” nature of the omnibus test: although the smoking frequency
variable itself doesn’t appear to contribute anything statistically important,
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the F-test for that model still suggests survmult2 should be preferred over a
“no-predictor” model, because both handspan and sex are important.

21.3.6 Predicting from a Multiple Linear Model
Prediction (or forecasting) for multiple regression follows the same rules as
for simple regression. It’s important to remember that point predictions
found for a particular covariate profile—the collection of predictor values for
a given individual—are associated with the mean (or expected value) of the
response; that confidence intervals provide measures for mean responses;
and that prediction intervals provide measures for raw observations. You also
have to consider the issue of interpolation (predictions based on x values
that fall within the range of the originally observed covariate data) versus
extrapolation (prediction from x values that fall outside the range of said
data). Other than that, the R syntax for predict is identical to that used in
Section 20.4.

As an example, using the model fitted on student height as a linear
function of handspan and sex (in survmult), you can estimate the mean
height of a male student with a writing handspan of 16.5 cm, together with
a confidence interval.

R> predict(survmult,newdata=data.frame(Wr.Hnd=16.5,Sex="Male"),

interval="confidence",level=0.95)

fit lwr upr

1 173.4851 170.9419 176.0283

The result indicates that you have an expected value of about 173.48 cm
and that you can be 95 percent confident the true value lies somewhere
between 170.94 and 176.03 (rounded to 2 d.p.). In the same way, the mean
height of a female with a handspan of 13 cm is estimated at 158.42 cm, with
a 99 percent prediction interval of 139.76 to 177.07.

R> predict(survmult,newdata=data.frame(Wr.Hnd=13,Sex="Female"),

interval="prediction",level=0.99)

fit lwr upr

1 158.4147 139.7611 177.0684

There are in fact two female students in the data set with writing
handspans of 13 cm, as you can see in Figure 21-1. Using your knowledge
of subsetting data frames, you can inspect these two records and select the
three variables of interest.

R> survey[survey$Sex=="Female" & survey$Wr.Hnd==13,c("Sex","Wr.Hnd","Height")]

Sex Wr.Hnd Height

45 Female 13 180.34

152 Female 13 165.00
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Now, the second female’s height falls well inside the prediction interval,
but the first female’s height is significantly higher than the upper limit. It’s
important to realize that, technically, nothing has gone wrong here in terms
of the model fitting and interpretation—it’s still possible that an observation
can fall outside a prediction interval, even a wide 99 percent interval, though
it’s perhaps improbable. There could be any number of reasons for this
occurring. First, the model could be inadequate. For example, you might
be excluding important predictors in the fitted model and therefore have
less predictive power. Second, although the prediction is within the range of
the observed data, it has occurred at one extreme end of the range, where
it’s less reliable because your data are relatively sparse. Third, the observa-
tion itself may be tainted in some way—perhaps the individual recorded
her handspan incorrectly, in which case her invalid observation should be
removed prior to model fitting. It’s with this critical eye that a good statisti-
cian will appraise data and models; this is a skill that I’ll emphasize further as
this chapter unfolds.

Exercise 21.1

In the MASS package, you’ll find the data frame cats, which provides
data on sex, body weight (in kilograms), and heart weight (in grams)
for 144 household cats (see Venables and Ripley, 2002, for further
details); you can read the documentation with a call to ?cats. Load
the MASS package with a call to library("MASS"), and access the object
directly by entering cats at the console prompt.

a. Plot heart weight on the vertical axis and body weight on the
horizontal axis, using different colors or point characters to
distinguish between male and female cats. Annotate your plot
with a legend and appropriate axis labels.

b. Fit a least-squares multiple linear regression model using heart
weight as the response variable and the other two variables as
predictors, and view a model summary.
i. Write down the equation for the fitted model and interpret

the estimated regression coefficients for body weight and
sex. Are both statistically significant? What does this say
about the relationship between the response and predictors?

ii. Report and interpret the coefficient of determination and
the outcome of the omnibus F -test.

c. Tilman’s cat, Sigma, is a 3.4 kg female. Use your model to esti-
mate her mean heart weight and provide a 95 percent prediction
interval.
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d. Use predict to superimpose continuous lines based on the fitted
linear model on your plot from (a), one for male cats and one
for female. What do you notice? Does this reflect the statistical
significance (or lack thereof) of the parameter estimates?

The boot package (Davison and Hinkley, 1997; Canty and Ripley,
2015) is another library of R code that’s included with the standard
installation but isn’t automatically loaded. Load boot with a call to
library("boot"). You’ll find a data frame called nuclear, which contains
data on the construction of nuclear power plants in the United States
in the late 1960s (Cox and Snell, 1981).

e. Access the documentation by entering ?nuclear at the prompt
and examine the details of the variables. (Note there is a mistake
for date, which provides the date that the construction permits
were issued—it should read “measured in years since January
1 1900 to the nearest month.”) Use pairs to produce a quick
scatterplot matrix of the data.

f. One of the original objectives was to predict the cost of further
construction of these power plants. Create a fit and summary of
a linear regression model that aims to model cost by t1 and t2,
two variables that describe different elapsed times associated with
the application for and issue of various permits. Take note of the
estimated regression coefficients and their significance in the
fitted model.

g. Refit the model, but this time also include an effect for the date
the construction permit was issued. Contrast the output for this
new model against the previous one. What do you notice, and
what does this information suggest about the relationships in the
data with respect to these predictors?

h. Fit a third model for power plant cost, using the predictors for
“date of permit issue,” “power plant capacity,” and the binary
variable describing whether the plant was sited in the north-
eastern United States. Write down the fitted model equation
and provide 95 percent confidence intervals for each estimated
coefficient.

The following table gives an excerpt of a historical data set com-
piled between 1961 and 1973. It concerns the annual murder rate in
Detroit, Michigan; the data were originally presented and analyzed
by Fisher (1976) and are reproduced here from Harraway (1995).
In the data set you’ll find the number of murders, police officers,
and gun licenses issued per 100,000 population, as well as the overall
unemployment rate as a percentage of the overall population.
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Murders Police Unemployment Guns

8.60 260.35 11.0 178.15

8.90 269.80 7.0 156.41

8.52 272.04 5.2 198.02

8.89 272.96 4.3 222.10

13.07 272.51 3.5 301.92

14.57 261.34 3.2 391.22

21.36 268.89 4.1 665.56

28.03 295.99 3.9 1131.21

31.49 319.87 3.6 837.60

37.39 341.43 7.1 794.90

46.26 356.59 8.4 817.74

47.24 376.69 7.7 583.17

52.33 390.19 6.3 709.59

i. Create your own data frame in your R workspace and produce
a scatterplot matrix. Which of the variables appears to be most
strongly related to the murder rate?

j. Fit a multiple linear regression model using the number of
murders as the response and all other variables as predictors.
Write down the model equation and interpret the coefficients. Is
it reasonable to state that all relationships between the response
and the predictors are causal?

k. Identify the amount of variation in the response attributed to
the joint effect of the three explanatory variables. Then refit the
model excluding the predictor associated with the largest (in
other words, “most nonsignificant”) p-value. Compare the new
coefficient of determination with that of the previous model. Is
there much difference?

l. Use your model from (k) to predict the mean number of mur-
ders per 100,000 residents, with 300 police officers and 500
issued gun licenses. Compare this to the mean response if there
were no gun licenses issued and provide 99 percent confidence
intervals for both predictions.

21.4 Transforming Numeric Variables

Sometimes, the linear function as strictly defined by the standard regression
equation, (21.1), can be inadequate when it comes to capturing relation-
ships between a response and selected covariates. You might, for example,
observe curvature in a scatterplot between two numeric variables to which
a perfectly straight line isn’t necessarily best suited. To a certain extent, the
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requirement that your data exhibit such linear behavior in order for a linear
regression model to be appropriate can be relaxed by simply transforming
(typically in a nonlinear fashion) certain variables before any estimation or
model fitting takes place.

Numeric transformation refers to the application of a mathematical func-
tion to your numeric observations in order to rescale them. Finding the
square root of a number and converting a temperature from Fahrenheit to
Celsius are both examples of a numeric transformation. In the context of
regression, transformation is generally applied only to continuous variables
and can be done in any number of ways. In this section, you’ll limit your
attention to examples using the two most common approaches: polynomial
and logarithmic transformations. However, note that the appropriateness of
the methods used to transform variables, and any modeling benefits that
might occur, can only really be considered on a case-by-case basis.

Transformation in general doesn’t represent a universal solution to solv-
ing problems of nonlinearity in the trends in your data, but it can at least
improve how faithfully a linear model is able to represent those trends.

21.4.1 Polynomial
Following on from a comment made earlier, let’s say you observe a curved
relationship in your data such that a straight line isn’t a sensible choice for
modeling it. In an effort to fit your data more closely, a polynomial or power
transformation can be applied to a specific predictor variable in your regres-
sion model. This is a straightforward technique that, by allowing polynomial
curvature in the relationships, allows changes in that predictor to influence
the response in more complex ways than otherwise possible. You achieve
this by including additional terms in the model definition that represent
the impact of progressively higher powers of the variable of interest on the
response.

To clarify the concept of polynomial curvature, consider the following
sequence between −4 and 4, as well as the simple vectors computed from it:

R> x <- seq(-4,4,length=50)

R> y <- x

R> y2 <- x + x^2

R> y3 <- x + x^2 + x^3

Here, you’re taking the original value of x and calculating specific func-
tionals of it. The vector y, as a copy of x, is clearly linear (in technical terms,
this is a “polynomial of order 1”). You assign y2 to take on an additionally
squared valued of x, providing quadratic behavior—a polynomial of order 2.
Lastly, the vector y3 represents the results of a cubic function of the values of
x, with the inclusion of x raised to the power of 3—a polynomial of order 3.
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The following three lines of code produce, separately, the plots from left to
right in Figure 21-2.

R> plot(x,y,type="l")

R> plot(x,y2,type="l")

R> plot(x,y3,type="l")

Figure 21-2: Illustrating linear (left), quadratic (middle), and cubic functions (right) of x

Perhaps a bit more generally, let’s say you have data for a continuous
predictor, X , that you want to use to model your response, Y . Following
estimation in the usual way, linearly, the simple model is ŷ = β̂0 + β̂1x; a
quadratic trend in X can be modeled via the multiple regression ŷ = β̂0 +

β̂1x+ β̂2x2; a cubic relationship can be captured by ŷ = β̂0+ β̂1x+ β̂2x2
+ β̂3x3;

and so on. From the plots in Figure 21-2, a good way to interpret the effects
of including these extra terms is in the complexity of the curves that can be
captured. At order 1, the linear relationship allows no curvature. At order 2,
a quadratic function of any given variable allows one “bend.” At order 3, the
model can cope with two bends in the relationship, and this continues if you
keep adding terms corresponding to increasing powers of the covariate. The
regression coefficients associated with these terms (all implied to be 1 in
the code that produced the previous plots) are able to control the specific
appearance (in other words, the strength and direction) of the curvature.

Fitting a Polynomial Transformation

Return your attention to the built-in mtcars data set. Consider the disp vari-
able, which describes engine displacement volume in cubic inches, against
a response variable of miles per gallon. If you examine a plot of the data in
Figure 21-3, you can see that there does appear to be a slight yet noticeable
curve in the relationship between displacement and mileage.

R> plot(mtcars$disp,mtcars$mpg,xlab="Displacement (cu. in.)",ylab="MPG")
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Figure 21-3: Scatterplot of miles per gallon and engine
displacement, for the mtcars data

Is the straight line that a simple linear regression model would provide
really the best way to represent this relationship? To investigate this, start by
fitting that basic linear setup.

R> car.order1 <- lm(mpg~disp,data=mtcars)

R> summary(car.order1)

Call:

lm(formula = mpg ~ disp, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-4.8922 -2.2022 -0.9631 1.6272 7.2305

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.599855 1.229720 24.070 < 2e-16 ***
disp -0.041215 0.004712 -8.747 9.38e-10 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.251 on 30 degrees of freedom

Multiple R-squared: 0.7183, Adjusted R-squared: 0.709

F-statistic: 76.51 on 1 and 30 DF, p-value: 9.38e-10
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This clearly indicates statistical evidence of a negative linear impact of
displacement on mileage—for each additional cubic inch of displacement,
the mean response decreases by about 0.041 miles per gallon.

Now, try to capture the apparent curve in the data by adding a quad-
ratic term in disp to the model. You can do this in two ways. First, you could
create a new vector in the workspace by simply squaring the mtcars$disp vec-
tor and then supplying the result to the formula in lm. Second, you could
specify disp^2 directly as an additive term in the formula. If you do it this
way, it’s essential to wrap that particular expression in a call to I as follows:

R> car.order2 <- lm(mpg~disp+I(disp^2),data=mtcars)

R> summary(car.order2)

Call:

lm(formula = mpg ~ disp + I(disp^2), data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.9112 -1.5269 -0.3124 1.3489 5.3946

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.583e+01 2.209e+00 16.221 4.39e-16 ***
disp -1.053e-01 2.028e-02 -5.192 1.49e-05 ***
I(disp^2) 1.255e-04 3.891e-05 3.226 0.0031 **
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.837 on 29 degrees of freedom

Multiple R-squared: 0.7927, Adjusted R-squared: 0.7784

F-statistic: 55.46 on 2 and 29 DF, p-value: 1.229e-10

Use of the I function around a given term in the formula is necessary
when said term requires an arithmetic calculation—in this case, disp^2—
before the model itself is actually fitted.

Turning to the fitted multiple regression model itself, you can see that
the contribution of the squared component is statistically significant—the
output corresponding to I(disp^2) shows a p-value of 0.0031. This implies
that even if a linear trend is taken into account, the model that includes a
quadratic component (which introduces a curve) is a better-fitting model.
This conclusion is supported by a noticeably higher coefficient of determina-
tion compared to the first fit (0.7927 against 0.7183). You can see the fit of
this quadratic curve in Figure 21-4 (code for which follows shortly).
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Here you might reasonably wonder whether you can improve the abil-
ity of the model to capture the relationship further by adding yet another
higher-order term in the covariate of interest. To that end:

R> car.order3 <- lm(mpg~disp+I(disp^2)+I(disp^3),data=mtcars)

R> summary(car.order3)

Call:

lm(formula = mpg ~ disp + I(disp^2) + I(disp^3), data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.0896 -1.5653 -0.3619 1.4368 4.7617

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.070e+01 3.809e+00 13.310 1.25e-13 ***
disp -3.372e-01 5.526e-02 -6.102 1.39e-06 ***
I(disp^2) 1.109e-03 2.265e-04 4.897 3.68e-05 ***
I(disp^3) -1.217e-06 2.776e-07 -4.382 0.00015 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.224 on 28 degrees of freedom

Multiple R-squared: 0.8771, Adjusted R-squared: 0.8639

F-statistic: 66.58 on 3 and 28 DF, p-value: 7.347e-13

The output shows that a cubic component also offers a statistically sig-
nificant contribution. However, if you were to continue adding higher-order
terms, you’d find that fitting a polynomial of order 4 to these data isn’t able
to improve the fit at all, with several coefficients being rendered nonsignifi-
cant (the order 4 fit isn’t shown).

So, letting ŷ be miles per gallon and x be displacement in cubic inches,
and expanding the e-notation from the previous output, the fitted multiple
regression model is

ŷ = 50.7 − 0.3372x + 0.0011x2 − 0.000001x3,

which is precisely what the order 3 line in the left panel of Figure 21-4
reflects.

Plotting the Polynomial Fit

To address the plot itself, you visualize the data and the first (simple linear)
model in car.order1 in the usual way. To begin Figure 21-4, execute the fol-
lowing code:

R> plot(mtcars$disp,mtcars$mpg,xlab="Displacement (cu. in.)",ylab="MPG")

R> abline(car.order1)

506 Chapter 21



Figure 21-4: Three different models, polynomials of orders 1, 2, and 3, fitted to the
“mileage per displacement” relationship from the mtcars data set. Left: Visible plot
limits constrained to the data. Right: Visible plot limits widened considerably to
illustrate unreliability in extrapolation.

It’s a little more difficult to add the line corresponding to either of the
polynomial-termed models since abline is equipped to handle only straight-
line trends. One way to do this is to make use of predict for each value in
a sequence that represents the desired values of the explanatory variable.
(I favor this approach because it also allows you to simultaneously calcu-
late confidence and prediction bands if you want.) To add the line for the
order 2 model only, first create the required sequence over the observed
range of disp.

R> disp.seq <- seq(min(mtcars$disp)-50,max(mtcars$disp)+50,length=30)

Here, the sequence has been widened a little by minus and plus 50 to
predict a small amount on either side of the scope of the original covariate
data, so the curve meets the edges of the graph. Then you make the predic-
tion itself and superimpose the fitted line.

R> car.order2.pred <- predict(car.order2,newdata=data.frame(disp=disp.seq))

R> lines(disp.seq,car.order2.pred,lty=2)

You use the same technique, followed by the final addition of the leg-
end, for the order 3 polynomial.

R> car.order3.pred <- predict(car.order3,newdata=data.frame(disp=disp.seq))

R> lines(disp.seq,car.order3.pred,lty=3)

R> legend("topright",lty=1:3,

legend=c("order 1 (linear)","order 2 (quadratic)","order 3 (cubic)"))

The result of all this is on the left panel of Figure 21-4. Even though
you’ve used raw data from only one covariate, disp, the example illustrated
here is considered multiple regression because more than one parameter
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(in addition to the universal intercept β0) required estimation in the order
2 and 3 models.

The different types of trend lines fitted to the mileage and displacement
data clearly show different interpretations of the relationship. Visually, you
could reasonably argue that the simple linear fit is inadequate at modeling
the relationship between response and predictor, but it’s harder to come to
a clear conclusion when choosing between the order 2 and order 3 versions.
The order 2 fit captures the curve that tapers off as disp increases; the order
3 fit additionally allows for a bump (in technical terms a saddle or inflection),
followed by a steeper downward trend in the same domain.

So, which model is “best”? In this case, the statistical significance of the
parameters suggests that the order 3 model should be preferred. Having
said that, there are other things to consider when choosing between differ-
ent models, which you’ll think about more carefully in Section 22.2.

Pitfalls of Polynomials

One particular drawback associated with polynomial terms in linear regres-
sion models is the instability of the fitted trend when trying to perform any
kind of extrapolation. The right plot in Figure 21-4 shows the same three
fitted models (MPG by displacement), but this time with a much wider scale
for displacement. As you can see, the validity of these models is question-
able. Though the order 2 and 3 models fit MPG acceptably within the range
of the observed data, if you move even slightly outside the maximum thresh-
old of observed displacement values, the predictions of the mean mileage
go wildly off course. The order 2 model in particular becomes completely
nonsensical, suggesting a rapid improvement in MPG once the engine dis-
placement rises over 500 cubic inches. You must keep this natural mathe-
matical behavior of polynomial functions in mind if you’re considering
using higher-order terms in your regression models.

To create this plot, the same code that created the left plot can be used;
you simply use xlim to widen the x-axis range and define the disp.seq object
to a correspondingly wider sequence (in this case, I just set xlim=c(10,1000)
with matching from and to limits in the creation of disp.seq).

NOTE Models like this are still referred to as linear regression models, which might seem a
bit confusing since the fitted trends for higher-order polynomials are clearly nonlinear.
This is because linear regression refers to the fact that the function defining the
mean response is linear in terms of the regression parameters β0, β1, . . ., βp . As such,
any transformation applied to individual variables doesn’t affect the linearity of the
function with respect to the coefficients themselves.

21.4.2 Logarithmic
In statistical modeling situations where you have positive numeric obser-
vations, it’s common to perform a log transformation of the data to
dramatically reduce the overall range of the data and bring extreme
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observations closer to a measure of centrality. In that sense, transforming to
a logarithmic scale can help reduce the severity of heavily skewed data (see
Section 15.2.4). In the context of regression modeling, log transformations
can be used to capture trends where apparent curves “flatten off,” without
the same kind of instability outside the range of the observed data that you
saw with some of the polynomials.

If you need to refresh your memory on logarithms, turn back to Sec-
tion 2.1.2; it suffices here to note that the logarithm is the power to which
you must raise a base value in order to obtain an x value. For example, in
35
= 243, the logarithm is 5 and 3 is the base, expressed as log3 243 = 5.

Because of the ubiquity of the exponential function in common probability
distributions, statisticians almost exclusively work with the natural log (loga-
rithm to the base e). From here, assume all mentions of the log transforma-
tion refer to the natural log.

To briefly illustrate the typical behavior of the log transformation, take a
look at Figure 21-5, achieved with the following:

R> plot(1:1000,log(1:1000),type="l",xlab="x",ylab="",ylim=c(-8,8))

R> lines(1:1000,-log(1:1000),lty=2)

R> legend("topleft",legend=c("log(x)","-log(x)"),lty=c(1,2))

This plots the log of the integers 1 to 1000 against the raw values, as
well as plotting the negative log. You can see the way in which the log-
transformed values taper off and flatten out as the raw values increase.

Figure 21-5: The log function applied
to integers 1 to 1000

Fitting the Log Transformation

As noted, one use of the log transformation in regression is to allow this
kind of curvature in situations when a perfectly straight line doesn’t suit
the observed relationship. For an illustration, return to the mtcars examples
and consider mileage as a function of both horsepower and transmission
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type (variables hp and am, respectively). Create a scatterplot of MPG against
horsepower, with different colors distinguishing between automatic and
manual cars.

R> plot(mtcars$hp,mtcars$mpg,pch=19,col=c("black","gray")[factor(mtcars$am)],

xlab="Horsepower",ylab="MPG")

R> legend("topright",legend=c("auto","man"),col=c("black","gray"),pch=19)

The plotted points shown in Figure 21-6 suggest that curved trends in
horsepower may be more appropriate than straight-line relationships. Note
that you have to explicitly coerce the binary numeric mtcars$am vector to a
factor here in order to use it as a selector for the vector of two colors. You’ll
add the lines in after fitting the linear model.

Figure 21-6: Scatterplot of MPG on horsepower, split by
transmission type, with lines corresponding to a multiple linear
regression using a log-scaled effect of horsepower superimposed

Let’s do so using the log transformation of horsepower to try to capture
the curved relationship. Since, in this example, you also want to account
for the potential of transmission type to affect the response, this is included
as an additional predictor variable as usual.

R> car.log <- lm(mpg~log(hp)+am,data=mtcars)

R> summary(car.log)

Call:

lm(formula = mpg ~ log(hp) + am, data = mtcars)
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Residuals:

Min 1Q Median 3Q Max

-3.9084 -1.7692 -0.1432 1.4032 6.3865

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.4842 5.2697 12.047 8.24e-13 ***
log(hp) -9.2383 1.0439 -8.850 9.78e-10 ***
am 4.2025 0.9942 4.227 0.000215 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.592 on 29 degrees of freedom

Multiple R-squared: 0.827, Adjusted R-squared: 0.8151

F-statistic: 69.31 on 2 and 29 DF, p-value: 8.949e-12

The output indicates jointly statistically significant effects of both log-
horsepower and transmission type on mileage. Keeping transmission con-
stant, the mean MPG drops by around 9.24 for each additional unit of log-
horsepower. Having a manual transmission increases the mean MPG by
roughly 4.2 (estimated in this order owing to the coding of am—0 for auto-
matic, 1 for manual; see ?mtcars). The coefficient of determination shows
82.7 percent of the variation in the response is explained by this regression,
suggesting a satisfactory fit.

Plotting the Log Transformation Fit

To visualize the fitted model, you first need to calculate the fitted values for
all desired predictor values. The following code creates a sequence of horse-
power values (minus and plus 20 horsepower) and performs the required
prediction for both transmission types.

R> hp.seq <- seq(min(mtcars$hp)-20,max(mtcars$hp)+20,length=30)

R> n <- length(hp.seq)

R> car.log.pred <- predict(car.log,newdata=data.frame(hp=rep(hp.seq,2),

am=rep(c(0,1),each=n)))

In the above code, since you want to plot predictions for both possible
values of am, when using newdata you need to replicate hp.seq twice. Then,
when you provide values for am to newdata, one series of hp.seq is paired with
an appropriately replicated am value of 0, the other with 1. The result of this
is a vector of predictions of length twice that of hp.seq, car.log.pred, with the
first n elements corresponding to automatic cars and the latter n to manuals.

Now you can add these lines to Figure 21-6 with the following:

R> lines(hp.seq,car.log.pred[1:n])

R> lines(hp.seq,car.log.pred[(n+1):(2*n)],col="gray")
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By examining the scatterplot, you can see that the fitted model appears
to do a good job of estimating the joint relationship between horsepower/
transmission and MPG. The statistical significance of transmission type in
this model directly affects the difference between the two added lines. If
am weren’t significant, the lines would be closer together; in that case, the
model would be suggesting that one curve would be sufficient to capture
the relationship. As usual, extrapolation too far outside the range of the
observed predictor data isn’t a great idea, though it’s less unstable for log-
transformed trends than for polynomial functions.

21.4.3 Other Transformations
Transformation can involve more than one variable of the data set and isn’t
limited to just predictor variables either. In their original investigation into
the mtcars data, Henderson and Velleman (1981) also noted the presence
of the same curved relationships you’ve uncovered between the response
and variables such as horsepower and displacement. They argued that it’s
preferable to use gallons per mile (GPM) instead of MPG as the response
variable to improve linearity. This would involve modeling a transformation
of MPG, namely, that GPM = 1/MPG.

The authors also commented on the limited influence that both horse-
power and displacement have on GPM if the weight of the car is included in
a fitted model, because of the relatively high correlations present among
these three predictors (known as multicollinearity). To address this, the
authors created a new predictor variable calculated as horsepower divided
by weight. This measures, in their words, how “overpowered” a car is—and
they proceeded to use that new predictor instead of horsepower or displace-
ment alone. This is just some of the experimentation that took place in the
search for an appropriate way to model these data.

To this end, however you choose to model your own data, the objec-
tive of transforming numeric variables should always be to fit a valid model
that represents the data and the relationships more realistically and accu-
rately. When reaching for this goal, there’s plenty of freedom in how you
can transform numeric observations in applications of regression methods.
For a further discussion on transformations in linear regression, Chapter 7
of Faraway (2005) provides an informative introduction.

Exercise 21.2

The following table presents data collected in one of Galileo’s
famous “ball” experiments, in which he rolled a ball down a ramp
of different heights and measured how far it traveled from the
base of the ramp. For more on this and other interesting examples,
look at “Teaching Statistics with Data of Historic Significance” by
Dickey and Arnold (1995).
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Initial height Distance

1000 573

800 534

600 495

450 451

300 395

200 337

100 253

a. Create a data frame in R based on this table and plot the data
points with distance on the y-axis.

b. Galileo believed there was a quadratic relationship between
initial height and the distance traveled.
i. Fit an order 2 polynomial in height, with distance as the

response.
ii. Fit a cubic (order 3) and a quartic (order 4) model for

these data. What do they tell you about the nature of the
relationship?

c. Based on your models from (b), choose the one that you think
best represents the data and plot the fitted line on the raw data.
Add 90 percent confidence bands for mean distance traveled to
the plot.

The contributed R package faraway contains a large number of data
sets that accompany a linear regression textbook by Faraway (2005).
Install the package and then call library("faraway") to load it. One of
the data sets is trees, which provides data on the dimensions of felled
trees of a certain type (see, for example, Atkinson, 1985).

d. Access the data object at the prompt and plot volume against
girth (the latter along the x-axis).

e. Fit two models with Volume as the response: one quadratic model
in Girth and the other based on log transformations of both
Volume and Girth. Write down the model equations for each and
comment on the similarity (or difference) of the fits in terms of
the coefficient of determination and the omnibus F-test.

f. Use predict to add lines to the plot from (d) for each of the two
models from (e). Use different line types; add a corresponding
legend. Also include 95 percent prediction intervals, with line
types matching those of the fitted values (note that for the model
that involves log transformation of the response and the predic-
tor, any returned values from predict will themselves be on the
log scale; you have to back-transform these to the original scale
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using exp before the lines for that model can be superimposed).
Comment on the respective fits and their estimated prediction
intervals.

Lastly, turn your attention back to the mtcars data frame.

g. Fit and summarize a multiple linear regression model to deter-
mine mean MPG from horsepower, weight, and displacement.

h. In the spirit of Henderson and Velleman (1981), use I to refit
the model in (g) in terms of GPM = 1/MPG. Which model
explains a greater amount of variation in the response?

21.5 Interactive Terms

So far, you’ve looked only at the joint main effects of how predictors affect
the outcome variable (and one-to-one transformations thereof). Now you’ll
look at interactions between covariates. An interactive effect between predic-
tors is an additional change to the response that occurs at particular combi-
nations of the predictors. In other words, an interactive effect is present if,
for a given covariate profile, the values of the predictors are such that they
produce an effect that augments the stand-alone main effects associated with
those predictors.

21.5.1 Concept and Motivation
Diagrams such as those found in Figure 21-7 are often used to help explain
the concept of interactive effects. These diagrams show your mean response
value, ŷ, on the vertical axis, as usual, and a predictor value for the variable
x1 on the horizontal axis. They also show a binary categorical variable x2,
which can be either zero or one. These hypothetical variables are labeled as
such in the images.

Figure 21-7: Concept of an interactive effect between two predictors x1 and x2,
on the mean response value ŷ. Left: Only main effects of x1 and x2 influence ŷ.
Right: An interaction between x1 and x2 is needed in addition to their main
effects in order to model ŷ.
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The left diagram shows the limit of the models you’ve considered so far
in this chapter—that both x1 and x2 affect ŷ independently of each other.
The right diagram, however, clearly shows that the effect of x1 on ŷ changes
completely depending on the value of x2. On the left, only main effects of x1
and x2 are needed to determine ŷ; on the right, main effects and an interac-
tive effect between x1 and x2 are present.

NOTE When estimating regression models, you always have to accompany interactions with
the main effects of the relevant predictors, for reasons of interpretability. Since inter-
actions are themselves best understood as an augmentation of the main effects, it
makes no sense to remove the latter and leave in the former.

For a good example of an interaction, think about pharmacology. Inter-
active effects between medicines are relatively common, which is why health
care professionals often ask about other medicines you might be taking.
Consider statins—drugs commonly used to reduce cholesterol. Users of
statins are told to avoid grapefruit juice because it contains natural chem-
ical compounds that inhibit the efficacy of the enzyme responsible for the
correct metabolization of the drug. If an individual is taking statins and not
consuming grapefruit, you would expect a negative relationship between
cholesterol level and statin use (think about “statin use” either as a continu-
ous or as a categorical dosage variable)—as statin use increases or is affirma-
tive, the cholesterol level decreases. On the other hand, for an individual on
statins who is consuming grapefruit, the nature of the relationship between
cholesterol level and statin use could easily be different—weakened nega-
tive, neutral, or even positive. If so, since the effect of the statins on choles-
terol changes according to the value of another variable—whether or not
grapefruit is consumed—this would be considered an interaction between
those two predictors.

Interactions can occur between categorical variables, numeric vari-
ables, or both. It’s most common to find two-way interactions—interactions
between exactly two predictors—which is what you’ll focus on in Sec-
tions 21.5.2 to 21.5.4. Three-way and higher-order interactive effects are
technically possible but less common, partly because they are difficult to
interpret in a real-world context. You’ll consider an example of these in
Section 21.5.5.

21.5.2 One Categorical, One Continuous
Generally, a two-way interaction between a categorical and a continuous
predictor should be understood as effecting a change in the slope of the
continuous predictor with respect to the nonreference levels of the cate-
gorical predictor. In the presence of a term for the continuous variable, a
categorical variable with k levels will have k − 1 main effect terms, so there
will be a further k − 1 interactive terms between all the alternative levels of
the categorical variable and the continuous variable.
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The different slopes for x1 by category of x2 for ŷ can be seen clearly on
the right of Figure 21-7. In such a situation, in addition to the main effects
for x1 and x2, there would be one interactive term in the fitted model cor-
responding to x2 = 1. This defines the additive term needed to change the
slope in x1 for x2 = 0 to the new slope in x1 for x2 = 1.

For an example, let’s access a new data set. In Exercise 21.2, you looked
at the faraway package (Faraway, 2005) to access the trees data. In this pack-
age, you’ll also find the diabetes object—a cardiovascular disease data set
detailing characteristics of 403 African Americans (originally investigated
and reported in Schorling et al., 1997; Willems et al., 1997). Install faraway if
you haven’t already and load it with library("faraway"). Restrict your atten-
tion to the total cholesterol level (chol—continuous), age of the individ-
ual (age—continuous), and body frame type (frame—categorical with k = 3
levels: "small" as the reference level, "medium", and "large"). You can see the
data in Figure 21-8, which will be created momentarily.

You’ll look at modeling total cholesterol by age and body frame. It
seems logical to expect that cholesterol is related to both age and body
type, so it makes sense to also consider the possibility that the effect of age
on cholesterol is different for individuals of different body frames. To inves-
tigate, let’s fit the multiple linear regression and include a two-way interac-
tion between the two variables. In the call to lm, you specify the main effects
first, using + as usual, and then specify an interactive effect of two predictors
by using a colon (:) between them.

R> dia.fit <- lm(chol~age+frame+age:frame,data=diabetes)

R> summary(dia.fit)

Call:

lm(formula = chol ~ age + frame + age:frame, data = diabetes)

Residuals:

Min 1Q Median 3Q Max

-131.90 -26.24 -5.33 22.17 226.11

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 155.9636 12.0697 12.922 < 2e-16 ***
age 0.9852 0.2687 3.667 0.00028 ***
framemedium 28.6051 15.5503 1.840 0.06661 .

framelarge 44.9474 18.9842 2.368 0.01840 *
age:framemedium -0.3514 0.3370 -1.043 0.29768

age:framelarge -0.8511 0.3779 -2.252 0.02490 *
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 42.34 on 384 degrees of freedom

(13 observations deleted due to missingness)
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Multiple R-squared: 0.07891, Adjusted R-squared: 0.06692

F-statistic: 6.58 on 5 and 384 DF, p-value: 6.849e-06

Inspecting the estimated model parameters in the output, you can see
a main effect coefficient for age, main effect coefficients for the two levels of
frame (that aren’t the reference level), and two further terms for the interac-
tive effect of age with those same nonreference levels.

NOTE There’s actually a shortcut to doing this in R—the cross-factor notation. The same
model shown previously could have been fitted by using chol~age*frame in lm; the sym-
bol * between two variables in a formula should be interpreted as “include an intercept,
all main effects, and the interaction.” I’ll use this shortcut from now on.

The output shows the significance of age and some evidence to support
the presence of a main effect of frame. There’s also slight indication of sig-
nificance of the interaction, though it’s weak. Assessing significance in this
case, where one predictor is categorical with k > 2 levels, follows the same
rule as noted in the discussion of multilevel variables in Section 20.5.2—if at
least one of the coefficients is significant, the entire effect should be deemed
significant.

The general equation for the fitted model can be written down directly
from the output.

“Mean total cholesterol” = 155.9636 + 0.9852 × “age”

+ 28.6051 × “medium frame”

+ 44.9474 × “large frame”

− 0.3514 × “age : medium frame”

− 0.8511 × “age : large frame” (21.7)

I’ve used a colon (:) to denote the interactive terms to mirror the R
output.

For the reference level of the categorical predictor, body type “small,”
the fitted model can be written down straight from the output.

“Mean total cholesterol” = 155.9636 + 0.9852 × “age”

For a model with the main effects only, changing body type to “medium”
or “large” would affect only the intercept—you know from Section 20.5 that
the relevant effect is simply added to the outcome. The presence of the
interaction, however, means that in addition to the change in the intercept,
the main effect slope of age must now also be changed according to the rele-
vant interactive term. For an individual with a “medium” frame, the model is

“Mean total cholesterol” = 155.9636 + 0.9852 × “age” + 28.6051

− 0.3514 × “age”

= 184.5687 + (0.9852 − 0.3514) × “age”

= 184.5687 + 0.6338 × “age”
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and for an individual with a “large” frame, the model is

“Mean total cholesterol” = 155.9636 + 0.9852 × “age” + 44.9474

− 0.8511 × “age”

= 200.911 + (0.9852 − 0.8511) × “age”

= 200.911 + 0.1341 × “age”

You can easily calculate these in R by accessing the coefficients of the
fitted model object:

R> dia.coef <- coef(dia.fit)

R> dia.coef

(Intercept) age framemedium framelarge

155.9635868 0.9852028 28.6051035 44.9474105

age:framemedium age:framelarge

-0.3513906 -0.8510549

Next, let’s sum the relevant components of this vector. Once you have
the sums, you’ll be able to plot the fitted model.

R> dia.small <- c(dia.coef[1],dia.coef[2])

R> dia.small

(Intercept) age

155.9635868 0.9852028

R> dia.medium <- c(dia.coef[1]+dia.coef[3],dia.coef[2]+dia.coef[5])

R> dia.medium

(Intercept) age

184.5686904 0.6338122

R> dia.large <- c(dia.coef[1]+dia.coef[4],dia.coef[2]+dia.coef[6])

R> dia.large

(Intercept) age

200.9109973 0.1341479

The three lines are stored as numeric vectors of length 2, with the inter-
cept first and the slope second. This is the form required by the optional
coef argument of abline, which allows you to superimpose these straight lines
on a plot of the raw data. The following code produces Figure 21-8.

R> cols <- c("black","darkgray","lightgray")

R> plot(diabetes$chol~diabetes$age,col=cols[diabetes$frame],

cex=0.5,xlab="age",ylab="cholesterol")

R> abline(coef=dia.small,lwd=2)

R> abline(coef=dia.medium,lwd=2,col="darkgray")

R> abline(coef=dia.large,lwd=2,col="lightgray")

R> legend("topright",legend=c("small frame","medium frame","large frame"),

lty=1,lwd=2,col=cols)
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Figure 21-8: Fitted linear model, main effects, and interaction
for mean total cholesterol by age and body frame

If you examine the fitted model in Figure 21-8, it’s clear that inclusion
of an interaction between age and body frame has allowed more flexibility
in the way mean total cholesterol relates to the two predictors. The non-
parallel nature of the three plotted lines reflects the concept illustrated in
Figure 21-7.

I walked through this to illustrate how the concept works, but in practice
you don’t need to go through all of these steps to find the point estimates
(and any associated confidence intervals). You can predict from a fitted lin-
ear model with interactions in the same way as for main-effect-only models
through the use of predict.

21.5.3 Two Categorical
You met the concept of interactions between two categorical explanatory
variables in the introduction to two-way ANOVA in Section 19.2. There, you
uncovered evidence of an interactive effect of wool type and tension on the
mean number of warp breaks in lengths of yarn (based on the ready-to-use
warpbreaks data frame). You then visualized the interaction with an interac-
tion plot (Figure 19-2 on page 447), not unlike the diagrams in Figure 21-7.

Let’s implement the same model as the last warpbreaks example in Sec-
tion 19.2.2 in an explicit linear regression format.

R> warp.fit <- lm(breaks~wool*tension,data=warpbreaks)

R> summary(warp.fit)

Call:

lm(formula = breaks ~ wool * tension, data = warpbreaks)
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Residuals:

Min 1Q Median 3Q Max

-19.5556 -6.8889 -0.6667 7.1944 25.4444

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.556 3.647 12.218 2.43e-16 ***
woolB -16.333 5.157 -3.167 0.002677 **
tensionM -20.556 5.157 -3.986 0.000228 ***
tensionH -20.000 5.157 -3.878 0.000320 ***
woolB:tensionM 21.111 7.294 2.895 0.005698 **
woolB:tensionH 10.556 7.294 1.447 0.154327

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.94 on 48 degrees of freedom

Multiple R-squared: 0.3778, Adjusted R-squared: 0.3129

F-statistic: 5.828 on 5 and 48 DF, p-value: 0.0002772

Here I’ve used the cross-factor symbol *, rather than wool + tension +

wool:tension. When both predictors in a two-way interaction are categorical,
there will be a term for each nonreference level of the first predictor com-
bined with all nonreference levels of the second predictor. In this example,
wool is binary with only k = 2 levels and tension has k = 3; therefore, the
only interaction terms present are the “medium” (M) and “high” (H) tension
levels (“low”, L, is the reference level) with wool type B (A is the reference
level). Therefore, altogether in the fitted model, there are terms for B, M, H,
B:M, and B:H.

These results provide the same conclusion as the ANOVA analysis—
there is indeed statistical evidence of an interactive effect between wool
type and tension on mean breaks, on top of the contributing main effects
of those predictors.

The general fitted model can be understood as

“Mean warp breaks” = 44.556 − 16.333 × “wool type B”

− 20.556 × “medium tension”

− 20.000 × “high tension”

+ 21.111 × “wool type B : medium tension”

+ 10.556 × “wool type B : high tension”

The additional interaction terms work the same way as the main
effects—when only categorical predictors are involved, the model can be
seen as a series of additive terms to the overall intercept. Exactly which ones
you use in any given prediction depends on the covariate profile of a given
individual.
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Let’s have a quick series of examples: for wool A at low tension, the
mean number of warp breaks is predicted as simply the overall intercept; for
wool A at high tension, you have the overall intercept and the main effect
term for high tension; for wool B at low tension, you have the overall inter-
cept and the main effect for wool type B only; and for wool B at medium
tension, you have the overall intercept, the main effect for wool type B, the
main effect for medium tension, and the interactive term for wool B with
medium tension.

You can use predict to estimate the mean warp breaks for these four
scenarios; they’re accompanied here with 90 percent confidence intervals:

R> nd <- data.frame(wool=c("A","A","B","B"),tension=c("L","H","L","M"))

R> predict(warp.fit,newdata=nd,interval="confidence",level=0.9)

fit lwr upr

1 44.55556 38.43912 50.67199

2 24.55556 18.43912 30.67199

3 28.22222 22.10579 34.33866

4 28.77778 22.66134 34.89421

21.5.4 Two Continuous
Finally, you’ll look at the situation when the two predictors are continuous.
In this case, an interaction term operates as a modifier on the continuous
plane that’s fitted using the main effects only. In a similar way to an inter-
action between a continuous and a categorical predictor, an interaction
between two continuous explanatory variables allows the slope associated
with one variable to be affected, but this time, that modification is made in
a continuous way (that is, according to the value of the other continuous
variable).

Returning to the mtcars data frame, consider MPG once more as a func-
tion of horsepower and weight. The fitted model, shown next, includes the
interaction in addition to the main effects of the two continuous predictors.
As you can see, there is a single estimated interactive term, and it is deemed
significantly different from zero.

R> car.fit <- lm(mpg~hp*wt,data=mtcars)

R> summary(car.fit)

Call:

lm(formula = mpg ~ hp * wt, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.0632 -1.6491 -0.7362 1.4211 4.5513

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 49.80842 3.60516 13.816 5.01e-14 ***
hp -0.12010 0.02470 -4.863 4.04e-05 ***
wt -8.21662 1.26971 -6.471 5.20e-07 ***
hp:wt 0.02785 0.00742 3.753 0.000811 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.153 on 28 degrees of freedom

Multiple R-squared: 0.8848, Adjusted R-squared: 0.8724

F-statistic: 71.66 on 3 and 28 DF, p-value: 2.981e-13

The model is written as

“Mean MPG” = 49.80842 − 0.12010 × “horsepower”

− 8.21662 × “weight”

+ 0.02785 × “horsepower : weight”

= 49.80842 − 0.12010 × “horsepower”

− 8.21662 × “weight”

+ 0.02785 × “horsepower” × “weight”

The second version of the model equation provided here reveals for
the first time an interaction expressed as the product of the values of the
two predictors, which is exactly how the fitted model is used to predict the
response. (Technically, this is the same as when at least one of the predic-
tors is categorical—but the dummy coding simply results in zeros and ones
for the respective terms, so multiplication just amounts to the presence or
absence of a given term, as you’ve seen.)

You can interpret an interaction between two continuous predictors by
considering the sign (+ or −) of the coefficient. Negativity suggests that as
the values of the predictors increase, the response is reduced after comput-
ing the result of the main effects. Positivity, as is the case here, suggests that
as the values of the predictors increase, the effect is an additional increase,
an amplification, on the mean response.

Contextually, the negative main effects of hp and wt indicate that mileage
is naturally reduced for heavier, more powerful cars. However, positivity of
the interactive effect suggests that this impact on the response is “softened”
as horsepower or weight is increased. To put it another way, the negative
relationship imparted by the main effects is rendered “less extreme” as the
values of the predictors get bigger and bigger.

Figure 21-9 contrasts the main-effects-only version of the model
(obtained using lm with the formula mpg~hp+wt; not explicitly fitted in this
section) with the interaction version of the model fitted just above as the
object car.fit.
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Figure 21-9: Response surfaces for mean MPG by horsepower and weight, for a main-
effects-only model (left), and one that includes the two-way interaction between the
continuous predictors (right)

The plotted response surfaces show the mean MPG on the vertical z-axis
and the two predictor variables on the horizontal axes as marked. You can
interpret the predicted mean MPG, based on a given horsepower and weight
value, as a point on the surface. Note that both surfaces decrease in MPG
(vertically along the z-axis) as you move to larger values of either predictor
along the respective horizontal axes.

I’ll show how these plots are created in Chapter 25. For now, they serve
simply to highlight the aforementioned “softening” impact of the interac-
tion in car.fit. On the left, the main-effects-only model shows a flat plane
decreasing according to the negative linear slopes in each predictor. On
the right, however, the presence of the positive interactive term flattens this
plane out, meaning the rate of decrease is slowed as the values of the predic-
tor variables increase.

21.5.5 Higher-Order Interactions
As mentioned, two-way interactions are the most common kind of inter-
actions you’ll encounter in applications of regression methods. This is
because for three-way or higher-order terms, you need a lot more data for a
reliable estimation of interactive effects, and there are a number of interpre-
tative complexities to overcome. Three-way interactions are far rarer than
two-way effects, and four-way and above are rarer still.

In Exercise 21.1, you used the nuclear data set found in the boot pack-
age (provided with the standard R installation), which includes data on
the constructions of nuclear power plants in the United States. In the exer-
cises, you focused mainly on date and time predictors related to construc-
tion permits to model the mean cost of construction for the nuclear power

Multiple Linear Regression 523



plants. For the sake of this example, assume you don’t have the data on
these predictors. Can the cost of construction be adequately modeled using
only the variables that describe characteristics of the plant itself?

Load the boot package and access the ?nuclear help page to find details
on the variables: cap (continuous variable describing the capacity of the
plant); cum.n (treated as continuous, describing the number of similar con-
structions the engineers had previously worked on); ne (binary, describing
whether the plant was in the northeastern United States); and ct (binary,
describing whether the plant had a cooling tower).

The following model is fitted with the final construction cost of the
plant as the response; a main effect for capacity; and main effects of, and all
two-way interactions and the three-way interaction among, cum.n, ne, and ct:

R> nuc.fit <- lm(cost~cap+cum.n*ne*ct,data=nuclear)

R> summary(nuc.fit)

Call:

lm(formula = cost ~ cap + cum.n * ne * ct, data = nuclear)

Residuals:

Min 1Q Median 3Q Max

-162.475 -50.368 -8.833 43.370 213.131

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 138.0336 99.9599 1.381 0.180585

cap 0.5085 0.1127 4.513 0.000157 ***
cum.n -24.2433 6.7874 -3.572 0.001618 **
ne -260.1036 164.7650 -1.579 0.128076

ct -187.4904 76.6316 -2.447 0.022480 *
cum.n:ne 44.0196 12.2880 3.582 0.001577 **
cum.n:ct 35.1687 8.0660 4.360 0.000229 ***
ne:ct 524.1194 200.9567 2.608 0.015721 *
cum.n:ne:ct -64.4444 18.0213 -3.576 0.001601 **
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 107.3 on 23 degrees of freedom

Multiple R-squared: 0.705, Adjusted R-squared: 0.6024

F-statistic: 6.872 on 8 and 23 DF, p-value: 0.0001264

In this code, you specify the higher-order interactions by extending the
number of variables connected with a * (using * instead of : since you want
to include all the lower-order effects of those three predictors as well).

In the estimated results, the main effect for cap is positive, showing that
an increased power capacity is tied to an increased construction cost. All
other main effects are negative, which at face value seems to imply that a
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reduced construction cost is associated with more experienced engineers,
plants constructed in the Northeast, and plants with a cooling tower. How-
ever, this isn’t an accurate statement since you haven’t yet considered the
interactive terms in those predictors. All estimated two-way interactive effects
are positive—having more experienced engineers means a higher construc-
tion cost in the Northeast regardless of whether there’s a cooling tower, and
having more experienced engineers also means higher costs for plants with a
cooling tower, regardless of region.

Cost is also dramatically increased for plants in the Northeast with a
cooling tower, regardless of the experience of the engineer. All that being
said, the negative three-way interaction suggests that the increased cost asso-
ciated with more experienced engineers working in the Northeast and on a
plant with a cooling tower is lessened somewhat after the main effects and
two-way interactive effects are calculated.

At the least, this example highlights the complexities associated with
interpreting model coefficients for higher-order interactions. It’s also
possible that statistically significant high-order interactions crop up due to
lurking variables that have gone unaccounted for, that is, that the significant
interactions are a spurious manifestation of patterns in the data that simpler
terms involving those missing predictors could explain just as well (if not
better). In part, this motivates the importance of adequate model selection,
which is up next in the discussion.

Exercise 21.3

Return your attention to the cats data frame in package MASS. In the
first few problems in Exercise 21.1, you fitted the main-effect-only
model to predict the heart weights of domestic cats by total body
weight and sex.

a. Fit the model again, and this time include an interaction
between the two predictors. Inspect the model summary.
What do you notice in terms of the parameter estimates and
their significance when compared to the earlier main-effect-only
version?

b. Produce a scatterplot of heart weight on body weight, using
different point characters or colors to distinguish the obser-
vations according to sex. Use abline to add two lines denoting
the fitted model. How does this plot differ from the one in
Exercise 21.1 (d)?

c. Predict the heart weight of Tilman’s cat using the new model
(remember that Sigma is a 3.4 kg female) accompanied by a
95 percent prediction interval. Compare it to the main-effects-
only model from the earlier exercise.
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In Exercise 21.2, you accessed the trees data frame in the contributed
faraway package. After loading the package, access the ?trees help
file; you’ll find the volume and girth measurements you used earlier,
as well as data on the height of each tree.

d. Without using any transformations of the data, fit and inspect a
main-effects-only model for predicting volume from girth and
height. Then, fit and inspect a second version of this model
including an interaction.

e. Repeat (d), but this time use the log transformation of all vari-
ables. What do you notice about the significance of the interac-
tion between the untransformed and transformed models? What
does this suggest about the relationships in the data?

Turn back to the mtcars data set and remind yourself of the variables
in the help file ?mtcars.

f. Fit a linear model for mpg based on a two-way interaction between
hp and factor(cyl) and their main effects, as well as a main effect
for wt. Produce a summary of the fit.

g. Interpret the estimated coefficients for the interaction between
horsepower and the (categorical) number of cylinders.

h. Suppose you’re keen on purchasing a 1970s performance car.
Your mother advises you to purchase a “practical and economi-
cal” car that’s capable of an average MPG value of at least 25. You
see three vehicles advertised: car 1 is a four-cylinder, 100 horse-
power car that weighs 2100 lbs; car 2 is an eight-cylinder, 210
horsepower car that weighs 3900 lbs; and car 3 is a six-cylinder,
200 horsepower car that weighs 2900 lbs.
i. Use your model to predict the mean MPG for each of the

three cars; provide 95 percent confidence intervals. Based
on your point estimates only, which car would you propose
to your mother?

ii. You still want the most gas-guzzling car you can own with
your mother’s blessing, so you decide to be sneaky and
base your decision on what the confidence intervals tell you
instead. Does this change your choice of vehicle?

Important Code in This Chapter

Function/operator Brief description First occurrence

I Include arithmetic term Section 21.4.1, p. 505
: Interaction term Section 21.5.2, p. 516

* Cross-factor operator Section 21.5.3, p. 519
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22
LINEAR MODEL SELECTION

AND DIAGNOSTICS

You’ve now spent a fair amount of time on
many aspects of linear regression models.

In this chapter, I’ll cover how formal R tools
and techniques can be used to investigate two

other, and no less important, aspects of regression:
choosing an appropriate model for your analysis and
assessing the validity of the assumptions you’ve made.

22.1 Goodness-of-Fit vs. Complexity

The overarching goal of fitting any statistical model is to faithfully represent
the data and the relationships held within them. In general, fitting statistical
models boils down to a balancing act between two things: goodness-of-fit and
complexity. Goodness-of-fit refers to the goal of obtaining a model that best
represents the relationships between the response and the predictor (or pre-
dictors). Complexity describes how complicated a model is; this is always tied
to the number of terms in the model that require estimation—the inclusion
of more predictors and additional functions (such as polynomial transforma-
tions and interactions) leads to a more complex model.



22.1.1 Principle of Parsimony
Statisticians refer to the balancing act between goodness-of-fit and complex-
ity as the principle of parsimony, where the goal of the associated model selection
is to find a model that’s as simple as possible (in other words, with relatively
low complexity), without sacrificing too much goodness-of-fit. We’d say that
a model that satisfies this notion is a parsimonious fit. You’ll often hear of
researchers talking about choosing the “best” model—they’re actually refer-
ring to the idea of parsimony.

So, how do you decide where to draw the line on such a balance? Nat-
urally, statistical significance plays a role here—and model selection often
simply comes down to assessing the significance of the effect of predictors or
functions of predictors on the response. In an effort to impart some amount
of objectivity to such a process, you can use systematic selection algorithms,
such as those you’ll learn about in Section 22.2, to decide between multiple
explanatory variables and any associated functions.

22.1.2 General Guidelines
Performing any kind of model selection or comparing several models
against one another involves decision making regarding the inclusion of
available predictor variables. On this topic, there are several guidelines you
should always follow.

• First, it’s important to remember that you can’t remove individual levels
of a categorical predictor in a given model; this makes no sense. In
other words, if one of the nonreference levels is statistically significant
but all others are nonsignificant, you should treat the categorical vari-
able, as a whole, as making a statistically significant contribution to the
determination of the mean response. You should only really consider
entire removal of that categorical predictor if all nonreference coeffi-
cients are associated with a lack of evidence (against being zero). This
also holds for interactive terms involving categorical predictors.

• If an interaction is present in the fitted model, all lower-order interac-
tions and main effects of the relevant predictors must remain in the
model. This was touched upon in Section 21.5.1, when I discussed
interpretation of interactive effects as augmentations of lower-order
effects. As an example, you should only really consider removing the
main effect of a predictor if there are no interaction terms present in
the fitted model involving that predictor (even if that main effect has a
high p-value).

• In models where you’ve used a polynomial transformation of a certain
explanatory variable (refer to Section 21.4.1), keep all lower-order
polynomial terms in the model if the highest is deemed significant. A
model containing an order 3 polynomial transformation in a predic-
tor, for example, must also include the order 1 and order 2 transfor-
mations of that variable. This is because of the mathematical behavior
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of polynomial functions—only by explicitly separating out the linear,
quadratic, and cubic (and so on) effects as distinct terms can you avoid
confounding said effects with one another.

22.2 Model Selection Algorithms

The job of a model selection algorithm is to sift through your available
explanatory variables in some systematic fashion in order to establish which
are best able to jointly describe the response, as opposed to fitting models by
examining specific combinations of predictors in isolation, as you’ve done
so far.

Model selection algorithms can be controversial. There are several
different methods, and no single approach is universally appropriate for
every regression model. Different selection algorithms can result in differ-
ent final models, as you’ll see. In many cases, researchers will have addi-
tional information or knowledge about the problem that influences the
decision—for example, that certain predictors must always be included or
that it makes no sense to ever include them. This must be considered at the
same time as other complications, such as the possibility of interactions or
unobserved lurking variables influencing significant relationships and the
need to ensure any fitted model is statistically valid (which you’ll look at in
Section 22.3).

It’s helpful to keep in mind this famous quote from celebrated statisti-
cian George Box (1919–2013): “All models are wrong, but some are useful.”

Any fitted model you produce can never be assumed to be the truth, but
a model that’s fitted and checked carefully and thoroughly can reveal inter-
esting features of the data and so have the potential to reveal associations
and relationships by providing quantitative estimates thereof.

22.2.1 Nested Comparisons: The Partial F-Test
The partial F-test is probably the most direct way to compare several differ-
ent models. It looks at two or more nested models, where the smaller, less
complex model is a reduced version of the bigger, more complex model.
Formally, let’s say you’ve fitted two linear regressions models as follows:

ŷredu = β̂0 + β̂1x1 + β̂2x2 + . . . + β̂p xp

ŷfull = β̂0 + β̂1x1 + β̂2x2 + . . . + β̂p xp + . . . + β̂q xq

Here, the reduced model, predicting ŷredu, has p predictors, plus one
intercept. The full model, predicting ŷfull, has q predictor terms. The nota-
tion implies that q > p and that, along with the standard inclusion of an
intercept β̂0, the full model involves all p predictors of the reduced model
defined by ŷredu, as well as q − p additional terms. This emphasizes the fact
that the model for ŷredu is nested within ŷfull.

It’s important to note that increasing the number of predictors in
a regression model will always improve R2 and any other measures of
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goodness-of-fit. The real question, however, is whether that improve-
ment in goodness-of-fit is large enough to make the additional complex-
ity involved with including any additional predictor terms “worth it.” This
is precisely the question that the partial F-test tries to answer in the context
of nested regression models. Its goal is to test whether including those extra
q − p terms, which produce the full model rather than the reduced model,
provide a statistically significant improvement in goodness-of-fit. The partial
F-test addresses these hypotheses:

H0 : βp+1 = βp+2 = . . . = βq = 0

HA : At least one of the β j , 0 (for j = p, . . . ,q) (22.1)

The calculation of the test statistic to address these hypotheses follows
the same ideas behind the omnibus F-test automatically produced by R
when summarizing a fitted linear model object (detailed in Section 21.3.5).
Denote the coefficient of determination for the reduced and full models
with R2

redu and R2
full, respectively. If n refers to the sample size of the data

used to fit both models, the test statistic given by

F =
(R2

full − R2
redu)(n − q − 1)

(1 − R2
full)(q − p)

(22.2)

follows an F distribution with df1 = q − p, df2 = n − q degrees of freedom
under the assumption of H0 in (22.1). The p-value is found as the upper-tail
area from F as usual; the smaller it is, the greater the evidence against the
null hypothesis, which states that one or more of the additional parameters
has no impact on the response variable.

Take the model objects survmult and survmult2 from Section 21.3.1 as an
example. The survmult model aims to predict mean student height from writ-
ing handspan and sex based on the survey data frame from the MASS package;
survmult2 adds smoking status to these predictors. If you need to, return to
Section 21.3.1 to refit these two models. Printing the objects to the console
screen previews the two fits and makes it easy to confirm that the smaller
model is indeed nested within the larger model in terms of its explanatory
variables:

R> survmult

Call:

lm(formula = Height ~ Wr.Hnd + Sex, data = survey)

Coefficients:

(Intercept) Wr.Hnd SexMale

137.687 1.594 9.490

R> survmult2

Call:
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lm(formula = Height ~ Wr.Hnd + Sex + Smoke, data = survey)

Coefficients:

(Intercept) Wr.Hnd SexMale SmokeNever SmokeOccas SmokeRegul

137.4056 1.6042 9.3979 -0.0442 1.5267 0.9211

Once you’ve fitted your nested models, R can carry out partial F-tests
using the anova function (partial F-tests fall within the suite of analysis of
variance methodologies). To determine whether adding Smoke as a predictor
provides any statistically significant improvement in fit, simply start with the
reduced model and supply the model objects as arguments.

R> anova(survmult,survmult2)

Analysis of Variance Table

Model 1: Height ~ Wr.Hnd + Sex

Model 2: Height ~ Wr.Hnd + Sex + Smoke

Res.Df RSS Df Sum of Sq F Pr(>F)

1 204 9959.2

2 201 9914.3 3 44.876 0.3033 0.823

The output provides the quantities associated with calculation of R2
redu

and R2
full and the test statistic F from (22.2), given in the resulting table as

F, which is of the most interest. Using the values of p and q from printing
survmult and survmult2, you should be able to confirm, for example, the val-
ues of df1 and df2 appearing in the second row of the table in the columns
Df and Res.Df, respectively.

The result of this particular test, obtained from a test statistic of F =
0.3033 associated with df1 = 3, df2 = 201, is a high p-value of 0.823, suggest-
ing no evidence against H0. This means that adding Smoke to the reduced
model, which includes only the explanatory variables Wr.Hnd and Sex, offers
no tangible improvement in fit when it comes to modeling student height.
That conclusion isn’t surprising, given the nonsignificant p-values of all non-
reference levels of Smoke, seen previously in Section 21.3.1.

This is how partial F-tests are used for model selection—in the current
example, the reduced model would be the more parsimonious fit and pre-
ferred over the full model.

You can conduct comparisons among several nested models in a
given call to anova, which can be useful for investigating things such as the
inclusion of interactive terms or including polynomial transformations of
predictors since there’s a natural hierarchy that requires you to retain any
lower-order terms.

For an example, let’s use the diabetes data frame in the faraway package
from Section 21.5.2, with the model fitted to predict cholesterol level (chol)
against age (age) and body frame (frame) and the interaction between those
two predictors. Before using the partial F-tests to compare nested variants,
you need to ensure you’re using the same records for each model and that
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there aren’t missing values for any of the predictors that are then going to
be unavailable to the “fuller” models (so the sample size is the same for each
comparison). To do this, you just need to first define a version of diabetes
that removes records with missing values in the predictors you’re using.

Load the faraway package and use logical subsetting to identify and
delete any individuals with a missing value for age or for frame. Define this
new version of the diabetes object:

R> diab <- diabetes[-which(is.na(diabetes$age) | is.na(diabetes$frame)),]

Now, fit the following four models using your new diab object:

R> dia.model1 <- lm(chol~1,data=diab)

R> dia.model2 <- lm(chol~age,data=diab)

R> dia.model3 <- lm(chol~age+frame,data=diab)

R> dia.model4 <- lm(chol~age*frame,data=diab)

The first model is just an intercept, the second adds age as a predictor,
the third has age and frame, and the fourth includes the interaction. Nesting
is evident, and you can now compare the significance of the improvements
in goodness-of-fit as you increase the complexity of the model at each step.

R> anova(dia.model1,dia.model2,dia.model3,dia.model4)

Analysis of Variance Table

Model 1: chol ~ 1

Model 2: chol ~ age

Model 3: chol ~ age + frame

Model 4: chol ~ age * frame

Res.Df RSS Df Sum of Sq F Pr(>F)

1 389 747265

2 388 712078 1 35187 19.6306 1.227e-05 ***
3 386 697527 2 14551 4.0589 0.01801 *
4 384 688295 2 9233 2.5755 0.07743 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If you hadn’t deleted the records containing missing values in those pre-
dictors, you would’ve received an error telling you that the data sets for the
four models were not equal sizes.

The results themselves suggest that including age provides a significant
improvement to modeling chol; including a main effect for frame provides
a further mild improvement; and there’s very weak evidence, if any, that
including an interactive effect is beneficial to goodness-of-fit. From this,
you might prefer to use dia.mod3, the main-effects-only model, as the most
parsimonious representation of mean cholesterol out of these four models.
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22.2.2 Forward Selection
Partial F-tests are a natural way to investigate nested models but can be diffi-
cult to manage if you have many different models to fit when, for example,
you have many predictor variables.

This is where forward selection (also referred to as forward elimination)
comes in. The idea is to start with an intercept-only model and then per-
form a series of independent tests to determine which of your predictor
variables significantly improves the goodness-of-fit. Then you update your
model object by adding that term and execute the series of tests again for all
remaining terms to determine which of those would further improve the fit.
The process repeats until there aren’t any more terms that improve the fit
in a statistically significant way. The ready-to-use R functions add1 and update

perform the series of tests and update your fitted regression model.
You’ll use the nuclear data frame in the boot library from Exercise 21.1

on page 499 and Section 21.5.5 as an example. The goal is to choose the
most informative model for prediction of construction cost. Load boot and
access the help file ?nuclear to remind yourself of the variable definitions.
First fit the model for construction cost with an overall intercept term only.

R> nuc.0 <- lm(cost~1,data=nuclear)

R> summary(nuc.0)

Call:

lm(formula = cost ~ 1, data = nuclear)

Residuals:

Min 1Q Median 3Q Max

-254.05 -151.24 -13.46 150.40 419.68

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 461.56 30.07 15.35 4.95e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 170.1 on 31 degrees of freedom

You know from earlier exploits that this particular model is rather inad-
equate for the reliable prediction of cost. So, consider the following line of
code to start the forward selection (I’ve suppressed the output, which I’ll
show separately and discuss in a moment):

R> add1(nuc.0,scope=.~.+date+t1+t2+cap+pr+ne+ct+bw+cum.n+pt,test="F")

The first argument to add1 is always the model you’re aiming to update.
The second argument, scope, is critical—you must supply a formula object
defining the “fullest,” most complex model you’d consider fitting. For this
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you would typically use the .~. notation, in which the dots refer to the defini-
tion of the model in the first argument. Specifically, the dots stand for “what
is already there.” In other words, through scope you’re telling add1 that the
fullest model you’d consider has cost as the response, an intercept, and main
effects of all other predictors in the nuclear data frame (I’ll restrict the full
model to main effects only for ease of demonstration). You don’t need to
supply the data frame as an argument since those data are contained within
the model object in the first argument. Lastly, you tell add1 the test to per-
form. There are a handful of variants available (see ?add1), but here you’ll
stick with test="F" for partial F-tests.

Now, focus on the output that’s provided directly after the execution
of add1.

Single term additions

Model:

cost ~ 1

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 897172 329.72

date 1 334335 562837 316.80 17.8205 0.0002071 ***
t1 1 186984 710189 324.24 7.8986 0.0086296 **
t2 1 27 897145 331.72 0.0009 0.9760597

cap 1 199673 697499 323.66 8.5881 0.0064137 **
pr 1 9037 888136 331.40 0.3052 0.5847053

ne 1 128641 768531 326.77 5.0216 0.0325885 *
ct 1 43042 854130 330.15 1.5118 0.2284221

bw 1 16205 880967 331.14 0.5519 0.4633402

cum.n 1 67938 829234 329.20 2.4579 0.1274266

pt 1 305334 591839 318.41 15.4772 0.0004575 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output comprises a series of rows, starting with <none> (doing noth-
ing to the current model). You receive the Sum of Sq and RSS values, directly
related to calculating the test statistic. The differences in degrees of free-
dom are also reported. Another measure of parsimony, AIC, is also provided
(you’ll look at that in more detail in Section 22.2.4).

Most relevant are the test outcomes; with test="F", each row corresponds
to an independent partial F-test comparing the model in the first argument,
as ŷredu, with the model that results from having added that row term only as
ŷfull. Usually, therefore, you would update your model by adding only the
term with the largest (and “most significant”) improvement.

Here, you should be able to see that adding date as a predictor offers the
largest significant improvement to modeling cost. So, let’s update nuc.0 to
include that term with the code.

R> nuc.1 <- update(nuc.0,formula=.~.+date)

R> summary(nuc.1)
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Call:

lm(formula = cost ~ date, data = nuclear)

Residuals:

Min 1Q Median 3Q Max

-176.00 -105.27 -25.24 58.63 359.46

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6553.57 1661.96 -3.943 0.000446 ***
date 102.29 24.23 4.221 0.000207 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 137 on 30 degrees of freedom

Multiple R-squared: 0.3727, Adjusted R-squared: 0.3517

F-statistic: 17.82 on 1 and 30 DF, p-value: 0.0002071

In update you provide the model you want to update as the first argu-
ment, and the second argument, formula, tells update how to update the
model. Again using the .~. notation, the instruction is to update nuc.0 by
adding date as a predictor, resulting in a fitted model object of the same
class of the first argument. Call a summary of the new model, nuc.1, to see this.

So, let’s keep going! Call add1 again, but now pass nuc.1 as your first
argument.

R> add1(nuc.1,scope=.~.+date+t1+t2+cap+pr+ne+ct+bw+cum.n+pt,test="F")

Single term additions

Model:

cost ~ date

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 562837 316.80

t1 1 15322 547515 317.92 0.8115 0.3750843

t2 1 68161 494676 314.67 3.9959 0.0550606 .

cap 1 189732 373105 305.64 14.7471 0.0006163 ***
pr 1 4027 558810 318.57 0.2090 0.6509638

ne 1 92256 470581 313.07 5.6854 0.0238671 *
ct 1 54794 508043 315.52 3.1277 0.0874906 .

bw 1 1240 561597 318.73 0.0640 0.8020147

cum.n 1 4658 558179 318.53 0.2420 0.6264574

pt 1 90587 472250 313.18 5.5628 0.0252997 *
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Note that there’s now no row for adding in date; it’s already there in
nuc.1. It seems the next most informative addition would be cap. Update
nuc.1 to that effect.

R> nuc.2 <- update(nuc.1,formula=.~.+cap)

Now keep going, testing, and updating. By calling add1 on nuc.2 (output
not shown here), you’ll find that the next most significant addition is pt (by
a small margin). Update to a new object named nuc.3, which includes the
following term:

R> nuc.3 <- update(nuc.2,formula=.~.+pt)

Then test again, using add1 on nuc.3. You’ll find weak evidence to
additionally include a main effect for ne, so update with that inclusion to
create nuc.4.

R> nuc.4 <- update(nuc.3,formula=.~.+ne)

At this point, you may be reasonably certain there won’t be any more
useful additions, but check with one final call to add1 on the latest fit to be
thorough.

R> add1(nuc.4,scope=.~.+date+t1+t2+cap+pr+ne+ct+bw+cum.n+pt,test="F")

Single term additions

Model:

cost ~ date + cap + pt + ne

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 222617 293.12

t1 1 107.0 222510 295.10 0.0125 0.9118

t2 1 19229.9 203387 292.23 2.4583 0.1290

pr 1 5230.8 217386 294.36 0.6256 0.4361

ct 1 15764.7 206852 292.77 1.9815 0.1711

bw 1 448.0 222169 295.06 0.0524 0.8207

cum.n 1 13819.9 208797 293.07 1.7209 0.2010

Indeed it appears that none of the remaining covariates, if included in
the model, would yield a statistically significant improvement in goodness-of-
fit, so your final model will stay at nuc.4.

R> summary(nuc.4)

Call:

lm(formula = cost ~ date + cap + pt + ne, data = nuclear)

Residuals:

Min 1Q Median 3Q Max
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-157.894 -38.424 -2.493 35.363 267.445

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.756e+03 1.286e+03 -3.699 0.000975 ***
date 7.102e+01 1.867e+01 3.804 0.000741 ***
cap 4.198e-01 8.616e-02 4.873 4.29e-05 ***
pt -1.289e+02 4.950e+01 -2.605 0.014761 *
ne 9.940e+01 3.864e+01 2.573 0.015908 *
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 90.8 on 27 degrees of freedom

Multiple R-squared: 0.7519, Adjusted R-squared: 0.7151

F-statistic: 20.45 on 4 and 27 DF, p-value: 7.507e-08

This method may seem a little cumbersome, and it’s sometimes difficult
to decide on the fullest model to be used as the scope, but it’s a remarkably
good way to stay involved at every stage of the selection process so you can
consider each addition carefully. Note, however, that there’s an element of
subjectivity; it’s possible to arrive at different final models by choosing one
addition over another, such as if you’d added pt instead of date (they had
similar levels of significance in the very first call to add1).

22.2.3 Backward Selection
After learning forward selection, understanding backward selection (or elimi-
nation) isn’t much of a stretch. As you might have guessed, where forward
selection starts from a reduced model and works its way up to a final model
by adding terms, backward selection starts with your fullest model and sys-
tematically drops terms. The R functions for this process are drop1 to inspect
the partial F-tests and update.

The choice of forward versus backward model selection is usually made
on a case-by-case basis. If your fullest model isn’t known or is difficult to
define and fit, then forward selection is typically preferred. On the other
hand, if you do have a natural and easily fitted fullest model, then backward
selection can be more convenient to implement. Sometimes, researchers
will perform both to see whether the final model they arrive at is different (a
perfectly possible occurrence).

Revisit the nuclear example. First, define the fullest model as that which
predicts cost by main effects of all available covariates (as you did in your use
of scope in the forward selections).

R> nuc.0 <- lm(cost~date+t1+t2+cap+pr+ne+ct+bw+cum.n+pt,data=nuclear)

R> summary(nuc.0)

Call:

lm(formula = cost ~ date + t1 + t2 + cap + pr + ne + ct + bw +
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cum.n + pt, data = nuclear)

Residuals:

Min 1Q Median 3Q Max

-128.608 -46.736 -2.668 39.782 180.365

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.135e+03 2.788e+03 -2.918 0.008222 **
date 1.155e+02 4.226e+01 2.733 0.012470 *
t1 5.928e+00 1.089e+01 0.545 0.591803

t2 4.571e+00 2.243e+00 2.038 0.054390 .

cap 4.217e-01 8.844e-02 4.768 0.000104 ***
pr -8.112e+01 4.077e+01 -1.990 0.059794 .

ne 1.375e+02 3.869e+01 3.553 0.001883 **
ct 4.327e+01 3.431e+01 1.261 0.221008

bw -8.238e+00 5.188e+01 -0.159 0.875354

cum.n -6.989e+00 3.822e+00 -1.829 0.081698 .

pt -1.925e+01 6.367e+01 -0.302 0.765401

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 82.83 on 21 degrees of freedom

Multiple R-squared: 0.8394, Adjusted R-squared: 0.763

F-statistic: 10.98 on 10 and 21 DF, p-value: 2.844e-06

There are clearly several predictors that appear not to contribute signif-
icantly to the response, and these same results are evident the first time you
use drop1 to examine the impact on goodness-of-fit that would occur from
dropping each variable.

R> drop1(nuc.0,test="F")

Single term deletions

Model:

cost ~ date + t1 + t2 + cap + pr + ne + ct + bw + cum.n + pt

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 144065 291.19

date 1 51230 195295 298.93 7.4677 0.0124702 *
t1 1 2034 146099 289.64 0.2965 0.5918028

t2 1 28481 172546 294.97 4.1517 0.0543902 .

cap 1 155943 300008 312.67 22.7314 0.0001039 ***
pr 1 27161 171226 294.72 3.9592 0.0597943 .

ne 1 86581 230646 304.25 12.6207 0.0018835 **
ct 1 10915 154980 291.53 1.5911 0.2210075

bw 1 173 144238 289.23 0.0252 0.8753538

cum.n 1 22939 167004 293.92 3.3438 0.0816977 .
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pt 1 627 144692 289.33 0.0914 0.7654015

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

One handy feature of drop1 is that its scope argument is optional. If you
don’t include scope, it defaults to the intercept-only model as the “most-
reduced” model, which is usually a reasonable choice.

Before diving right into the deletion process, remind yourself of the
interpretation of what you’re doing. Just as adding any term will always
improve the goodness-of-fit in forward selection, deleting any term in back-
ward selection will always worsen the goodness-of-fit. The real question is
the perceived significance of these changes in fit quality. In the same way
as earlier, where you wanted to add only those terms that offer a statistically
significant improvement in goodness-of-fit, when dropping terms, you only
want to remove those that do not result in a statistically significant detriment
to goodness-of-fit. As such, backward selection is the complete reverse of
forward selection in the way it’s carried out.

So, from the output of drop1, you want to choose the term to remove
from the model that has the least significant effect of reducing the good-
ness of the fit. In other words, you’re looking for the term with the largest,
nonsignificant p-value for its partial F-test—because dropping a term with a
significantly small p-value would significantly worsen the predictive capability
of the regression model.

In the current example, it seems the predictor bw has the single least sig-
nificant effect on reducing the goodness-of-fit, so let’s start the update by
removing that term from nuc.0.

R> nuc.1 <- update(nuc.0,.~.-bw)

Use of update in this selection algorithm is the same as before; now,
though, you use a - to signify the deletion of a term following the standard
“what’s already there” .~. notation.

The process is then repeated using the latest model nuc.1:

R> drop1(nuc.1,test="F")

Single term deletions

Model:

cost ~ date + t1 + t2 + cap + pr + ne + ct + cum.n + pt

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 144238 289.23

date 1 55942 200180 297.72 8.5326 0.007913 **
t1 1 3124 147362 287.92 0.4765 0.497245

t2 1 30717 174955 293.41 4.6852 0.041546 *
cap 1 159976 304214 311.11 24.4005 6.098e-05 ***
pr 1 27140 171377 292.75 4.1395 0.054122 .

ne 1 86408 230646 302.25 13.1795 0.001479 **
ct 1 11815 156053 289.75 1.8021 0.193153
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cum.n 1 24048 168286 292.17 3.6680 0.068557 .

pt 1 930 145168 287.44 0.1419 0.710039

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It would seem that pt is the next most sensible main effect to drop. Do
so and name the resulting object nuc.2.

R> nuc.2 <- update(nuc.1,.~.-pt)

Now keep going, rechecking with a call to drop1 (not shown), and you’ll
find that the predictor t1 reveals itself as another viable deletion. Update
your model with that predictor deleted; name the model object nuc.3.

R> nuc.3 <- update(nuc.2,.~.-t1)

Recheck the new nuc.3 with drop1. You should now find the effect of
ct remains nonsignificant, so delete that and update again, giving you a
new nuc.4.

R> nuc.4 <- update(nuc.3,.~.-ct)

Perform yet another check with drop1, this time on nuc.4. At this point,
you might hesitate in removing any more predictors, with significance at
varying strengths being associated with the effect of their deletion. Note,
however, that for at least three of the remaining predictors, t2, pr, and
cum.n, the statistical significance should probably be considered borderline
at best—all of their p-values lie between the conventional cutoff levels of
α = 0.01 and α = 0.05. This again emphasizes the active role a researcher
must play in model selection algorithms such as forward or backward elimi-
nation; whether you should delete any more variables from here is a difficult
question to answer and is left up to your judgment.

Let’s remain with nuc.4 as the final model. Summarizing, you’re able to
see the estimated regression parameters and the usual post-fit statistics.

R> summary(nuc.4)

Call:

lm(formula = cost ~ date + t2 + cap + pr + ne + cum.n, data = nuclear)

Residuals:

Min 1Q Median 3Q Max

-152.851 -53.929 -8.827 53.382 155.581

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.702e+03 1.294e+03 -7.495 7.55e-08 ***
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date 1.396e+02 1.843e+01 7.574 6.27e-08 ***
t2 4.905e+00 1.827e+00 2.685 0.012685 *
cap 4.137e-01 8.425e-02 4.911 4.70e-05 ***
pr -8.851e+01 3.479e+01 -2.544 0.017499 *
ne 1.502e+02 3.400e+01 4.419 0.000168 ***
cum.n -7.919e+00 2.871e+00 -2.758 0.010703 *
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 80.8 on 25 degrees of freedom

Multiple R-squared: 0.8181, Adjusted R-squared: 0.7744

F-statistic: 18.74 on 6 and 25 DF, p-value: 3.796e-08

Immediately, you can see that your final model from forward selection
in Section 22.2.2 is different from the final model selected here, despite the
fullest model being the same for both. How has that occurred?

The answer, simply put, is that the predictors present in a model affect
each other. Remember that the estimated coefficients of present predictors
easily change in value as you control for different variables. As the num-
ber of predictor terms increases, these relationships become more and
more complex, so both the order and direction of the selection algorithm
have the potential to lead you on different paths through the selection pro-
cess and arrive at different final destinations, which is exactly what’s hap-
pened here.

As a perfect example of this, consider the main effect of pt in the nuclear

data. In forward selection, pt was added because it offered the “most signif-
icant” improvement to the model cost~date+cap. In backward selection, pt
was removed early, since it offered the least reduction in goodness-of-fit if
taken from the model cost~date+t1+t2+cap+pr+ne+ct+cum.n+pt. What this means
is that for the latter model, the contribution that pt might make in terms of
predicting the outcome is already explained by the other present predictor
terms. In the smaller model, that effect had not yet been explained, and so
pt was an attractive addition.

All this serves to highlight the fickle nature of most selection algo-
rithms, in spite of the systematic way they’re implemented. It’s important
to acknowledge that a final model fit will probably vary between approaches
and that you should view these selection methods more as helpful guidelines
for finding the most parsimonious model and not as providing a universal,
definitive solution.

22.2.4 Stepwise AIC Selection
The application of a series of partial F-tests is the most common test-based
model selection method, but it’s not the only tool a researcher has at
their disposal. You can also locate parsimony by adopting a criterion-based
approach. One of the most famous criterion measures is known as Akaike’s
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Information Criterion (AIC). You’ll have noticed this value as one of the
columns in the output of add1 and drop1.

For a given linear model, AIC is calculated as follows:

AIC = −2 × L + 2 × (p + 2) (22.3)

Here, L is a measure of goodness-of-fit named the log-likelihood, and p

is the number of regression parameters in the model, excluding the overall
intercept. The value of L is a direct outcome of the estimation procedure
used to fit the model, though its exact calculation is beyond the scope of
this text. The thing to know is that it takes on larger values for better-fitting
models.

Equation (22.3) produces a value that rewards goodness-of-fit with the
−2 × L but simultaneously penalizes complexity with the 2 × (p + 2). The
negative sign associated with L coupled with the positive sign of the p + 2
means that smaller values of AIC refer to more parsimonious models.

To find the AIC for a fitted linear model, you use the AIC or extractAIC

functions on the object resulting from lm; take a look at the help files of
these functions to see the technical differences between the two. The value
of L (and therefore also the AIC) has no direct interpretation and is useful
only when you compare it against the AIC of another model. You can base
model selection on the AIC by identifying the fit with the lowest AIC value.
This is the reason it’s directly reported in the output of add1 and drop1—you
could decide on which term to add or drop based on the change that results
in a shift to the smallest AIC, instead of focusing exclusively on the signifi-
cance of the change via the F-test.

Let’s go even further and combine the ideas of forward and back-
ward selection. Stepwise model selection allows the option to either delete
a present term or add a missing term and is typically implemented with
respect to AIC. That is, a term is chosen to be added or deleted based on the
one move out of all possible moves that yields the single biggest reduction in
AIC. This affords you more flexibility in exploring candidate models on your
way to the final model fit—determined as the model from which no addition
or deletion would reduce the AIC value further.

It’s possible to implement stepwise AIC selection yourself using either
add1 or drop1 at each stage, but fortunately R provides the built-in step func-
tion to do it for you. Take the mtcars data from the MASS package from the
past couple of chapters. Let’s finally try to obtain a model for mean mileage
that offers the opportunity to include every predictor that’s available.

First, take a look at the documentation in ?mtcars and a scatterplot
matrix of the data again to remind yourself of the variables and their format
in the R data frame object. Then define the starting model (often called the
null model) as the intercept-only model.

R> car.null <- lm(mpg~1,data=mtcars)

Your starting model can be anything you like, provided it falls within the
domain of the models described by your scope argument to be supplied to
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step. In this example, define scope as the fullest model to be considered—set
this to be the overly complex model with a four-way interaction among wt,
hp, cyl, and disp (and all relevant lower-order interactions and main effects,
via the cross-factor operator), as well as main effects for am, gear, drat, vs, qsec,
and carb. The two multilevel categorical variables, cyl and gear, are explicitly
converted to factors to avoid them being treated as numeric (refer to Sec-
tion 20.5.4).

The potential for interactions in the final model will serve to highlight
an especially important (and convenient) feature of add1, drop1, and step.
These functions all respect the hierarchy imposed by interactions and main
effects. That is, for add1 (and step), an interactive term will not be provided
as an option for addition unless all relevant lower-order effects are already
present in the current fitted model; similarly, for drop1 (and step), an inter-
active term or main effect will not be provided as an option for deletion
unless all relevant higher-order effects are already gone from the current
fitted model.

The step function itself returns a fitted model object and by default pro-
vides a comprehensive report of each stage of selection. Let’s call it now; for
print reasons, some of the output has been snipped out, so you’re encour-
aged to bring this up on your own machine.

R> car.step <- step(car.null,scope=.~.+wt*hp*factor(cyl)*disp+am

+factor(gear)+drat+vs+qsec+carb)

Start: AIC=115.94

mpg ~ 1

Df Sum of Sq RSS AIC

+ wt 1 847.73 278.32 73.217

+ disp 1 808.89 317.16 77.397

+ factor(cyl) 2 824.78 301.26 77.752

+ hp 1 678.37 447.67 88.427

+ drat 1 522.48 603.57 97.988

+ vs 1 496.53 629.52 99.335

+ factor(gear) 2 483.24 642.80 102.003

+ am 1 405.15 720.90 103.672

+ carb 1 341.78 784.27 106.369

+ qsec 1 197.39 928.66 111.776

<none> 1126.05 115.943

Step: AIC=73.22

mpg ~ wt

Df Sum of Sq RSS AIC

+ factor(cyl) 2 95.26 183.06 63.810

+ hp 1 83.27 195.05 63.840

+ qsec 1 82.86 195.46 63.908

+ vs 1 54.23 224.09 68.283

+ carb 1 44.60 233.72 69.628
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+ disp 1 31.64 246.68 71.356

+ factor(gear) 2 40.37 237.95 72.202

<none> 278.32 73.217

+ drat 1 9.08 269.24 74.156

+ am 1 0.00 278.32 75.217

- wt 1 847.73 1126.05 115.943

Step: AIC=63.81

mpg ~ wt + factor(cyl)

Df Sum of Sq RSS AIC

+ hp 1 22.281 160.78 61.657

+ wt:factor(cyl) 2 27.170 155.89 62.669

<none> 183.06 63.810

+ qsec 1 10.949 172.11 63.837

+ carb 1 9.244 173.81 64.152

+ vs 1 1.842 181.22 65.487

+ disp 1 0.110 182.95 65.791

+ am 1 0.090 182.97 65.794

+ drat 1 0.073 182.99 65.798

+ factor(gear) 2 6.682 176.38 66.620

- factor(cyl) 2 95.263 278.32 73.217

- wt 1 118.204 301.26 77.752

Step: AIC=61.66

mpg ~ wt + factor(cyl) + hp

--snip--

Step: AIC=55.9

mpg ~ wt + factor(cyl) + hp + wt:hp

--snip--

Step: AIC=52.8

mpg ~ wt + hp + wt:hp

--snip--

Step: AIC=52.57

mpg ~ wt + hp + qsec + wt:hp

Df Sum of Sq RSS AIC

<none> 121.04 52.573

- qsec 1 8.720 129.76 52.799

+ factor(gear) 2 9.482 111.56 53.962

+ am 1 1.939 119.10 54.056
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+ carb 1 0.080 120.96 54.551

+ drat 1 0.012 121.03 54.570

+ vs 1 0.010 121.03 54.570

+ disp 1 0.008 121.03 54.571

+ factor(cyl) 2 0.164 120.88 56.529

- wt:hp 1 65.018 186.06 64.331

Each block of output displays the current model fit, its AIC value, and
a table showing the possible moves (either adding +, deleting -, or doing
nothing <none>). The AIC value that would result from each move alone is
listed, and these potential single moves are ranked from smallest to largest
AIC value.

As the algorithm proceeds, you see the <none> row creeping its way
up the table. For example, in the first table, the value of the AIC for the
intercept-only model is 115.94. The biggest reduction in AIC would result
from adding a main effect for wt; that move is made, and the effect of sub-
sequent moves on the AIC is reassessed. Also note that the addition of the
two-way interaction term between wt and factor(cyl) is considered only at
the third step, after the main effects of those predictors have been added.
That particular two-way interaction never ends up being included, though,
because the main effect of hp is preferable at that third step, and subsequent
interactions involving hp then offer a much better reduction in the AIC value
in the fourth step. In fact, at the fifth step, actually deleting the main effect
for factor(cyl) is deemed to reduce the AIC most, and so the tables for the
sixth and seventh steps no longer include that wt:factor(cyl) term as an
option. The sixth step suggests that adding the main effect for qsec offers
a minor reduction in the AIC, so this is done. The seventh table signals the
end of the algorithm because doing nothing offers the lowest AIC value and
doing anything else would increase the AIC (shown through <none> taking
pole position in that last table).

The final model is stored as the object car.step; by summarizing it, you’ll
note that almost 90 percent of the variation in the response is explained
by weight, horsepower, and their interaction, as well as the slightly curious
main effect of qsec (which itself is not deemed statistically significant).

R> summary(car.step)

Call:

lm(formula = mpg ~ wt + hp + qsec + wt:hp, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-3.8243 -1.3980 0.0303 1.1582 4.3650

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.310410 7.677887 5.250 1.56e-05 ***
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wt -8.681516 1.292525 -6.717 3.28e-07 ***
hp -0.106181 0.026263 -4.043 0.000395 ***
qsec 0.503163 0.360768 1.395 0.174476

wt:hp 0.027791 0.007298 3.808 0.000733 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.117 on 27 degrees of freedom

Multiple R-squared: 0.8925, Adjusted R-squared: 0.8766

F-statistic: 56.05 on 4 and 27 DF, p-value: 1.094e-12

From this, it seems it would be worthwhile to investigate this predictor
further, to establish validity of the fitted model (see Section 22.3), and per-
haps to try transformations of the data (such as modeling GPM instead of
MPG; see Section 21.4.3) to see whether this effect persists in subsequent
runs of the stepwise AIC algorithm. The presence of qsec in the final model
illustrates the fact that the selection of the model wasn’t based solely on the
significance of predictor contribution but on a criterion-based measure aim-
ing for its own definition of parsimony.

The AIC is sometimes criticized for a tendency to err on the side of
more complexity and higher p-values. To balance this, you can increase the
penalizing effect of extra predictors by increasing the multiplicative contri-
bution of the (p + 2) on the right of Equation (22.3); though the standard
multiplicative factor of 2 is used in the majority of cases (in step you can use
the optional argument k to change this). That being said, criterion-based
measures are incredibly useful when you have models that aren’t nested
(ruling out the partial F-test) and you want to compare them for quick
identification of the one that, potentially, provides the most parsimonious
representation of the data.

Exercise 22.1

In Sections 22.2.2 and 22.2.3, you used forward and backward selec-
tion approaches to find a model for predicting the cost of the con-
struction of nuclear power plants (based on the nuclear data frame in
the boot package).

a. Using the same fullest model (in other words, main effects of
all present predictors only), use stepwise AIC selection to find a
suitable model for the data.

b. Does the final model found in (a) match either of the models
resulting from the earlier use of forward and backward selection?
How does it differ?
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Exercise 21.2 on page 512 detailed Galileo’s ball data. Enter these as
a data frame in your current R workspace if you haven’t already.

c. Fit five linear models to these data with distance as the
response—an intercept-only model and four separate poly-
nomial models of increasing order 1 to 4 in height.

d. Construct a table of partial F-tests to identify your favored
model for distance traveled. Is your selection consistent with
Exercise 21.2 (b) and (c)?

You first encountered the diabetes data frame in the contributed
faraway package in Section 21.5.2, where you modeled the mean total
cholesterol. Load the package and inspect the documentation in
?diabetes to refresh your memory of the data set.

e. There are some missing values in diabetes that might interfere
with model selection algorithms. Define a new version of the
diabetes data frame that deletes all rows with a missing value in
any of the following variables: chol, age, gender, height, weight,
frame, waist, hip, location. Hint: Use na.omit or your knowledge
of record extraction or deletion for a data frame. You can create
the required vector of row numbers to be extracted or deleted
using which and is.na, or you can try using the complete.cases

function to obtain a logical flag vector—inspect its help file for
details.

f. Use your data frame from (e) to fit two linear models with chol as
the response. The null model object, named dia.null, should be
an intercept-only model. The full model object, named dia.full,
should be the overly complex model with a four-way interaction
(and all lower-order terms) among age, gender, weight, and frame;
a three-way interaction (and all lower-order terms) among waist,
height, and hip; and a main effect for location.

g. Starting from dia.null and using the same terms as in dia.full for
scope, implement stepwise selection by AIC to choose a model for
mean total cholesterol and then summarize.

h. Use forward selection based on partial F-tests with a conventional
significance level of α = 0.05 to choose a model, again starting
from dia.null. Is the result here the same as the model arrived at
in (g)?

i. Stepwise selection doesn’t have to start from the simplest model.
Repeat (g), but this time, set dia.full to be the starting model
(you don’t need to supply anything to scope if you’re starting
from the most complex model). What is the final model selected
via AIC if you start from dia.full? Is it different than the final
model from (g)? Why is this or is this not the case, do you think?
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Revisit the ubiquitous mtcars data frame from the MASS package.

j. In Section 22.2.4, you used stepwise AIC selection to model
mean MPG. The selected model included a main effect for qsec.
Rerun the same AIC selection process, but this time, do it in
terms of GPM=1/MPG. Does this change the complexity of the
final model?

22.2.5 Other Selection Algorithms
Any model selection algorithm will always aim to quantitatively define parsi-
mony and suggest a model that optimizes that definition in light of the avail-
able data. There are alternatives to AIC, such as the corrected AIC (AICc) or
the Bayesian Information Criterion (BIC), both of which impose heavier penal-
ties on complexity than the default AIC in (22.3).

Sometimes it’s tempting to simply monitor R2, the coefficient of deter-
mination, for a series of models. However, as mentioned in Section 22.2.1,
this on its own is inadequate for choosing between models since it doesn’t
penalize complexity and will generally always increase as you continue to
add predictors, whether they have a statistically significant impact or not.
The adjusted R2 statistic, denoted R̄2 and reported as Adjusted R-squared in
summary, is a simple transformation of the original R2 that does incorporate
a penalty for complexity relative to the sample size n; calculated as

R̄2
= 1 − (1 − R2)(n − 1)

n − p − 1
,

where p is the number of predictor terms (excluding the intercept). The
algorithms based on tests and criteria are always preferable (since interpreta-
tion of R̄2 can be difficult), but monitoring R̄2 can be useful as a quick check
between nested models—a higher value points to a preferred model.

For further reading, Chapter 8 of Faraway (2005) provides some excel-
lent commentary on the guideline-only nature of both test- and criterion-
based model selection procedures. Regardless of which approach you
employ, always remember that any final model reached by using these algo-
rithms should still be subject to scrutiny.

22.3 Residual Diagnostics

In previous chapters, you examined the practical aspects of multiple linear
regression models, such as fitting and interpreting, dummy coding, trans-
forming, and so on, but you haven’t yet looked at methods that are essential
for determining the validity of your model. The final part of this chapter
will introduce you to model diagnostics, the primary goal of which is to ensure
that your regression model is valid and accurately represents the relation-
ships in your data. For this, I’ll return focus to the theoretical assumptions
underpinning the multiple linear regression model that were noted early in
Section 21.2.1.
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As a refresher, in general when fitting these models, remember to keep
these four things in mind:

Errors The error term ǫ , which defines the departure of any observa-
tion from the fitted mean-outcome model, is assumed to be normally
distributed with a mean of zero and a constant variance denoted with
σ2. The error associated with a given observation is also assumed to be
independent of the error of any other observation. If a fitted model
suggests violation of any of these assumptions, you’ll need to investigate
further (usually involving refitting a variation of the model).

Linearity It is critical to be able to assume that the mean response as a
function is linear in terms of the regression parameters β0, β1, . . ., βp .
Though transformations of individual variables and the presence of
interactions can relax the specific nature of the estimated trends
somewhat, any diagnostic suggestion that a relationship is nonlinear
(and hence not being captured by the fitted model at hand) must be
investigated.

Extreme or unusual observations Always inspect extreme data points
or data points that strongly influence the fitted model—for example,
points that have been recorded incorrectly should be removed from the
analysis.

Collinearity Predictors highly correlated with one another can
adversely affect an entire model, meaning it can be easy to misinter-
pret the effects of any included predictors. This should be avoided in
any regression.

You investigate the first three after fitting the model using diagnostic
tools. Any violation of these assumptions diminishes the reliability of your
model, sometimes severely. Collinearity and/or extreme observations can be
discovered by basic statistical explorations (for example, viewing scatterplot
matrices) of the raw data pre-fit, but any consequential effects are appraised
post-fit.

There are some statistical tests you can perform to diagnose a statistical
model, but commonly a diagnostic inspection boils down to interpretation
of the results of graphical tools designed to target specific assumptions.
Interpreting these plots can be quite difficult and only really becomes eas-
ier with experience. Here, I’ll provide an overview of these tools in R and
describe some common things to look for. For a more detailed discussion,
look to dedicated texts on regression methods such as Chatterjee et al.
(2000), Faraway (2005), or Montgomery et al. (2012).

22.3.1 Inspecting and Interpreting Residuals
If you look back at the plot in Figure 20-2 on page 456, you’ll see a good
demonstration of the importance of interpreting the results given by ŷ as
a mean response value. Under the assumed model, any deviation of the raw
observations from the fitted line is deemed to be the result of the (normally
distributed) errors defined by the ǫ term in Equation (20.1) on page 453.
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Of course, in practice, you don’t have the true error values because you
don’t know the true model of your data. For the ith response observation yi

and its fitted value from the model, ŷi , you would typically assess diagnostic
plots using the estimated residuals ei = yi − ŷi . A call to summary even encour-
ages a post-fit analysis of the residuals by providing you with a five-number
summary of the ei above the table of estimated coefficients. This allows you
to take a look at their values and do a preliminary numeric assessment of the
symmetry of their distribution (as required by the assumption of normality—
see Section 22.3.2).

As well as a diagnostic inspection of the raw residuals ei , some diagnostic
checks can also be done using their standardized (or Studentized) values. The
standardized residuals rescale the raw residuals ei to ensure they all have the
same variance, which is important if you need to directly compare them to
one another. Formally, this is achieved with the calculation ei/(σ̂{1− hii }0.5),
where σ̂ is the estimate of the residual standard error and hii is the leverage
of the ith observation (you’ll learn about leverage in Section 22.3.4).

Arguably the most common graphical tool used for a post-fit analysis of
the residuals is a simple scatterplot of the “observed-minus-fitted” raw residu-
als on the vertical axis against their corresponding fitted-model values from
the regression. If the assumptions concerning ǫ are valid, then the ei should
appear randomly scattered around zero (since the errors aren’t assumed to
be related in any way to the value of the response). Any systematic pattern
in the plot suggests the residuals don’t agree with the error assumptions—
this could be because of nonlinear relationships in your data or the pres-
ence of dependent observations (in other words, your data points are corre-
lated and therefore not independent of one another). The plot can also be
used to detect heteroscedasticity—a nonconstant variance in the residuals—
commonly seen as a “fanning out” of the residuals around 0 as the fitted
values increase.

Note once more that it’s important these theoretical assumptions
are valid because they affect the validity of the estimates of the regression
coefficients and the reliability of their standard errors (and so statistical
significance)—in other words, the correctness of your interpretation of their
impact on the response.

To give you a better idea of all this, consider the three images in Fig-
ure 22-1. These provide residuals versus fitted values plots for three hypo-
thetical scenarios.

The plot on the left is, more or less, what you’re looking for—the residu-
als appear randomly scattered around zero, and their spread around zero
appears constant (homoscedasticity). In the middle plot, however, you can
see systematic behavior in the residuals. Though the variability still seems
to remain constant throughout the range of fitted values, the apparent
trend suggests the current model isn’t explaining some of the relationship
between response and predictor (or predictors). On the right, the residuals
seem to be scattered randomly about zero again. However, the variability
they exhibit isn’t constant. Among other things, this kind of heteroscedastic-
ity will affect the reliability of your confidence and prediction intervals.
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Figure 22-1: Three impressions of a hypothetical residuals versus fitted diagnostic plot
from a linear regression: random (left), systematic (middle), and heteroscedastic (right)

It’s important to know that even if your graphical diagnostics don’t pro-
vide the well-behaved plot like the hypothetical example on the left of Fig-
ure 22-1, this is not a reason to immediately give up on the analysis. These
plots can form an integral part in finding an appropriate model for your
data. You can often reduce nonlinearity by including additional predic-
tors or interactions, changing the treatment of a categorical variable, or
performing nonlinear transformations of certain continuous predictors.
Heteroscedasticity, especially the kind in Figure 22-1 where the variability
is higher for higher fitted values, is common in some fields of research. A
first step to remedy this problem often involves a simple log transformation
of the response followed by a reinspection of the diagnostics.

It’s time for an example. In Section 22.2.4, you used stepwise AIC
selection to choose a model for MPG for the mtcars data, creating the object
car.step. Let’s now diagnose that same fit to see whether there are any prob-
lems with the assumptions of the model.

When you apply the plot function directly to an lm object, it can con-
veniently produce six types of diagnostic plot of the fit. By default, four of
these plots are produced in succession. Follow the signal to the user in the
console, Hit <Return> to see next plot, to progress through them. In the
examples that follow, however, you’ll select each plot individually using the
optional which argument (specified by the integers 1 through 6; see ?plot.lm

for the documentation). The residuals versus fitted plot is given with which=1;
the following line produces the plot on the left in Figure 22-2:

R> plot(car.step,which=1)

As you can see, R adds a smoothed line to help the user interpret any
trend, though this shouldn’t be used exclusively in any judgment. By default,
the three most extreme points from zero are annotated (according to the
rownames attribute of the data frame used in the call that fitted the model).
The model formula itself is specified below the horizontal axis label.

From this, you see that the residuals versus fitted plot for the car.step

offers little, if any, cause for concern. There isn’t much of a discernible
trend, and you can take further comfort in the fact that the errors (ei)
appear homoscedastic in their distribution.
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Figure 22-2: Residuals versus fitted and scale-location diagnostic plots for the car.step
model

The scale-location plot is similar to the residuals versus fitted plot, though
instead of the raw ei on the vertical axis, the scale-location plot provides
|ei/(σ̂{1 − hii }0.5) |0.5, that is, the square root of the absolute value (denoted
by | · |; this renders all negative values positive) of the standardized residu-
als. These are plotted against the respective fitted values on the horizontal
axis. By restricting attention to the magnitude of each residual in this way,
the scale-location plot is used to reveal trends in the size of the departure of
each data point from its fitted value, as the fitted values increase. This means
such a plot can, for example, be more useful than the raw residuals versus
fitted plot in detecting things such as heteroscedasticity. Just as with the orig-
inal residuals versus fitted plot, you’re looking for a plot with no discernible
pattern as an indication that no error assumptions have been violated.

The right plot of Figure 22-2 shows the scale-location plot for car.step,
selected with which=3. This plot also demonstrates the ability to remove the
default smoothed trend line with the add.smooth argument and to control
how many extreme points are labeled using the id.n argument.

R> plot(car.step,which=3,add.smooth=FALSE,id.n=2)

As with the original residuals versus fitted plot, there doesn’t seem to be
much to be concerned about in the scale-location plot for this mtcars model.

Return to Galileo’s ball-rolling data first laid out in Exercise 21.2 on
page 512. In their use in the following example, the response variable “dis-
tance traveled” is given as column d, and the explanatory variable “height”
is column h, in the data frame gal. I’ll re-create some of the exercise to give
you a couple of straightforward examples of cause for concern in residual
diagnostic plots. Execute the following code to define the data frame of the
seven observations and fit two regression models—the first linear in height
and the second quadratic (refer to Section 21.4.1 for details on polynomial
transformations).
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R> gal <- data.frame(d=c(573,534,495,451,395,337,253),

h=c(1,0.8,0.6,0.45,0.3,0.2,0.1))

R> gal.mod1 <- lm(d~h,data=gal)

R> gal.mod2 <- lm(d~h+I(h^2),data=gal)

Now, take a look at the three images in Figure 22-3, created with the
following code:

R> plot(gal$d~gal$h,xlab="Height",ylab="Distance")

R> abline(gal.mod1)

R> plot(gal.mod1,which=1,id.n=0)

R> plot(gal.mod2,which=1,id.n=0)

Figure 22-3: Demonstrating residual diagnostics for Galileo’s ball-rolling data. Top left:
The raw data with a simple linear trend corresponding to gal.mod1 superimposed. Top
right: Residuals versus fitted for the linear-trend-only model. Bottom: Residuals versus fitted
for the quadratic model gal.mod2.
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The top-left plot shows the data and provides the straight line of the
simple linear model. Although this clearly captures the increasing trend,
this plot suggests some curvature is also present. The diagnostic residu-
als versus fitted plot (top-right) shows that the linear-trend-only model is
inadequate—the systematic pattern throws up a red flag concerning the
assumptions surrounding the linear model errors. The bottom image shows
the residuals versus fitted plot based on the quadratic version of the model
in gal.mod2. Including a quadratic term in “height” removes this prominent
curve in the residuals. However, these latest ei values still seem to exhibit
systematic behavior in a wavelike form, perhaps suggesting you try a cubic
model, which is difficult with such a small sample size.

22.3.2 Assessing Normality
To assess the assumption that the error is normally distributed, you can use a
normal QQ plot, as first discussed in Section 16.2.2. You select which=2 when
calling plot on an lm object to produce a normal quantile-quantile plot of the
(standardized) residuals. Return to the car.step model object and enter the
following line to produce Figure 22-4.

R> plot(car.step,which=2)

Figure 22-4: Normal QQ plot of the residuals from
the car.step model

You interpret the QQ plot of the residuals in the same way as in Sec-
tion 16.2.2. The gray diagonal line represents the true normal quantiles,
and the plotted points are the corresponding numeric quantiles of the esti-
mated regression errors. Normally distributed data should lie close to the
straight line.
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For the car.step regression model, the points generally seem to fol-
low the path laid out by the theoretical normal quantiles. There is some
deviation, which is to be expected, but no apparent major departure from
normality.

There are also other ways to test for normality, such as the famous
Shapiro-Wilk hypothesis test. The null hypothesis for the Shapiro-Wilk test
is that the data are normally distributed, so a small p-value would suggest
non-normality of your data (see Royston, 1982, for technical details). To
execute the procedure, use the shapiro.test function in R. By first extracting
the standardized residuals of your fitted model with rstandard, you’ll see that
this test applied to car.step offers up a large p-value.

R> shapiro.test(rstandard(car.step))

Shapiro-Wilk normality test

data: rstandard(car.step)

W = 0.97105, p-value = 0.5288

In other words, there’s no evidence (according to this test) that the
residuals of car.step aren’t normal.

Being able to assume normality of the error term supports the method-
ology used to produce reliable estimates of the regression coefficients. As
long as your data are approximately normal, though, you shouldn’t be too
concerned with mild indications of non-normality. Some transformations
of your data, and an increase in your sample size, can reduce concerns about
more severe indications of non-normal residuals.

22.3.3 Illustrating Outliers, Leverage, and Influence
It’s always important to investigate any individual observations that appear
unusual or extreme compared to the bulk of your observations. In general,
an exploratory analysis of your data, perhaps involving summary statistics or
scatterplot matrices, is a good idea since it can help you identify any such
values—they have the potential to adversely affect your model fits. Before
going further, it’s important to clarify some frequently used terms.

Outlier This is a general term used to describe an unusual observation
in the context of the data, as you saw in Section 13.2.6. In linear regres-
sion, an outlier usually has a large residual but is identified as an outlier
only if it doesn’t conform to the trend of the fitted model. An outlier
can, but doesn’t always, significantly alter the trends described by the
fitted model.

Leverage This term refers to the extremity of the values of the present
predictors. A high-leverage point is an observation with predictor values
extreme enough to potentially significantly affect the slopes or trends in
the fitted model. An outlier can have a high or low leverage.
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Influence An observation with high leverage that does affect the esti-
mated trends is deemed influential. In other words, influence is judged
only when the response value is taken into account alongside the corre-
sponding predictor values.

These definitions have some overlap, so a given observation can be
described using a combination of these terms. Let’s look at some hypotheti-
cal examples. Create the following two vectors of ten supposed responses (y)
and explanatory (x) values:

R> x <- c(1.1,1.3,2.3,1.6,1.2,0.1,1.8,1.9,0.2,0.75)

R> y <- c(6.7,7.9,9.8,9.3,8.2,2.9,6.6,11.1,4.7,3)

These will form the bulk of the data. Now, consider the following six
objects, p1x to p3y, which will be used to store the predictor and response
values for three additional observation points:

p1x <- 1.2

p1y <- 14

p2x <- 5

p2y <- 19

p3x <- 5

p3y <- 5

That is, point 1 is (1.2,14); point 2 is (5,19); and point 3 is (5,5).
Next, the following four uses of lm provide four simple linear model fits.

The first is the regression of y on x only. The next three additionally include
points 1, 2, and 3, separately, as an 11th observation.

R> mod.0 <- lm(y~x)

R> mod.1 <- lm(c(y,p1y)~c(x,p1x))

R> mod.2 <- lm(c(y,p2y)~c(x,p2x))

R> mod.3 <- lm(c(y,p3y)~c(x,p3x))

Now, you can use these objects to visually clarify the definitions of outlier,
leverage, and influence, as shown in Figure 22-5. Enter the following code to
initialize the scatterplot with set axis limits of x and y:

R> plot(x,y,xlim=c(0,5),ylim=c(0,20))

Then use points, abline, and text to build the top-left plot of Figure 22-5,
as follows:

R> points(p1x,p1y,pch=15,cex=1.5)

R> abline(mod.0)

R> abline(mod.1,lty=2)

R> text(2,1,labels="Outlier, low leverage, low influence",cex=1.4)
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Create the middle and right plots by replacing p1x, p1y, and mod.1 with
those corresponding to points 2 and 3 and altering the labels argument
in text.

Figure 22-5: Three examples of the definitions of outlier, leverage, and influence in a

linear regression context. In each plot, the solid line represents the model fitted to the

original observations in x and y, and the dashed line represents the model fitted including

the extra point, plotted with �.

In the top-left plot of Figure 22-5, the additional point is an example of
an outlier since it sits away from the bulk of the data and doesn’t conform
to the trend suggested by the original observations. Despite this, it’s con-
sidered to have low leverage only because of its predictor value of 1.2 (p1x),
which isn’t deemed unusual compared to that of the other values of x. In
fact, its proximity to the overall mean of the x values indicates that the effect
of including it, incorporated in mod.1, is mainly a modification to the original
intercept. You could even classify this as a low influence point—the overall
change to the fitted model seems minimal.

In the top-right plot, you can see an example of an observation that
would not be considered an outlier. Although point 2 does sit apart from the
10 original observations, it conforms quite well to the model fitted to only
x and y, which is important in the context of regression. That being said,
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point 2 is considered a high leverage point since it sits at an extreme predic-
tor value compared to all other values of x (in other words, it has the poten-
tial to dramatically alter the fit should its response value be different). As it
stands, it’s a low influence point since the model fit itself is barely affected by
its inclusion.

Lastly, the bottom plot shows a clear example of an outlier in a high-
leverage position that also has a high influence—it sits away from the orig-
inal 10 observations and isn’t a clear part of the original trend; its extreme
predictor value means high leverage; and its inclusion substantially alters the
entire model by dragging down the slope and raising the intercept. These
ideas remain the same in higher dimensions (that is, when you have several
predictors) for multiple linear regression models.

22.3.4 Calculating Leverage
Leverage itself is calculated using the design matrix structure X defined in
Section 21.2.2. Specifically, if you have n observations, then the leverage of
the ith point (i = 1, . . . ,n) is denoted hii . These are the diagonal elements
(ith row, ith column) of the n × n matrix H such that

H = X (X⊤X )−1
X
⊤ (22.4)

In R, constructing the design matrix for the 10 illustrative predictor
observations you defined in Section 22.3.3 as x is achieved in a straight-
forward fashion using knowledge of cbind (refer to Section 3.1.2). H is
subsequently calculated using the corresponding functions for matrix
multiplication (%*%), matrix transposition (t), matrix inversion (solve),
and diagonal element extraction (diag). Then you can plot the values hii

against the values of x themselves. The following code produces Figure 22-6:

R> X <- cbind(rep(1,10),x)

R> hii <- diag(X%*%solve(t(X)%*%X)%*%t(X))

R> hii

[1] 0.1033629 0.1012107 0.3487221 0.1302663 0.1001345 0.3723971 0.1711595

[8] 0.1980630 0.3261232 0.1485607

R> plot(hii~x,ylab="Leverage",main="",pch=4)

You would typically use the built-in R function hatvalues, named after
the style of the matrix algebra in Equation (22.4), to obtain the leverages
(rather than manually constructing the design matrix X and doing the math
yourself). Simply provide hatvalues with your fitted model object. You can
confirm your earlier calculations by using the corresponding lm object fitted
to the x and y data (mod.0 created earlier).

R> hatvalues(mod.0)

1 2 3 4 5 6 7

0.1033629 0.1012107 0.3487221 0.1302663 0.1001345 0.3723971 0.1711595

8 9 10

0.1980630 0.3261232 0.1485607
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Figure 22-6: Plotting the leverage of the 10 illustrative
predictor observations in x

Looking at Figure 22-6, the appearance of the leverages plotted against
the corresponding predictor values themselves makes sense—leverage gets
progressively higher as you move away from the mean of the predictor data
in either direction. This is essentially the pattern you’ll see for any plot of
the raw leverages.

22.3.5 Cook’s Distance
Of course, leverage alone isn’t enough to determine the overall influence of
each observation on a fitted model. For that, the response value must also be
taken into account.

Arguably the most well-known measure of influence is Cook’s distance,
which estimates the magnitude of the effect of deleting the ith value from
the fitted model. Cook’s distance for observation i (denoted Di) is given
with the following equation:

Di =

n
∑

j=1

( ŷ j − ŷ
(−i)
j

)2

(p + 1)σ̂2
; i, j = 1, . . . ,n (22.5)

It turns out that this equation is a specific function of a point’s leverage
and residual. Here, the value ŷ j is the predicted mean response of observa-
tion j for the model fitted with all n observations, and ŷ

(−i)
j

represents the
predicted mean response of observation j for the model fitted without the
ith observation. As usual, the term p is the number of predictor regression
parameters (excluding the intercept), and the value σ̂ is the estimate of the
residual standard error.

Put simply, the larger the value of Di , the larger the influence the ith
observation has on the fitted model, meaning outlying observations in high-
leverage positions will correspond to higher values of Di . The important
question is, how big does Di have to be in order for point i to be considered
influential? In practice, this is difficult to universally answer, and there’s
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no formal hypothesis test for it, but there are several rule-of-thumb cutoff
values. One such rule states that if Di > 1, the point should be considered
influential; another, more sensitive rule suggests Di > 4/n (see, for example,
Bollen and Jackman, 1990; Chatterjee et al., 2000). It’s generally advised
that you compare multiple Cook’s distances for a given fitted model rather
than analyzing one single value, and that any point corresponding to a com-
paratively large Di might need further inspection.

Continue with the objects created in Section 22.3.3, with the 10 illustra-
tive observations in x and y, as well as the additional point defined in p1x and
p1y. The linear regression model fitted to those data was stored as the object
mod.1. It’s a good exercise to write some code that calculates the Cook’s dis-
tance measures following (22.5).

To that end, enter the following code in the R editor:

x1 <- c(x,p1x)

y1 <- c(y,p1y)

n <- length(x1)

param <- length(coef(mod.1))

yhat.full <- fitted(mod.1)

sigma <- summary(mod.1)$sigma

cooks <- rep(NA,n)

for(i in 1:n){

temp.y <- y1[-i]

temp.x <- x1[-i]

temp.model <- lm(temp.y~temp.x)

temp.fitted <- predict(temp.model,newdata=data.frame(temp.x=x1))

cooks[i] <- sum((yhat.full-temp.fitted)^2)/(param*sigma^2)

}

First, create new objects x1 and y1 to hold all 11 observations. The
objects n, param, and sigma extract the data set size, the total number of esti-
mated regression parameters (two in this case), and the estimated resid-
ual standard error for the model originally fitted to all 11 data points.
The latter two items, param and sigma, represent (p + 1) and σ̂ in Equa-
tion (22.5), respectively. The object yhat.full uses the fitted function on
the object mod.1 to provide the fitted mean response values, representing the
ŷ j values in (22.5).

To store the Cook’s distances, a vector cooks of 11 positions is created
(initialized to be filled with NAs) with rep. Now, to calculate each Di value,
set a for loop (see Chapter 10) to scroll through each index from 1 to 11.
The first step of the loop is to create two temporary vectors temp.x and temp.y

to be x1 and y1 with the observation at index i removed. A new temporary
linear model is fitted to temp.y based on temp.x; then predict finds the mean
responses from temp.model for each of the 11 predictor values (in other
words, including the one that was deleted). As such, the resulting vector
temp.fitted represents the ŷ

(−i)
j

values in Equation (22.5). Finally, sum and the
product of param with sigma^2 compute Di , and the result is stored in cooks[i].
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After highlighting and executing the code, the resulting Cook’s dis-
tances are as follows:

R> cooks

[1] 2.425993e-03 4.060891e-07 1.027322e-01 1.844150e-03 2.923667e-03

[6] 7.213229e-02 1.387284e-01 3.021075e-02 7.099904e-03 1.251882e-01

[11] 3.136855e-01

Unsurprisingly, the largest value of these is the last one, at around 0.314.
This corresponds to the 11th observation in x1 and y1, which is the addi-
tional point originally defined in p1x and p1y. The value 0.314 is less than 1
and less than 4/11 = 0.364, the cutoffs defined by the earlier rules of thumb.
This ties in with the assessment of the top-left image in Figure 22-5—that the
influence of the point p1x and p1y is minimal when compared to the influ-
ence of a point like p3x and p3y in the rightmost image.

Just as the hatvalues function computes the leverages for you, the built-
in cooks.distance function does the same for the Di . You can confirm the
previous values in cooks, which are based on mod.1.

R> cooks.distance(mod.1)

1 2 3 4 5 6

2.425993e-03 4.060891e-07 1.027322e-01 1.844150e-03 2.923667e-03 7.213229e-02

7 8 9 10 11

1.387284e-01 3.021075e-02 7.099904e-03 1.251882e-01 3.136855e-01

R automatically calculates and provides Cook’s distances as a diagnostic
plot of a fitted linear model object when you select which=4 in the relevant
usage of plot. The following code uses mod.1, mod.2, and mod.3 from earlier to
produce the three images in Figure 22-7; these correspond to the three data
sets in Figure 22-5.

R> plot(mod.1,which=4)

R> plot(mod.2,which=4)

R> plot(mod.3,which=4)

R> abline(h=c(1,4/n),lty=2)

The Di displayed on the top left of Figure 22-7 match the values you
manually calculated earlier, stored in cooks. The influences of all the data
points in the top-right plot remain relatively small, which reflects what you
can see in the top-right plot of Figure 22-5, where the additional point
(p2x, p2y) doesn’t greatly affect the overall fit. In the bottom plot, abline
superimposes two horizontal lines marking off the values 1 (highest line)
and 4/11 = 0.364, both of which are clearly breached by the 11th point
(p3x, p3y), just as you’d expect given the corresponding bottom image in
Figure 22-5.
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Figure 22-7: Three illustrative examples of the Cook’s distance plots produced in R, based
on mod.1 (top left), mod.2 (top right), and mod.3 (bottom)

Turn your attention back to the car.step model, where you modeled
MPG using the mtcars data set, with the final fit achieved using stepwise AIC
selection in Section 22.2.4. You’ve already looked at the residuals versus fit-
ted values and QQ plot in Figures 22-2 and 22-4. Figure 22-8 provides a plot
of Cook’s distances for the model with these two lines:

R> plot(car.step,which=4)

R> abline(h=4/nrow(mtcars),lty=2)

The plot labels the three points with the highest Di by default; two of
these breach the 4/n = 4/32 = 0.125 mark. In light of the fitted model based
on various effects of car weight (wt), horsepower (hp), and quarter-mile time
(qsec), the Chrysler Imperial and Toyota Corolla are deemed to be in high-
leverage positions with residuals large enough to be designated as highly
influential. It should also be noted that the Fiat 128, though it doesn’t quite
breach the 0.125 line, is still rather influential and was in fact also one of the
extreme labeled points in the residual plots (Figure 22-2) and the QQ plot
(Figure 22-4).
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Figure 22-8: Cook’s distances for the model in car.step;
a dashed horizontal line marks off 4/n for the mtcars
data frame

This could reasonably suggest investigating these highly influential
observations further. Was everything recorded correctly? Has your model
been selected carefully? Are there alternative options for the model, such
as additional predictor terms or transformations? You could explore these
options and continue to monitor a plot of the Cook’s distances (along with
the other diagnostics).

Whatever your result, the presence of influential points doesn’t neces-
sarily mean there is a serious problem with your model—this is more a tool
to help you detect observations that are extreme in terms of their specific
combination of the predictor values and that have a larger residual, suggest-
ing their response value sits away from the trends predicted by the model
itself. This is especially useful in multiple regression, when high dimension-
ality of the response-predictor data can make conventional visualization of
the raw data in a single plot difficult.

22.3.6 Graphically Combining Residuals, Leverage, and Cook’s Distance
The last two diagnostic plots from plot combine the standardized residual,
the leverage, and the Cook’s distance for the ith observation. These combi-
nation plots are especially useful in allowing you to see whether it is the high
leverage or large residual, or both, that contributes more to a high influence
observation.

Using the data models mod.1, mod.2, and mod.3, enter the following code
with which=5 to produce the three images in the left column of Figure 22-9:

R> plot(mod.1,which=5,add.smooth=FALSE,cook.levels=c(4/11,0.5,1))

R> plot(mod.2,which=5,add.smooth=FALSE,cook.levels=c(4/11,0.5,1))

R> plot(mod.3,which=5,add.smooth=FALSE,cook.levels=c(4/11,0.5,1))
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Figure 22-9: Combination diagnostic plot of standardized residuals against leverage
(left column) and Cook’s distance against leverage (right column) for the three illustrative
models mod.1 (top), mod.2 (middle), and mod.3 (bottom)
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These plots show leverage on the horizontal axis and the standardized
residuals on the vertical axis for each observation. As a function of resid-
ual and leverage, the Cook’s distances can be plotted as contours on each of
these scatterplots. These contours delineate the spatial areas of the plots
that correspond to high influence (in the right extreme corners).

The closer a point falls to the horizontal line at zero, the smaller its
residual. A point that lies more left than right has a smaller leverage. If a
point lies far enough from the horizontal line given its leverage (x-axis) posi-
tion, it will breach the contours marking off certain values of Di (defaulting
to just 0.5 and 1), indicating a high influence. Indeed, you can see by the
narrowing of the contours as you move from left to right on these plots that
classification as a high-influence point is easier if a given observation is in
a high-leverage position, which makes perfect sense. In the previous calls
to plot with which=5, the optional cook.levels argument is used to include a
contour for the rule-of-thumb value of 4/11 for these three examples.

The plot for mod.1 shows that the added point (p1x, p1y) has a large
residual, but it doesn’t breach the 4/11 contour because it’s in a low-leverage
position. The plot for mod.2 shows that the added point (p2x,p2y) is in a high-
leverage position but isn’t influential because its residual is small. Lastly,
the plot for mod.3 clearly identifies the added point (p3x, p3y) as highly
influential—with a large residual and high leverage, it’s in clear breach of
the high-level contours. Looking back at all the previous plots of these three
illustrative data sets, it’s easy to note that these three plots clearly reflect the
nature of each of the individually added extra observations.

The final diagnostic plot, using which=6, displays the same information
as the which=5 combination diagnostic, but this time the vertical axis dis-
plays Cook’s distance, and the horizontal axis displays a transformation of
the leverage, namely, hii/(1− hii ). This transformation amplifies larger lever-
age points in terms of their horizontal position, an effect that, in part, indi-
rectly displays itself as a “stretched-out” scale on the x-axis—useful if you’re
particularly interested in the extremity of the observations with respect to
the collection of predictor variables.

As such, the contours now define standardized residuals as a function
of the scaled leverage and Cook’s distance. The following three lines pro-
duce the three images in the rightmost column of Figure 22-9:

R> plot(mod.1,which=6,add.smooth=FALSE)

R> plot(mod.2,which=6,add.smooth=FALSE)

R> plot(mod.3,which=6,add.smooth=FALSE)

Points positioned further to the right are high-leverage points; points
positioned higher up are high-influence points. Looking down the right col-
umn of plots in Figure 22-9, you can see that the three additional points are
found where you would expect them to be, according to their characteristics
in mod.1, mod.2, and mod.3.
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For a real-data example, return to the model stored in car.step. Enter
the following code to produce the two combination diagnostic plots in
Figure 22-10:

R> plot(car.step,which=5,cook.levels=c(4/nrow(mtcars),0.5,1))

R> plot(car.step,which=6,cook.levels=c(4/nrow(mtcars),0.5,1))

Figure 22-10: Combination diagnostic plot of standardized residuals against leverage
(left) and Cook’s distance against leverage (right) for the car.step model

The two images in Figure 22-10 show the Corolla and the Imperial as
influential observations with Di values greater than the 4/nrow(mtcars) rule-
of-thumb cutoff. Interestingly, this plot reveals that the Imperial (which
was shown to have the largest Di by far in Figure 22-8) actually has a smaller
residual than both the Corolla and the Fiat 128. Its high influence is clearly
because of its high-leverage position with respect to the predictor values of
the variables present in car.step. The Fiat 128, on the other hand, has one
of the largest residuals in the entire data set (which is why it was flagged in
some of the earlier diagnostic plots) but just misses out on being labeled
a high-influence observation because of its relatively low-leverage position
(based purely on the rule-of-thumb cutoff).

Any linear regression model will have observations that influence the
model more than others, and these plots aim to help you identify them.
But deciding what to actually do with highly influential observations can be
difficult and is application specific. Although it’s not ideal to have a single
observation exerting heavy influence over the final estimated model, it’s also
extremely unwise to remove these observations without careful thought since
they might be pointing to other issues, such as deficiencies in your current
fit or previously undetected trends.

566 Chapter 22



Exercise 22.2

In Section 22.2.2, you used the nuclear data frame in the boot package
to illustrate forward selection, where a model was selected for cost as
a function of main effects of date, cap, pt, and ne.

a. Access the data frame; fit and summarize the model described
earlier.

b. Inspect the raw residuals versus fitted values and a normal QQ
plot of the residuals and comment on your interpretations—
do the assumptions underpinning the error component of the
linear model appear satisfied in this case?

c. Determine the rule-of-thumb cutoff for influential observations
based on the Cook’s distances. Produce a plot of the Cook’s
distances and add a horizontal line corresponding to the cutoff.
Comment on your findings.

d. Produce a combination diagnostic plot of the standardized
residuals against leverage. Set the Cook’s distance contours to
include the cutoff value from (c) as well as the default contours.
Interpret the plot—how are any individually influential points
characterized?

e. Based on (c) and (d), you should be able to identify the record
in nuclear exerting the largest influence on the fitted model. For
the sake of argument, let’s assume the observation was recorded
incorrectly. Refit the model from (a), this time omitting the
offending row from the data frame. Summarize the model—
which coefficients have changed the most? Produce the diag-
nostic plots from (b) for the new model and compare them to
the ones from earlier.

Load the faraway package and access the diabetes data frame. In
Exercise 22.1 (g), you used stepwise AIC selection to choose a
model for chol.

f. Using diabetes, fit the multiple linear model identified in the
earlier exercise, that is, with main effects and a two-way inter-
action between age and frame and a main effect for waist. By
summarizing the fit, determine the number of records that
contained missing values in diabetes that were deleted from the
estimation.

g. Produce the raw residuals versus fitted and QQ diagnostic plots
for the model in (f). Comment on the validity of the error
assumptions.
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h. Investigate influential points. Make use of the familiar rule-
of-thumb cutoff (note you’ll need to subtract the number of
missing values from the total size of the data frame to get the
effective sample size for your model). In the combination plot of
the standardized residuals against leverage, use one, three, and
five times the cutoff as the Cook’s distance contours.

Recall the discussion of reading in web-based files in Section 8.2.3.
There, you called in a data frame containing data on the prices of
308 diamonds (in Singapore dollars), as well as weight (in carats—
continuous), color (categorical—six levels from D, the least yellow
and the reference level, to I, the most yellow), clarity (categorical—
five levels with IF, essentially flawless and the reference level, VVS1,
VVS2, VS1, and VS2, with the last being the least clear), and certification
(categorical—three levels for different diamond certification bodies
with levels GIA as the reference, HRD and IGI). Seek out the freely
available article by Chu (2001) for more information on these data.
With an Internet connection, run the following lines, which will read
in the data as the object diamonds and name each variable column
appropriately.

R> dia.url <- "http://www.amstat.org/publications/jse/v9n2/4cdata.txt"

R> diamonds <- read.table(dia.url)

R> names(diamonds) <- c("Carat","Color","Clarity","Cert","Price")

i. Using either base R graphics or ggplot2, to get a feel for the data,
produce a scatterplot of the price on the y-axis and carat weight
on the x-axis. Experiment with using plotting color to split the
points according to the following:
– Diamond clarity
– Diamond color
– Diamond certification

j. Fit a multiple linear model with Price as the response and main
effects for the other variables as the predictors. Summarize the
model and produce the three diagnostic plots that tell you about
the assumptions surrounding the error term. Comment on the
plots—are you satisfied that this is an appropriate model for the
diamond prices? Why or why not?

k. Repeat (j) but use the log transformation of Price. Again, inspect
and comment on the validity of the error assumptions.

l. Repeat (k), but in modeling the log-price, this time include an
additional quadratic term for Carat (refer to Section 21.4.1 for
details on polynomial transformations). How do the residual
diagnostics look now?

568 Chapter 22



22.4 Collinearity

This final aspect of fitting regression models isn’t technically classified as
a diagnostic check but still has substantial potential to adversely affect the
validity of any conclusions you draw from a fitted model and occurs fre-
quently enough to warrant discussion here. Collinearity (also referred to as
multicollinearity) is when two or more of the explanatory variables are highly
correlated with each other.

22.4.1 Potential Warning Signs
High correlation between two predictors implies there will be some level of
redundancy in terms of the information they contain when it comes to the
response variable. It’s a problem since it can destabilize the ability to reliably
fit a model and, as noted earlier, therefore be detrimental to any subsequent
model-based inference.

The following items serve as potential warnings of collinearity when
you’re inspecting a model summary:

• The omnibus F-test (Section 21.3.5) result is statistically significant, but
none of the individual t-test results for the regression parameters are
significant.

• The sign of a given coefficient estimate contradicts what you would rea-
sonably expect to see, for example, drinking more wine resulting in a
lower blood alcohol level.

• Parameter estimates are associated with unusually high standard errors
or vary wildly when the model is fitted to different random record sub-
sets of the data.

As the last point notes, collinearity tends to have more of a detrimen-
tal effect on the standard errors of the coefficients (and associated out-
comes such as confidence intervals, significance tests, and prediction inter-
vals) than it does on point predictions per se. In most cases, you can avoid
collinearity simply by being careful. Be aware of the variables present and
how the data have been collected. For example, ensure any given predictors
you intend to include in the model don’t just represent a rescaled value of
another included predictor. It’s also advisable to perform an exploratory
analysis of your data, producing summary statistics and basic statistical plots.
You can tabulate counts between categorical variables or look at estimated
correlation coefficients between continuous variables, for example. In the
latter case, as a rough guide, some statisticians suggest that a correlation of
0.8 or more could lead to potential problems.

22.4.2 Correlated Predictors: A Quick Example
Consider the survey data of the statistics students again, located in the MASS

package. In most models you’ve looked at for these data, you’ve attempted
to predict student height from certain explanatory variables, often including
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the handspan of the writing hand (Wr.Hnd). The help page ?survey shows that
data have also been collected on the nonwriting handspan (NW.Hnd). It’s rea-
sonable to expect that these two variables will be highly correlated, which is
precisely why I’ve avoided any use of NW.Hnd previously. Indeed, executing

R> cor(survey$Wr.Hnd,survey$NW.Hnd,use="complete.obs")

[1] 0.9483103

reveals a high correlation coefficient, suggesting a strong positive linear asso-
ciation between the writing and nonwriting handspans of the students. In
other words, these two variables should represent much the same informa-
tion in any given model.

Now, you know from previously fitted models that writing handspan has
a significant and positive impact on predicting mean student height. The
following code quickly confirms this via a simple linear regression.

R> summary(lm(Height~Wr.Hnd,data=survey))

Call:

lm(formula = Height ~ Wr.Hnd, data = survey)

Residuals:

Min 1Q Median 3Q Max

-19.7276 -5.0706 -0.8269 4.9473 25.8704

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 113.9536 5.4416 20.94 <2e-16 ***
Wr.Hnd 3.1166 0.2888 10.79 <2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.909 on 206 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.3612, Adjusted R-squared: 0.3581

F-statistic: 116.5 on 1 and 206 DF, p-value: < 2.2e-16

The high positive correlation between Wr.Hnd and NW.Hnd suggests that
using NW.Hnd instead should have a similar effect.

R> summary(lm(Height~NW.Hnd,data=survey))

Call:

lm(formula = Height ~ NW.Hnd, data = survey)

Residuals:

Min 1Q Median 3Q Max

-21.8285 -5.1397 -0.2867 4.5611 25.5750
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 118.0324 5.2912 22.31 <2e-16 ***
NW.Hnd 2.9107 0.2818 10.33 <2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.032 on 206 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.3412, Adjusted R-squared: 0.338

F-statistic: 106.7 on 1 and 206 DF, p-value: < 2.2e-16

You can see from these results that this is certainly the case.
Look, however, at what happens if you try to model height based on

both of these predictors at the same time:

R> summary(lm(Height~Wr.Hnd+NW.Hnd,data=survey))

Call:

lm(formula = Height ~ Wr.Hnd + NW.Hnd, data = survey)

Residuals:

Min 1Q Median 3Q Max

-20.0144 -5.0533 -0.8558 4.7486 25.8380

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 113.9962 5.4545 20.900 <2e-16 ***
Wr.Hnd 2.7451 1.0728 2.559 0.0112 *
NW.Hnd 0.3707 1.0309 0.360 0.7195

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.926 on 205 degrees of freedom

(29 observations deleted due to missingness)

Multiple R-squared: 0.3616, Adjusted R-squared: 0.3554

F-statistic: 58.06 on 2 and 205 DF, p-value: < 2.2e-16

Since the effects of Wr.Hnd and NW.Hnd on Height are intermingled with
one another, including both at the same time heavily masks any individual
contribution to modeling the response. Statistical significance of the predic-
tors is almost nonexistent; at the least, the effects are both associated with
much, much higher p-values than in the individual single-predictor fits. That
said, the omnibus F-test remains highly significant, giving an example of the
first warning sign noted previously.
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Important Code in This Chapter

Function/operator Brief description First occurrence

anova Partial F -tests Section 22.2.1, p. 531
add1 Review single-term additions Section 22.2.2, p. 533
update Make changes to fitted model Section 22.2.2, p. 534
drop1 Review single-term deletions Section 22.2.3, p. 538
step Stepwise AIC model selection Section 22.2.4, p. 543
plot (used on lm object) Model diagnostics Section 22.3.1, p. 551
rstandard Extract standardized residuals Section 22.3.2, p. 555
shapiro.test Shapiro-Wilk test of normality Section 22.3.2, p. 555
hatvalues Calculate leverages Section 22.3.4, p. 558
cooks.distance Calculate Cook’s distances Section 22.3.5, p. 561
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23
ADVANCED PLOT CUSTOMIZATION

Many users are first drawn to R because of
its impressive graphical flexibility and the

ease with which you can control and tailor
the resulting visuals. In this chapter, you’ll

take a closer look at the base R graphics device, and
at how you can fine-tune the plots you’re already famil-
iar with, to get the most use out of your visualizations.
In the chapters that follow, you’ll then expand your
repertoire in both ggplot2 and traditional R graphics.

Much of this chapter will assume you’re familiar with the content of
Chapters 7 and 14. In general, I’ll also assume you’re using the standard
base R application (for example, R.app on a Mac or Rgui.exe in Windows—
see Appendix A), since the behavior and availability of some of the com-
mands can vary if you’re working with R in a different context.

Depending on your operating system, the default software drivers used
to render graphical displays on your computer screen are also different.
In the standard R.app application on a Mac, for example, you’ll notice



that producing a live plot will open a window with a banner title that looks
something like Quartz 2 [*]—the default graphics device driver for OS X is
the Quartz window system. On a Windows machine, you’ll see R Graphics:
Device 2 (ACTIVE). The numbering of any graphics devices always starts at 2;
Device 1 is referred to as the null device, meaning there’s nothing active
currently.

NOTE For a list of devices your R session has available, enter ?Devices at the prompt. You’ll
note that the list includes commands such as png and pdf, which are the so-called
silent graphics devices that enable direct-to-file plotting, as detailed in Chapter 8. You
can use a different device for any given plot if you want, though the default is almost
always appropriate if you’re plotting directly to your screen.

23.1 Handling the Graphics Device

So far, your plotting has dealt with one image at a time. It’s possible to have
multiple graphics devices open, but only one will be deemed active at any
given time (the banner titles highlight the currently active device with the
[*] or the (ACTIVE)). This is useful when you’re working on several plots at
once or want to view or alter one plot without closing any others.

23.1.1 Manually Opening a New Device
The typical base R commands you’ve met already (such as plot, hist, boxplot,
and so on) will automatically open a device for plotting and draw the desired
plot, if nothing is currently open. You can also open new device windows
using dev.new; this newest window will immediately become active, and any
subsequent plotting commands will affect that particular device.

As an example, first close any open graphics windows and then enter the
following at the R prompt:

R> plot(quakes$long,quakes$lat)

This will generate a plot of the spatial locations of the occurrences of
the 1000 seismic events in the ready-to-use quakes data frame. If the only
device currently available is Device 1, the null device, any plotting command
that refreshes a plotting window and produces a new image (such as plot

here or more specialized commands such as hist or boxplot) will automati-
cally open a new instance of the default graphics device before actually plot-
ting the data. On my machine, I see Quartz 2 [*] open and display the plot
of the spatial coordinates.

Now, let’s say you’d also like to see a histogram of the number of sta-
tions that detected each event. Execute the following to open a new plotting
window:

R> dev.new()
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This new window will be numbered 3 (it usually sits itself on top of the
previously open window, so you may want to move it to one side with your
mouse). Importantly, you’ll see that this becomes the active device: on a
Mac the [*] is now on the Device 3 banner; in Windows, Device 3 will say
(ACTIVE), and Device 2 will now say (inactive).

At this point, you can enter the usual command to bring up the desired
histogram in Device 3:

R> hist(quakes$stations)

If you hadn’t used dev.new, the histogram would’ve just overwritten the
plot of the spatial locations in Device 2.

23.1.2 Switching Between Devices
To change something in Device 2 without closing Device 3, use dev.set fol-
lowed by the device number you want to make active. The following code
activates Device 2 and replots the locations of the seismic events so that the
size of each point is proportional to the number of stations that detected the
event. It also tidies up the axis labels.

R> dev.set(2)

quartz

2

R> plot(quakes$long,quakes$lat,cex=0.02*quakes$stations,

xlab="Longitude",ylab="Latitude")

Using dev.set always confirms the newly active device by printing to the
console; the specific text will vary according to your operating system and
type of device.

Switching back to Device 3, as a final tweak, add a vertical line marking
off the mean number of detecting stations.

R> dev.set(3)

quartz

3

R> abline(v=mean(quakes$stations),lty=2)

Figure 23-1 shows the two graphics devices after making these
modifications.
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Figure 23-1: My two visible graphics devices, Device 2 (left) and Device 3 (right), show-
ing the final results of producing and manipulating two plots of the quakes data

23.1.3 Closing a Device
To close a graphics device, either click the X with your mouse as you would
to close any window or use the dev.off function (you originally saw this com-
mand in Chapter 8 when closing a direct-to-file device). Calling dev.off()

with no arguments simply closes the currently active device. Otherwise,
you can specify the device number just as when using dev.set. To close the
plot of the spatial locations, leaving the histogram as the active device, call
dev.off with an argument of 2:

R> dev.off(2)

quartz

3

Then repeat the call without an argument to close the remaining device:

R> dev.off()

null device

1

Similar to dev.set, the printed output tells you what the newly active
device is after you close one. When you close the last available actionable
device, you’re returned to the null device.

23.1.4 Multiple Plots in One Device
You can also control the number of individual plots in any one device.
There are a few ways to do this; I’ll describe the two easiest ways here.
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Setting the mfrow Parameter

Recall the par function is used to control various graphical parameters of tra-
ditional R plots. The mfrow argument instructs a new (or the currently active)
device to “invisibly” divide itself into a grid of the specified dimensions, with
each cell holding one plot. You pass the mfrow option a numeric integer vec-
tor of length 2 in the order of c(rows,columns); as you might guess, its default
is c(1,1).

In your R session, make sure there are no plotting windows open. Now,
say you want the two plots of the quakes data side by side in the same device.
You would set mfrow as a 1 × 2 grid with the vector c(1,2)—one row of plots
and two columns.

R> dev.new(width=8,height=4)

R> par(mfrow=c(1,2))

R> plot(quakes$long,quakes$lat,cex=0.02*quakes$stations,

xlab="Longitude",ylab="Latitude")

R> hist(quakes$stations)

R> abline(v=mean(quakes$stations),lty=2)

The first line uses the optional arguments width and height to preset
the dimensions of the new device, in inches, so it is twice as wide as it is high.
Figure 23-2 shows exactly how the images are displayed, with the creation of
a new plot filling the available cells as governed by the value of mfrow.

Figure 23-2: Using mfrow in par to generate a grid of plots in a single graphics device,
showing the two plots of the quakes data

If you close any graphics devices and rerun this code without the lead-in
call to dev.new, executing par(mfrow=c(1,2)) will automatically open a graph-
ics device of the default square size of 7 × 7 inches. The two plots will still
appear side by side but will be squashed. You can manually resize the device
with your mouse to something more appropriate to the set value of mfrow,
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and then when you replot, the visualizations and their axes will be clearer.
You’ll find you use this trial-and-error approach quite often to produce mul-
tiple plots in a single device, especially if you don’t want to be concerned
with explicitly calling dev.new and setting width and height.

Note that any use of par in this way will affect only the currently active
device. Subsequent calls to dev.new will open new devices with, for example,
mfrow set back to be the default “one plot only” with c(1,1). In other words,
if you want to tailor the options of any new graphics device (including the
direct-to-file devices), you need to set the required values of par after open-
ing the device but before executing any plotting commands.

Defining a Particular Layout

You can refine the arrangements of plots in a single device using the layout

function, which offers more ways to individualize the panels into which the
plots will be drawn.

Return to the student survey data in survey in the MASS package. Suppose
you want an array of three statistical plots—a scatterplot of height on writ-
ing handspan, side-by-side boxplots of height split by smoking status, and a
barplot of the frequencies of exercise of the students. If you want the plots
arranged in a square device (as opposed to a single row or column of three
plots), using only mfrow in par may not work best. You could set a square grid
with par(mfrow=c(2,2)), but you’d end up with a blank space for the cell with
no image assigned to it.

When you use layout, you provide the dimensions in a matrix mat as the
first argument; these govern an invisible rectangular grid, just like control-
ling the mfrow option. The difference now is that you can use numeric inte-
ger entries in mat to tell layout which plot number will go where. Examine
the following object:

R> lay.mat <- matrix(c(1,3,2,3),2,2)

R> lay.mat

[,1] [,2]

[1,] 1 2

[2,] 3 3

The dimensions of this matrix create a 2 × 2 grid of plotting cells, but
the values inside lay.mat tell R that you want plot 1 to take the upper-left cell,
plot 2 to take the upper-right cell, and plot 3 to stretch itself over the two
bottom cells.

Calling layout as follows will either silently initialize the active device
based on lay.mat or open a new one (if the null device is the only device
currently available) and initialize it.

R> layout(mat=lay.mat)
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If you’re ever unsure of the result of your specification, you can use the
layout.show function to see how plots will be placed. The following line pro-
duces the image on the left of Figure 23-3.

R> layout.show(n=max(lay.mat))

Then, once you’ve loaded the MASS package by calling library("MASS") so
you can access survey, run the following lines to place the plots in the order
the plotting commands are executed, matched to the integers in lay.mat.

R> plot(survey$Wr.Hnd,survey$Height,

xlab="Writing handspan",ylab="Height")

R> boxplot(survey$Height~survey$Smoke,

xlab="Smoking frequency",ylab="Height")

R> barplot(table(survey$Exer),horiz=TRUE,main="Exercise")

Note that if you’ve already closed down the plot arising from layout.show,
then you’ll need to reinitialize a new device with the same call to layout for
these three plots to display as intended. The result should look like the right
of Figure 23-3.

Figure 23-3: Left: Using layout.show to visualize the planned plotting layout and order.
Right: Demonstrating three plots of the survey data arranged according to lay.mat
through layout.

Probably the biggest benefit of layout is its ability to relax the rigidity of
plotting cells when compared to using the mfrow par option, as you’ve just
seen. Additional arguments to layout, namely, widths and heights, even allow
you to preset the relative widths and heights of the cells as structured in the
mat argument. See the documentation in ?layout for details; you’ll find some
other examples of its flexibility at the bottom of the file.
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NOTE An unfortunate consequence of the two methods discussed here is the inability to
edit a previous plot once you’ve finished it and moved on to the next. There is a
split.screen function, which does allow you to set up several “screens” in a single
device and switch between them. However, this method requires a lot of extra coding
and in general doesn’t behave well with regard to plotting regions and margins (see the
next section) in R. Many users (myself included) prefer to remain with layout, even if
it means going through a bit of trial and error.

23.2 Plotting Regions and Margins

Although the main concern when plotting is of course the data set or model
being visualized, it’s additionally important to ensure the plot is annotated
clearly and accurately to facilitate correct interpretation. To help do this,
you need to know how to manipulate and draw in all visible areas of a given
device, not just the area where your data lie.

For any single plot created using base R graphics, there are three
regions that make up the image.

• The plot region is all you’ve dealt with so far. This is where your actual
plot appears and where you’ll usually be drawing your points, lines, text,
and so on. The plot region uses the user coordinate system, which reflects
the value and scale of the horizontal and vertical axes.

• The figure region is the area that contains the space for your axes, their
labels, and any titles. These spaces are also referred to as the figure
margins.

• The outer region, also referred to as the outer margins, is additional space
around the figure region that is not included by default but can be spec-
ified if it’s needed.

You can explicitly measure and set margin space in a few different ways.
One typical way is in terms of lines—specifically, the number of lines of text
that can fit on top of one another parallel to each edge. You specify these
as vectors of length 4 in a particular order; each of the four elements cor-
responds to one of the four sides: c(bottom, left, top, right). The graphical
parameters oma (outer margin) and mar (figure margin) are used to control
these amounts; like mfrow, they are initialized through a call to par before you
begin to draw any new plot.

23.2.1 Default Spacing
You can find your default figure margin settings with a call to par in R.

R> par()$oma

[1] 0 0 0 0

R> par()$mar

[1] 5.1 4.1 4.1 2.1
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You can see here that oma=c(0, 0, 0, 0)—there is no outer margin set
by default. The default figure margin space is mar=c(5.1, 4.1, 4.1, 2.1)—in
other words, 5.1 lines of text on the bottom, 4.1 on the left and top, and 2.1
on the right.

To illustrate these regions, consider the image on the left of Figure 23-4,
created in a fresh graphics device with the following:

R> plot(1:10)

R> box(which="figure",lty=2)

Figure 23-4: Illustrating graphical device regions as treated by traditional (base) R
graphics; solid-line boxes show the plot region, dashed-line boxes show the figure
region, and a dotted-line box shows the outer region area. Left: Default settings. Right:
User specification, through par, of the outer and figure margin areas in “lines of text”
via oma and mar, respectively.

If you use the box function with the optional argument which set to
"figure", it shows you the figure region (the additional specification of
lty=2 draws dashed lines).

If you’re looking at this plot in your onscreen graphics device, you
should note the dashed lines snug up against the window edges. Examin-
ing the default values in mar, you can see, relatively speaking, that they cor-
rectly correspond to the spacing on the four sides of the plot region (given
with the default solid box). The widest figure margin, parallel to the bottom
of the plot region, is 5.1 lines; the narrowest figure margin, parallel to the
right of the plot region, is 2.1 lines.

23.2.2 Custom Spacing
Let’s produce the same plot but with tailored outer margins so that the
bottom, left, top, and right areas are one, four, three, and two lines, respec-
tively, and the figure margins are four, five, six, and seven lines. The result
of the following code is given on the right of Figure 23-4.
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R> par(oma=c(1,4,3,2),mar=4:7)

R> plot(1:10)

R> box("figure",lty=2)

R> box("outer",lty=3)

Notice that the irregular margins have squashed the plot region in the
default square device to accommodate the defined spacing around the
edges. If you set graphical parameters that squash the plot region into
nonexistence, R will throw an error stating figure margins too large.

Since you’d usually manipulate margin space to accommodate particu-
lar annotations of the plot, let’s look at the mtext function, used specifically
to produce text in the figure or outer margins. By default, the argument
outer is FALSE, meaning the text will be written in the figure margin. Setting
outer=TRUE positions the text in the outer region. If you’ve kept the most
recent plot open, the following lines provide the additional margin anno-
tation visible on the right of Figure 23-4:

R> mtext("Figure region margins\nmar[ . ]",line=2)

R> mtext("Outer region margins\noma[ . ]",line=0.5,outer=TRUE)

Here, you provide the text you want written in a character string as
the first argument, and the argument line instructs how many lines of
space away from the inside border the text should appear. There’s also an
optional argument side in mtext, which dictates where the text appears. It
defaults to 3, setting the text at the top, but you can set side=1 to place the
text on the bottom, use side=2 to set it on the left, and use side=4 to set it
on the right. Look to ?mtext for details on even more arguments available
for the margin text.

You might also like to investigate the ready-to-use function title, which
is a specialized implementation of mtext often used if figure margin annota-
tion for the four axes of a plot (beyond the basic capabilities of specifying
things such as main, xlab, or ylab) is the primary concern.

23.2.3 Clipping
Controlling clipping allows you to draw in or add elements to the mar-
gin regions with reference to the user coordinates of the plot itself. For
example, you might want to place a legend outside the plotting area, or
you might want to draw an arrow that extends beyond the plot region to
embellish a particular observation.

The graphical parameter xpd controls clipping in base R graphics. By
default, xpd is set to FALSE, so all drawing is clipped to the available plot
region only (with the exception of special margin-addition functions such
as mtext). Setting xpd to TRUE allows you to draw things outside the formally
defined plot region into the figure margins but not into any outer margins.
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Setting xpd to NA will permit drawing in all three areas—plot region, figure
margins, and the outer margins.

For example, take a look at the images in Figure 23-5, showing side-by-
side boxplots of mileage split by number of cylinders, created with the fol-
lowing code:

R> dev.new()

R> par(oma=c(1,1,5,1),mar=c(2,4,5,4))

R> boxplot(mtcars$mpg~mtcars$cyl,xaxt="n",ylab="MPG")

R> box("figure",lty=2)

R> box("outer",lty=3)

R> arrows(x0=c(2,2.5,3),y0=c(44,37,27),x1=c(1.25,2.25,3),y1=c(31,22,20),

xpd=FALSE)

R> text(x=c(2,2.5,3),y=c(45,38,28),c("V4 cars","V6 cars","V8 cars"),

xpd=FALSE)

The particular result of this code is the top-left image in Figure 23-5. I’ve
defined the device region itself with particular figure and outer margins for
the purpose of illustration. The plotting of the horizontal axis is suppressed
with xaxt="n" in the call to boxplot; calls to box add the boundaries of the fig-
ure and outer margins (dashed and dotted lines, respectively). Lastly, calls
to arrows and text point to and annotate each boxplot; the label for V4 cars
extends into the outer margin, the label for V6 cars extends into the figure
region, and the label for V8 cars remains contained within the plot region.

Note that the graphical parameter xpd is specified only in the two “add-
to-current-plot” functions arrows and text, explicitly set as the default FALSE.
This means all plotting is restricted to the plot region.

If you run the code chunk again but now set xpd=TRUE in the calls to
arrows and text, you’ll get the image in the top right of Figure 23-5. This
allows the label for the V6 car to be printed in the margin, instead of being
chopped off. Finally, rerunning the code with xpd=NA produces the lower plot
in Figure 23-5, where all drawing outside the plot region is permitted.

This effect is usually desirable when you need to annotate the main
plot somehow, especially when there isn’t enough space in the plot region
to squeeze in any additions. Plots that I’ve created in earlier chapters, such
as the bottom image of Figure 16-6 on page 349 (where the legend sits out-
side the main plot) and Figure 17-3 on page 380 (where I annotated the
critical values), were created specifying xpd=TRUE in the relevant functions
(legend, text, segments, and arrows).

As demonstrated, you’d typically set xpd in the specific commands (in
other words, on a line-by-line basis), so only the results of that particular
command will be produced with the given clipping rule. This offers a bit
more control over what is and isn’t visible outside the plot region. You can,
however, set xpd alongside oma and mar in the initial call to par to make the
value of xpd “universal” to that device.
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Figure 23-5: Illustrating the behavior of setting xpd=FALSE (top left, default), xpd=TRUE (top
right), and xpd=NA (bottom) in relevant plotting commands to enable drawing in figure and
outer margins with respect to the user coordinates of the plot region

23.3 Point-and-Click Coordinate Interaction

Your dealings with the graphics device don’t need to be solely command
based. Under typical circumstances, R can read mouse clicks you make
inside the device.

23.3.1 Retrieving Coordinates Silently
The locator command allows you to find and return user coordinates. To
see how it works, first execute a call to plot(1,1) to bring up a simple plot
with a single point in the middle. To use locator, you simply execute the
function (with no arguments for default behavior), which will “hang” the
console, without returning you to the prompt. Then, on an active graph-
ics device, your mouse cursor will change to a + symbol (you may need
to first click your device once to bring it to the foreground of your com-
puter desktop). With your cursor as the +, you can perform a series of (left)
mouse clicks inside the device, and R will silently record the precise user
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coordinates. To stop this, simply right-click to terminate the command
(other options to stop are system dependent and are mentioned in the help
file ?locator), and once you do, the coordinates you identified in the device
are returned as a list with components $x and $y. These are printed to the
console screen unless you specifically assign the call to locator to an R object.

On my machine, I silently identified four points at arbitrary locations
around the plotted point at (1,1), from top left clockwise around to the bot-
tom left. The following is the output printed to my console:

R> plot(1,1)

R> locator()

$x

[1] 0.8275456 1.1737525 1.1440526 0.8201909

$y

[1] 1.1581795 1.1534442 0.9003221 0.8630254

This silent use of locator is useful if you need to, for example, identify
approximate user coordinates in the plot region where you need to place
future annotations.

23.3.2 Visualizing Selected Coordinates
You can also use locator to plot the points you select as either individual
points or as lines. Running the following code produces Figure 23-6:

R> plot(1,1)

R> Rtist <- locator(type="o",pch=4,lty=2,lwd=3,col="red",xpd=TRUE)

R> Rtist

$x

[1] 0.5013189 0.6267149 0.7384407 0.7172250 1.0386740 1.2765699

[7] 1.4711542 1.2352573 1.2220592 0.8583484 1.0483300 1.0091491

$y

[1] 0.6966016 0.9941945 0.9636752 1.2819852 1.2766579 1.4891270

[7] 1.2439071 0.9630832 0.7625887 0.7541716 0.6394519 0.9618461

Drawing using locator requires you to specify the plot type, as covered
in Chapter 7. Selecting type="o" (as opposed to the silent default, type="n")
is what produces the overplotted points and lines in Figure 23-6. For just
points, use type="p"; for just lines, use type="l". The graphical parameters
controlling other relevant features, such as point/line type and color, can
also be used, as you’ve seen in conventionally produced plots in Chapter 7.
I also used xpd=TRUE, shown earlier, to allow the locator points and/or lines
to protrude into the figure region margins. The call to locator is directly
assigned to a new object Rtist, illustrating how you can use the clicked coor-
dinates later if needed.
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Figure 23-6: Using locator to draw an arbitrary
sequence of overplotted points and lines

23.3.3 Ad Hoc Annotation
The locator function also allows you to place ad hoc annotations, such as
legends, on your plot—remember, since locator returns valid R user coordi-
nates, these results can directly form the positional argument of most stan-
dard annotation functions.

Return to the student survey data in the MASS package, first loading the
package by calling library("MASS"). The following call produces the scatter-
plot used to illustrate a multiple linear model of mean student height as a
function of handspan and sex in Section 21.3.3.

R> plot(survey$Height~survey$Wr.Hnd,pch=16,

col=c("gray","black")[as.numeric(survey$Sex)],

xlab="Writing handspan",ylab="Height")

For the plot in Section 21.3.3 (Figure 21-1 on page 495), I simply used
the string "topleft" to position the legend. This time, call the following:

R> legend(locator(n=1),legend=levels(survey$Sex),pch=16,

col=c("gray","black"))

An optional argument to locator, n, takes a positive integer for an
upper limit on how many points you want to select; it defaults to 512. If you
specify n=1, locator will automatically terminate after you left-click once in
the device, so you don’t need to manually exit the function with a right-click.

When the code is executed, the + cursor will appear on the graphics
device, and you simply need to click once for the desired location of the leg-
end. I chose to click the blank space above the cloud of points, producing
the image in Figure 23-7.
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Figure 23-7: Ad hoc placement of a legend on a
scatterplot of the survey data

Exercise 23.1

a. In Section 20.5.4 (page 478), I gave you code showing a simple
linear model fitted with a categorical predictor being treated as
continuous (the mtcars data with mpg as the response and cyl as
the explanatory variable). Reproduce the side-by-side boxplots
and the scatterplot (with fitted line) from Figure 20-6, but this
time, use mfrow to present the two plots as a vertical column in
one device.

b. Create the appropriate layout matrices to reproduce the follow-
ing three plots (as they appear in a square device):

i. ii. iii.

c. By opening a new device of dimension 9 × 4.5 inches, set the
following layout:
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Then, produce the following combined set of plots exactly:

To achieve this, note the following:

– After you open the device and setting the layout, the plot
margins should be reset to four lines, four lines, two lines,
and one line of space on the bottom, left, top, and right,
respectively.

– After each plot, add a gray box corresponding to the figure
region to achieve the visible partitions.

– Plots 1 and 4 are the same as the two plots shown in Fig-
ures 23-1 and 23-2.

– Plots 2 and 3 are scatterplots showing the number of detect-
ing stations on the y-axis, with magnitude and depth on the
x-axis, respectively.

– Do not place main titles on any plots, and ensure the axis
titles are neat (that is, compared to their defaults).

d. Write a little R function named interactive.arrow. The purpose
of this function is to superimpose an arrow upon any base R plot
using two clicks of your mouse. The details are as follows:
– The crux of your function will be the use of locator to read

exactly two mouse clicks. You may assume a suitable active
graphics device is already open whenever the function is
called. The first click should mean the beginning of the
arrow, and the second click should mean the tip of the
arrow (where it’s pointing to).

– In the function, the coordinates returned by locator should
be passed to arrows to do the actual drawing.

– The function should take an ellipsis as its first argument,
intended to hold additional arguments to be passed directly
to arrows.
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– The function should take an optional logical argument
label, which defaults to NA but should be intended to have
an optional character string. If label is not NA, then locator

should be invoked once more (separately, after drawing the
arrow) to select exactly one coordinate. That point will be
passed to text so that the user can additionally place the
character string given to label as an annotation (intended
to be for the interactively placed arrow). The call to text

should consistently allow completely relaxed clipping (in
other words, any text added in this fashion will still be visible
in the figure region and outer margins, if there are any).

Take another look at the rightmost plot of Figure 14-6 on
page 298, a stand-alone boxplot of the magnitude data from
the quakes data frame. Arrows and labels were superimposed
externally pointing out the various statistics summarized by a
boxplot. Create the same boxplot and use interactive.arrow to
annotate the same features to your own satisfaction (you’ll likely
have to use the ellipsis to relax the clipping associated with each
arrow). My result is given here:

23.4 Customizing Traditional R Plots

Now that you’re familiar with the way R places and handles plots in the
graphics device, it’s time to focus on common features of plots. So far,
you’ve largely left the default settings in place.
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23.4.1 Graphical Parameters for Style and Suppression
If you want finer control over an R plot, you’ll typically want to begin with
a “clean slate.” To do this, you need to be aware of the default settings of
certain graphical parameters when calling a plotting function and of how to
suppress things such as boxes and axes. This is where you’ll start.

For an example image, let’s plot MPG against horsepower (from the
ready-to-use mtcars data set) and set each plotted point to be sized propor-
tionally to the weight of each car. For convenience, create the following
objects:

R> hp <- mtcars$hp

R> mpg <- mtcars$mpg

R> wtcex <- mtcars$wt/mean(mtcars$wt)

The last object is the car weight vector scaled by its sample mean. This
creates a vector where cars less than the average weight have a value < 1 and
cars more than the average weight have a value > 1, making it ideal for the
cex parameter to scale the size of the plotted points accordingly (refer to
Chapter 7).

Let’s start by focusing on some more graphical parameters usually used
in the first instance of a call to plot, paving the way for using the box and axis

commands. Executing the following line gives you the default appearance of
the plot and its box, axes, and labeling; this is shown as the leftmost image in
Figure 23-8.

R> plot(hp,mpg,cex=wtcex)

There are two axis “styles,” controlled by the graphical parameters
xaxs and yaxs. Their sole purpose is to decide whether to impose the small
amount of additional horizontal and vertical buffer space that’s present at
the ends of each axis to prevent points being chopped off at the end of the
plotting region. The default, xaxs="r" and yaxis="r", is to include that space.
The alternative, setting one or both of these to "i", instructs the plot region
to be strictly defined by the upper and lower limits of the data (or by those
optionally supplied to xlim and/or ylim), that is, with no additional padding
space.

For example, the following line produces the middle plot in Figure 23-8.

R> plot(hp,mpg,cex=wtcex,xaxs="i",yaxs="i")

This plot is almost the same as the default, but note now that there’s
no padding space at the end of the axes; the most extreme data points sit
right on the axes. Generally, the default axis style "r" is fine, but on occa-
sions where you need finer control over the axes’ scales and the corre-
sponding plot region, that additional buffer space can be problematic. On
those occasions, you’ll often see xlim/ylim being used in conjunction with
xaxs="i"/yaxs="i".
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Figure 23-8: Plotting MPG against horsepower for the mtcars data; point size propor-
tional to car weight, using a call to plot only. Left: Default appearance. Middle: Setting
xaxs="i" and yaxs="i" to prevent the buffer spacing on the limits of the axes. Right:
Using xaxt, yaxt, xlab, ylab, and bty to suppress all box, axis, and label drawing
(alternatively achieved by setting axes=FALSE and ann=FALSE).

If you want total control over the specific appearance of any boxes, axes,
and their labels, you’ll want to start a plot with none of these and add them
as per your design. The rightmost plot in Figure 23-8 is the result of sup-
pressing the default drawing of these by a call to either

R> plot(hp,mpg,cex=wtcex,xaxt="n",yaxt="n",bty="n",xlab="",ylab="")

or

R> plot(hp,mpg,cex=wtcex,axes=FALSE,ann=FALSE)

You can achieve this either by setting the parameters xaxt, yaxt, and bty

to "n" and setting the default axis labels xlab and ylab to the empty string
"", or by simply setting both axes and ann to FALSE (the former suppressing
all axes and the box, the latter suppressing any annotation). Although the
first way might seem overcomplicated, it affords you greater flexibility in sup-
pressing each aspect of a given plot (as opposed to the “total” suppression
enforced by the second approach).

23.4.2 Customizing Boxes
When you’re starting with a suppressed-box or suppressed-axis plot, to add
a box specific to the current plot region in the active graphics device, you
use box and specify its type with bty. For example, if you start with a plot like
the one on the right of Figure 23-8 (just run the most recent line of code to
get this), then additionally calling the following line provides you with the
image given on the left of Figure 23-9.

R> box(bty="u")

The bty argument is supplied a single character: "o" (default), "l", "7",
"c", "u", "]", or "n". The help file entry for bty in ?par tells you that based on
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one of these values, the resulting box boundaries will follow the appearance
of the corresponding uppercase letter, with the exception of "n" (which, as
you saw a moment ago, will suppress the box).

Figure 23-9: Various box configurations added to the mtcars scatterplot

You can use other relevant parameters that you’ve met already, such
as lty, lwd, and col, to further control the appearance of a box. Replot the
data as on the right of Figure 23-8 and then call the following to produce the
image in the middle of Figure 23-9:

R> box(bty="l",lty=3,lwd=2)

The final example on the right of Figure 23-9 is created with this line:

R> box(bty="]",lty=2,col="gray")

23.4.3 Customizing Axes
Once you have the box the way you want it, you can focus on the axes. The
axis function allows you to control the addition and appearance of an axis
on any of the four sides of the plot region in greater detail. The first argu-
ment it takes is side, provided with a single integer: 1 (bottom), 2 (left),
3 (top), or 4 (right). These numbers are consistent with the positions of
the relevant margin-spacing values when you’re setting graphical parameter
vectors like mar.

The first thing you might want to change on an axis is where the tick
marks are drawn. By default, R uses the built-in function pretty to find a
“neat” sequence of values for the scale of each axis, but you can set your own
by passing the at argument to axis. The following lines create the plot on
the left of Figure 23-10.

R> hpseq <- seq(min(hp),max(hp),length=10)

R> plot(hp,mpg,cex=wtcex,xaxt="n",bty="n",ann=FALSE)

R> axis(side=1,at=hpseq)

R> axis(side=3,at=round(hpseq))
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First, an evenly spaced sequence of 10 values spanning the range of hp
is stored as hpseq. The initial call to plot suppresses the x-axis, the box, and
any default axis labels; however, the y-axis is permitted to appear as per its
default. Then axis is instructed to draw the x-axis (side=1), with tick marks at
hpseq. To provide a comparison to that, an axis is also drawn along the top
(side=3), but this time the tick marks are drawn at hpseq after it’s rounded to
the nearest integer.

Figure 23-10: Customizing axes of the mtcars scatterplot

As you can see on the left of the figure, the custom x-axis I’ve created on
the bottom shows 10 tick marks at the sequence of values supplied to at. R
may suppress some of the labels so they don’t overlap one another, which
is what has occurred here. Since these “decimal” values mightn’t be aes-
thetically pleasing, the axis that’s been drawn along the top has tick marks
drawn at the nearest integers of hpseq, achieved using round in the final call to
axis shown earlier. Although, strictly speaking, this now means that the tick
marks are no longer exactly evenly spaced, the rounded values mean shorter
default axis labels that can all be displayed in the current device.

You can see from these difficulties that tick mark locations are generally
best left to R, unless you have specific axis values that you know you want
marked out—you’ll see an example of this in Section 23.6. For now, let’s
look at some other tweaks you can make to your axes. In particular, the tcl

(length of the ticks), las (orientation of the labels), and mgp (axis spacing)
parameters are arguably among those more frequently used. The following
code creates the plot on the right of Figure 23-10.

R> hpseq2 <- seq(50,325,by=25)

R> plot(hp,mpg,cex=wtcex,axes=FALSE)

R> box(bty="l")

R> axis(side=2,tcl=-2,las=1,mgp=c(3,2.5,0))

R> axis(side=1,at=hpseq2,tcl=1.5,mgp=c(3,1.5,1))
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After a new sequence—hpseq2—is defined as all integers that lie within
the recorded range of the data and are evenly spaced by 25 units, the plot is
initialized. The box and axes are suppressed, but the default variable titles
(mpg and hp) along the axes remain.

Now, an L-shaped box and the y-axis (side=2) are added. In the latter,
the tcl parameter governs the length of each tick mark in “parallel lines
of text” (recall this is a standard unit measurement for margin spacing in
an R plot); it defaults to -0.5. When the value is negative, it draws the tick
marks away from the plot region; when it’s positive, the tick marks are drawn
inward. For this side=2 axis, tcl=-2, meaning that the ticks will point outward
from the plot but be four times the length they usually are (two whole lines
of text as opposed to half a line).

The las parameter controls the way the labels for each tick mark are
oriented; setting it to 1 instructs R to produce all tick labels horizontally,
regardless of axis side. The default, las=0, writes all labels parallel to the cor-
responding axis; the alternative las=2 means labels are always perpendicular to
the corresponding axes; and using las=3 orients all labels to be read vertically,
regardless of axis.

Next up, the mgp parameter controls three further aspects of axis spac-
ing and, as such, is supplied a vector of length 3 as per the following defini-
tion: c(axis title,axis labels,axis line). Once more, these arguments are
expressed in “lines of text.” The default value of mgp is c(3,1,0)—meaning
that in every axis you’ve seen so far, the title has sat three lines of text away
from the plot region, the tick mark labels one line of text away, and the
axis line itself zero lines of text away from the plot region (so it’s flush with
any drawn plot region box). When used in axis, only the second and third
elements of mpg are relevant. In the vertical axis in the plot on the right of
Figure 23-10, the only alteration from the default was to set the second ele-
ment (spacing of the axis labels) to 2.5—pushing the axis labels out to the
left, further away from the plot region. The tick marks themselves are con-
siderably lengthened by tcl, so this is required to avoid the axis tick mark
labels going through those ticks. Try replotting the image and that axis, but
without specifying mgp, and you’ll see that unappealing result.

Moving to the addition of the x-axis (side=1), you can see tick marks at
hpseq2 being placed via at. This time, a positive value has been supplied to
tcl, instructing the axis to have inward-facing tick marks of 1.5 lines of text
in length. In mpg, note that the third element of the vector is now set to 1,
meaning you want the axis line itself to sit one line of text away from the plot
region. Looking at the right of Figure 23-10, you can see that the entire axis
has been moved downward, away from the plot region. To account for this
in terms of the spacing of the tick mark labeling, the second element of mgp
has been increased a little from its default, to be 1.5.
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23.5 Specialized Text and Label Notation

Now you’ll investigate some immediately accessible tools for controlling
fonts and displaying special notation, such as Greek symbols and mathemati-
cal expressions.

23.5.1 Font
The displayed font is controlled by two graphical parameters: family for the
specific font family and font, an integer selector for controlling bold and
italic typeface.

Available fonts depend on both your operating system and the graphics
device you’re using. That said, there are three generic families—"sans" (the
default), "serif", and "mono"—that are always available. These are paired with
the four possible values of font—1 (normal text, default), 2 (bold), 3 (italic),
and 4 (bold and italic). You can set these two graphical parameters univer-
sally for a device using par, but like the use of xpd, it’s just as common (if not
more so) to set family and font in the relevant annotation functions.

Figure 23-11 shows you some variants alongside the corresponding
values of family and font. To create it, start with an empty plot region with
preset x- and y-limits, created with the following:

R> par(mar=c(3,3,3,3))

R> plot(1,1,type="n",xlim=c(-1,1),ylim=c(0,7),xaxt="n",yaxt="n",ann=FALSE)

Then, the image with six possible variants is completed by executing the
following lines:

R> text(0,6,label="sans text (default)\nfamily=\"sans\", font=1")

R> text(0,5,label="serif text\nfamily=\"serif\", font=1",

family="serif",font=1)

R> text(0,4,label="mono text\nfamily=\"mono\", font=1",

family="mono",font=1)

R> text(0,3,label="mono text (bold, italic)\nfamily=\"mono\", font=4",

family="mono",font=4)

R> text(0,2,label="sans text (italic)\nfamily=\"sans\", font=3",

family="sans",font=3)

R> text(0,1,label="serif text (bold)\nfamily=\"serif\", font=2",

family="serif",font=2)

R> mtext("some",line=1,at=-0.5,cex=2,family="sans")

R> mtext("different",line=1,at=0,cex=2,family="serif")

R> mtext("fonts",line=1,at=0.5,cex=2,family="mono")

Here, text is used to place the content at predetermined coordinates,
and mtext is used to add to the top figure margin.

Advanced Plot Customization 597



Figure 23-11: Displaying font styles through use of the
family and font graphical parameters

23.5.2 Greek Symbols
For statistically or mathematically technical plots, annotation may occa-
sionally require Greek symbols or mathematical markup. You can display
these using the expression function, which, among other things, is capable of
invoking the plotmath mode of R (Murrell and Ihaka, 2000; Murrell, 2011).
Use of expression returns a special object that has a class of the same name
and can subsequently be passed to any argument in a plotting function that
requires the character string to be displayed.

Focusing for the moment on Greek symbols, consider Figure 23-12,
which is produced with the following code:

R> par(mar=c(3,3,3,3))

R> plot(1,1,type="n",xlim=c(-1,1),ylim=c(0.5,4.5),xaxt="n",yaxt="n",

ann=FALSE)

R> text(0,4,label=expression(alpha),cex=1.5)

R> text(0,3,label=expression(paste("sigma: ",sigma," Sigma: ",Sigma)),

family="mono",cex=1.5)

R> text(0,2,label=expression(paste(beta," ",gamma," ",Phi)),cex=1.5)

R> text(0,1,label=expression(paste(Gamma,"(",tau,") = 24 when ",tau," = 5")),

family="serif",cex=1.5)

R> title(main=expression(paste("Gr",epsilon,epsilon,"k")),cex.main=2)
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Figure 23-12: Displaying Greek symbols using expression

If you just want a single special character by itself, then something like
expression(alpha) is all you need to produce α in the plot, as in the first call
to text shown in the code chunk. Note that the specification of the special
characters is done without quotes around the name of the desired symbol.
More commonly, however, you’ll want a character to appear alongside other
components, such as regular text or in an equation. For that, you need to
use paste inside the call to expression, separating the components with com-
mas. These are shown in the remaining three calls to text.

You can use cex to control size, though use of family and font affects only
quoted regular text, not symbols, as the final call to text demonstrates.

The title function, which allows you to add axis and main titles, is then
used to add the title “Grǫǫk” by supplying the corresponding expression to
main. I use cex.main=2 in the same call to double its size (the slightly different
tag cex.main is required there to distinguish between the size of the main title
and any axis titles, controlled via cex.lab).

23.5.3 Mathematical Expressions
Formatting entire mathematical expressions to appear in R plots is a bit
more complicated and is reminiscent of using markup languages like LATEX.
Because of this, I won’t give a full exposition of the syntax required here,
but I’ll provide some examples of the kinds of things that are possible, as
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shown in Figure 23-13. To create the image, I first defined four expression
objects as follows:

R> expr1 <- expression(c^2==a[1]^2+b[1]^2)

R> expr2 <- expression(paste(pi^{x[i]},(1-pi)^(n-x[i])))

R> expr3 <- expression(paste("Sample mean: ",

italic(n)^{-1},

sum(italic(x)[italic(i)],

italic(i)==1,

italic(n))

==frac(italic(x)[1]+...+italic(x)[italic(n)],

italic(n))))

R> expr4 <- expression(paste("f(x","|",alpha,",",beta,

")"==frac(x^{alpha-1}~(1-x)^{beta-1},

B(alpha,beta))))

And then I used them in the following code:

R> par(mar=c(3,3,3,3))

R> plot(1,1,type="n",xlim=c(-1,1),ylim=c(0.5,4.5),xaxt="n",yaxt="n",

ann=FALSE)

R> text(0,4:1,labels=c(expr1,expr2,expr3,expr4),cex=1.5)

R> title(main="Math",cex.main=2)

Figure 23-13: Some examples of typesetting mathematical
expressions in R plots
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All Greek and mathematical markup is contained within a call to
expression. It’s necessary to use paste if you require separate components
(separated by commas), some of which may or may not be regular text (in
other words, in quotes) to produce the final result. Here are some key notes:

• Superscripts are given by ^ and subscripts by [ ]; for example, c^2 pro-
vides c2 in expr1, and the a[1]^2 component provides a2

1.

• You can group components with parentheses ( ), which are visible (for
example, the (1-pi)^(n-x[i]) component of expr2), or with braces { },
which aren’t (for example, the pi^{x[i]} component).

• Italicized alphabetic variables are drawn with italic(); for example,
italic(n) produces n in expr3.

• Constructs for common arithmetic operators already exist,
such as sum( , , ) and frac( , ); for example, in expr3, calling
sum(italic(x)[italic(i)],italic(i)==1,italic(n)) produces a result
that looks like this:

n
∑

i=1

xi

and frac(italic(x)[1]+...+italic(x)[italic(n)],italic(n)) produces an
expression like this:

x1 + . . . + xn

n

• There are additional markup tools for proper formatting of expressions,
such as combining regular text in quotes directly next to mathematical
markup and creating spaces between components without needing to
insert quotes. The need for these depends where the markup contents
are exactly (in other words, as a stand-alone component of the call to
paste or as a component of an operator tool like frac). See, for example,
the ")"==frac( , ) part of expr4, and the space-separation of the two com-
ponents x^{alpha-1}~(1-x)^{beta-1} with a ~ (these sit on the numerator
of the fraction).

There’s an extensive amount of functionality built in to R for this type of
string formatting in graphical displays that I haven’t covered here. If you’re
interested in seeing more, see the help file accessed by entering ?plotmath at
the prompt as a first step. There’s also an extremely useful demonstration,
which you can view in R by entering demo(plotmath), that shows off much of
what’s possible, alongside the relevant syntax for expression.

23.6 A Fully Annotated Scatterplot

To provide a final example that covers most of the concepts you’ve consid-
ered so far, let’s create a detailed plot of the MPG by horsepower data that
was used in Sections 23.4.1 to 23.4.3. The images in Figure 23-14 show the
final result as the largest plot on the bottom, with three smaller interim plots
to illustrate the various stages of production appearing along the top.
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Figure 23-14: A detailed version of the mtcars scatterplot of MPG by horsepower, with
point size proportional to weight

First, ensure you have the objects mpg, hp, wtcex, and hpseq2 (defined in
Sections 23.4.1 and 23.4.3) ready in your workspace, since you’ll use them to
ease the length of the code. Here they are again:

R> hp <- mtcars$hp

R> mpg <- mtcars$mpg

R> wtcex <- mtcars$wt/mean(mtcars$wt)

R> hpseq2 <- seq(50,325,by=25)

The plot, with a slightly wider right margin than default and a U-shaped
box, is started with the following code:

R> dev.new()

R> par(mar=c(5,4,4,4))

R> plot(hp,mpg,cex=wtcex,axes=FALSE,ann=FALSE)

R> box(bty="u")
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This provides the top-left image of Figure 23-14. I’ve used dev.new to
explicitly open a new graphics device on my machine, which defaults to
7 × 7 inches. You can use width and height arguments supplied to dev.new

to alter this on your machine if you want.
Now add some axes:

R> axis(2,las=1,tcl=-0.8,family="mono")

R> axis(1,at=hpseq2,labels=FALSE,tcl=-1)

These two lines add the left vertical axis for MPG; the tick marks are
lengthened a little using tcl, their labels are made horizontal through las,
and a "mono" font is requested. For the horizontal axis (horsepower), longer
outward tick marks are drawn at the values in hpseq2, but their labels are sup-
pressed by setting labels=FALSE. You’ll populate those in a moment.

Rather than using MPG as a measure of fuel efficiency, many countries
use “liters per one hundred kilometers” (L/100km). So, for their benefit,
let’s say you want to provide a second vertical axis on the right of the plot
that provides L/100km. To do this, you need the conversion formula. Based
on a US gallon, an approximate conversion between the two is given by the
following:

MPG =
378.541

1.609 × (L/100km)

It turns out that this function is involutory. That is, to convert from MPG
back to L/100km, simply swap those two variables in the equation.

A little experimentation with the conversion formula, based on the lim-
its of the observed MPG data, has given me a sensible collection of L/100km
values at which to mark the right axis.

R> L100 <- seq(22,7,by=-3)

R> L100

[1] 22 19 16 13 10 7

Note that these are in decreasing order for convenience, since you can
see that once you convert these to MPG, the results are increasing:

R> MPG.L100 <- (100/L100*3.78541)/1.609

R> MPG.L100

[1] 10.69385 12.38236 14.70405 18.09729 23.52648 33.60925

This makes sense—a smaller number for L/100km means a more fuel-
efficient car.

Why do you need the MPG version of these numbers? Well, remember
that the plot itself is on the scale of MPG, so to instruct R to mark off the
appropriate tick marks on the right side, you need the L/100km values in
MPG “coordinates.”
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With that done, one final call to axis leaves you with the top-middle plot
in Figure 23-14.

R> axis(4,at=MPG.L100,labels=L100,las=1,tcl=0.3,mgp=c(3,0.3,0),family="mono")

Of particular note here is that you’ve used at to specify the tick marks
on the MPG scale, at the values in MPG.L100, but since they correspond to the
L/100km sequence in L100, it’s the latter vector that you supply to labels to
actually label said tick marks.

Next, it’s time to annotate the axes with some titles and provide the
labels for the tick marks on the horizontal axis. Before doing that, construct
an expression for the MPG-to-L/100km conversion to clarify the right verti-
cal axis.

R> express.L100 <- expression(paste(L/100,"km"%~~%frac(378.541,1.609%*%MPG)))

In express.L100, the %~~% provides an “approximately equal to” sign (≈),
and %*% provides an explicit multiplication symbol (×).

Then, by running the following lines, you get the top-right image in Fig-
ure 23-14.

R> title(main="MPG by Horsepower",xlab="Horsepower",ylab="MPG",

family="serif")

R> mtext(express.L100,side=4,line=3,family="serif")

R> text(hpseq2,rep(7.5,length(hpseq2)),labels=hpseq2,srt=45,

xpd=TRUE,family="mono")

The first line provides a main title and x- and y-axis titles in a "serif"

style. Then mtext places a "serif" version of the arithmetic expression just
created in an appropriate position line=3 on the right axis (side=4). The
third line places the "mono"-style tick mark labels in hpseq2 along the x-axis
at the appropriate user coordinates in the same vector, with a vertical posi-
tion of 7.5, after a little trial and error. Since you’re using text to draw in
the figure margin, you must set xpd to TRUE. Special to text is the optional
srt graphical parameter, which allows you to rotate the labels. Here, they’ve
been rotated 45 degrees.

You’re now ready to put the final touches on the plot. So far, the scaled
sizes of the points according to car weight have been ignored. It’d be helpful
to provide at least minimal information about that and other features that
can aid in interpretation of the relationship (especially since there are two
vertical axes), like an overlaid grid.
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Superimposition of a grid on such a plot is straightforward.

R> grid(col="darkgray")

You can specify the number of cells along the horizontal and vertical
axes using the optional arguments nx and ny, respectively; if not, R will draw
the grid lines at what would be the default x- and y-axis tick marks (as I’ve
let it do here). Other aesthetics can be altered in the usual way, using argu-
ments such as col (color) and lty (line type).

The fun part is now trying to work out how to reference the sizes of the
plotted points by the weights of the cars. There are a number of ways you
might achieve this. For this last example, I’ll manhandle the legend function
in an effort to produce the graphic. The following three lines provide the
end result.

R> legend(250,30,legend=rep(" ",3),pch=rep(1,3),pt.cex=c(1.5,1,0.5))

R> arrows(265,27,265,29,length=0.05)

R> text(locator(1),labels="Weight",cex=0.8,family="serif")

The legend is placed at user coordinates (250,30), and three points
of the default pch type 1 are included—one large, one standard, and one
small—using pt.cex set to 1.5, 1, and 0.5, respectively. Instead of writing
text labels for each of these three points by using the legend argument, I
simply assign them to be empty strings made up of 10 spaces. What this does
is widen the box around the legend, creating a space for what will instead
accompany the three points—a small-headed arrow pointing upward and
the word Weight. Finding suitable user coordinates for the arrow to fit
inside the artificially empty legend box took a little trial and error, and I
place the “Weight” text by invoking the interactive locator function as you
saw used in Section 23.3.

Playing with R functionality to produce intricate plots like this is an
excellent way to start learning how to handle the traditional graphical abil-
ities of the language. It’s not uncommon to use trial and error and little
cheats to reach an end result, though of course that kind of thing comes
at the expense of the robustness of your code. For example, resizing the
graphics device even moderately and attempting to reproduce the mtcars

scatterplot shown earlier will likely result in a displeasing misalignment of
the arrow in the legend. If you want to learn more, the authoritative refer-
ence on graphics in R is arguably Murrell (2011), which is a good text to
consult once you’re familiar with the fundamentals discussed here and want
a comprehensive guide on all things visual in R.

Advanced Plot Customization 605



Exercise 23.2

For the following tasks, you’ll work with the diamond-pricing data as
analyzed by Chu (2001). You’ll need an Internet connection for this.
Read the data in and name the columns as you’ve done previously
with the following:

R> dia.url <- "http://www.amstat.org/publications/jse/v9n2/4cdata.txt"

R> diamonds <- read.table(dia.url)

R> names(diamonds) <- c("Carat","Color","Clarity","Cert","Price")

a. Open a new graphics device of 6 × 6 inches. Initialize the margin
spacing to be zero, four, two, and zero lines on the bottom, left,
top, and right of the plot region, respectively. Then, complete
the following:
i. Produce side-by-side boxplots of the diamond prices in

Singapore dollars (SGD$) split by certification. Suppress
all axes and the surrounding box—note that the boxplot

command requires you to set frame=FALSE for suppressing the
box (as opposed to bty="n" in plot). Use the same command
to provide an appropriate title.

ii. Next, insert a vertical axis. The axis should have tick marks
ranging from SGD$0 to SGD$18000, progressing in steps
of SGD$2000. However, the axis should be clipped to the
plotting region. The axis tick marks should point inward and
be one line in length. The axis labels should sit only half a
line away from the axis and should be horizontally readable.

iii. Finally, use locator in conjunction with text to add an appro-
priate title sitting at the top of the y-axis; note that clipping
will need to be relaxed. Use the same approach to add text,
sitting inside each boxplot, denoting the corresponding
certification (GIA, HRD, or IGI).

My version of the plot looks like this:
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b. Now, open a new graphics device of 8 × 7 inches. Set the figure
margins to be two, five, three, and five lines on the bottom, left,
top, and right, respectively. Also allow one line of outer margin
space on each side other than the bottom, which should get two
lines of outer margin.
i. Produce a scatterplot of diamond price on the vertical axis

and carat weight on the horizontal axis. Use the colors
red, green, and blue to distinguish the points according to
certification. Suppress all axes, boxes, labels, and titles in
the initial plot, but then add a U-shaped box.

ii. Add the horizontal axis. Use axis to place tick marks at an
evenly spaced sequence of carat values between 0.2 and
1.1, in steps of 0.1. Use a bold, italic, sans-style font for the
labels and adjust the labels to be only half a line from the
axis. Then add smaller, outward-facing tick marks between
the existing ones. To do this, make a second call to the axis

function and place the ticks at a sequence of values from
0.15 to 1.05 at steps of 0.1. Set these secondary tick marks to
have a length of one-quarter of a line and suppress the axis
labels.

iii. Add the vertical axes. On the left, ticks should appear at
SGD$1000–17000. Labels should be horizontally readable
and in the same font style as the horizontal axis. On the
right, axis ticks should be made in the equivalent of US
dollars (USD$) at the sequence USD$1000–11000 in steps
of USD$1000 and should be labeled as such. To do this, use
the conversion USD$ = 1.37 × SGD$. Label orientation and
font should match the other axes.

iv. Fit a linear model of price on a quadratic polynomial of carat
weight for the data. Provide a prediction of the model for a
sequence of carat values spanning the range of the observed
values; include estimation of a 95 percent prediction interval.
Use this information to superimpose a gray solid line for the
fitted values and gray dashed lines for the prediction interval
upon the scatterplot.

v. Set up expression objects for labeling the approximate US
dollar conversion and the regression equation. Name the
conversion expr1; it should look something like USD$ ≈
1.37 × SGD$. The regression equation should look similar
to Price = β0 + β1Carat + β2Carat2; name it expr2.

vi. Use mtext to add an appropriate main title and titles for all
three individual axes. You may need to experiment a little
with line depth for each one, as well as whether to write in
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the outer margin or the figure margin, depending on your
own spacing preference. The rightmost axis title should
make use of expr1.

vii. Either via trial and error to find appropriate coordinates or
by using the interactive.arrow function from Exercise 23.1,
place an arrow pointing to the fitted polynomial regression
line and label it with expr2.

viii. Finally, use a call to locator to place a legend in any appro-
priate location, referencing the color of the points according
to the appropriate certification.

My version of the plot looks like this:

Important Code in This Chapter

Function/operator Brief description First occurrence

dev.new Open new graphics device Section 23.1.1, p. 576
dev.set Change active device Section 23.1.2, p. 577
dev.off Close device Section 23.1.3, p. 578
par Set graphical parameters Section 23.1.4, p. 579
layout Open new graphics device Section 23.1.4, p. 580
box Add box to plot Section 23.2.1, p. 583
mtext Write text in margins Section 23.2.2, p. 584
locator Interactive coordinates Section 23.3.1, p. 587
axis Add axis to plot Section 23.4.3, p. 594
expression Render Greek/math in plot Section 23.5.2, p. 598
title Add main/axis titles Section 23.5.2, p. 598
italic Italicize text Section 23.5.3, p. 600
grid Add grid to plot Section 23.6, p. 605
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24
GOING FURTHER WITH THE

GRAMMAR OF GRAPHICS

You covered the basics of the ggplot2

package—which offers an alternative to
traditional R graphics—in Section 7.4 and

throughout Chapter 14. In this chapter, you’ll
look at a couple of this package’s more popular and
useful features, as well as its relatively young cousin,
ggvis, which provides an interactive, browser-based
experience.

24.1 ggplot or qplot?

So far when creating the relatively simple ggplot2 graphics, you’ve used the
qplot function to initialize the visual object. In fact, the more general ggplot
command is the core function of ggplot2. There are several key differences
between these two initialization functions:

• qplot is a shortcut version of ggplot; it’s used if you just want a quick look
at your data or if you’re working directly in the R console.



• qplot is designed to be reminiscent of the base R plot function—you pass
it x- and y-coordinate vectors and then tell it what to do. By contrast,
ggplot prefers its data argument as a data frame object, and you tell it
what to do by explicitly adding geom layers.

• A call to qplot alone can produce a graphic. When using ggplot, layers
have to be added before anything becomes visible.

• To access the full power and flexibility of ggplot2 graphics, ggplot is the
recommended function; this comes at the cost of providing a little more
explicit instruction than qplot requires.

All in all, you can create most plots using either qplot or ggplot. Many
users make the decision based on the form their data are in (in other words,
a data frame or as separate vectors in the global environment) and whether
they want polished visuals (for example, for publication purposes) or just a
quick look at the data while working directly in the console.

As a quick example of the difference in syntax, flip back to the code on
page 297 used to create the histogram on the right of Figure 14-5. You could
argue that the numerous modifications made to that particular plot warrant
a more compartmentalized approach than qplot offers. Load ggplot2 with a
call to library("ggplot2") and create the following three objects:

R> gg.static <- ggplot(data=mtcars,mapping=aes(x=hp)) +

ggtitle("Horsepower") + labs(x="HP")

R> mtcars.mm <- data.frame(mm=c(mean(mtcars$hp),median(mtcars$hp)),

stats=factor(c("mean","median")))

R> gg.lines <- geom_vline(mapping=aes(xintercept=mm,linetype=stats),

show.legend=TRUE,data=mtcars.mm)

The first object, gg.static, represents the part of the plot that will stay
the same throughout, say, if you wanted to experiment with adding other
features later. Note that the call to ggplot differs from qplot in that the first
argument is the entire data frame of interest, allowing access to all data
columns within the frame for any subsequent geoms or annotations. You
then add the ggtitle and labs functions to set the main title and the hori-
zontal axis title. The second object, mtcars.mm, stores the horsepower mean
and median as a “dummy” data frame. The mean and median lines are
then superimposed on the histogram by the third object, gg.lines, which
is a single call to the geom_vline function with the same content used in the
earlier code, albeit in a slightly modified form to stay true to the initial use
of ggplot.

Nothing is displayed until you make a call that prints the ggplot2 object
(as noted in Section 7.4). The following call reproduces the image on the
right of Figure 14-5:

R> gg.static + geom_histogram(color="black",fill="white",

breaks=seq(0,400,25),closed="right") + gg.lines +

scale_linetype_manual(values=c(2,3)) + labs(linetype="")
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The pieces are put together in much the same way as for the creation of
Figure 14-5: the addition of the geom_histogram layer to gg.static invokes the
plot, and the addition of gg.lines with changes to the default line types made
with scale_linetype_manual marks off the mean and median. If you wanted
to produce the histogram without these lines, you would simply print the
gg.static object plus geom_histogram.

As you get more experienced with ggplot2, you’ll find yourself leaning
toward either ggplot or qplot, depending on the application. The help file in
?ggplot provides a good description of the typical ways ggplot is used and how
it stacks up against qplot. For further information, refer to ggplot2: Elegant
Graphics for Data Analysis by Wickham (2009). I’ll use ggplot for the rest of
the plots in this chapter to provide some examples of the syntax of the ggplot

command to compare with the earlier uses of qplot.

24.2 Smoothing and Shading

Data visualization using the ggplot2 package is particularly powerful when
you want to split features of the plot by one or more categorical variables.
This is especially apparent when you’re enhancing your plot with features
that are more difficult to achieve using base R commands.

24.2.1 Adding LOESS Trends
When you’re looking at raw data, it’s sometimes difficult to get an overall
impression of trends without fitting a parametric model (for example, via
linear regression), which means making assumptions about the nature of
these trends. This is where nonparametric smoothing comes in—you can use
certain methods to determine how your data appear to behave without fit-
ting a specific model. These methods are a flexible aid for interpreting over-
all trends, whatever their form, but the trade-off is that you’re not provided
with any specific numeric details of the relationships between response and
predictors (since you’re not estimating any coefficients such as slopes or
intercepts) and you lose any reliable ability to extrapolate.

Locally weighted scatterplot smoothing (LOESS or LOWESS) is a nonparamet-
ric smoothing technique that produces the smoothed trend by using regres-
sion methods on localized subsets of the data, step-by-step over the entire
range of the explanatory variable.

NOTE For theoretical details, Chapter 6 of Applied Nonparametric Regression (Härdle,
1990), as well as Chapters 2 and 3 of Introduction to Nonparametric Regres-
sion (Takezawa, 2006), provide clear discussions of LOESS smoothers.

For an illustration, load the MASS package and return your attention to
the survey data frame. First, create a new data frame object with any missing
values deleted to avoid default warning messages:

R> surv <- na.omit(survey[,c("Sex","Wr.Hnd","Height")])
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Then, after loading ggplot2, execute the following to produce the image
on the left of Figure 24-1.

R> ggplot(surv,aes(x=Wr.Hnd,y=Height)) +

geom_point(aes(col=Sex,shape=Sex)) + geom_smooth(method="loess")

The call to ggplot initializes the object and sets the default map-
ping of handspan on the x-axis and height on the y-axis. The addition
of geom_point adds the points, using color and point type to differentiate
between males and females. The addition of geom_smooth superimposes the
LOESS smoother. By default, a 95 percent confidence interval for the esti-
mated trend is marked off by a transparent gray-shaded area.

Figure 24-1: Showcasing ggplot2 (left) and base R graphics (right) for display of nonpara-
metrically estimated trends via LOESS

Now I’ll demonstrate how to produce a similar result using base R
graphics. Although there are base R functions, such as scatter.smooth, that
can produce a scatterplot with the smoothed trend relatively quickly, to be
able to do things such as shade in the confidence interval region, it’s helpful
to be able to build the plot up piece by piece. Compare the relative ease of
the ggplot2 approach with the following base R code, which produces the
image on the right of Figure 24-1:

R> plot(surv$Wr.Hnd,surv$Height,col=surv$Sex,pch=c(16,17)[surv$Sex])

R> smoother <- loess(Height~Wr.Hnd,data=surv)

R> handseq <- seq(min(surv$Wr.Hnd),max(surv$Wr.Hnd),length=100)

R> sm <- predict(smoother,newdata=data.frame(Wr.Hnd=handseq),se=TRUE)

R> lines(handseq,sm$fit)

R> polygon(x=c(handseq,rev(handseq)),

y=c(sm$fit+2*sm$se,rev(sm$fit-2*sm$se)),

col=adjustcolor("gray",alpha.f=0.5),border=NA)

The first line plots the raw data, and the second line uses the built-in
loess function to provide the smoothed trend—the syntax is identical to that
of lm. Just as with linear models fitted by lm, for drawing to begin, you need
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to set up a fine sequence of values of the x-axis variable at which to obtain
the point estimates and their standard errors; this is achieved with seq in the
third line, followed by predict in the fourth line with the se argument set
to TRUE. This results in the object sm, a list with components $fit and $se as
usual.

The smoothed trend is then drawn, using sm$fit in a call to lines.
Finally, a rough 95 percent confidence interval is calculated for each of the
predicted values as the sm$fit elements plus and minus twice the correspond-
ing standard errors in sm$se. This is done directly in the call to polygon, which
draws the gray band based on the vertices formed by the confidence interval
(therein, the rev command is used to reverse the entries in the given handseq

vector). You need to instruct the gray-filled shape to be transparent with a
call to the ready-to-use adjustcolor command (the argument alpha.f takes a
value from 0, which is fully transparent, to 1, which is fully opaque); setting
alpha.f=0.5 sets 50 percent opacity of the specified "gray".

All that, and a legend hasn’t been put in yet! This example certainly
exposes the extra effort the base R version of the image requires, not just
in terms of the length of the script but also for the whole process of think-
ing about its construction (for example, putting together the vertices of
a polygon for the confidence region appropriately and remembering to
adjust the opacity of the filled shape to prevent any preplotted content
being covered up). This becomes even more apparent the moment you
become a little more ambitious with such features. Suppose you wanted to
superimpose smoothers for each sex separately; this would require separate
estimation of the LOESS functions and a rethink of the plotting strategy.
However, this addition is simple in ggplot2 terms, simply requiring a change
in the aesthetic mapping of the relevant geom. The following code produces
Figure 24-2:

R> ggplot(surv,aes(x=Wr.Hnd,y=Height,col=Sex,shape=Sex)) +

geom_point() + geom_smooth(method="loess")

All that’s happened is that the aesthetic mapping for color and point
type (col=Sex and shape=Sex, respectively) has shifted so that instead of being
specific to the plotted points only, it’s part of the default mapping declared
in the initialization call to ggplot. Any layer added afterward (that doesn’t re-
assign the mapping) will follow this default, as is the case for both geom_point

and geom_smooth.

NOTE The implementation of LOESS and other trend smoothers depends on you specifying
the amount of smoothing you want; this is controlled by the proportion of the data
to use as each localized weighted subset, for each step/location in the estimation pro-
cedure. A larger proportion leads to a smoother, less variable trend estimate than a
smaller proportion. This value, referred to as the span, can be set by the optional argu-
ment span in either loess or geom_smooth. For quick data exploration, however, the
default value of 0.75 is usually adequate. You can try experimenting with this on the
example plots in this section to see the effects on the respective trends.
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Figure 24-2: Illustrating separate LOESS smoothers
for categorical subsets of data, a result of a simple
change in aesthetic mapping, with ggplot2 functionality

24.2.2 Constructing Smooth Density Estimates
The idea of smoothing isn’t limited to scatterplot trends. Kernel density esti-
mation (KDE) is a method for producing a smooth estimate of a probability
density function, based on observed data. Briefly, KDE involves assigning a
scaled probability function (the kernel) to each observation in a data set and
summing them all to give an impression of the distribution of the data set as
a whole. It’s basically a sophisticated version of a histogram. For theoretical
details, the text by Wand and Jones (1995) is a good reference.

To illustrate this method, consider the built-in airquality data frame;
enter ?airquality at the prompt to open the documentation, which tells you
it contains a number of measurements taken of the air in New York over sev-
eral months. A basic plot of the kernel estimate of the density of the temper-
ature measurements is provided with the following line and shown on the
left of Figure 24-3:

R> ggplot(data=airquality,aes(x=Temp)) + geom_density()

Such a plot is relatively easy to create with base R graphics as well, using
the built-in density command to implement KDE for a given data vector.
However, ggplot2 lets you dress up the plot using aesthetic mappings with
relative ease—a big draw for fans of ggplot2. For example, suppose you want
to visualize the density estimates for temperature separately according to the
month of observation. First, execute the following code:

R> air <- airquality

R> air$Month <- factor(air$Month,

labels=c("May","June","July","August","September"))
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Figure 24-3: Visualizing temperature distributions in the airquality data frame via KDE,
using ggplot2 functionality

This has created a copy of the airquality data frame in your workspace
and recoded the originally numeric Month vector as a factor vector (as
required for ggplot2 mappings), labeling the entries appropriately. Then,
using air, the following code produces the right-hand plot in Figure 24-3:

R> ggplot(data=air,aes(x=Temp,fill=Month)) + geom_density(alpha=0.4) +

ggtitle("Monthly temperature probability densities") +

labs(x="Temp (F)",y="Kernel estimate")

The different densities are clearly identified by different color fills,
set using fill=Month in aes in the plot initialization mapped out by ggplot.
You additionally supply alpha=0.4 to geom_density to set 40 percent opacity
so you can see all five curves clearly. The remaining calls to ggtitle and
labs simply tidy up the main and axis titles. Features of the distributions of
these measurements are as you might expect—temperatures for July, the
hottest month, are centered over a far higher range of values than, say, those
for May.

NOTE Just like LOESS techniques, the precise appearance of kernel-estimated probability den-
sity function is dependent on the amount of smoothing employed. Like the binwidth
in the construction of a histogram, the quantity of interest in KDE is referred to as the
bandwidth or smoothing parameter—a larger bandwidth imposes greater smooth-
ing over the range of the data. By default, the bandwidth is automatically chosen
using a data-driven technique in these examples. This default level of smoothing is
generally acceptable for simple exploration of your data.
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24.3 Multiple Plots and Variable-Mapped Facets

In Section 23.1.4, you saw different ways in which several traditional R plots
can be viewed or laid out in a single graphics device. The same methods,
such as setting mfrow in a call to par or compartmentalizing the device using
layout, can’t be used for ggplot2 graphics. There are other functions, though,
that allow independent ggplot2 plots to populate a single device. True to
form, ggplot2 also offers a convenient way to consider multiple-plot graphics
using facets, where the images are all drawn in one go.

24.3.1 Independent Plots
First, let’s say you have several ggplot2 plots that you’ve created indepen-
dently of one another and that you’d like to arrange as a single image.
A quick way to do this is to use the grid.arrange function provided in the
contributed gridExtra package (Auguie, 2012). Install the package by run-
ning install.packages("gridExtra") at the prompt (you’ll need an Internet
connection).

To illustrate the use of grid.arrange, continue with the air object—the
copy of airquality you created in Section 24.2 with the factor Month column.
Now, consider the following three ggplot2 objects, which I’ll explain further
in a moment:

R> gg1 <- ggplot(air,aes(x=1:nrow(air),y=Temp)) +

geom_line(aes(col=Month)) +

geom_point(aes(col=Month,size=Wind)) +

geom_smooth(method="loess",col="black") +

labs(x="Time (days)",y="Temperature (F)")

R> gg2 <- ggplot(air,aes(x=Solar.R,fill=Month)) +

geom_density(alpha=0.4) +

labs(x=expression(paste("Solar radiation (",ring(A),")")),

y="Kernel estimate")

R> gg3 <- ggplot(air,aes(x=Wind,y=Temp,color=Month)) +

geom_point(aes(size=Ozone)) +

geom_smooth(method="lm",level=0.9,fullrange=FALSE,alpha=0.2) +

labs(x="Wind speed (MPH)",y="Temperature (F)")

Execute library("gridExtra") to load the required package. To view
gg1, gg2, and gg3 in one window, simply call the following, which produces
Figure 24-4:

R> grid.arrange(gg1,gg2,gg3)

Note that you’ll likely see some warning messages telling you there are
missing values in the air data frame and recommending to resize the win-
dow containing the plots.
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Figure 24-4: A series of three ggplot2 graphics of the airquality data,
plotted in the same device window via grid.arrange in the gridExtra
package. Top: A time series of the temperatures by day, distinguishing
between months and wind speed, with an overall LOESS trend with a
95 percent CI. Middle: Kernel density estimates of the distributions
of solar radiation by month. Bottom: A scatterplot of temperature by
wind speed, using color to delineate month and point size to reference
ozone level. Separately fitted simple linear models of temperature on
wind speed, split by month, along with 90 percent CIs, are superimposed.
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As you can see, grid.arrange is easy to use—you simply create your ggplot2

images first and store them as objects, then provide them directly to the
arrangement function. grid.arrange decides how to produce the final layout
based on the number of objects you give it (in this case, it’s a column of the
three plots). You can control the order of the plots by changing the order in
which the objects are supplied. There are more optional arguments, which
you can read about in the documentation file ?grid.arrange.

The plots gg1, gg2, and gg3 also provide an opportunity to discuss even
more ggplot2 capabilities. Since there’s a lot going on, especially in gg1 and
gg3, I’ll discuss the code for each object separately.

gg1 The first plot is of the daily temperature. In setting the default
aesthetics in ggplot, I create a sequence of integers matching the num-
ber of rows in air, to be paired with the relevant Temp element. Then
geom_line and geom_point add the interconnecting lines and the raw obser-
vations themselves, to be added to the default aesthetic mapping. The
interconnecting lines are set to change color according to Month. The
raw observations also change color according to Month, and the point
sizes change to be proportional to the wind speed readings. I include
an overall LOESS smoother with its default color changed to "black". I
remain with the default mapping here—I don’t want separate smoothed
trends for each month. The final addition of labs merely clarifies the
axis titles as you’ve already seen it used.

gg2 The second plot is a variant of the plot on the right of Figure 24-3.
This time, it shows the estimated densities of the solar radiation read-
ings (in angstroms). The opacity is set, as you saw earlier, using alpha

in geom_density. It’s also worth noting that I used expression in labs to
approximate the angstrom unit symbol, Å, using ring(A).

gg3 The last is a scatterplot of temperature by wind speed, where
you can see a negative relationship. The color, again to be assigned
to each month, is also set as the default aesthetic mapping in ggplot.
In the call to geom_point, the aesthetic enhancement is instructed to
plot point size as proportional to the ozone reading (this is to ensure
correct formatting of the corresponding legend, in light of the next
addition). Here you can see a different kind of use for geom_smooth. In
setting method="lm", the line (or lines) I want superimposed correspond
to simple linear model fits according to the x and y aesthetic mappings
as predictor and response, respectively. Additionally including the factor
Month in the default mapping ensures separate simple linear models
are fitted for the temperature on wind speed data for each month and
colored appropriately (it’s important to note that the plotted lines do
not reflect a multiple linear model that includes all the variables used
in the plot). Light, transparent 90 percent CIs are included with each
regression (level=0.9 and alpha=0.2), and setting fullrange=FALSE restricts
each regression line only to the width of the observed data for each
month.
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24.3.2 Facets Mapped to a Categorical Variable
If you want independently created ggplot2 graphics to appear in the same
window, grid.arrange is arguably the best way to deal with them. However,
the ggplot2 package offers a flexible alternative to quickly view multiple
plots. Often, when exploring a data set, you’ll want to create several plots of
the same variables based on the levels of one or more important categorical
variables. This behavior, referred to as faceting, is familiar territory for ggplot2

using either the facet_wrap or the facet_grid command.
Let’s focus on the simplest case where you have one categorical variable.

Remaining with the air data frame object, the following line creates a ggplot2

object of the density plots of the New York temperatures shown on the right
of Figure 24-3:

R> ggp <- ggplot(data=air,aes(x=Temp,fill=Month)) + geom_density(alpha=0.4) +

ggtitle("Monthly temperature probability densities") +

labs(x="Temp (F)",y="Kernel estimate")

Rather than view all density estimates together, you can create a plot of
each one separately, displaying them in the same device, with the following
three uses of facet_wrap; the results are at the top left, top right, and bottom
of Figure 24-5.

R> ggp + facet_wrap(~Month)

R> ggp + facet_wrap(~Month,scales="free")

R> ggp + facet_wrap(~Month,nrow=1)

Figure 24-5: Three examples of using facet_wrap to display kernel density estimates of the
temperature data, split by month
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The facet_wrap function automates the layout of the multiple plots; a
formula specifies the faceting variable. In all the previous plots, this is set to
~Month, to be read as “by Month.” The code for the first visualization, given
at the top left, offers no additional arguments, and without arguments the x-
and y-axes of each facet are fixed, so you can compare the plots on the same
scale. If you don’t want that, you can instruct the axes to be “free,” which
means each plot is produced on scales specific to its own contents. You can
see this in the second plot, at the top right in Figure 24-5, the line of code
for which specifies scales="free". You can also opt to free only the horizontal
or vertical axis with scales="free_x" or scales="free_y", respectively. Finally,
note that facet placement can be tailored by using the nrow and ncol argu-
ments. In the third plot, setting nrow=1 instructs R to place the plots in one
row only, giving the horizontal arrangement on the bottom of Figure 24-5.
For further details on placement, you can find the documentation for this
command at ?facet_wrap.

The alternative to facet_wrap, facet_grid, does much the same thing but
isn’t able to wrap the plots if you’re faceting by only one categorical variable.
The formula var1 ~ var2 is interpreted as “facet by var1 as rows and by var2

as columns.” If you are indeed interested in faceting by only one grouping
variable in either columns or rows, then simply replace either var1 or var2

with a dot (.). The third image in Figure 24-5, for example, can just as easily
be achieved via facet_grid as follows:

R> ggp + facet_grid(.~Month)

The next example, however, shows facet_grid in action with two group-
ing variables. Turn your attention again to the diabetes data frame in the
faraway package. After loading the package, the following code creates the
object with diab as the data frame of interest and with missing-value rows
deleted, producing Figure 24-6:

R> diab <- na.omit(diabetes[,c("chol","weight","gender","frame","age",

"height","location")])

R> ggplot(diab,aes(x=age,y=chol)) +

geom_point(aes(shape=location,size=weight,col=height)) +

facet_grid(gender~frame) + geom_smooth(method="lm") +

labs(y="cholesterol")

The initial call to ggplot tells R to use diab and plot total cholesterol
against age. Then an addition of geom_point sets the shape, size, and color of
each plotted point to change according to the county location, the weight,
and the height of the individuals, respectively (as you’ve already seen for
point size based on a continuous variable, point color is also automatically
changed to vary on a continuum if the correspondingly mapped aesthetic
variable isn’t a factor).
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Figure 24-6: Illustrating two-way faceting in ggplot2, using the diabetes data frame
from the faraway package. Plots of cholesterol level against age, along with simple linear
model fits, are faceted according to sex (rows) and body frame type (columns). Points are
colored and sized according to weight and height, respectively, and two different point
types differentiate the two county locations in Virginia of the study participants.

So far, those commands have still defined only a single scatterplot. With
the addition of the call to facet_grid, the formula gender~frame separates the
plots into a different scatterplot for males/females (as rows) and for each
of the three body frame types: small/medium/large (as columns). You set
simple linear model fits to accompany each plot based on the default aes-
thetic mapping (cholesterol on age) with a call to geom_smooth, and a final call
to labs clarifies the vertical axis title.

The plots themselves reveal, generally, some of the trends you’ll have
picked up on an earlier analysis of these data (Section 21.5.2). Increasing
age tends to be associated with an increase in mean cholesterol, though
that relationship seems, at least visually, less prominent for males. The over-
all smaller size of the points in the small frame column on the left makes
sense—those with a smaller frame will typically weigh less than those with
larger frames. There is also a tendency for the plots on the bottom row
(females) to be of a darker shade than those along the top row—indicating
that on average females are typically shorter than males. Any differences
between the participants from the two counties, however, is difficult to
discern—there doesn’t seem to be a systematic departure of the pattern of
the Buckingham symbols (•) from that of the Louisa symbols (N). (Remem-
ber, though, if you’re trying to understand the complex, potentially interac-
tive relationships in your multivariate data, fitting an appropriate statistical
model is preferable over plots alone.)
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These elegant plots serve to further highlight the relative ease with
which the ggplot2 package can produce complex graphics—typically
involving partitioning the observations by one or more factors—both in
terms of an individual image or an arrangement of images. Although sim-
ilar plots are of course still possible using base R methods, that approach
demands a somewhat finer or lower-level handling of the details of your data
subsets, as well as any varying aesthetic features. This doesn’t mean base R
graphics are redundant or should be ignored (you’ll see some nice new plots
achieved with traditional commands in Chapter 25)—it’s just that you can
create certain graphical displays with less coding effort (and usually a pret-
tier end result) by utilizing Wickham’s well-received implementation of the
grammar of graphics.

Exercise 24.1

Load the MASS package and inspect the help file for the UScereal

data. This data frame provides nutritional and other information
concerning breakfast cereals for sale in the United States in the
early 1990s.

a. Create a copy of the data frame; name it cereal. To ease plot-
ting, collapse the mfr column (manufacturer) of cereal to be
a factor with only three levels, with the corresponding labels
"General Mills", "Kelloggs", and "Other". Also, convert the shelf

variable (shelf number from floor) to a factor.

b. Using cereal, construct and store two ggplot objects.

i. A scatterplot of calories on protein. Points should be colored
according to shelf position and shaped according to manu-
facturer. Include simple linear regression lines for calories
on protein, split according to shelf position. Ensure tidy axis
and legend titles.

ii. A set of kernel estimates of calories, with filled color differen-
tiating shelf positions. Use 50 percent opaque fills, and again
ensure tidy axis and legend titles.

c. Arrange the two plots in (b) on a single device.

d. Produce a faceted graphic of calories on protein, with each
panel corresponding to a manufacturer as defined in your cereal

object. A LOESS smoother with a 90 percent span should be
superimposed upon each scatterplot. In addition, the points
should be colored according to sugar content, sized according
to sodium content, and shaped according to shelf position.

Load the car package (downloading and installing it first if you
haven’t already) and consider the Salaries object—a data frame
detailing the salaries (in US dollars) of 397 academics working in
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the United States during the 2008–2009 school year (Fox and Weis-
berg, 2011). An inspection of the help file ?Salaries informs you of
the present variables, which, in addition to the salary figure, include
each academic’s rank, sex, and research discipline (as factors) as well
as the number of years of service.

e. Produce a ggplot object, named gg1, of a scatterplot of salary on
the vertical axis against years of service on the horizontal axis.
Color should be used to distinguish between males and females,
along with sex-specific LOESS trends, and ensure axis and legend
titles are understandable. View your plot.

f. Create the following three additional plot objects, again ensuring
tidy axis and legend titles. Name the following gg2, gg3, and gg4,
respectively:

i. Side-by-side boxplots of salary, split by rank. Each boxplot
should be further split up according to sex (this can be done
simply in the default aesthetic mapping—try assigning the
sex variable to either col or fill).

ii. Side-by-side boxplots of salary, split by discipline, with each
discipline split further by sex using color or fill.

iii. Kernel density estimates of salary, using 30 percent opaque
fills to distinguish rank.

g. Display your four plot objects (gg1, gg2, gg3, and gg4) from (e) and
(f) in a single device.

h. Finally, plot the following:

i. A series of kernel density estimates of salary using 70 per-
cent opaque fills to distinguish between males and females,
faceted by academic rank.

ii. Scatterplots of salary on years of service, using color to dis-
tinguish between males and females, faceted by discipline
as rows and by academic rank as columns. Each scatterplot
should have a sex-specific simple linear regression line with
confidence band superimposed and have free horizontal
scales.

24.4 Interactive Tools in ggvis

To wrap up this chapter, I’ll touch on a relatively new addition to the “gg”
family, ggvis, by Chang and Wickham (2015). The package enables you
to design flexible statistical plots that the end user can interact with. The
results are provided as web graphics. You’ll see the image pop up as a new
tab in your default web browser (if you’re using the RStudio IDE—see
Appendix B—the ggvis graphics are embedded within the Viewer pane).

Going Further with the Grammar of Graphics 623



As a cautionary note, be aware that ggvis is, at the time of writing, still
under development by its authors. New functionality is being added and
bugs addressed. If you’re interested in the functionality, visit the ggvis web-
site at http://ggvis.rstudio.com/ . The site contains a beginner-friendly tutorial
and recipe book of things that are currently possible. Here, I’ll just give you
an overview of ggvis.

Install the ggvis package along with its dependencies and then load it
with a call to library("ggvis"). Also make sure you have access to the student
survey data, survey, by loading the MASS package. Create the following object
to be used in the upcoming examples:

R> surv <- na.omit(survey[,c("Sex","Wr.Hnd","Height","Smoke","Exer")])

The common way to begin a ggvis graphic is to declare the data frame of
interest, followed by a call to ggvis that defines the variables to be used and
then to pile on the layers. When you use the variables from the data frame,
they must be prefaced by a ~, which explicitly tells R that you’re referring
to a column of that data frame and not another object of the same name
somewhere else. To add functions in the object definition, you don’t use +

as in ggplot2, but %>% (called a pipe). The equivalents of the geom_ functions in
ggplot2 are prefaced by layer_ in ggvis.

Let’s start with a simple static plot. The topmost image of Figure 24-7, a
histogram of the height measurements, can be obtained with the following
execution:

R> surv %>% ggvis(x=~Height) %>% layer_histograms()

Guessing width = 2 # range / 25

The surv data frame is declared, and then you pipe to ggvis, which
instructs the ~Height variable to be mapped to the x-axis. Last, a pipe to
layer_histograms produces the graphic, which assigns a default binwidth
based on the range of the x-mapped data.

So what? You’ve already created lot of histograms. But wouldn’t it be
great if you could play with the value of the binwidth without needing to
create static plot after static plot? The input_ collection of commands in
ggvis allows you to instruct the resulting graphic to take interactive input.
Consider the following code; Figure 24-7 shows my result.

R> surv %>% ggvis(x=~Height) %>%

layer_histograms(width=input_slider(1,15,label="Binwidth:"),fill:="gray")

Showing dynamic visualisation. Press Escape/Ctrl + C to stop.
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Figure 24-7: Histograms of the height observations from the survey data frame, using
ggvis. Top: Default static plot. Bottom: The result of incorporating a slider button tied
to the binwidth—the user can interact with, and immediately see, the effect of altering
the bins.

Here, the width argument that controls the feature of interest is
instructed to take the result of input_slider, which sets up an interactive
slider button. The range of the slider values for width is set as 1 to 15 (inclu-
sive), and the optional argument label provides a title for the interactive
gadget. Last, using fill in layer_histogram sets the color of the bars. Note
the particular assignment fill:="gray" uses :=, not just =. The = alone is used
in ggvis for mapping variables, that is, when the feature of interest is to be
passed a variable subject to change, essentially like an aesthetic mapping in
ggplot2. The combination of := should be interpreted as a set constant, that
is, when you simply intend to universally fix a certain feature.
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Once the code successfully executes, you can experiment with sliding
the button for smaller and larger binwidths. It’s interesting to gauge just
how much your interpretation of the distribution changes along with it. As
the text printed out beneath the executed commands in the console tells
you, you have to exit the interactive plot to use R again. Pressing ESC will
terminate the interactivity and return control to the user at the prompt.

Other kinds of interactive abilities include input_select (for a drop-down
menu), input_radiobuttons (radio button options), and input_checkbox (for
checkboxes). You can even set up interactive text or numeric input boxes
with input_numeric. See the relevant help files or the ggvis website for further
details.

As another example based on the surv data frame, let’s try a scatterplot.
Starting again with a simple static plot, run the following:

R> surv %>% ggvis(x=~Wr.Hnd,y=~Height,size:=200,opacity:=0.3) %>%

layer_points()

I won’t show this result here, but you can see from the call to ggvis

that you’ll be plotting height against handspan and that you’re universally
enlarging the points as well as setting a universal level of 30 percent opacity.
The last pipe to layer_points produces the image. As with the static plot of
the histogram, since there’s no interactivity, you don’t need to “exit” the
plot—you’re returned control at the console prompt immediately.

For a more interesting graphic, try this:

R> filler <- input_radiobuttons(c("Sex"="Sex","Smoking status"="Smoke",

"Exercise frequency"="Exer"),map=as.name,

label="Color points by...")

R> sizer <- input_slider(10,300,label="Point size:")

R> opacityer <- input_slider(0.1,1,label="Opacity:")

R> surv %>% ggvis(x=~Wr.Hnd,y=~Height,fill=filler,

size:=sizer,opacity:=opacityer) %>%

layer_points() %>% add_axis("x",title="Handspan") %>%

add_legend("fill",title="")

Showing dynamic visualisation. Press Escape/Ctrl + C to stop.

First, three objects are created for the interactive bits. A set of radio
buttons specifies the color of the plotted points according to one of three
possible categorical variables (Sex, Smoke, or Exer), and two slider buttons con-
trol the point size and opacity. Note that when you intend to use variables
from the data frame as ingredients for interactive behavior, you need to sup-
ply their exact names as a vector of character strings and set the optional
map=as.name; this is done when defining the filler object. In the subsequent
call to ggvis, you pass filler to fill, using =. The two slider buttons in the
objects sizer and opacityer are passed to the relevant arguments with := since
they don’t depend on variables in the data frame. The call to layer_points

generates the plot, and additional pipes to add_axis and add_legend simply
tidy up the x-axis and legend titles from their defaults.
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The top of Figure 24-8 shows a screenshot of the result, where I’ve
selected the point color to vary according to the exercise frequency variable,
reduced the point size, and chosen a moderate-to-high level of opacity.

Figure 24-8: Two examples of ggvis scatterplots of height on handspan of the student sur-
vey data. Top: Color (fill) changed using radio buttons based on sex, smoking status, or
exercise frequency and slider buttons for point size and opacity. Bottom: Splitting points
by sex using color and superimposing sex-specific LOESS smoothers and corresponding
CIs; their smoothing span is controllable via a slider button.

Finally, let’s produce the same scatterplot but settle on using sex to
color the points. You can add separate LOESS smoothers to males and
females and dynamically control the degree of smoothing using a slider
button. This last example, a screenshot of which appears on the bottom of
Figure 24-8, is the result of executing the following code:

R> surv %>% ggvis(x=~Wr.Hnd,y=~Height,fill=~Sex) %>% group_by(Sex) %>%

layer_smooths(span=input_slider(0.3,1,value=0.75,

label="Smoothing span:"),

se=TRUE) %>% layer_points() %>%

add_axis("x",title="Handspan")

Showing dynamic visualisation. Press Escape/Ctrl + C to stop.

LOESS smoothers are added with the layer_smooths command, whose
span argument, the target parameter of interest, is assigned an input_slider.
Its range of possible values is set as usual, and the optional value argument
(also applicable in other input_ functions) sets the starting value when the
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plot is first initialized. Additionally, the se=TRUE argument to layer_smooths

ensures 95 percent CIs accompany the smoothed trends. Note that the pipe
to layer_smooths is preempted by a pipe through group_by(Sex). Without it,
the smoothers would simply be applied to the x and y data as a whole (also
note, at the time of writing, you don’t preface the variable name with ~ in
group_by).

As such, ggvis shows great potential for a more dynamic experience
for visual data exploration. These tools are especially useful in activities
such as presentations or website designs, where you can offer your audi-
ence an interactive appreciation of your data in a grammar of graphics style.
If you’re interested in using these tools, I strongly encourage you to keep
abreast of developments at the ggvis website.

Exercise 24.2

Ensure the car and ggvis packages are loaded. Revisit the Salaries

data frame you looked at in Exercise 24.1; inspect the help file
?Salaries to remind yourself of the present variables.

a. Produce an interactive scatterplot of salary on the vertical axis
and the years of service on the horizontal axis. Employ radio but-
tons to color points according to either academic rank, research
discipline, or sex. Use pipes to add_legend and add_axis to omit a
legend title and to tidy up the axis titles, respectively.

b. A pipe to layer_densities (which you’ve not yet met) is used to
produce kernel density estimates, similar to those appearing in
Figure 24-5.

i. Use ggvis to create a static plot of kernel density estimates of
salary distributions, split up according to academic rank.
To do this, assign the salary variable to x and the rank
variable to fill, followed by a pipe to group_by to explicitly
instruct grouping by the rank variable. Lastly, piping to
layer_densities (just use all default argument values in this
instance) will generate the graphic. Your result should
resemble the gg4 object from Exercise 24.1.

ii. Just like the width argument to layer_histograms is used to con-
trol the appearance of a histogram, the adjust argument in
layer_densities is used to control the degree of smoothness
of the kernel estimates. Reproduce the rank-specific kernel
estimates from the previous plot, but this time, the graphic
should be interactive—implement a slider button with a
range of 0.2 to 2 and a label of "Smoothness" to control the
smoothing adjustment. At your discretion, either suppress or
clarify the axis and legend titles of the result.
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Ensure you have the MASS package loaded, once more gaining access
to the UScereal data frame. If you haven’t already done so, inspect the
help file ?UScereal and re-create the cereal object exactly as specified
in Exercise 24.1 (a). Then do the following:

c. Set up an object for radio buttons to choose among the man-
ufacturer, the shelf, and the vitamins variables. Make sure the
labels for each radio button are clear, and set up an appropriate
title label for what will form the collection of options to color the
points. Name the object filler.

d. Borrowing the sizer and opacityer objects created in Section 24.4
and using the object you just created in (c) to control fill, create
an interactive scatterplot of calories on protein. Tidy up the axis
titles and suppress the legend title for the point color fill. The
result should essentially be the same, in terms of functionality, as
the graphic appearing as the topmost screenshot in Figure 24-8.

e. Create a new object for the same radio buttons as specified in
(c) that will control the shape of the points (in other words, the
characters used to plot points). Modify the title label accordingly.
Name this object shaper.

f. Finally, re-create the interactive scatterplot of calories on protein
exactly as in (d), but this time additionally assigning shaper from
(e) to the shape modifier in your call to ggvis. To prevent the
legends for the two sets of radio buttons from overlapping each
other, you need to add the following pipes to your code:

add_legend("shape",title="",

properties=legend_props(legend=list(y=100)))

and

set_options(duration=0)

The first simply moves the legend for the shape modifier
vertically downward, and the second eliminates the slight “ani-
mation delay” that occurs by default when switching between
options in the interactive graphic. Once more, use additional
calls to add_axis and add_legend to clarify or suppress axis and
legend titles.
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Important Code in This Chapter

Function/operator Brief description First occurrence

ggplot Initialize ggplot2 plot Section 24.1, p. 610
geom_smooth Trend line geom Section 24.2.1, p. 612
loess Calculate LOESS (base R) Section 24.2.1, p. 612
rev Reverse vector elements Section 24.2.1, p. 612
adjustcolor Alter color opacity (base R) Section 24.2.1, p. 612
geom_density Kernel density geom Section 24.2.2, p. 614
ggtitle Add ggplot2 title Section 24.2.2, p. 615
grid.arrange Multiple ggplot2 plots Section 24.3.1, p. 616
facet_wrap One-factor faceting Section 24.3.2, p. 619
facet_grid Two-factor faceting Section 24.3.2, p. 620
ggvis Initialize ggvis plot Section 24.4, p. 624
%>% Pipe to ggvis layer Section 24.4, p. 624
layer_histograms ggvis histogram layer Section 24.4, p. 624
input_slider Interactive slider Section 24.4, p. 624
:= Constant ggvis assignment Section 24.4, p. 624
layer_points ggvis points layer Section 24.4, p. 626
input_radiobuttons Interactive buttons Section 24.4, p. 626
add_legend Add/alter ggvis legend Section 24.4, p. 626
layer_smooths ggvis trend line layer Section 24.4, p. 627
add_axis Add/alter ggvis axis Section 24.4, p. 627
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25
DEFINING COLORS AND PLOTTING

IN HIGHER DIMENSIONS

Now that you’ve mastered some funda-
mental visualization skills, you can go

beyond the standard x- and y-axes by, for
example, coloring points according to some

additional value or variable or adding a z-axis for
constructing a 3D plot. Higher-dimensional plots like this allow you to
visually explore your data or models using more variables than would be
possible otherwise.

In this chapter, you’ll get into more detail when it comes to handling
colors and color palettes in R, and then you’ll look at four new plots: 3D
scatterplots, contour plots, pixel image plots, and perspective plots.

25.1 Representing and Using Color

Color plays a key role in many plots. As you’ve already seen, color can be
used purely for aesthetic enhancement, or it can be a critical aid to inter-
preting your data/models by distinguishing between values and variables.
Before learning about some more complicated data and model visualization
tools, it’s useful to understand a little about how R formally represents and



handles colors. In this section, you’ll examine common ways to create and
represent specific colors and how to define and use a cohesive collection of
colors; the latter is referred to as a palette.

25.1.1 Red-Green-Blue Hexadecimal Color Codes
When specifying colors in plots, your instruction to R so far has been given
either in the form of an integer value from 1 to 8 or as a character string (see
the relevant comments in Section 7.2.3). For programming purposes, you
need a more objective representation of these colors.

One of the most common methods of color specification is to specify
different saturations or intensities of three primaries—red, green, and blue
(RGB)—which are then mixed to form the resulting target color. Each pri-
mary component of the standard RGB system is assigned an integer from
0 to 255 (inclusive). Such mixtures are therefore able to form a total of
2563

= 16,777,216 possible colors.
You always express these values in (R, G, B) order; the result is com-

monly referred to as a triplet. For example, (0,0,0) represents pure black,
(255,255,255) represents pure white, and (0,255,0) is full green.

The col argument lets you select one of eight colors when you supply
it an integer from 1 to 8. You can find these eight colors with the follow-
ing call:

R> palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta"

[7] "yellow" "gray"

These are but a small subset of the 650+ named colors that you can list
by entering colors() at the R prompt. All of these named colors can also be
expressed in the standard RGB format. To find the RGB values for a color,
supply the desired color names as a vector of character strings to the built-in
col2rgb function. Here’s an example:

R> col2rgb(c("black","green3","pink"))

[,1] [,2] [,3]

red 0 0 255

green 0 205 192

blue 0 0 203

The result is a matrix of RGB values, with each column representing
one of your specified colors. This is what R actually means, in an RGB sense,
when you ask it to plot these colors using the corresponding character
string.

These RGB triplets are frequently expressed as hexadecimals, a numeric
coding system often used in computing. In R, a hexadecimal, or hex code,
is a character string with a # followed by six alphanumeric characters: valid
characters are the letters A through F and the digits 0 through 9. The first
pair of characters represents the red component, and the second and third
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pairs represent green and blue, respectively. If you have or create one or
more RGB triplets, you can turn them into hex codes for R to use in any sub-
sequent plotting through the rgb function. This command takes a matrix of
RGB values, though note that it expects each (R, G, B) color to be a row of
that matrix (as opposed to the columns provided from a call to, say, col2rgb).

You’ll also need to tell rgb that your maximum color value, as per the
standard RGB format, is 255 (since by default it scales this and uses 1). The
following code performs a matrix transpose (refer to Section 3.3) on the
result of the previous call to col2rgb, putting my three colors as RGB triplets
in the required form as rows, and specifies the maxColorValue accordingly:

R> rgb(t(col2rgb(c("black","green3","pink"))),maxColorValue=255)

[1] "#000000" "#00CD00" "#FFC0CB"

The output tells you the hexadecimal codes for the RGB values R refers
to with the names "black", "green3", and "pink", respectively.

I won’t go into the specifics of converting a standard RGB triplet to a
hexadecimal here because it’s beyond the scope of this book, but it’s impor-
tant to know that R represents any colors you create using RGB triplets as
hex codes, so you should be able to at least recognize a hexadecimal when
you’re working with colors and color palettes in plotting.

For an even more colorful exploration, let’s write a modest little func-
tion to plot points in individual colors and label them appropriately with
RGB triplets and corresponding hex codes. Consider the following in the
editor:

pcol <- function(cols){

n <- length(cols)

dev.new(width=7,height=7)

par(mar=rep(1,4))

plot(1:5,1:5,type="n",xaxt="n",yaxt="n",ann=FALSE)

for(i in 1:n){

pt <- locator(1)

rgbval <- col2rgb(cols[i])

points(pt,cex=4,pch=19,col=cols[i])

text(pt$x+1,pt$y,family="mono",

label=paste("\"",cols[i],"\"","\nR: ",rgbval[1],

" G: ",rgbval[2]," B: ",rgbval[3],

"\nhex: ",rgb(t(rgbval),maxColorValue=255),

sep=""))

}

}

The function pcol takes one argument, cols, intended to be a character
vector of color names recognized by R. When you execute pcol, it opens a
new graphics device and equalizes the figure margin settings to be one line
on each side. A plot is begun, fully suppressed except for a box. This is so
you can use locator (see Section 23.3) to place points in the plot region,
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implemented in a for loop, one after the other. Each point represents one
of the cols, and after its coordinates are returned from locator, points puts
down a large dot of the color at hand, with text providing annotation to the
right of each point achieved using paste (refer to Section 4.2). This anno-
tation includes the R color name, the RGB triplet, and the hex code on
top of one another; the latter two are found using col2rgb and rgb exactly
as demonstrated earlier.

The following code sets up the device, first storing 14 valid R color
names (chosen randomly) in the character vector mycols. After exhausting
these with mouse clicks in different areas of the plot region, the execution is
complete.

R> mycols <- c("black","blue","royalblue2","pink","magenta","purple",

"violet","coral","lightgray","seagreen4","red","red2",

"yellow","lemonchiffon3")

R> pcol(mycols)

When I execute pcol as shown here, I click through the 14 points, pro-
ducing rough columns on my graphics device. Figure 25-1 shows the result.

Figure 25-1: Various named R colors alongside their corresponding
RGB triplets and hex codes.

In essence, you can obtain any color you want (in other words, far more
than the named ones that are built into R) by specifying an RGB value and
obtaining its hex code. These hexadecimals can be supplied as is to any of
the traditional R graphics functions where you specify color (commonly to
a col argument). You’ll see this as the chapter progresses. Naturally, you
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can also assign a hex code or a vector of hex codes (for example, if you’re
creating your own custom colors) to a new object in your R workspace so you
can use it in subsequent plotting.

25.1.2 Built-in Palettes
Being able to implement your own RGB colors is most useful when you need
many colors, the collection of which is referred to as a palette. You’ll typi-
cally need a palette when color is used to describe something on a contin-
uum, like the various shades of blue used for the height measurements in
Figure 24-6 on page 621.

There are a number of color palettes built into the base R installa-
tion. These are defined by the functions rainbow, heat.colors, terrain.colors,
topo.colors, cm.colors, gray.colors, and gray. With the exception of gray, you
directly specify the number of colors you want, and they’ll be returned as a
character vector of hex codes representing an equally spaced sequence over
the entire color range of that particular palette.

It’s easiest to see this in action with a visualization. The following code
generates exactly 600 colors from each palette:

R> N <- 600

R> rbow <- rainbow(N)

R> heat <- heat.colors(N)

R> terr <- terrain.colors(N)

R> topo <- topo.colors(N)

R> cm <- cm.colors(N)

R> gry1 <- gray.colors(N)

R> gry2 <- gray(level=seq(0,1,length=N))

Note that instead of a single integer, gray expects a numeric vector of
values between 0 (total black) and 1 (total white) to provide a grayscale.
Its counterpart function, gray.colors, works the same as the other built-in
palettes but defaults to a slightly narrower visual range between the extremes
of black and white. These can be reset using the optional arguments start

and end, which you’ll see shortly.
The next code chunk uses skills from Chapter 23 to initialize a new plot

and uses vector repetition to place 600 points for each palette in a single call
to points, coloring them appropriately as per the vectors of hex codes.

R> dev.new(width=8,height=3)

R> par(mar=c(1,8,1,1))

R> plot(1,1,xlim=c(1,N),ylim=c(0.5,7.5),type="n",xaxt="n",yaxt="n",ann=FALSE)

R> points(rep(1:N,7),rep(7:1,each=N),pch=19,cex=3,

col=c(rbow,heat,terr,topo,cm,gry1,gry2))

R> axis(2,at=7:1,labels=c("rainbow","heat.colors","terrain.colors",

"topo.colors","cm.colors","gray.colors","gray"),

family="mono",las=1)
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Figure 25-2 shows the result.

Figure 25-2: Showcasing the color ranges of the built-in palettes, with default limits used in
gray.colors.

For more information, access the help files ?gray.colors and ?gray for the
respective grayscale palettes, with the others all appearing under ?rainbow.

25.1.3 Custom Palettes
You’re not restricted to the ready-to-use color designs. The function
colorRampPalette allows you to create your own palettes; you supply two or
more desired key colors to an argument of the same name, and it creates a
palette that transitions between them. The result of a call to colorRampPalette

is itself a function—one that behaves exactly like the built-in palette func-
tions noted earlier.

Let’s say you’d like to be able to generate colors on a scale between pur-
ple and yellow. You specify the key colors to be interpolated, in the desired
order, as a character vector of names from the collection that R recognizes.
The following line creates this palette function:

R> puryel.colors <- colorRampPalette(colors=c("purple","yellow"))

Let’s create another one, this time picking one that will show up a little
clearer in case a color plot that ends up using it is printed in grayscale (in
which case sticking to monochromatic palettes is a good idea).

R> blues <- colorRampPalette(colors=c("navyblue","lightblue"))

Here are a couple more, using more than two colors this time:

R> fours <- colorRampPalette(colors=c("black","hotpink","seagreen4","tomato"))

R> patriot.colors <- colorRampPalette(colors=c("red","white","blue"))

Having created a handful of custom palette functions, you can now gen-
erate any number of colors from each range just like before (done here
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using the previously stored N value of 600 each). After doing so, you can
adapt the earlier plotting code to get the image in Figure 25-3.

R> py <- puryel.colors(N)

R> bls <- blues(N)

R> frs <- fours(N)

R> pat <- patriot.colors(N)

R> dev.new(width=8,height=2)

R> par(mar=c(1,8,1,1))

R> plot(1,1,xlim=c(1,N),ylim=c(0.5,4.5),type="n",xaxt="n",yaxt="n",ann=FALSE)

R> points(rep(1:N,4),rep(4:1,each=N),pch=19,cex=3,col=c(py,bls,frs,pat))

R> axis(2,at=4:1,labels=c("peryel.colors","blues","fours","patriot.colors"),

family="mono",las=1)

Figure 25-3: Some examples of custom color palettes created using colorRampPalette.

25.1.4 Using Color Palettes to Index a Continuum
You’ve now seen a few times how color can be used to identify groups based
on a categorical variable (the data corresponding to a certain level are sim-
ply given a distinct color from the others), which is pretty easy to do. How-
ever, assigning colors appropriately to values on a continuum requires a
little more thought. There are two methods for this: through categorization
or through normalization of your continuous values. Let’s look first at the
former approach.

Via Categorization

One way to color values according to a continuous variable is to turn it into
the familiar problem of coloring points of a categorical variable. You can do
this by binning your continuous values into a fixed number of k categories,
generating k colors from your palette, and matching each observation to the
appropriate color based on the bin it falls into.

In Section 20.1, you plotted height against writing handspan for the
survey data from the MASS package. This time, let’s use color to additionally
inform the nonwriting handspan variable. Load the package and execute
the following line:

R> surv <- na.omit(survey[,c("Wr.Hnd","NW.Hnd","Height")])
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This creates the data frame object surv, which is made up of only the
three required columns. Any rows with missing values are removed via a call
to na.omit (refer to Section 6.1.3).

Now, the first thing to do is decide on your color palette.

R> NW.pal <- colorRampPalette(colors=c("red4","yellow2"))

This will generate colors that go from a dark, dull red at the lower end
of the scale to a slightly faded yellow at the higher end (similar to the built-
in heat.colors palette; see Figure 25-2). Next, you need to decide how many
bins, k, you’re going to construct for the continuous values. This determines
how many distinct colors to generate from NW.pal. For these data, set k = 5.

R> k <- 5

R> ryc <- NW.pal(k)

R> ryc

[1] "#8B0000" "#A33B00" "#BC7700" "#D5B200" "#EEEE00"

Your five NW.pal colors, as hex codes, are available. Next, you need to
actually bin the continuous values, which you can do using cut. First you
need to set k + 1 break points for the bins (refer to Section 4.3.3 for a
refresher), using seq.

R> NW.breaks <- seq(min(surv$NW.Hnd),max(surv$NW.Hnd),length=k+1)

R> NW.breaks

[1] 12.5 14.7 16.9 19.1 21.3 23.5

The six equally spaced values span the range of the students’ nonwriting
handspans, delineating your five intended bins. Then cut factorizes the
nonwriting handspans with respect to those bins. You can use as.numeric

to specifically return the indexes for extracting the appropriate color for
each observation from your five ordered hex codes in ryc (full output is sup-
pressed here for reasons of print).

R> NW.fac <- cut(surv$NW.Hnd,breaks=NW.breaks,include.lowest=TRUE)

R> as.numeric(NW.fac)

[1] 3 4 3 4 3 3 3 4 3 3 2 4 3 3 4 4 4 5 4 3 4 4 5 4 3 3 4 4 2 3 5

[32] 3 2 3 4 1 3 5 5 3 3 5 4 3 4 5 3 2 3 4 5 3 4 3 3 4 3 3 3 4 2 3

[63] 2 3 3 3 3 4 3 5 3 3 3 --snip--

R> NW.cols <- ryc[as.numeric(NW.fac)]

R> NW.cols

[1] "#BC7700" "#D5B200" "#BC7700" "#D5B200" "#BC7700" "#BC7700"

[7] "#BC7700" "#D5B200" "#BC7700" "#BC7700" --snip--
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You’re ready to plot; the result of the following is given on the left of
Figure 25-4:

R> plot(surv$Wr.Hnd,surv$Height,col=NW.cols,pch=19)

Figure 25-4: Illustrating two ways to assign color to points based on a continuous value:
via categorization (left) and via normalization (right)

Via Normalization

Using categorization to index a continuum with color is a little unsophisti-
cated. There are plenty of ways you can bin your observations, for example,
so your plot might look very different from the same plot designed by some-
one else. In a computational sense, it’s more accurate (not to mention ele-
gant) to leave your continuous data as is.

Recall the built-in gray palette mentioned in Section 25.1.2. This func-
tion behaved a little differently from the others. Instead of simply asking
for a number of colors from the specified palette, you’re required to provide
a numeric vector of values to tell R, on a continuous scale from 0 through
1, how “far along” the palette to go. This type of behavior suits the current
task perfectly, since your raw data are also on a continuous scale. To imple-
ment it, you need two things: a way to create a palette that will behave like
gray and a normalized version of your continuous values that fall within the
acceptable standardized range of 0 to 1 inclusive.

The colorRamp function allows you to create your palette and is used in
the same way as colorRampPalette, but the result is a color palette function
that expects a numeric vector as stated. You’ll see that in a moment. To
transform a collection of n original values {x1, . . ., xn } to, say, {z1, . . ., zn },
where 0 ≤ zi ≤ 1; i = 1, . . ., n, you can employ the following equation:

zi =
xi −min xi

max xi −min xi
(25.1)
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Let’s make that an R function by writing the following in the R editor:

normalize <- function(datavec){

lo <- min(datavec,na.rm=TRUE)

up <- max(datavec,na.rm=TRUE)

datanorm <- (datavec-lo)/(up-lo)

return(datanorm)

}

Based on a vector datavec as its only argument, normalize implements
Equation (25.1), using the optional na.rm argument to ensure any missing
values in datavec don’t contaminate the calculation of the minimum and
maximum values (see Section 13.2.1).

Import normalize and enter the following, which shows the original non-
writing handspan values (from the object surv you created earlier) and their
corresponding normalized values (output snipped for brevity):

R> surv$NW.Hnd

[1] 18.0 20.5 18.9 20.0 17.7 17.7 17.3 19.5 18.5 17.2 16.0 20.2

[13] 17.0 18.0 19.2 20.5 20.9 22.0 20.7 --snip--

R> normalize(surv$NW.Hnd)

[1] 0.50000000 0.72727273 0.58181818 0.68181818 0.47272727

[6] 0.47272727 0.43636364 0.63636364 --snip--

Now, you need to create a new version of the color palette with
colorRamp.

R> NW.pal2 <- colorRamp(colors=c("red4","yellow2"))

Generate the corresponding colors for each observation based on the
normalized data.

R> ryc2 <- NW.pal2(normalize(surv$NW.Hnd))

If you actually look at the returned object in ryc2, you’ll note it’s a
matrix of RGB triplets corresponding to each normalized value you sup-
plied to your colorRamp function NW.pal2 (noninteger values end up being
coerced to integers). These need to be converted to hex codes before you
can use them in plotting. Using rgb just as you saw in Section 25.1.1, you get
the vector you need (snipped for print).

R> NW.cols2 <- rgb(ryc2,maxColorValue=255)

R> NW.cols2

[1] "#BC7700" "#D3AD00" "#C48A00" "#CEA200" "#B97000" "#B97000"

[7] "#B66700" "#CA9700" "#C18100" "#B56500" --snip--

Note the difference between the hex codes you obtain here in NW.cols2

and those in NW.cols. Here, you get a hex code for each unique value, but
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for the categorized NW.cols, you have only one hex code for each bin (so just
k = 5 colors).

This line produces the image on the right of Figure 25-4.

R> plot(surv$Wr.Hnd,surv$Height,col=NW.cols2,pch=19)

In terms of this relatively simple example, the visual difference between
the two approaches is minimal, though looking closely you can indeed pick
out the smoother color transition in the normalized version. As you increase
k when using the categorization technique, the visual result will become
closer to that of the normalization approach. That said, the normalization
approach should generally be preferred, since it more closely fits the con-
tinuous nature of the values you’re trying to visualize, and it works more
effectively for values with a skewed distribution or when you’re working with
a complex color palette.

25.1.5 Including a Color Legend
Now that you can use color to significant effect in your plots, you need a
legend to reference the color scale. It’s possible to create a legend using
base R tools alone, but it can be simpler to use contributed functionality in
R instead.

One useful function for this is the colorlegend command. This is found
in the shape package (Soetaert, 2014), so first download and install shape
from CRAN. The following code then loads the package, reproduces the
most recent plot (based on the surv object created earlier and shown on the
right of Figure 25-4) with some tidier axis titles, and draws the color strip
legend:

R> library("shape")

R> plot(surv$Wr.Hnd,surv$Height,col=NW.cols2,pch=19,

xlab="Writing handspan (cm)",ylab="Height (cm)")

R> colorlegend(NW.pal(200),zlim=range(surv$NW.Hnd),zval=seq(13,23,by=2),

posx=c(0.3,0.33),posy=c(0.5,0.9),main="Nonwriting handspan")

This result is given on the left of Figure 25-5.
The colorlegend functions assumes that you already have a plot present

in an active graphics device, so you need to have one created first. The first
thing you supply to colorlegend is the color span of the values you want to
reference. This is easiest with a color palette function like those listed in
the help file ?rainbow or created using colorRampPalette—in other words, a
function that takes an integer value telling it how many colors to generate.
Doing so with a large number of colors gives you a smooth color strip, so I
use NW.pal(200). Next, you provide colorlegend with the range of the values
that will be referenced by the legend using zlim, in this case, the range of the
nonwriting handspans range(surv$NW.Hnd). The zval argument takes in the
values that you want to mark off on the legend. The values of a sequence
between 13 and 23, in steps of 2, are marked off.
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Figure 25-5: Two examples of implementing a color strip legend using the colorlegend
function from the contributed shape package

The positioning and sizing of the color legend are done using the posx

and posy arguments. Rather than taking user coordinates, each of these
must be a vector of length 2 describing, in relative device coordinates, the
horizontal (posx) and vertical (posy) lengths of the strip. In this example,
posx=c(0.3,0.33) tells the function to draw the width of the legend from
30 percent of the left of the device to 33 percent so that the width is 3 per-
cent of the overall device and positioned to the left of the center. Setting
posy=c(0.5,0.9) says you want the length of the strip to span 40 percent of the
device, from 50 percent of the way up from the bottom to 90 percent and
up. Lastly, you can add the title to the legend by supplying a character string
to main.

You’ll probably need to experiment a bit in a trial-and-error fashion
to get the positioning and sizing (and appropriate tick marks using zval)
you want. The device-specific nature of posx and posy means that if you
resize your device, you might well need to reevaluate the values of these
arguments.

If you wanted the legend to appear outside the default plot region, you
could easily use the xlim argument in the initial call to plot to widen the
horizontal size of the plot, giving you extra space to draw a full-length leg-
end. Alternatively, you could’ve changed the figure or outer margin spacing
(refer to Section 23.2) to give you enough room to put the legend outside
the plot region. This next chunk of code does just that by widening the right
margin, replotting the scatterplot, and inserting a color legend into that
extra space.

R> par(mar=c(5,4,4,6))

R> plot(surv$Wr.Hnd,surv$Height,col=NW.cols2,pch=19,

xlab="Writing handspan (cm)",ylab="Height (cm)")

R> colorlegend(NW.pal(200),zlim=range(surv$NW.Hnd),zval=13.5:22.5,digit=1,

posx=c(0.89,0.91),main="Nonwriting\nhandspan")
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The result is given on the right of Figure 25-5. The legend is narrower
than before, taking up only 2 percent of the device width on the right with
posx=c(0.89,0.91). With no specification of posy, colorlegend has used the
default of c(0.05,0.9), giving a color strip that spans almost the entire height
of the device. The tick marks and labeling of the new legend are now placed
in increments of 1 from 13.5 to 22.5; note that to display decimal places (in
other words, significant digits), you need to increase the digit argument from
its default, 0, to reveal them. Here, digit=1 prints the tick mark labels to one
decimal place.

There are more properties that you can control with these legends,
including labeling style and tick mark positioning; see the ?colorlegend help
file for details. You may also like to investigate the similarly named function
color.legend in the contributed plotrix package (Lemon, 2006) for a slightly
different take on drawing color legends on existing R plots.

25.1.6 Opacity
Another useful skill is the ability to specify the opacity of any of the col-
ors and color palettes discussed so far. All functions that provide the user
with hex codes have an optional argument alpha, the valid range of which
depends on the function (a quick check of the corresponding documen-
tation will tell you). For example, the rgb function uses maxColorValue to set
the upper bound on opacity, and palette functions like rainbow all use the
normalized range from 0 through 1 (just like in the ggplot2 plots created
throughout Chapter 24).

By default, R assumes full opacity when you’re creating colors. However,
hex codes change slightly when opacity is explicitly set using alpha. Rather
than six characters after the #, eight will appear, with the last two containing
the additional opacity information. Consider the following lines of code,
which generate four different versions of red: default, zero opacity, 40 per-
cent opacity (0.4 × 255 = 102), and full opacity, respectively:

R> rgb(cbind(255,0,0),maxColorValue=255)

[1] "#FF0000"

R> rgb(cbind(255,0,0),maxColorValue=255,alpha=0)

[1] "#FF000000"

R> rgb(cbind(255,0,0),maxColorValue=255,alpha=102)

[1] "#FF000066"

R> rgb(cbind(255,0,0),maxColorValue=255,alpha=255)

[1] "#FF0000FF"

Note that the first and last colors are identical; it’s just that the last hex
code explicitly specifies full opacity.

You can always adjust the opacity of any color you’ve already got with
the alpha.f argument (which takes values in the range 0 through 1) of the
ready-to-use adjustcolor function. The following line takes the default red
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hex code created by the first line in the previous example and turns it into a
40 percent opaque version (the third line in the previous code):

R> adjustcolor(rgb(cbind(255,0,0),maxColorValue=255),alpha.f=0.4)

[1] "#FF000066"

You briefly came across this command already in Section 24.2.1, when
creating a transparent gray confidence interval for a LOESS-smoothed trend
using base R graphics. This approach is also applicable to hex codes gener-
ated after you’ve used a built-in or custom palette function to obtain a vector
of colors.

You’ll put opacity to the test using the built-in quakes data frame, which
consists of data on 1,000 seismic events near Fiji. Let’s re-create the plot in
Figure 13-6 on page 284 showing “number of detecting stations” against
“event magnitude” and dress it up using color to identify the continuous
“depth” data. Since there are many overlapping observations, reducing opac-
ity of the individual points would be a good idea for visualization. The code

R> keycols <- c("blue","red","yellow")

R> depth.pal <- colorRampPalette(keycols)

R> depth.pal2 <- colorRamp(keycols)

sets up a custom three-color palette both ways (in other words, as a function
expecting an integer, depth.pal, and as a function expecting a value between
0 and 1, depth.pal2; refer to Sections 25.1.3 and 25.1.4). Then, the following
line uses the normalization approach, with the normalize function defined in
Section 25.1.4, to obtain the appropriate colors for the points to be plotted,
according to the “depth” variable of the data set:

R> depth.cols <- rgb(depth.pal2(normalize(quakes$depth)),maxColorValue=255,

alpha=0.6*255)

The request for 60 percent opacity is made through alpha in the call to
rgb. You can create the plot with the following call, which assigns the colors
stored in depth.cols:

R> plot(quakes$mag,quakes$stations,pch=19,cex=2,col=depth.cols,

xlab="Magnitude",ylab="No. of stations")

This plot affords another opportunity to showcase the colorlegend func-
tion from the shape package. Assuming you have shape already loaded in the
current R session, the next line draws a corresponding color legend inside
the plot region (on a default-size device):

R> colorlegend(adjustcolor(depth.pal(20),alpha.f=0.6),

zlim=range(quakes$depth),zval=seq(100,600,100),

posx=c(0.3,0.32),posy=c(0.5,0.9),left=TRUE,main="Depth")
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Here you can see another demonstration of the use of adjustcolor, where
the color sequence generated with the call to depth.pal(20) is then reduced
to 60 percent opacity to match the plotted points. Again, posx and posy are
used to position the legend, and the optional logical argument left is set to
TRUE to make the tick marks and color legend labels appear on the left side
of the strip. Figure 25-6 shows the final result.

Figure 25-6: Altering the color opacity in a custom palette, used
to index the continuous “event depth” observations in a plot of
“number of stations” against “magnitude” for the quakes data
set, and a corresponding color legend using colorlegend from
the shape package

25.1.7 RGB Alternatives and Further Functionality
RGB triplets aren’t the only way color can be represented in R. Other spec-
ifications include hue-saturation-value (HSV) and hue-chroma-luminance
(HCL), available through the built-in hsv and hcl functions. These work in
much the same way as rgb, where you specify the strength of influence of the
three components and out pop corresponding character string hex codes
that form valid R colors for any relevant plotting command. In fact, the HSV
parameterization is what’s used internally by the built-in palettes detailed in
Section 25.1.2, such as rainbow and heat.colors.

Contributed functionality offers even more flexibility. The colorspace

package (Ihaka et al., 2015), which translates between different color for-
mats, is worth noting, as is RColorBrewer (Neuwirth, 2014), which is based
directly on the well-received color schemes designed by Cynthia Brewer
(see http://colorbrewer2.org/). RColorBrewer provides more options for creating
palettes than are supplied by the built-in functionality colorRampPalette and

Defining Colors and Plotting in Higher Dimensions 645

http://colorbrewer2.org/


colorRamp. That said, from an introductory perspective, you should find the
use of RGB and the base R functionality as discussed here sufficient for most
visual explorations of your data and models.

Exercise 25.1

Ensure the car package is loaded. Revisit the Salaries data frame you
looked at in Exercises 24.1 (page 622) and 24.2 (page 628) and take
a look at the help file ?Salaries to remind yourself of the variables.
Your task is to use color, point size, opacity, and point character type
to reflect “years since Ph.D.,” “sex,” and “rank” in a scatterplot of
“salary” against “years of service,” by completing the following steps:

a. Set up a custom color palette that goes from "black" to "red" to
"yellow2". Create two versions of this palette—one that expects
a number of colors and one that expects a vector of normalized
values between 0 and 1.

b. Create two vectors that will control point character and character
expansion following the guidelines in (i) and (ii). Each of these
can be achieved in a single line by vector subsetting/repetition
based on a numeric coercion of the corresponding factor vector
in the data frame.
i. Use the point characters 19, 17, and 15 to reference the three

increasing academic ranks in that order.
ii. Use a character expansion of 1 for females and a character

expansion of 1.5 for males.

c. Use the normalize function defined in Section 25.1.4 to create
a [0,1] normalized version of the range of values of the “years
since Ph.D.” variable. Then use the appropriate palette from (a)
along with rgb to convert these to the required hex codes.

d. Modify the vector of colors you just created in (c), adjusting
opacity. Colors in the vector that correspond to females should
be reduced to 90 percent opacity; colors that correspond to
males should be reduced to 30 percent opacity.

e. Now, start the plot; alter the default figure margins to be 5, 4, 4,
and 6 lines wide on the bottom, left, top, and right, respectively.
Plot salary on the y-axis against years of service on the x-axis. Set
the corresponding point colors according to your vector from
(d) and the point characters and character expansion according
to your vectors from (b). Tidy up the x-axis and y-axis titles.

f. Incorporate two separate legends following the guidelines in
(i) and (ii). Both legends should be horizontal, and you should
relax clipping to allow their placement in figure margins (refer
to Section 23.2.3).
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i. Place the first legend at the user coordinate given by x=-5

and y=265000. It should use the levels of the “rank” factor
vector as the referencing text and pair these with the corre-
sponding pch symbols as assigned. Include an appropriate
title for the legend.

ii. The second legend should be placed next to the first, using
an x-coordinate of 40 and the same y-coordinate value. This
legend should show two points, both red and of type 19,
but reference the two levels of sex by altering the charac-
ter expansion and opacity of these to reference points as
assigned.

g. Lastly, ensure the shape package is loaded and use the colorlegend

function along with 50 colors generated from the appropriate
palette from (a) to reference “years since Ph.D.” You can leave
the horizontal and vertical placements of the legend at their
default values. The zlim range should simply be set to match the
range of the observed data, and the tick mark values set via zval

should be a sequence between 10 and 50, increasing in steps of
10. Include an appropriate title for the color legend.

After all this, my version of this plot is given here:

Your next task is a little different. The goal is to plot a standard nor-
mal probability density function but use color to shade in polygons
underneath the curve to denote “distance from mean.” To achieve
this, complete the following:

h. Generate a vector of exactly 25 colors from the built-in palette
terrain.colors and name it tcols. Then, using a reversed version
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of it obtained via tcols[25:1], append the two vectors together
to form a new vector of length 50 containing the first 25 colors
shading one way and then the same 25 shading the opposite way.

i. Next, create and store an evenly spaced sequence of exactly 51
values between −3 and 3 inclusive; name it vals. Use dnorm to
calculate and store the corresponding 51 values of the standard
normal density curve; name it normvals.

j. Draw the normal density curve by plotting the values in (i) as
a line (recall type="l"). In the same call to plot, use knowledge
from Chapter 23 to set both the x-axis and y-axis styles to be of
type "i"; suppress both axis titles with empty strings; change the
surrounding box to be an L shape; and suppress the drawing of
the x-axis. Give the plot a suitable main title.

k. To shade the different colors underneath the curve, use a
for loop, iterating through the integers 1 to 50. At each iter-
ation, the loop should call polygon (refer to Section 15.2.3).
Assuming your indexer is i, the vertices of each polygon
should be formed by the vectors vals[rep(c(i,i+1),each=2)]

and c(0,normvals[c(i,i+1)],0). Each polygon should suppress
its border and be colored according to the relevant ith entry in
your color vector of length 50 created in (h).

l. Lastly, ensure the shape package has been loaded and use your
length 50 color vector to produce a color legend with default
placement to reference “distance from mean.” You can easily set
the zlim and zval arguments in the call to colorlegend using vals.
Include an appropriate title for the legend. For reference, my
result is given here:
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25.2 3D Scatterplots

This section will look at creating 3D scatterplots, which allow you to plot raw
observations based on three continuous variables at once, as opposed to only
two in a conventional 2D scatterplot. You’ll then learn how to enhance your
3D scatterplot to represent more variables and make it easier to interpret.
There are several ways to create three-variable scatterplots in R, but the go-to
method is usually the scatterplot3d function in the contributed package of
the same name (Ligges and Mächler, 2003).

25.2.1 Basic Syntax
The syntax of the scatterplot3d function is similar to the default plot func-
tion. In the latter, you supply a vector of x- and y-axis coordinates; in the
former, you merely supply an additional third vector of values providing
the z-axis coordinates. With that additional dimension, you can think of
these three axes in terms of the x-axis increasing from left to right, the y-axis
increasing from foreground to background, and the z-axis increasing from
bottom to top.

Install and load the scatterplot3d package, and let’s go straight into an
example. Recall the famous iris flower data, which you first encountered
in Section 14.4. This data set contains measurements on four continuous
variables (petal length/width and sepal length/width) and one categorical
variable (flower species); the iris data frame is immediately accessible from
the R prompt, so there’s no need to load anything. Enter the following so
you have quick access to the measurement values that make up the data:

R> pwid <- iris$Petal.Width

R> plen <- iris$Petal.Length

R> swid <- iris$Sepal.Width

R> slen <- iris$Sepal.Length

The most basic 3D scatterplot of, say, petal length, petal width, and sepal
width, is achieved with the following:

R> library("scatterplot3d")

R> scatterplot3d(x=pwid,y=plen,z=swid)

It’s as simple as that—the result of this code is given on the left of Fig-
ure 25-7. Here you can observe a general positive relationship among all
three plotted variables. There’s also a clearly isolated cluster of observa-
tions in the foreground that have relatively large sepal widths but small
petal measurements.
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Figure 25-7: Two 3D scatterplots of the famous iris data with petal width, petal length,
and sepal width on the x-, y-, and z-axis, respectively. Left: Basic default appearance.
Right: Tidying up titles and adding visual enhancements to emphasize 3D depth and
legibility via color and vertical line marks.

25.2.2 Visual Enhancements
It can be difficult to clearly perceive depth in the plotted cloud of points,
even with the box and x-y plane grid lines that are drawn by default. For
this reason, there are a couple of optional enhancements you can make to
a scatterplot3d plot—coloring the points to help make the transition from
foreground to background clearer and setting the type="h" argument to draw
lines perpendicular to the x-y plane.

The right-hand plot in Figure 25-7 shows the plot with these enhance-
ments and is the result of the following:

R> scatterplot3d(x=pwid,y=plen,z=swid,highlight.3d=TRUE,type="h",

lty.hplot=2,lty.hide=3,xlab="Petal width",

ylab="Petal length",zlab="Sepal width",

main="Iris Flower Measurements")

xlab, ylab, zlab, and main control the corresponding titles of the three
axes and the plot itself.

The vertical lines make reading the values of the points much easier. By
default, those lines in a type="h" plot are solid, but you can alter this with the
lty.hplot argument (which behaves in the same way as the standard graph-
ical parameter lty); setting lty.hplot=2 requests dashed lines. Similarly, you
can alter the line type of the “nonvisible” sides of the box; setting lty.hide=3

instructs the plot to draw those lines as dotted.
Setting highlight.3d=TRUE emphasizes 3D depth by applying color tran-

sitioning from red to black based on the y-axis position of a point. This is
useful, but there’s an important consequence—it means you can no longer
use color to represent a fourth variable with such a plot.
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Along that line of thought, remember that the iris data has a fourth
continuous variable, sepal length (stored as slen in Section 25.2.1), that
you’re not displaying in either of the plots in Figure 25-7. You’re also not
displaying the categorical variable of flower species, so let’s fix that. First, set
up a color band for the missing measurement variable, using your knowl-
edge of having color palettes reference a continuous variable from Sec-
tion 25.1.4.

R> keycols <- c("purple","yellow2","blue")

R> slen.pal <- colorRampPalette(keycols)

R> slen.pal2 <- colorRamp(keycols)

R> slen.cols <- rgb(slen.pal2(normalize(slen)),maxColorValue=255)

Note that for the last line to run, you’ll need to have the normalize func-
tion defined in Section 25.1.4 available in your current session.

The following code produces the 3D scatterplot, which also uses the pch

argument to distinguish among the three different species:

R> scatterplot3d(x=pwid,y=plen,z=swid,color=slen.cols,

pch=c(19,17,15)[as.numeric(iris$Species)],type="h",

lty.hplot=2,lty.hide=3,xlab="Petal width",

ylab="Petal length",zlab="Sepal width",

main="Iris Flower Measurements")

I’ve used the vector c(19,17,15), with the numeric coercion of the
iris$Species vector passed to the square brackets, to pair pch character
numbers as follows: 19 with Iris setosa (the first level of the factor), 17 with
Iris versicolor (the second level), and 15 with Iris virginica (the third level),
respectively (refer to Figure 7-5 on page 133 for the different types of point
characters).

You can then insert a legend referencing species with a familiar call to
legend.

R> legend("bottomright",legend=levels(iris$Species),pch=c(19,17,15))

And with a little experimentation, you can include a color strip legend
too (making sure you’ve loaded the shape package so you have access to the
colorlegend function as per Section 25.1.4).

R> colorlegend(slen.pal(200),zlim=range(slen),zval=5:7,digit=1,

posx=c(0.1,0.13),posy=c(0.7,0.9),left=TRUE,

main="Sepal length")

The final result of all this is the image in Figure 25-8.
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Figure 25-8: A 3D scatterplot of the famous iris data, displaying all
five present variables with the additional use of color (for sepal length)
and point character (for species).

With the creative use of color and point type, you’ve now been able
to display the five-dimensional data in a single 3D scatterplot. This reveals
important information about the data. For instance, you can now identify
Iris setosa as the clearly separate group of points in the foreground and see
that while Iris setosa tend to have smaller petal widths and lengths and larger
sepal widths than the other two species (especially Iris versicolor), the purple
coloring at the lower end of the scale suggests they tend to have smaller
sepal lengths.

Exercise 25.2

Ensure the scatterplot3d library has been loaded in your current R
session.

a. Turn your attention back to the diabetes data frame found in the
faraway package (you first looked at these data in Section 21.5.2).
Your goal is to produce a scatterplot3d plot of weight, hip, and
waist measurements as per the following guidelines:
– Hip, waist, and weight variables should correspond to the

x-axis, y-axis, and z-axis, respectively; provide neat axis titles.
– Use built-in functionality to ensure the 3D depth is high-

lighted by color.
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– Choose two different point characters to reflect gender.
– Place a simple legend referencing these two point characters

and gender in the blank space in the upper-left area.

b. Create a 3D scatterplot of the built-in airquality data, which you
first met in Section 24.2.2, according to the following guidelines:
– Create a copy of the data frame using na.omit to remove all

rows that contain missing values and work with this copy.
– Plot wind speed and solar radiation against the x- and y-axes,

respectively, using the z-axis to plot temperature.
– Apply vertical dotted lines reaching up from the x-y plane to

each observation.
– The data in airquality are comprised of measurements taken

over five months, from May to September. Each plotted
point should take on the corresponding pch value from 1 to 5

respective to the order of these five months.
– With a vector of 50 colors generated from the built-in

topo.colors palette, use the categorization approach to
ensure each plotted point is colored according to its ozone
value.

– Set a legend to reference the five point types according to
month.

– Set a color legend (using functionality from the shape pack-
age) to reference the ozone value accordingly.

– Ensure the plot has neat axis, main, and legend titles.

25.3 Preparing a Surface for Plotting

In the rest of this chapter, you’ll look at three types of 3D plots geared to
visualize a bivariate surface. Such plots are required when you have two vari-
ables, based on which a function, estimate, or model has been defined,
and you want to use the third available axis (in other words, the z-axis)
to map out the resulting surface. You’ve seen examples of bivariate func-
tions already, through the response surfaces for the mtcars data in Sec-
tion 21.5.4 (where you looked at mean MPG as a function of car weight and
horsepower) and through the study of diagnostic tools for linear regres-
sion models in Section 22.3.6 (where you saw how Cook’s distance can be
expressed as a function of residual and leverage).

Before you look at producing these plots, it’s important to understand
how they’re created in R. The function/estimate/model of interest should
be thought of as a plane or surface that can vary according to continuous,
two-dimensional x-y coordinates. Plotting a completely continuous surface is
technically impossible since that would require you to evaluate the function
at an infinite number of coordinates. Therefore, evaluation of the surface is
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typically performed on a finite grid of evenly spaced coordinates along both
the x- and y-axes. The result of the function at each unique pair of coordi-
nates is stored in a corresponding position in an appropriately sized matrix
(the size of which depends directly upon the resolution of the evaluation
grid in the x- and y-axes), generically referred to as the z-matrix.

Since all the traditional R graphics commands that plot these bivari-
ate functions operate in the same way—using this z-matrix—it’s critical to
understand how this matrix is constructed, arranged, and interpreted by
those commands to ensure you’re correctly drawing the outcome. In this
section, you’ll ready yourself for the specific plot types looked at in the
remainder of this chapter by getting familiar with this construct in a hypo-
thetical situation.

25.3.1 Constructing an Evaluation Grid
Say you have a bivariate function that results in a continuous surface that’s
defined between 1 and 6 on the x-axis and 1 and 4 on the y-axis. You can
define evenly spaced sequences over each of these coordinate ranges using
seq; for simplicity, let’s just do so in straight-out integers.

R> xcoords <- 1:6

R> xcoords

[1] 1 2 3 4 5 6

R> ycoords <- 1:4

R> ycoords

[1] 1 2 3 4

What this implies is that you’re planning to draw your surface based on
evaluation of the bivariate function of interest upon the grid of x-y values
defined by 24 unique positions.

When passed two vectors, the built-in expand.grid function explicitly
generates all unique coordinate pairs by simply repeating each value in the
second vector against the entire length of the first vector.

R> xycoords <- expand.grid(x=xcoords,y=ycoords)

The result is stored as a two-column data frame with 24 rows. If you look
at xycoords object in the R console, you’ll see x values from 1 to 6 all paired
with a repeated y value of 1, then x from 1 to 6 paired with y as 2, and so on.

In practice, what you’d now do is use the evaluation grid coordinates
in xycoords to calculate the result of your bivariate function. For this hypo-
thetical example, let’s just say that your bivariate function has resulted in
the 24 letters a to x, corresponding to the order of the unique evaluation
coordinates in xycoords. To make this even clearer, take a look at the follow-
ing column-bind of the hypothetical function result with each evaluation
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coordinate (note that the ready-to-use letters object in R allows you to gen-
erate letters of the alphabet quickly):

R> z <- letters[1:24]

R> cbind(xycoords,z)

x y z

1 1 1 a

2 2 1 b

3 3 1 c

4 4 1 d

--snip--

21 3 4 u

22 4 4 v

23 5 4 w

24 6 4 x

What this emphasizes is that each unique x-y evaluation coordinate,
expressible via expand.grid, will have a z value associated with it. All together,
these z values define the resulting surface.

25.3.2 Constructing the z-Matrix
The 3D plots used to visualize a bivariate function require the z values cor-
responding to the x-y evaluation grid in the form of an appropriately con-
structed matrix. The size of the z-matrix is determined directly by the reso-
lution of the evaluation grid; the number of rows corresponds to the num-
ber of unique x grid values, and the number of columns corresponds to the
number of unique y grid values.

You therefore need to take a little care turning your calculated z values
into a matrix. When your vector of z-axis values corresponds to the evalu-
ation grid arranged in the standard expand.grid fashion (in other words,
where coordinates are stacked by increasing x values and repeated y val-
ues), be sure that your resulting z-matrix is filled in the default column-wise
fashion (see Section 3.1.1), with the number of rows and columns being
exactly representative of the number of values in each of the x- and y-value
sequences, respectively (xcoords and ycoords shown earlier). In the current
example, you know that the resulting z-matrix needs to be of size 6 × 4
because there are six x locations and four y locations.

The following is the correct matrix representation of the hypothetical
“function result” vector z:

R> nx <- length(xcoords)

R> ny <- length(ycoords)

R> zmat <- matrix(z,nrow=nx,ncol=ny)
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R> zmat

[,1] [,2] [,3] [,4]

[1,] "a" "g" "m" "s"

[2,] "b" "h" "n" "t"

[3,] "c" "i" "o" "u"

[4,] "d" "j" "p" "v"

[5,] "e" "k" "q" "w"

[6,] "f" "l" "r" "x"

25.3.3 Conceptualizing the z-Matrix
The most important thing to be gained from this section is an idea of how
the z-matrix in its current arrangement translates to x-y coordinate-based
plotting. Comparing zmat to the earlier output, you can see that moving
down a column of zmat translates to an increase in the x-coordinate value
for a given y-coordinate value. In other words, when this hypothetical sur-
face of letters is plotted, moving down a column of the matrix corresponds
to moving horizontally from left to right on the corresponding plot, given a
particular vertical y position.

Figure 25-9 provides a conceptual diagram of this illustrative surface,
indexed by zmat as per the 24 unique coordinates defined via xcoords and
ycoords. (The code to produce this is included in the R script files for this
book, which can be found at https://www.nostarch.com/bookofr/ .)

Figure 25-9: Conceptual diagram of a z-matrix for plotting bivariate functions,
based on a 6 × 4 coordinate grid
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As you now progress to plot some actual surfaces of interest, you should
keep the concept of the z-matrix as illustrated in Figure 25-9 in mind. The
6 × 4 grid used in this hypothetical example is coarse. In practice, you’ll
usually use far finer grids in terms of the resolution of the x- and y-sequences
to improve the visual appearance of the surface.

25.4 Contour Plots

One of the most common plots used to display a surface based on evaluation
of a function over a grid of bivariate coordinates is the contour plot. Contour
plots are perhaps most easily explained as a series of lines—the contours—
drawn over the 2D evaluation grid, with each contour marking off a specific
level of the surface of interest.

25.4.1 Drawing Contour Lines
Based on a given numeric z-matrix, the R function contour is what’s used
to produce the contours connecting x-y coordinates that share the same
z value.

Example 1: Topographical Map

For an example, you’ll use another ready-to-use data set—the volcano object.
This data set is simply a matrix containing measurements of the elevation
above sea level (in meters) of a dormant volcano over a rectangular area in
the Auckland region of New Zealand; see the documentation in ?volcano for
details. To view the topography, you need the volcano object (which is your
z-matrix) and the relevant x- and y-coordinate sequences. In this case, just
use integers corresponding to the size of the volcano matrix (row and col-
umn numbers can be obtained with a simple call to dim; see Section 3.1.3).

R> dim(volcano)

[1] 87 61

R> contour(x=1:nrow(volcano),y=1:ncol(volcano),z=volcano,asp=1)

The x- and y-sequences are provided to x and y, respectively, and the z-
matrix to z. The optional argument asp=1, referring to the aspect ratio of the
plot, forces a 1-to-1 unit treatment of the coordinate axes (this is relevant
when the units have a physical size interpretation, like in plots of geographi-
cal regions—as is the case here).

Figure 25-10 shows the result of this example. By default, R automati-
cally chooses the levels of z at which to draw the contours for an aesthetically
pleasing result. Contours are also selectively labeled with their correspond-
ing z value. Looking at the topography, you can see the highest peak is a
rim on the left, marked by an oblong contour at 190 m, with a depression
(at around 160 m) falling immediately to the right.
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Figure 25-10: Using contour to produce a topographic
map of the volcano data

Contours are able to show you not only the peaks and troughs in a
surface like this but the “steepness” of any such features too. The closer
together the contour lines lie, the more rapid the change in the overall
level of the bivariate function.

Example 2: Parametric Response Surface

As a different kind of example, consider the multiple linear model fitted to
the mtcars data mentioned earlier—that is, of MPG modeled by horsepower,
weight, and an interaction between the two predictors. As in Section 21.5.4,
you can get the fitted model object with the following:

R> car.fit <- lm(mpg~hp*wt,data=mtcars)

R> car.fit

Call:

lm(formula = mpg ~ hp * wt, data = mtcars)

Coefficients:

(Intercept) hp wt hp:wt

49.80842 -0.12010 -8.21662 0.02785

The goal is to plot the response, mean mileage, as the previous function
of horsepower and weight. To do this, you need to evaluate the mean MPG,
according to the previous model, for a grid of horsepower and weight values.
The following code does exactly that.

R> len <- 20

R> hp.seq <- seq(min(mtcars$hp),max(mtcars$hp),length=len)
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R> wt.seq <- seq(min(mtcars$wt),max(mtcars$wt),length=len)

R> hp.wt <- expand.grid(hp=hp.seq,wt=wt.seq)

R> nrow(hp.wt)

[1] 400

R> hp.wt[1:5,]

hp wt

1 52.00000 1.513

2 66.89474 1.513

3 81.78947 1.513

4 96.68421 1.513

5 111.57895 1.513

First, this code sets up evenly spaced sequences (each of length 20, span-
ning the range of the observed data) in both hp and wt—these are your x-
and y-sequences. This implies there will be 20 × 20 = 400 unique coordi-
nates at which you’ll be evaluating the fitted model; these coordinates are
obtained using expand.grid as in Section 25.3.

Next, you can use predict to get the 400 corresponding mean MPG (z)
values; since it’s already a data frame in the required format, hp.wt can be
passed directly to the newdata argument.

R> car.pred <- predict(car.fit,newdata=hp.wt)

Then, you simply need to arrange the resulting vector as the appropriate
20 × 20 z-matrix.

R> car.pred.mat <- matrix(car.pred,nrow=len,ncol=len)

Finally, you plot the result as contours, as shown in Figure 25-11.

R> contour(x=hp.seq,y=wt.seq,z=car.pred.mat,levels=32:8,lty=2,lwd=1.5,

xaxs="i",yaxs="i",xlab="Horsepower",ylab="Weight",

main="Mean MPG model")

In this call, you can see the use of the optional levels argument. Rather
than let R automatically decide at which values of z to show contours, you
can supply a numeric vector to this argument with the specific levels at
which to draw the lines. This numeric vector must be on the same scale as
the resulting bivariate function of interest; here, I asked for contours at all
integer levels from 32 through 8. I also employ the familiar arguments lty

and lwd to control the appearance of the contour lines themselves, which are
set here as dashed and slightly thicker than usual.

Furthermore, for contour plots in particular, you’ll often want to devi-
ate from the default axis limit style, because the small amount of additional
“padding” space that’s included in the default plot region (refer to Sec-
tion 23.4.1) can be rather prominent—take another look at the volcano
contour plot in Figure 25-10. As shown previously, setting xaxs and yaxs to
"i" restricts all plotting to the exact limits imposed by x and y.
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Figure 25-11: Contour lines depicting the response surface based
on a multiple linear model of MPG by horsepower and weight,
from the mtcars data

Example 3: Nonparametric Bivariate Density Estimate (Earthquake Data)

Another useful role fulfilled by contour plots and the other plots in this
chapter is to visualize bivariate density functions.

In Section 24.2.2, you looked at the idea of kernel density estimation
(KDE) as a method by which to construct smooth estimates of the probabil-
ity density functions of your data—essentially, sophisticated histograms. KDE
extends to higher dimensions quite naturally so that you can also estimate
the density of bivariate observations in the x-y plane. This again involves visu-
alizing a z-matrix over a fixed grid of coordinates. For theoretical details on
multivariate KDE, see Wand and Jones (1995).

Turn your attention back to the built-in quakes data frame and recall the
plots of the spatial coordinates of the 1,000 seismic events (for example,
Figure 13-1 on page 265 and Figure 23-1 on page 578). To estimate the
probability density function of these points, you can use the kde2d function
in the MASS package. Load MASS and execute the following line to produce the
kernel estimate of the observed two-dimensional data:

R> quak.dens <- kde2d(x=quakes$long,y=quakes$lat,n=100)

You supply the bivariate data as the x and y arguments for the horizontal
and vertical axes. The optional argument n is used to specify the number
of evaluation coordinates (along each of the two axes) at which to actually
return the estimated density surface. This defines the size of the matrix
returned by a call to kde2d. Here, you’ve asked for KDE to be performed on
a 100 × 100 evenly spaced grid over the range of the observed data.

660 Chapter 25



The resulting object is simply a list with three members. The compo-
nents accessed through $x and $y contain the evenly spaced evaluation grid
coordinates in the corresponding axis directions, and $z provides you with
the corresponding z-matrix. You can confirm by entering either quak.dens$x

or quak.dens$y at the prompt that they are indeed increasing sequences span-
ning the ranges of the observed data. Entering the following confirms the
size of the matrix of interest:

R> dim(quak.dens$z)

[1] 100 100

With that, you have all the ingredients you need to display contours
of the KDE surface. The next line produces the default contour plot, given
on the top left of Figure 25-12.

R> contour(quak.dens$x,quak.dens$y,quak.dens$z)

There are many more optional arguments available to contour for dis-
playing your continuous surface. It can also be helpful to simultaneously
view other data or raw observations (if they’ve been used in some way to
create the surface, as is the case with bivariate KDE). The following code
replots the quakes kernel estimate with unpadded axes, different contour
levels to the defaults, and the raw observations; you can see the result on the
top right of Figure 25-12:

R> contour(quak.dens$x,quak.dens$y,quak.dens$z,nlevels=50,drawlabels=FALSE,

xaxs="i",yaxs="i",xlab="Longitude",ylab="Latitude")

R> points(quakes$long,quakes$lat,cex=0.7)

Rather than using levels to determine the exact levels at which to draw
the contours (as you did with Example 2), you can use the nlevels argument
to specify the number of levels to display, and the function will choose the
specific values. This latest call to contour requested 50 levels to be drawn.
You can suppress the automatic labeling of the displayed contours by set-
ting drawlabels=FALSE, also done here, followed by a call to points to add the
original observations to the image. Naturally, the smooth contours delin-
eating the nonparametric density estimate reflect the heterogeneous spatial
patterning of the data.

Changing the appearance of your plotted contours needn’t be done
universally; you can also alter the appearance of each individual contour
level. This can be handy if, for example, you want to display contours at a
handful of specific levels without the default labeling (to focus on the shape
of the surface itself) but still want to be able to discern the values of those
contours. You might also want to superimpose contours on an existing plot
that already depicts other data or model-based results of interest. The third
plot of the earthquake KDE surface, given on the bottom of Figure 25-12,
shows how you can achieve both of these things.
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Figure 25-12: Three examples of a contour plot of the bivariate kernel estimate of the
probability density function of the spatial earthquake locations given in the quakes
data set

To start the plot, the spatial locations of the earthquake data are drawn
as half-size gray dots using plot, the style of the axes are set using xaxs and
yaxs to remove the artificial padding around the edges of the plot region,
and axis titles are added.

R> plot(quakes$long,quakes$lat,cex=0.5,col="gray",xaxs="i",yaxs="i",

xlab="Longitude",ylab="Latitude")

Then, before calling contour, store the desired levels at which to draw
contours in a vector named quak.levs (again, choosing appropriate contour
levels depends entirely on what kind of surface you’re plotting; you need to
be at least roughly aware of the values stored in the relevant z-matrix).

662 Chapter 25



R> quak.levs <- c(0.001,0.005,0.01,0.015)

Now, remember that by default, contour refreshes the graphics device
and starts a new plot, but you want to avoid that when adding contour lines
to an existing plot. To do so, you need to explicitly specify add=TRUE. You then
provide the four specified levels in quak.levs to levels and suppress labeling
with drawlabels=FALSE. To control the appearance of contour lines at indi-
vidual levels, you supply the sequence of integers 4:1 to lty, the first entry
of which, 4, defines the line type of the contour at z = 0.001. The second
entry, 3, specifies the line type of the z = 0.005 contour, and so on. Lastly, set
all drawn contours to double-thickness with the single supplied value lwd=2.
(You could supply a vector with four elements here too, if you want differing
line thicknesses for the different contours. The same element-wise contour
specification extends to other relevant aesthetics, such as color via col.)

R> contour(quak.dens$x,quak.dens$y,quak.dens$z,add=TRUE,levels=quak.levs,

drawlabels=FALSE,lty=4:1,lwd=2)

As a final touch, since the automatic labeling was suppressed in contour,
add a legend in the bottom-left corner of the plot region, referencing the
values of the contours through the four different line types.

R> legend("bottomleft",legend=quak.levs,lty=4:1,lwd=2,

title="Kernel estimate (contours)")

NOTE Many built-in and contributed base R plotting functions that by default initialize,
refresh, or open a new plot include an add argument as shown here. This allows
you to use the graphics produced by these functions as additions to an already exist-
ing graphic. Look in the relevant help file to see whether this is the case for a given
command.

25.4.2 Color-Filled Contours
For a straightforward variation on the contour plot, you can use color to fill
the gaps between the different levels that are drawn. Combined with a color
legend, this removes the need to label the contour lines and in certain cases
can make it easier to visually interpret fluctuations in the plotted z-matrix
surface.

The filled.contour function does this for you. You need to supply the
increasing sequences of grid coordinates in both the x-axis and y-axis direc-
tions, as well as the corresponding z-matrix, to the arguments x, y, and z in
the same way as in contour. The easiest way to specify the colors is to supply
a color palette to the color.palette argument (which defaults to the built-in
cm.colors palette; refer to Figure 25-2), and R does the rest.

Let’s use the mtcars response surface from Example 2 for a quick demon-
stration. If you don’t already have them in your current workspace, use the
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code from Section 25.4.1 to obtain the relevant fitted multiple linear regres-
sion model, the evaluation grid coordinates, and the prediction thereof.
With the objects hp.seq, wt.seq, and car.pred.mat defined as earlier, the fol-
lowing call produces Figure 25-13:

R> filled.contour(x=hp.seq,y=wt.seq,z=car.pred.mat,

color.palette=colorRampPalette(c("white","red4")),

xlab="Horsepower",ylab="Weight",

key.title=title(main="Mean MPG",cex.main=0.8))

Figure 25-13: Filled contour plot of the response surface for the fitted
multiple linear model of the mtcars data

Note in this plot that the default color palette hasn’t been used. Instead,
you’ve supplied a custom palette (produced as a direct result of an appropri-
ate call to colorRampPalette; refer to Section 25.1.3) to the relevant argument,
moving from white at the lower end to dark red at the upper end. Note also
that although the x-axis and y-axis titles are provided as usual to xlab and
ylab, you have to supply the title for the color legend in a particular way—
inside a call to title to the key.title argument. This is because filled.contour

actually produces two plots, one for the image itself and one for the color
legend, and makes use of the layout command to place them next to one
another.

This internal use of layout isn’t directly a problem, but, as you saw in
Section 23.1.4, it complicates matters somewhat if you want to annotate the
filled contour plot after the fact (by, for example, adding points to an exist-
ing graphic) since the original user coordinate system is lost.
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Turn your attention back to the two-dimensional kernel estimate of the
spatial quakes data (use the code from Section 25.4.1 to re-create it if you
haven’t already got the quak.dens object in your workspace). The following
code creates a filled contour plot of the density surface using the built-in
topo.colors palette and modifies the number of drawn levels from the default
of 20 to 30. In the same call, you can superimpose the points of the raw
observations onto the image through special use of the optional plot.axes
argument. Figure 25-14 shows the result.

R> filled.contour(x=quak.dens$x,y=quak.dens$y,z=quak.dens$z,

color.palette=topo.colors,nlevels=30,xlab="Longitude",

ylab="Latitude",key.title=title(main="KDE",cex.main=0.8),

plot.axes={axis(1);axis(2);

points(quakes$long,quakes$lat,cex=0.5,

col=adjustcolor("black",alpha=0.3))})

Figure 25-14: Filled contour plot of the kernel estimate of the probability
density function of the spatial quakes data, with raw observations
superimposed.

Take a look at the way in which plot.axes is used; it effectively takes a
chunk of code. When plot.axes is invoked, you must explicitly tell it to mark
the x- and y-axes if you want the labeled tick marks to remain. This is done
with two calls to axis (refer to Section 23.4.3—axis(1) gives x, and axis(2)

is used for y). You add the data points with a call to points; in this example,
these are instructed to plot at half size, with 30 percent opacity imparted
with adjustcolor. Since you’re supplying multiple separate commands at
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once to the plot.axes argument, each command needs to be separated by
a semicolon (;) inside braces ({ }).

Annotation of a filled contour plot in this fashion requires a little more
forethought since you’re required to manually add the axes via calls to axis

and perform all subsequently desired plotting actions within the call to
filled.contour. It won’t work to, for example, produce a filled contour plot
like the quakes KDE surface and then call points as a separate line of code. If
you try it, you’ll see the observed data points unable to align correctly with
their original user coordinates as indicated on the axes.

Exercise 25.3

Remember that you inspected various multiple linear regression
models of the cost of nuclear power plant construction in Chap-
ters 21 and 22. The goal now will be to visually assess the impact of
including/excluding an interactive term between two continuous
predictors using contours. Revisit the nuclear data set, available when
you load the boot package, and bring up the help file to refresh your
memory of the variables present.

a. Fit and summarize two linear models with construction cost as
the response variable according to the following guidelines:
i. The first should account for main effects of the two predic-

tors concerning the date of issue of the construction permit
and plant capacity.

ii. The second, in addition to the two main effects, should
include an interaction between permit issue date and
capacity.

b. Set up appropriate z-matrices for plotting each of these response
surfaces. Each one should be based on a 50 × 50 evaluation grid
constructed using evenly spaced sequences in the capacity and
date variables.

c. Specify mfrow in par so that you can display default contour plots
for the two response surfaces from (a)(i) and (a)(ii) next to
one another. Do they appear similar? Does this tie in with the
statistical significance (or lack thereof) of the interaction term
in (a)(ii)?

d. To directly compare the two surfaces, use your choice of built-in
color palette to produce a filled contour plot of the main-effects-
only model and superimpose the contour lines of the interactive
model on it. Take note of the following:

– This plot is achieved in a single call to filled.contour. Recall
the special way you use plot.axes to draw additional features
on an existing color-filled contour plot.
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– The contour lines of the interactive model can be added with
an appropriate call to contour. Recall the use of the optional
argument add.

– The superimposed contours should be dashed lines of
double thickness.

– The x- and y-axes should be included and given tidy titles.
– Add some brief text describing the filled contours versus

the contour lines, with reference to the two versions of the
construction cost model and with an additional call to text

that makes use of a single mouse-clicked location from
locator (see Section 23.3). Note that this call will need to
fully relax clipping for the text to be visible in any of the
margins.

My result is shown here.

e. Another built-in data frame in R, faithful, contains observations
of waiting times and durations of eruptions of the Old Faithful
geyser in Yellowstone National Park, Wyoming. See the docu-
mentation in ?faithful for details. Plot the data with duration on
the y-axis and waiting time on the x-axis.

f. Estimate the bivariate density of these data via KDE using a
100 × 100 evaluation grid and produce a default contour plot
thereof.

g. Create a filled contour plot of the kernel estimate using a cus-
tom palette that ranges from "darkblue" to "hotpink"; include
the raw data as half-size gray points. Label the axes and titles
appropriately.

h. Replot the raw data as gray, 3/4-sized, type 2 point characters;
set the style of the axes to restrict to exactly the ranges of the
observed data; and ensure tidy axis titles and a main title. To this
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plot, add the contour lines of the density estimate at the specific
levels obtained in a sequence from 0.002 to 0.014 in steps of
0.004. Suppress the labeling of the contours. The contour
lines should be dark red and increase in line width thickness
for higher levels of the density. Add a legend referencing the
density level at each of these lines.

My plots for (g) and (h) are shown here.

25.5 Pixel Images

A pixel image is arguably the most literal visual representation of a continu-
ous surface approximated by a finite evaluation grid. Its appearance is simi-
lar to a filled contour plot, but an image plot gives you more direct control
over the display of each entry of the relevant z-matrix.

25.5.1 One Grid Point = One Pixel
Consider each entry of your z-matrix as a little rectangle whose color depicts
its relative value. These rectangles, or pixels, are exactly what’s depicted as
the cells formed by the dashed gray lines making up the conceptual diagram
of the z-matrix in Figure 25-9 on page 656. This emphasizes the important
fact that the fineness of your evaluation grid sequences (in both the x- and
y-coordinate directions) directly defines the size of each pixel and therefore
the smoothness of the resulting image. A smaller pixel means the resolution
of the image is increased.

The built-in image function plots pixel images. Much as with contour,
you supply your x- and y-axis evaluation grid coordinates as increasing
sequences to the x and y arguments, with the corresponding z-matrix sup-
plied to z. Going back to the volcano data set first looked at in Example 1 of
Section 25.4.1, the following line produces Figure 25-15:

R> image(x=1:nrow(volcano),y=1:ncol(volcano),z=volcano,asp=1)

Note again that you use the optional argument asp=1 to enforce a one-to-
one aspect ratio of the horizontal and vertical axes. This plot is comprised of
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exactly 87 × 61 = 5307 pixels; each one represents a particular entry in the
volcano matrix. Visually, the reflection of this image in the contour plot of
the same data in Figure 25-10 is clear.

Figure 25-15: Pixel image of the Auckland volcano topography

The image command expects a vector of colors, usually supplied as hex
codes from a palette, to be passed to its col argument. If this isn’t specified,
it defaults to heat.colors(12) using the built-in palette, as in the image plot
of volcano. One immediate concern, however, is the lack of a color legend.
Contributed tools such as the colorlegend function from the shape package
(refer to Section 25.1.5) prove useful for these plots.

Return now to the mtcars response surface from Example 2 that fits the
multiple linear regression model of MPG on horsepower and weight (and
an interactive effect between the two predictors). The code for the necessary
objects is reproduced here in a shortened form for convenience (refer to
Section 25.4.1 for a fuller explanation of the operations):

R> car.fit <- lm(mpg~hp*wt,data=mtcars)

R> len <- 20

R> hp.seq <- seq(min(mtcars$hp),max(mtcars$hp),length=len)

R> wt.seq <- seq(min(mtcars$wt),max(mtcars$wt),length=len)

R> hp.wt <- expand.grid(hp=hp.seq,wt=wt.seq)

R> car.pred.mat <- matrix(predict(car.fit,newdata=hp.wt),nrow=len,ncol=len)

Just as earlier, you’ve set up a matrix of 400 elements in car.pred.mat,
which is based on sequences of length 20 in both continuous predictors.

Now, make sure the shape package is loaded so you have access to the
colorlegend function. The code that follows first sets up a custom palette
of blue colors, sets new margin limits that widen the area on the rightmost
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axis, and then plots the predicted 20 × 20 response surface including a color
legend; the result is given on the left of Figure 25-16.

R> blues <- colorRampPalette(c("cyan","navyblue"))

R> par(mar=c(5,4,4,5))

R> image(hp.seq,wt.seq,car.pred.mat,col=blues(10),

xlab="Horsepower",ylab="Weight")

R> colorlegend(col=blues(10),zlim=range(car.pred.mat),zval=seq(10,30,5),

main="Mean\nMPG")

Figure 25-16: Two pixel images of the mtcars mean MPG response surface introduced
in Example 2, with accompanying color legends. In terms of the evaluation grid in the
horsepower and weight variables, the surface on the left has a resolution of 20 2; the
image on the right is based on a finer 50 2 grid. Contours are superimposed upon the
rightmost plot.

With a relatively coarse evaluation grid, the pixels making up the sur-
face are prominent. You can easily increase the resolution of the parametric
response surface by using finer sequences for the hp.seq and wt.seq evalua-
tion grid. The code that follows does just that by increasing len to 50, over-
writing the objects used previously:

R> car.fit <- lm(mpg~hp*wt,data=mtcars)

R> len <- 50

R> hp.seq <- seq(min(mtcars$hp),max(mtcars$hp),length=len)

R> wt.seq <- seq(min(mtcars$wt),max(mtcars$wt),length=len)

R> hp.wt <- expand.grid(hp=hp.seq,wt=wt.seq)

R> car.pred.mat <- matrix(predict(car.fit,newdata=hp.wt),nrow=len,ncol=len)

Then the right-hand image of Figure 25-16 is produced with the follow-
ing code:

R> par(mar=c(5,4,4,5))

R> image(hp.seq,wt.seq,car.pred.mat,col=blues(100),

xlab="Horsepower",ylab="Weight")

R> contour(hp.seq,wt.seq,car.pred.mat,add=TRUE,lty=2)
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R> colorlegend(col=blues(100),zlim=range(car.pred.mat),zval=seq(10,30,5),

main="Mean\nMPG")

The newly plotted surface consists of 502
= 2500 pixels, as opposed to

the previous image of merely 202
= 400 pixels. The improvement in the pic-

ture is obvious. In plotting the new image, the number of colors used (from
the custom blues palette) is increased to 100 to provide smoother color tran-
sitions. Note also the use of add in a call to contour to superimpose contour
lines upon the image to provide further visual emphasis of the fluctuating
surface over the evaluation grid. A legend is added with an appropriate call
to colorlegend as a final touch.

25.5.2 Surface Truncation and Empty Pixels
Because of its one-to-one literal representation of the z-matrix, a pixel image
is especially good when you want to plot a surface that fits irregularly over,
or is smaller than, the standard rectangular evaluation grid spanning the x-
and y-axes. To carefully demonstrate this kind of manipulation, let’s turn
to a new data set from the contributed spatstat package by Baddeley and
Turner (2005). Install spatstat with a call to install.package("spatstat").
Note that spatstat has a number of dependencies; see Appendix A.2.3 if you
have any trouble downloading and installing spatstat.

Example 4: Nonparametric Bivariate Density Estimate (Chorley-Ribble Data)

Once spatstat is installed and loaded in your current R session with a call to
library("spatstat"), inspect the help file brought up by entering ?chorley at
the prompt. This details the Chorely-Ribble cancer data—spatial locations of
1,036 cases of cancer of the larynx and lung collected in the late 1970s and
early 1980s in a particular region of England (data first analyzed by Diggle,
1990). The chorley object is of a special class specific to spatstat (a "ppp"

object—planar point pattern), but its components can be extracted just as if
you’re referencing members of a named list.

The coordinates of the observations can be retrieved as the components
$x and $y. To view the spatial dispersion of the observations, the following
line gives you the top-left image of Figure 25-17:

R> plot(chorley$x,chorley$y,xlab="Eastings (km)",ylab="Northings (km)")

Your goal is to display a kernel estimate of the two-dimensional prob-
ability density function of the cancer distribution, similar to what you did
with the earthquake data in Example 3. You’ll use the kde2d function for
this—execute library("MASS") to gain access to it. Then, exactly as you used
it for the spatial locations of quakes, the default KDE surface for the observed
Chorley-Ribble data is given with the following:

R> chor.dens <- kde2d(x=chorley$x,y=chorley$y,n=256)
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Note the specification of a fine 256 × 256 easting-northing evalua-
tion grid.

To display the density estimate, use the built-in rainbow palette and use
the optional start and end arguments to restrict the total range of the palette
to begin at red at the lower end and end at magenta/pink at the upper end
(these arguments were mentioned briefly in Section 25.1.2; refer to the help
file ?rainbow for more details on the use of start and end). Prestore 200 colors
from this palette with the following line:

R> rbow <- rainbow(200,start=0,end=5/6)

Then, the image is produced by calling this:

R> image(x=chor.dens$x,y=chor.dens$y,z=chor.dens$z,col=rbow)

Another component of chorley, named $window, contains the vertices of
an irregular polygon. This polygon defines the geographical study region
in which the observations themselves were made. The $window component
also happens to be another special object class of spatstat, namely, "owin" for
“observation window.” Although it’s possible to extract the specific vertices
of the polygon and plot it manually with built-in functionality, the authors of
spatstat have provided a standard plot method to use for this purpose.

After running the image command, calling the following code superim-
poses the border of the study region upon the pixel image:

R> plot(chorley$window,add=TRUE)

The final result is given on the top right of Figure 25-17.
You’ll notice that the geographical region in which the data were col-

lected is a little wider than the x- and y-ranges of the observations them-
selves, so the current plot hasn’t been able to show the region in its entirety.
The following code shows this numerically:

R> chor.WIN <- chorley$window

R> range(chorley$x)

[1] 346.6 364.1

R> WIN.xr <- chor.WIN$xrange

R> WIN.xr

[1] 343.45 366.45

R> range(chorley$y)

[1] 412.6 430.3

R> WIN.yr <- chor.WIN$yrange

R> WIN.yr

[1] 410.41 431.79

The x- and y-ranges of the study region can be obtained as the $xrange

and $yrange components of the $window component (which is stored in the
first line as the object chor.WIN). You can see that the overall study region is
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slightly larger when you compare its limits to the results of calling range on
the raw data.

That’s not the only problem, either. From the plot, you can also see that
the KDE surface has been estimated and drawn in some areas that are actu-
ally outside the study region, so that will need to be fixed as well. (You’ll look
at that in a moment.)

Figure 25-17: Visual experimentations in attempts to plot a two-dimensional kernel
estimate of the probability density function of the Chorley-Ribble cancer data as a
pixel image. Top left: The raw data. Top right: The default kde2d result based on the
data ranges with the study region superimposed. Bottom left: Expanding the xlim and
ylim of the call to image when plotting the original density estimate. Bottom right: A
revised density estimate, using the full x- and y-ranges of the study region to define the
evaluation grid.

So, first off, what can you do to ensure the entire geographical region is
displayed? Well, you could of course use the ranges of the region as stored
previously in the vectors WIN.xr and WIN.yr and supply them to the familiar
optional xlim and ylim arguments when calling image.

R> image(chor.dens$x,chor.dens$y,chor.dens$z,col=rbow,

xlim=WIN.xr,ylim=WIN.yr)

R> plot(chor.WIN,add=TRUE)
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The result of these two lines is given on the bottom left of Figure 25-17.
Unfortunately, the original density estimate is still defined in terms of the
original x- and y-ranges of the raw data, which gives you a border of empty
pixels; in addition, the aforementioned density areas still fall outside the
observation window.

All this emphasizes the important fact that a z-matrix is specific to
a predefined evaluation grid. The only way to get your density estimate
to span the geographical study region for the Chorley-Ribble data is to
revise your kernel estimate so that it’s produced on an evaluation grid that
spans the limits of the region. Fortunately, the kde2d function allows you
to set optional x-y limits of the evaluation grid with the lims argument.
This expects a numeric vector of length 4, with the x-axis lower and upper
values followed by the y-axis lower and upper values, in that order. The fol-
lowing code reestimates the density using the study region limits and plots it.
The result is given on the bottom right of Figure 25-17.

R> chor.dens.WIN <- kde2d(chorley$x,chorley$y,n=256,lims=c(WIN.xr,WIN.yr))

R> image(chor.dens.WIN$x,chor.dens.WIN$y,chor.dens.WIN$z,col=rbow)

R> plot(chor.WIN,add=TRUE)

With that, you’ve solved the problem of ensuring your surface spans the
desired area. However, this definitely highlights the second problem—the
data that were actually observed fall strictly within the defined polygon, but
you can see plotted pixels outside the geographical region, which doesn’t
make sense. You can control precisely which pixels are plotted in any given
pixel image by setting the relevant entries in your z-matrix to be NA if you
don’t want them drawn.

You’ll need a mechanism that can decide whether a given cell entry in
your z-matrix, namely, chor.dens.WIN$z, corresponds to a location inside or
outside the polygon (the object chor.WIN). If it falls outside, you’ll want to
force that entry to be NA. In general, this type of decision making requires
you to test each element of the matrix with respect to its coordinate value on
the evaluation grid, possibly using your own R function. Fortunately, in this
case, the inside.owin function of spatstat does exactly that, but the principle
remains the same whenever you need control over precisely which pixels are
plotted and which aren’t.

Given one or more two-dimensional (x, y) coordinates and an object
of class "owin", the inside.owin function returns a corresponding logical
vector with a TRUE for those coordinates inside the defined region and a FALSE

for any other coordinate. As a quick demonstration, observe the following
result:

R> inside.owin(x=c(355,345),y=c(420,415),w=chor.WIN)

[1] TRUE FALSE

This confirms what you can see from Figure 25-17—that the coordinate
(355,420) lies well within the polygon and that the coordinate (345,415)

doesn’t.
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Now, you need to use the inside.owin function on every coordinate in
the evaluation grid that z-matrix chor.dens.WIN$z sits on. First, create the full
set of grid coordinates using expand.grid, in the same way as illustrated in
Section 25.3.1.

R> chor.xy <- expand.grid(chor.dens.WIN$x,chor.dens.WIN$y)

R> nrow(chor.xy)

[1] 65536

Calling nrow on the resulting data frame of coordinates confirms you
have exactly 2562

= 65536 grid points as defined in the chor.dens.WIN KDE
object. The following call then takes the two columns of chor.xy and makes
use of logical negation (using !) to produce a logical vector that flags grid
coordinates that are located outside the defined geographical region.

R> chor.outside <- !inside.owin(x=chor.xy[,1],y=chor.xy[,2],w=chor.WIN)

The final step is now at hand.

R> chor.out.mat <- matrix(chor.outside,nrow=256,ncol=256)

R> chor.dens.WIN$z[chor.out.mat] <- NA

First, for clarity, recast the long chor.outside vector as a 256 × 256 matrix
to emphasize that it corresponds exactly to the z-matrix of interest. Then
this logical flag matrix is used to directly overwrite the “outside” entries in
the z-matrix to be NA.

All that’s left now is to plot the image with the newly manipulated
z-matrix. Make sure you have the shape package loaded for the finishing
touch of a color legend. The following code creates the KDE surface pixel
image plot with pixel points restricted to the geographical region defined by
$window only:

R> dev.new(width=7.5,height=7)

R> par(mar=c(5,4,4,7))

R> image(chor.dens.WIN$x,chor.dens.WIN$y,chor.dens.WIN$z,col=rbow,

xlab="Eastings",ylab="Northings",bty="l",asp=1)

R> plot(chor.WIN,lwd=2,add=TRUE)

R> colorlegend(col=rbow,zlim=range(chor.dens.WIN$z,na.rm=TRUE),

zval=seq(0,0.02,0.0025),main="KDE",digit=4,posx=c(0.85,0.87))

First you open a new graphics device and widen the right margin to
incorporate the color legend. Next you invoke image to plot, specifically
using an L-shaped box and a strict one-to-one x-y aspect ratio, and then
you add the region polygon with slightly thicker lines. Finally you execute
colorlegend to obtain an appropriately positioned legend referencing the
color values (the specific positioning and tick marks of which were found
after a little trial and error). You can see the final result in Figure 25-18.
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Figure 25-18: Final pixel image plot of the Chorley-Ribble KDE surface,
restricted to the geographical study region of the originally collected
data.

NOTE In truncating the kernel estimate of the bivariate density estimate that was originally
defined over the full rectangular evaluation grid, technically you no longer have a
valid probability density function as a result (since the integral over the irregular
region will no longer evaluate to a total probability of 1). A more mathematically
sound approach requires a deeper knowledge of multivariate KDE and is beyond the
scope of this text. Nevertheless, being able to truncate pixel plots like this is useful in
any situation where you want to define your surface on a (possibly irregular) subset of
an overall rectangular evaluation grid.

Exercise 25.4

Revisit the built-in airquality data set and take a look at the help file
to refresh your memory of the variables present. Create a copy of the
data frame: select the columns pertaining to daily temperature, wind
speed, and ozone level and use na.omit to remove any records with
missing values.

a. From your explorations of these data in Chapter 24, there
appears to be an association among daily temperature, wind
speed, and ozone level. Fit a multiple linear regression model
that aims to predict mean temperature based on the wind speed
and ozone level, including an interactive effect. Summarize the
resulting object.
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b. Using the model from (a), construct a z-matrix of predicted
mean daily temperature based on a 50 × 50 evaluation grid in
both wind speed and ozone.

c. Create a pixel image of the response surface, superimposing the
raw observations as per the following:
– A graphics device should be initialized based on bottom, left,

top, and right margin lines of 5, 4, 4, and 6, respectively.
– 20 colors from the built-in topo.colors palette should be used

to produce the image; include tidy axis titles.
– Revisit the normalize function defined in Section 25.1.4 and

use the built-in function gray to generate a vector of gray
colors (refer to Section 25.1.2) based on the normalized raw
temperature observations. Superimpose the raw observa-
tions based on wind speed and ozone onto the pixel image,
using the gray color vector to indicate the corresponding
temperature observations.

– Two separate calls should then be made to colorlegend of
the shape package. The first should appear in the space
on the right margin, referencing the surface itself. The
second should use the built-in gray.colors function, setting
the optional arguments start=0 and end=1, to generate 10
shades of gray for use in the legend that references the raw
temperature observations of the superimposed points. This
legend should reside on top of the pixel image itself, in the
upper-right quadrant where there are no raw observations.

– Both legends should have appropriate titles, and you may
need to experiment a little with the posx and posy arguments
to find satisfactory placement.

My result of this plotting exercise appears here.
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In Section 25.5.2, you used the chorley data set in creating a pixel
image truncated to a subset of the overall rectangular evaluation
grid. Ensure spatstat is loaded in your current R session and execute
the following two lines:

R> fire <- split(clmfires)$intentional

R> firewin <- clmfires$window

This extracts the 1,786 locations of fires recorded as intentionally
lit in a particular region of Spain. The spatial coordinates can be
extracted as the $x and $y members of fire, and the geographical
region itself is stored as a polygon in firewin (of the same class as the
chorley$window object you looked at earlier). See the documentation
obtained with ?clmfires for further details.

d. Using the total x- and y-range of the study region, use kde2d

from the MASS package to calculate a bivariate kernel estimate
of the probability density function of the spatial dispersion of
intentionally lit fires. The KDE surface should be calculated
based on a 256 × 256 evaluation grid.

e. Identify all points on the rectangular evaluation grid that fall
outside the geographical region using expand.grid in conjunction
with inside.owin. Set all corresponding pixels of the density
surface to NA.

f. Construct a pixel image of the truncated density, as per the
following:
– The graphics device should have three lines of space on the

bottom, left, and top of the plot region and should have
seven lines on the right.

– In producing the image itself, you should use 50 colors
generated from the built-in heat.colors palette. A one-to-one
aspect ratio should be maintained, the axis titles should be
suppressed, and the box type set to be an L shape.

– The geographical study region should be superimposed onto
the image using a double-width line.

– Using colorlegend from shape, a color legend referencing the
density with an appropriate title should be placed to the
right of the image. You’ll need to experiment with the posx

argument for placement. Label the legend at a sequence
from 5e-6 to 35e-6 in steps of 5e-6 (refer to Section 2.1.3 for
an explanation of e-notation); also, ensure these labels are
able to display up to six decimal places of precision.
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For your reference, my result is given here.

25.6 Perspective Plots

The last kind of plot you’ll look at in this chapter is the perspective plot, some-
times also referred to as a wireframe. Unlike contour plots and pixel images,
where fluctuations in the surface are emphasized with line patterns and/or
colors, a perspective plot uses a physical third dimension against which the z
value is plotted.

25.6.1 Basic Plots and Angle Adjustment
Perspective plots are especially useful when you want to emphasize the
fluctuating nature of the values populating your z-matrix. For example, in
some applications you might want to get a good impression of the relative
extremity of any present peaks and/or troughs in the plotted surface, which
is harder to do in, for example, a pixel image or contour plot.

Recall the mtcars response surface plotted as contours and as pixel
images in Sections 25.4.1 and 25.5.1. You created a 20 × 20 evaluation grid
in the horsepower and weight variables, as well as a corresponding z-matrix
of 400 giving the predicted mean MPG result:

R> car.fit <- lm(mpg~hp*wt,data=mtcars)

R> len <- 20

R> hp.seq <- seq(min(mtcars$hp),max(mtcars$hp),length=len)

R> wt.seq <- seq(min(mtcars$wt),max(mtcars$wt),length=len)

R> hp.wt <- expand.grid(hp=hp.seq,wt=wt.seq)

R> car.pred.mat <- matrix(predict(car.fit,newdata=hp.wt),nrow=len,ncol=len)
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The built-in R function persp is used to create perspective plots. Its
basic usage is the same as contour, filled.contour, and image. Your increasing
sequences in the x- and y-axis directions, which define the evaluation grid,
are passed to x and y, with your corresponding z-matrix passed to z. Bring
up the default appearance for the 20 × 20 mtcars response surface with the
following:

R> persp(x=hp.seq,y=wt.seq,z=car.pred.mat)

This appears in the top left of Figure 25-19.
Interpreting the perspective plot is straightforward. The default viewing

angle shows the x-axis in the foreground, increasing from left to right, and
the y-axis on the left side, increasing from the foreground to deeper in the
background. In this way, the evaluation grid lies flat along the bottom in the
3D graphic, with the z-axis against which your surface is plotted increasing
from the bottom vertically to the top.

The viewing angle is one of the most important aspects of such a plot.
In persp, you can control it with the two optional arguments theta, which
spins the plot around horizontally, and phi, which adjusts the vertical viewing
position. Both are specified in degrees; theta defaults to 0, so you’re looking
directly at the x-axis spanning left to right in front of you, and phi defaults to
15 to give a slightly elevated viewing position so you can see the y-axis extend-
ing foreground to background. In general, you can think of the possible
value of theta as anywhere from 0 to 360, representing a complete rotation
all around the plot, and the possible value of phi as anywhere from 90 to -90,
the range of which moves you from a bird’s-eye view directly from the top
looking down to a submarine view directly from the bottom looking up.

This second example demonstrates this behavior:

R> persp(x=hp.seq,y=wt.seq,z=car.pred.mat,theta=-30,phi=23,

xlab="Horsepower",ylab="Weight",zlab="mean MPG")

In fact, it’s this line of code that originally produced the rightmost
image in Figure 21-9 on page 523 (when you were introduced to the con-
cept of an interactive term between two continuous predictors in a multiple
linear regression model). The graphic is reproduced here in the top right of
Figure 25-19. The axis titles are tidied up using xlab and ylab, with zlab used
to control the title for the third vertical axis. The use of theta and phi in this
instance has elevated the viewing point slightly more than the default and
rotated the plot so that the origin (in other words, the lower vertex denoting
the lower limit of the x-y plane) is prominent in the foreground. It’s worth
noting that increasing theta from 0 rotates the plot in a clockwise-horizontal
fashion, but you could also supply a negative value to that argument to
rotate the plot in the other direction. Setting theta=-30, as shown here, has
the same effect as setting theta=330.
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Figure 25-19: Perspective plots of the 20 × 20 mtcars response surface created using
persp. Top left: Default appearance. Top right: Using theta and phi to adjust the viewing
angle. Bottom left: Setting ticktype="detailed" to provide detailed axis labeling. Bottom
right: Adding depth shading using shade and removing facet border lines with border=NA.

By default, there are no tick marks or labels included, only directional
arrows. You can remedy this by setting the optional ticktype argument to
"detailed". You can find the result of the following in the bottom left of Fig-
ure 25-19, which also offers another viewing angle:

R> persp(x=hp.seq,y=wt.seq,z=car.pred.mat,theta=40,phi=30,ticktype="detailed",

xlab="Horsepower",ylab="Weight",zlab="mean MPG")

The help file ?persp details a host of other arguments specific to con-
trolling the presentation of any given perspective plot. As a few examples,
you could shade the surface in grayscale to emphasize the 3D depth of the
image, you could change the color or suppress the plotting of the grid lines
making up the surface itself, or you could change the relative length of the
z-axis. The final plot of the mtcars response surface illustrates such actions.
The result of the following call is visible in the bottom right of Figure 25-19.
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R> persp(x=hp.seq,y=wt.seq,z=car.pred.mat,theta=40,phi=30,ticktype="detailed",

shade=0.6,border=NA,expand=0.8,

xlab="Horsepower",ylab="Weight",zlab="mean MPG")

With the same viewing angle as the previous plot, this plot uses the
shade argument to shade the surface facets to produce a lighting-style effect,
enhancing the perceptive depth slightly. The calculations for the shading
rely on a non-negative numeric value; setting shade=0.6 provides a moderate-
strength effect. You might like to experiment with larger or smaller values.
If you’re shading the surface in this way, it’s usually best to suppress the grid
lines that by default make up the surface; you can set border=NA to achieve
this (the border argument can also be used to simply change the surface grid
color by supplying any valid R color to it). Finally, the expand argument is
used to adjust the size of the z-axis. Specifying expand=0.8 requests a vertical
axis that is 80 percent the size of the axes in the evaluation grid, producing
a slightly “squashed down” prism in which the surface is drawn. You could
also use values greater than 1 for expand, in which case the effect would be to
“stretch out” the plot along the vertical.

25.6.2 Coloring Facets
Like most traditional R plotting commands, you can use the optional col
argument to color the facets of a perspective surface. To color a perspective
surface with a constant color throughout, you would just provide col with a
single value.

If you’re interested in col, however, it’s often the case that you want
to color the surface according to the fluctuating z-values to highlight the
changing value of the bivariate function. To successfully do this for the
facets making up the surface, it’s important to understand that these facets
aren’t the same as the pixels that would make up a pixel image of the same
z-matrix. Where image pixels are directly represented by the entries of, say,
your m × n-sized z-matrix, persp facets should be interpreted as the space
between the border lines drawn at those matrix entries, leaving you with
(m − 1) × (n − 1) facets. In other words, in a perspective plot, each z-matrix
entry lies at an intersection of the drawn lines—the z-matrix entries are not
situated in the middle of each facet.

To illustrate this, take another look at Figure 25-9 on page 656. When
you use image, R automatically calculates the pixel sizes based on your x- and
y-axis evaluation grid sequences and plots the surface based on the rectan-
gles formed by the dashed gray lines, with the z-matrix entries a, b, c, and
so on, represented directly. When you use persp, however, the visible bor-
der lines are represented by the solid-line grid (of arrows), intersecting at
each entry, and so the facets of the resulting surface are formed by the space
between these lines, each one defined by four adjacent entries. Figure 25-20
shows a section of the hypothetical grid in Figure 25-9, where I’ve marked
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off one pixel as interpreted by image and one facet as interpreted by persp.
With that, you can see why, in Figure 25-9, there would be exactly 6 × 4 = 24
pixels in an image plot but 5 × 3 = 15 facets in a perspective plot.

Figure 25-20: Illustrating the difference in treatment of the z-matrix
in a pixel image and in a perspective plot. The highlighted box in the
bottom-left corner represents an image pixel of the value a in the z-matrix;
the highlighted box to the right represents a persp facet formed by the
values b, h, i, and c. For coloring, the z-value of the highlighted facet
will be calculated as the mean of those four entries, in other words,
(b + h + i + c)/4.

The col argument needs to specify the (m − 1) × (n − 1) facet colors
(assuming an m × n z-matrix passed to z). The typical way to find this in
R if you’re intending to color the facets according to the z-value is to first
calculate each facet’s z-value, which will be the average of the four adjacent
z-matrix entries. Only thereafter can you deploy one of the color assignment
approaches from Section 25.1.4.

Let’s recast the pixel image of the Chorley-Ribble kernel density esti-
mate (Example 4; Figure 25-18), complete with z-axis-specific coloring, as a
perspective plot. First, make sure you have the packages spatstat and MASS

already loaded. Then repeat the code from earlier to obtain the kernel
estimate on the appropriate evaluation grid, truncated to the geographical
study region.

R> chor.WIN <- chorley$window

R> chor.dens.WIN <- kde2d(chorley$x,chorley$y,n=256,

lims=c(chor.WIN$xrange,chor.WIN$yrange))

R> chor.xy <- expand.grid(chor.dens.WIN$x,chor.dens.WIN$y)

R> chor.out.mat <- matrix(!inside.owin(x=chor.xy[,1],y=chor.xy[,2],w=chor.WIN),

256,256)

R> chor.dens.WIN$z[chor.out.mat] <- NA
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Next, you need to calculate all the facet z values; this can be done
en masse with the following code:

R> zm <- chor.dens.WIN$z

R> nr <- nrow(zm)

R> nc <- ncol(zm)

R> zf <- (zm[-1,-1]+zm[-1,-nc]+zm[-nr,-1]+zm[-nr,-nc])/4

R> dim(zf)

[1] 255 255

The first three lines simply store the z-matrix as the object zm and its total
rows and columns (both 256 in this case) as nr and nc, respectively, for com-
pactness of the code.

The fourth line is where the relevant calculations happen, giving a
matrix of the facet z values. It does this systematically, by element-wise sum-
mation of four versions of the original z-matrix: zm[-1,-1] (first row and first
column omitted), zm[-1,-nc] (first row, last column omitted), zm[-nr,-1] (last
row, first column omitted), and zm[-nr,-nc] (last row, last column omitted).
When the four alternates are summed in this way and divided by 4 at the
end, the result is a matrix zf, each element of which is the four-point average
of each “rectangle” of four adjacent entries in the original z-matrix, exactly
as noted in the discussion and caption of Figure 25-20. The final call to dim

on zf confirms the size of the result. Since there are a total of 256 × 256
evaluation grid lines in the defined z-matrix, these encapsulate a total of
255 × 255 perspective facets.

The hard work is done, and all you need to do now is assign the colors
from your palette to the calculated facet z values in zf. You can do this
using either the categorization or normalization approach, as noted in Sec-
tion 25.1.4; for simplicity, let’s stick to categorization. Consider the follow-
ing code:

R> rbow <- rainbow(200,start=0,end=5/6)

R> zf.breaks <- seq(min(zf,na.rm=TRUE),max(zf,na.rm=TRUE),length=201)

R> zf.colors <- cut(zf,breaks=zf.breaks,include.lowest=TRUE)

The first line is repeated from Section 25.5.2 to generate the same 200
colors from the built-in rainbow palette as were used in the pixel images. The
second line sets up an evenly spaced sequence spanning the range of the cal-
culated facet z-values to form the category break points that are required by
the categorization approach. Note the use of na.rm=TRUE in the required calls
to min and max to avoid all the NA entries present in zf (remember, the surface
has been truncated to the irregular polygon representing the geographical
study region). The sequence is one more in length than the number of gen-
erated colors—again, refer to Section 25.1.4 for this necessary feature of the
categorization approach. Lastly, cut assigns each of the zf facet value entries
an appropriate rank with respect to the 200 ordered bins. As you’ve learned,
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the zf.colors ranks are subsequently used to index the vector of 200 colors
stored in rbow when plotting.

With that, you can enjoy the fruits of your labor! The following code
plots the bivariate kernel density estimate of the Chorley-Ribble observa-
tions as a perspective plot using facet coloring to reflect the relative height
of the surface along the z-axis. Border lines are suppressed to show off the
color clearly, the z-axis is scaled down slightly, and a color legend is inserted
on the right side (ensure the shape package has been loaded for that) after
manipulating the default figure margins via mar in a call to par to create extra
space for it. You can find the result in Figure 25-21.

R> par(mar=c(0,1,0,7))

R> persp(chor.dens.WIN$x,chor.dens.WIN$y,chor.dens.WIN$z,border=NA,

col=rbow[zf.colors],theta=-30,phi=30,scale=FALSE,expand=750,

xlab="Eastings (km)",ylab="Northings (km)",zlab="Kernel estimate")

R> colorlegend(col=rbow,zlim=range(chor.dens.WIN$z,na.rm=TRUE),

zval=seq(0,0.02,0.0025),main="KDE",digit=4,

posx=c(0.85,0.87),posy=c(0.2,0.8))

Figure 25-21: A perspective plot of the Chorley-Ribble density
estimate, demonstrating facet coloring that changes according
to the z-value of the surface.

I’ve included the optional argument scale=FALSE in the execution of
persp. This retains a one-to-one aspect ratio in the x- and y-coordinate direc-
tions; this is useful since you’re looking at geographical data. Unfortunately,
this also forces the density estimate values on the z-axis to be scaled in the
same way, which makes no sense in the context of the current plot. To avoid
the small scale resulting in a supremely flat appearance of the surface itself,
you need to use expand to artificially amplify the surface along the third axis.
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In this instance, multiplying it by a factor of around 750 provides a visually
pleasing result. Note that this would not be necessary if you left the scale

argument at its default TRUE value (since, in that case, R internally scales all
three axes for a one-to-one-to-one aspect ratio).

25.6.3 Rotating with Loops
There’s one last bit of fun you can have with perspective plots if you want
to get an overall impression of the plotted surface. Using a simple for loop
(Section 10.2.1) to increment either theta or phi, you can perform a series
of repeated calls to persp, each one at a slightly new angle. Doing this in
sequence results in an animation—essentially a cartoon—of a rotating sur-
face, allowing you to see it from all different sides.

Consider the following basic function in the R editor:

persprot <- function(skip=1,...){

for(i in seq(90,20,by=-skip)){

persp(phi=i,theta=0,...)

}

for(i in seq(0,360,by=skip)){

persp(phi=20,theta=i,...)

}

}

Using an ellipsis (see Section 11.2.4), persprot simply takes all the argu-
ments you’d usually supply to a call to persp, barring theta and phi. Then
comes a for loop, which immediately calls persp with theta=0 and the content
of the ellipsis. The for loop alters the vertical viewing angle, starting with
phi=90 (birds-eye view) and moving down to a mildly elevated phi=20. A sec-
ond for loop then completes a full 360-degree horizontal rotation by altering
theta.

The only formally tagged argument is skip, which determines the
amount phi and theta increment by at each iteration. The default, skip=1,
simply moves through the integer-valued angles. Increasing skip will reduce
the time it takes to complete the rotation, though it makes for a more jagged
animation.

Depending on the type of graphics device you’re using, you may want
to experiment with skip. Note that not all graphics device types will be well-
suited to the animation effect sought by running this rather crude function
(for example, it’s not appropriate if you’re using RStudio—see Appendix B).
That said, when running the base R GUI applications on OS X or Windows,
I find persprot works well under default graphics settings.

Import the function to try it; let’s do so here for a perspective plot of a
kernel estimate of the probability density function of the spatial quakes loca-
tions you first examined as Example 3, Section 25.4.1. With the MASS package
already loaded, produce the density estimate on a 50 × 50 evaluation grid
with the following line.
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R> quak.dens <- kde2d(x=quakes$long,y=quakes$lat,n=50)

Then you use persprot just as you’d use persp, without needing to specify
either theta or phi.

R> persprot(x=quak.dens$x,y=quak.dens$y,z=quak.dens$z,border="red3",shade=0.4,

ticktype="detailed",xlab="Longitude",ylab="Latitude",

zlab="Kernel estimate")

Figure 25-22 shows a series of screenshots of the rotating plot.

Figure 25-22: A rotating perspective plot of a KDE surface for the spatial earthquake
locations, after a call to the custom persprot function

Exercise 25.5

In Exercise 25.3 (a), you revisited the nuclear data set from the boot

package and fitted two multiple linear regression models aiming
to model mean construction cost by permit date issue and plant
capacity—one with main effects only and the other including an
interaction term between the two continuous predictors.
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a. Refit the two versions of the model and produce perspective
plots of the response surfaces based again on a 50 × 50 evalua-
tion grid, taking the following into account:

– Use mfrow in a call to par to display the two perspective plots
next to each other. In the same call to par, override the
default figure margins to have only one line of space on each
side (par is explored in this role in Chapter 23).

– Use zlim to ensure both plots are displayed on the same scale
of vertical axis, spin each one horizontally 25 degrees, and
ensure detailed axis markings and tidy titles.

– Is there any visual indication that the presence of the inter-
action term has had any meaningful impact on modeling the
response?

b. Start a fresh plot. To get a better idea of the difference between
the two surfaces, produce a perspective plot of the z-matrix
obtained as the elementwise difference between the two individ-
ual z-matrices for the two fitted models in (a). What, in general,
is the effect of including the interaction term?

Turn your attention back to the topographical information on
the Auckland volcano, as the built-in R object volcano: an 87 × 61
matrix of elevation values (in meters). You first looked at this in
Section 25.4.1 as a contour plot.

c. Produce the most basic, default perspective plot of the volcano,
using simple integer sequences for the x- and y-coordinates.

d. The plot in (c) is decidedly unappealing for a number of rea-
sons. Produce a more realistic depiction of the volcano as per the
following:

– Use a new graphics device with the margin widths reset to
one, one, one, and four lines on the bottom, left, top, and
right, respectively.

– The help file ?volcano reveals the x- and y-coordinates to
which the volcano z-matrix corresponds is in 10-meter units.
Using scale and altering expand, replot the surface with the
correct aspect ratio in all three axes.

– Suppress all axis tick marks and notation using axes.
– The facets should be colored according to 50 colors gener-

ated from the built-in terrain.colors palette, and the facet
border lines should be suppressed.
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– Find your choice of visually appealing viewing angle.
– Use colorlegend from the shape package to place a color

legend referencing elevation in meters in the space to the
right of the plot. Experiment with the arguments to find
appropriate placement and tick mark labels.

Here’s my version of the improved plot:

In Exercise 25.4, you looked at the spatial distribution of inten-
tionally lit fires in a region of Spain. Ensure the spatstat package is
loaded, and then rerun the following lines to obtain the relevant data
objects:

R> fire <- split(clmfires)$intentional

R> firewin <- clmfires$window

e. Borrow the code from Exercise 25.4 (d) and (e) to reproduce
the kernel density estimate of this dispersion of observations,
based on a 256 × 256 evaluation grid, truncated to the study
region. Then, display it as a perspective plot according to the
following:

– Just as with the pixel image, use 50 colors from the built-in
heat.colors palette to color the facets by z value. Note the
truncated z-matrix for this function contains NA values.

– Border lines on the surface should be suppressed, and you
should find your preferred choice of viewing angle.

– Use scale to ensure the correct spatial aspect ratio. In doing
so, you’ll also need to adjust the z-axis expansion by a factor
of around 5,000,000 for the density surface to be visible
along the vertical, given the natural scaling of the density
estimate on the specified evaluation grid.

– Employ detailed axis labeling and simply entitle the axes "X",
"Y", and "Z" as appropriate.
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My product is given here.

f. Use the persprot function defined in Section 25.6.3 to view the
surface from (e), setting skip=10.

Important Code in This Chapter

Function/operator Brief description First occurrence

palette List integer colors Section 25.1.1, p. 632
col2rgb Named color to RGB Section 25.1.1, p. 632
rgb RGB to hex code Section 25.1.1, p. 633
rainbow, heat.colors, gray,
terrain.colors, cm.colors, Built-in palettes Section 25.1.2, p. 635
topo.colors, gray.colors

colorRampPalette Custom palette (integer) Section 25.1.3, p. 636
colorRamp Custom palette ([0,1] interval) Section 25.1.4, p. 640
colorlegend Color legend (shape) Section 25.1.5, p. 641
scatterplot3d 3D scatterplot (scatterplot3d) Section 25.2.1, p. 649
expand.grid All unique evaluation coords. Section 25.3.1, p. 654
letters Alphabet characters Section 25.3.1, p. 655
contour Contour plot Section 25.4.1, p. 657
kde2D Bivariate KDE (MASS) Section 25.4.1, p. 660
filled.contour Color-filled contour plot Section 25.4.2, p. 664
image Pixel images Section 25.5.1, p. 668
inside.owin Test inside region (spatstat) Section 25.5.2, p. 674
persp Perspective plot Section 25.6.1, p. 680
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26
INTERACTIVE 3D PLOTS

When it comes to 3D plots, it’s impor-
tant to be able to view them from differ-

ent angles to interpret the function or sur-
face that’s been displayed. The rgl package

by Adler et al. (2015) offers some fantastic, simple-to-
use R functions that allow you to rotate and zoom in
on three-dimensional plots with your mouse. In this
chapter, you’ll look at a few examples that show off the
possibilities of rgl.

Under the hood, rgl utilizes OpenGL—a standard application program-
ming interface—to render the graphics on your computer screen. Install rgl
(for example, by calling install.packages("rgl") at the prompt) and then call
library("rgl") to load it.

26.1 Point Clouds

Let’s begin with the most basic of 3D plots—point clouds. In statistics, this
tool is typically used to provide scatterplots of three continuous variables,
as you saw when you created static 3D scatterplots.



26.1.1 Basic 3D Cloud
Return to the built-in iris data, composed of four measurements taken on
three species of flower. Create the following four vectors in your workspace
for accessibility, as you did in Section 25.2.1:

R> pwid <- iris$Petal.Width

R> plen <- iris$Petal.Length

R> swid <- iris$Sepal.Width

R> slen <- iris$Sepal.Length

You use the plot3d function of rgl to display an interactive 3D cloud of
points. It’s called in the way familiar for scatterplots—by supplying the x-, y-,
and z-coordinates to the x, y, and z arguments, respectively. The following
line opens an RGL device and produces a scatterplot of petal width, length,
and sepal width from the iris data:

R> plot3d(x=pwid,y=plen,z=swid)

You’ll probably want to increase the size of the device with your mouse
to see the data better. Then, by left-clicking the plot and holding the button
down, you can move the mouse to rotate the plot in any direction you like.
If you right-click the plot and hold, you control the zoom. Specifically, right-
clicking and holding while moving the mouse upward will zoom out, and
right-clicking and holding while moving the mouse downward will zoom in.
The axis tick marks and labels automatically appear on different sides based
on your viewing angle. Figure 26-1 shows this plot.

Figure 26-1: An interactive 3D scatterplot of the iris data
using the plot3d function of rgl. This is the default appearance
of plotting the petal width, petal length, and sepal width.
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26.1.2 Visual Enhancements and Legends
You can alter the appearance of a plot3d scatterplot in new ways as well as
some familiar ways. For example, the optional type argument, defaulting to
"p" for “points,” plots the points as dots as in the most recent scatterplot. To
draw points as visible 3D spheres, use type="s". You can control the size of
any plotted points or spheres by using size, and you can control the color
(or colors) by using col. The legend3d function is the rgl analog of legend and
is also useful; it works by changing the background image upon which the
interactive plot sits.

To illustrate these modifications, let’s replot the same iris observations.
First, close any currently open RGL graphics devices. Then, execute the
following:

R> plot3d(x=pwid,y=plen,z=swid,size=1.5,type="s",

col=c(1,2,3)[as.numeric(iris$Species)])

This will start a new RGL device, coloring spheres according to flower
species. As usual, you pass the col argument a vector of the same length
as the plotted coordinates, and it will assign the color to the correspond-
ing point in an element-wise fashion. You specify the size parameter on a
slightly different scale than the traditional R graphics parameter cex, and
it changes according to the value of type—inspect the help file ?plot3d for
details. With a little experimentation, it’s not difficult to find a size value
that suits the plot.

To add a legend, first resize the RGL device with your mouse to your
preferred display size and then execute the following line:

R> legend3d("topright",col=1:3,legend=levels(iris$Species),pch=16,cex=2)

This inserts a static, unmovable legend referencing the plotted species
by color. The legend3d function actually calls the base R legend function, so
they are conveniently used in the same way. With the static legend in place,
the scatterplot remains fully interactive, and you can continue to rotate and
zoom. Figure 26-2 shows all this.

The legend3d function changes the background canvas, which is why you
have to open a new device and resize it manually before you add the legend.
If you now produced a new rgl plot in the same device without closing it
first or resetting the background, the flower species legend would still be
there. If you’re making multiple rgl plots, you can reset the background to
its default white canvas at any time by calling the following:

R> bg3d(color="white")

If you try that with the most recent plot still active, you’ll see that the
flower species legend disappears and the scatterplot remains. Alternatively,
you can just close your RGL device when you’re done so that a new device
will be used for any subsequent plot.
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Figure 26-2: Replotting the iris petal width, length, and sepal width
data with plot3d. Observations are plotted as spheres, increased in size,
and colored according to species type; a legend is added via legend3d.

26.1.3 Adding Further 3D Components
You can also add new observations and lines to a current 3D plot. The rgl

package includes the functions points3d, lines3d, and segments3d, reminiscent
of points, lines, and segments from base R graphics. As an example, in Sec-
tion 25.2.2, you used an optional argument to add vertical lines from the
base of the x-y plane to each plotted point in scatterplot3d. In a plot3d scat-
terplot, you would use segments3d to the same effect. In addition, you can add
the grid that’s drawn by default on the same plane in a scatterplot3d plot by
using the grid3d function for rgl graphics.

Let’s put that into practice. Take a look back at Figure 25-8 on page 652.
To create a similar plot using rgl functionality, where color is used to refer-
ence the fourth continuous variable, sepal length, first re-create the palette
and set up the colors for each observation. This is done here with a catego-
rization of 50 colors (see Section 25.1.4).

R> slen.pal <- colorRampPalette(c("purple","yellow2","blue"))

R> cols <- slen.pal(50)

R> slen.cols <- cut(slen,breaks=seq(min(slen),max(slen),length=51),

include.lowest=TRUE)
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Then, either close any currently active RGL devices or clear the back-
ground of the one in focus. A call to plot3d starts the plot with appropriately
colored spheres.

R> plot3d(x=pwid,y=plen,z=swid,type="s",size=1.5,col=cols[slen.cols],

aspect=c(1,1.75,1),xlab="Petal width",ylab="Petal length",

zlab="Sepal width")

You supply a vector of length 3 to the aspect argument, describing the
relative lengths of the x-, y-, and z-axes, in that order. By changing the sec-
ond entry to 1.75, you’re lengthening the y-axis by that multiplicative factor
relative to the others. This creates the stretched-out effect along the y-axis.
The colors are assigned by vector indexing using the slen.cols factor vector,
and xlab, ylab, and zlab are used to tidy up the axis titles.

Now, to add a vertical line from the x-y plane to each observation, you
need to understand how to use the segments3d function. Unlike its base R
counterpart, segments3d doesn’t separate the “from” and “to” coordinates
into different arguments (recall the use of x0, y0, x1, and y1 in segments and
arrows). Instead, it takes each sequential pair of observations provided to the
x, y, and z arguments to be the beginning and end of each line segment, in
that order.

So, to draw the vertical lines on the existing RGL device, you first need
to set up these vectors containing a “from” location and a “to” location in
the 3D space. Consider the following code:

R> xfromto <- rep(pwid,each=2)

R> yfromto <- rep(plen,each=2)

R> zfromto <- rep(min(swid),times=2*nrow(iris))

R> zfromto[seq(2,length(zfromto),2)] <- swid

The first two lines set up the vectors for the x- and y-components, xfromto
and yfromto, respectively, by simply replicating each observation twice. These
are easy, since the “from–to” values don’t change in these coordinate direc-
tions. The z-component does change, however. You first create the zfromto

vector by replicating the smallest sepal width value, min(swid), by two times
the size of the data set, so you have a vector that matches xfromto and yfromto

in length. Then, every second position of zfromto is overwritten using the ele-
ments of the sepal width vector. This gives you “from” z values for all obser-
vations, namely min(swid), matched (in the pairwise fashion as required for
segments3d) with the “to” z values in swid itself. Together with xfromto and
yfromto, you’ll therefore end up with lines that go from the bottom x-y plane
of the plot (the vertical position of which is automatically level at min(swid))
up to the actual swid value (which is of course the corresponding z value of
each sphere).
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To help understand the way they’ve been set up, print the coordinate
vectors to your console screen so you can see what they hold. Then a call to
segments3d places the lines on the plot.

R> segments3d(x=xfromto,y=yfromto,z=zfromto,col=rep(cols[slen.cols],each=2))

To ensure the color of each line matches its corresponding sphere, you
also need to replicate each entry of the vector-indexed collection of colors
provided by cols[slen.cols] twice, which implies a constant “from–to” color.

Then, executing the following line places a reference grid over the
lower x-y plane:

R> grid3d(side="z-")

To the side argument you specify the axis you want held constant (in
this case, z) and at which end to place the grid (in this case, because you
want the grid at the lower end of the z-axis, you specify with a minus sym-
bol). To place the grid at the upper end of the vertical axis, which is on the
top side of the rectangular prism, you would specify side="z+".

Lastly, you can add a custom, continuous-color legend to the plot to
reference the sepal length. The bgplot3d function is a more general ver-
sion of legend3d; it allows you to specify any plotting commands you like to
define the RGL device background. Let’s do so using the colorlegend func-
tion of the shape package, first explored in Section 25.1.5. Make sure you
have the shape package loaded and that your RGL device of the scatterplot
is sized to your liking. On my machine, I execute the following:

R> bgplot3d({plot.new();colorlegend(slen.pal(50),zlim=range(slen),

zval=seq(4.5,7.5,0.5),digit=1,

posx=c(0.91,0.93),posy=c(0.1,0.9),

main="Sepal length")})

The bgplot3d function can take multiple plotting commands, which you
need to provide as a code chunk within braces, {}, with each command
separated by a semicolon (;). In this example, the initial call to plot.new()

silently initializes the background of the RGL device so that you can add the
continuous-color legend. Without that call, colorlegend will still work, but a
warning will be issued. Figure 26-3 shows the final result, with the scatterplot
still spinnable and zoomable with your mouse.

The ability to rotate a 3D scatterplot and any of the plots you’ll see over
the next few sections with simple mouse commands is especially handy when
you’re exploring visuals of higher-dimensional data. You’re not restricted
to a single viewpoint, and you don’t need to manually decide on a viewing
angle before actually producing the plot. The rgl functionality also makes
it easy to add extra elements to an existing plot—something that’s harder
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to do with scatterplot3d or persp plots. That said, certain features you might
take for granted in more traditional plotting can be difficult to mirror in
interactive plots. For example, no equivalent of the pch graphical parame-
ter is readily available in rgl. To plot different symbols, you would need to
design, render, and place new 3D shapes.

Figure 26-3: This demonstrates the addition of lines and a plane grid to a plot3d 3D
scatterplot of the iris data to mimic the earlier scatterplot3d example of the same data.

Exercise 26.1

Turn back to the survey data frame in the MASS package, checking
the description of the present variables in the help file ?survey if
you need to. Create a copy of survey containing only the writing
handspan, nonwriting handspan, left- or right-handedness, sex,
and height columns. Then use na.omit to remove any rows of this
subsetted data frame that contain missing values.

a. Produce a basic interactive 3D point cloud of student height
on the z-axis, writing handspan on the x-axis, and nonwriting
handspan on the y-axis.
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b. Create a more informative version of the scatterplot in (a) that
uses color to distinguish between sexes and uses point size to
distinguish between left- and right-handed individuals, following
these guidelines:

– Start by plotting only those points that correspond to right-
handed individuals. Set the color via vector indexing using
the numeric version of sex for right-handed individuals—
females should be black, males red.

– Set the plotted point size as 4 for the right-handed individu-
als and ensure tidy axis labels.

– Using points3d, add the points for left-handed individuals to
the existing plot. Colors are to be assigned according to sex
in the same way as for the right-handed students, but this
time, the point size should be set at 10.

– Resize the RGL device to your liking and add a legend to
the top-left corner that references the four types of points:
"Male RH", "Female RH", "Male LH", and "Female LH". In setting
the legend, use a pch value of 19 and use pt.cex values of 0.8
and 1.5 for right- and left-handed individuals, respectively.

For reference, my version of the rotatable 3D scatterplot is
shown here:

In Exercise 25.2 on page 652, you looked at a static 3D scatterplot of
the built-in airquality data. Again, create a copy of the data frame,
omitting any rows with NA entries.
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c. Create a similar version of the plot from the earlier exercise
using rgl functionality, displaying wind speed, solar radiation,
and temperature on the x-, y-, and z-axes, respectively, according
to the following guidelines:

– Set up 50 colors from the built-in topo.colors palette. Set
up the appropriate color index vector for the ozone values,
based on the categorization approach.

– Plot the observations as size 1 spheres, colored as before,
and modify the aspect ratio so that the y-axis is 1.5 times the
length of the other two axes. Provide neat axis titles.

– Add correspondingly colored lines, one for each observation,
stretching vertically upward from the x-y plane to meet the
plotted spheres. Also, place a grid on the lower x-y plane.

– Modify the background of the RGL device to include a color
legend referencing the ozone level; use a sequence of values
between 60 and 95, in steps of 5, to label it.

Here’s my result:

26.2 Bivariate Surfaces

Next you’ll look at plotting bivariate surfaces—a continuous surface calcu-
lated with respect to a 2D x-y evaluation grid—with rgl. In Chapter 25, you
plotted these using contour, filled.contour, image, and persp in base R graph-
ics. Anything that you’re able to plot using those functions can also be plot-
ted as an interactive perspective plot with the persp3d function of rgl.
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26.2.1 Basic Perspective Surface
Take the mtcars response surface of mean MPG as a function of horsepower
and weight (first used in Section 25.4.1) as an easy initial example. In Sec-
tion 25.6.1, you plotted static, base R perspective plots of this surface. The
next few lines will refit the multiple linear regression model and re-create
the 20 × 20 evaluation grid x- and y-sequences:

R> car.fit <- lm(mpg~hp*wt,data=mtcars)

R> len <- 20

R> hp.seq <- seq(min(mtcars$hp),max(mtcars$hp),length=len)

R> wt.seq <- seq(min(mtcars$wt),max(mtcars$wt),length=len)

R> hp.wt <- expand.grid(hp=hp.seq,wt=wt.seq)

To create the surface, predict using the evaluation grid in hp.wt as you’ve
done previously, but this time, include the calculation of a prediction inter-
val for the raw observations.

R> car.pred <- predict(car.fit,newdata=hp.wt,interval="prediction",level=0.99)

(You’ll use the interval in a later example.) Then, construct the z-matrix
and draw a green persp3d surface with the following two lines:

R> car.pred.mat <- matrix(car.pred[,1],nrow=len,ncol=len)

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.mat,col="green")

The result is shown on the left of Figure 26-4. If you compare it to
Figure 25-19 on page 681, you can see that it shows the same surface. The
default lighting and shadowing effect produced by the persp3d surface helps
with depth perception, similar to the shade argument to persp. The main ben-
efit of this version is the mouse-based rotation and zoom interactivity.

Figure 26-4: Two interactive persp3d versions of the mtcars response surface. Left:
Default appearance in green. Right: Red, 70 percent opacity surface, with original data
superimposed in the 3D space. Both plots can be rotated and zoomed with the mouse.

700 Chapter 26



26.2.2 Additional Components
Another useful attribute of a persp3d plotted surface is the ability to add fur-
ther components easily—something that’s nowhere near as straightforward
in base R functionality. You’ll continue using the objects just created for the
mtcars response surface.

Adding Points

As this response surface is based on a model fitted to data on the three vari-
ables of horsepower, weight, and MPG, it would be useful to view the raw
observations alongside the fitted model. For this, you can use points3d, which
works just like points in base R graphics. Execute the following:

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.mat,col="red",alpha=0.7,

xlab="Horsepower",ylab="Weight",zlab="mean MPG")

R> points3d(mtcars$hp,mtcars$wt,mtcars$mpg,col="green3",size=10)

Resize the RGL device to your liking and keep the device open. These
two commands plotted the predicted mean MPG response surface, this time
in red at 70 percent opacity using the optional alpha argument, and then
added the raw observations to the same image in green, slightly enlarged
from their default size. You can see this plot on the right of Figure 26-4; you
can now compare the fit of the response surface to the raw data and view it
from any angle.

Adding Surfaces

You can also add more perspective surfaces! Let’s continue to add to the
current plot using the car.pred object you created for Figure 26-4. The
response surface is stored as the first column in car.pred; the correspond-
ing lower and upper prediction limits are stored as the second and third
columns—flip back to Section 20.4.2 for a discussion of predict for linear
regression models. To add these prediction bounds to the response surface
displayed on the right of Figure 26-4, you first need to store each bounding
surface as a z-matrix corresponding to the x-y evaluation grid.

R> car.pred.lo <- matrix(car.pred[,2],nrow=len,ncol=len)

R> car.pred.up <- matrix(car.pred[,3],nrow=len,ncol=len)

Then, simply call persp3d for each of these z-matrices and use the
optional add argument set to TRUE—this instructs the persp3d function to add
to the existing graphic without refreshing the plot.

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.up,col="cyan",add=TRUE,alpha=0.5)

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.lo,col="cyan",add=TRUE,alpha=0.5)

Here you’ve also set the color for each additional surface to cyan and set
the opacity at 50 percent. You can see the result on the left of Figure 26-5.
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After rotating it with your mouse, you’ll be able to see that the observations
all fall between the 3D 99 percent prediction interval bounds for this partic-
ular model.

Figure 26-5: Adding further surfaces denoting the 99 percent prediction interval to an
existing persp3d plot of the fitted mtcars model. Left: Green points make up the raw
observations. Right: Raw observations are labeled with added text, and corresponding
line segments mark the corresponding residuals.

Alternatively, you could label raw observations with the row names
attribute of the original mtcars data frame as added text so that you could
identify which car is which in the plot. In this case, the names are obtained
as a vector of character strings using the built-in rownames function. To add
text to an existing 3D graphic, rgl has its own analog of the traditional text
function, text3d. Executing the following four lines replots the translucent
red response surface, adds the appropriate text at the (x, y, z) coordinates
corresponding to that car, and again adds the cyan prediction interval:

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.mat,col="red",alpha=0.7,

xlab="Horsepower",ylab="Weight",zlab="mean MPG")

R> text3d(x=mtcars$hp,y=mtcars$wt,z=mtcars$mpg,texts=rownames(mtcars),cex=0.75)

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.up,col="cyan",add=TRUE,alpha=0.5)

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.lo,col="cyan",add=TRUE,alpha=0.5)

The text is harder to visually locate than the green dots, so it makes
sense to point their locations out on the fitted surface—and what better
way to do so than using the fitted model residuals? The segments3d function
is ideal for this purpose, as you know from the 3D scatterplots of the iris

data. First, you need to set up the “from–to” vectors in the three coordinates
(refer to Section 26.1 for an explanation of segments3d).
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R> xfromto <- rep(mtcars$hp,each=2)

R> yfromto <- rep(mtcars$wt,each=2)

R> zfromto <- rep(car.fit$fitted.values,each=2)

R> zfromto[seq(2,2*nrow(mtcars),2)] <- mtcars$mpg

Here, again, the x- and y-axis values don’t change when moving from the
“from” location to the “to” location, so these are simply double-replicates of
each horsepower and weight entry of the original data frame. You need to
instruct the z-axis “from” values to remain as the fitted values of the model
(in other words, the actual vertical location of the response surface), and the
“to” values are the raw data z values. Then, a final call to segments3d draws on
the residuals, as standard black line segments, for each text3d-labeled car.

R> segments3d(x=xfromto,y=yfromto,z=zfromto)

Take a moment to interact with the final product, shown on the right of
Figure 26-5.

26.2.3 Coloring by z Value
One advantage of persp3d plots is that you can color the surface according to
the z values without needing to do anything special. Recall that if you were
using the base R persp function, coloring by z value would require a minor
workaround, because you’d need to calculate the relevant vertical position
as the average of four adjacent z-matrix entries that make up each facet (see
Section 25.6.2).

Fortunately, this isn’t necessary with persp3d. Continuing one last time
with the mtcars response surface, you can set up your desired color palette
and assign colors to the entries of the z-matrix themselves without having to
average out each set of four adjacent values first.

R> blues <- colorRampPalette(c("cyan","navyblue"))

R> blues200 <- blues(200)

R> zm <- car.pred.mat

R> zm.breaks <- seq(min(zm),max(zm),length=201)

R> zm.colors <- cut(zm,breaks=zm.breaks,include.lowest=TRUE)

Then, using categorization to assign color to values on a continuum,
you just need to index blues200 by zm.colors when specifying the col value in
persp3d.

R> persp3d(x=hp.seq,y=wt.seq,z=car.pred.mat,col=blues200[zm.colors],

alpha=0.6,xlab="Horsepower",ylab="Weight",zlab="mean MPG")

Figure 26-6 shows the result.
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Figure 26-6: Showing a result of direct color
assignment corresponding to the z-matrix value
in use of persp3d for the mtcars response surface

26.2.4 Dealing with the Aspect Ratio
Taking a break from the mtcars model, you’ll now return to the bivariate ker-
nel density estimate of the Chorley-Ribble data, used in Sections 25.5.2 and
25.6.2. Load the spatstat package to access the chorley data and use the MASS

package to access the kde2D function. Repeated from earlier for convenience,
the following code calculates the KDE surface using kde2D, stored as the $z

component of the chor.dens.WIN object:

R> chor.WIN <- chorley$window

R> chor.dens.WIN <- kde2d(chorley$x,chorley$y,n=256,

lims=c(chor.WIN$xrange,chor.WIN$yrange))

R> chor.xy <- expand.grid(chor.dens.WIN$x,chor.dens.WIN$y)

R> chor.out.mat <- matrix(!inside.owin(x=chor.xy[,1],y=chor.xy[,2],

w=chor.WIN),

256,256)

R> chor.dens.WIN$z[chor.out.mat] <- NA

It also truncates the surface to fall within the polygon that represents the
geographical study region by setting all elements of the z-matrix outside that
polygon to NA (you studied in detail how to do this in Section 25.5.2).

Then, executing the next few lines of code generates 200 colors from
the built-in rainbow palette that you’ve used previously for this KDE plot and
categorizes the entries of the truncated z-matrix appropriately:

R> zm <- chor.dens.WIN$z

R> rbow <- rainbow(200,start=0,end=5/6)

704 Chapter 26



R> zm.breaks <- seq(min(zm,na.rm=TRUE),max(zm,na.rm=TRUE),length=201)

R> zm.colors <- cut(zm,breaks=zm.breaks,include.lowest=TRUE)

Note again that the difference here is you don’t need to calculate facet
averages as you did in Section 25.6.2—cut is applied directly to zm.

Before calling persp3d, it’s worth remembering that since you’re dealing
with a geographical area, you should consider the aspect ratio in the x- and
y-coordinate directions. As you saw in Section 26.1, the aspect argument in
rgl functions operates a little differently than the asp argument in image or
the scale/expand arguments in persp. In rgl plots, including persp3d, aspect
requests a numeric vector of length 3, which defines the relative scale of the
x-, y-, and z-axes, in that order.

To determine the appropriate relative scales for the Chorley-Ribble
data, you need to calculate the total x-axis and y-axis widths that the study
region is defined upon and find their ratio.

R> xd <- chor.WIN$xrange[2]-chor.WIN$xrange[1]

R> xd

[1] 23

R> yd <- chor.WIN$yrange[2]-chor.WIN$yrange[1]

R> yd

[1] 21.38

R> xd/yd

[1] 1.075772

This was done using the $xrange and $yrange components of the spatstat

polygon, subtracting the lower limit from the upper in each case. The final
ratio of xd/yd reveals that you almost have a one-to-one scale, though techni-
cally the region is physically wider in the x-axis, by a factor of around 1.076,
than it is in the y-axis.

Factoring that in, you can call persp3d to plot the KDE surface correctly.

R> persp3d(chor.dens.WIN$x,chor.dens.WIN$y,chor.dens.WIN$z,

col=rbow[zm.colors],aspect=c(xd/yd,1,0.75),

xlab="Eastings (km)",ylab="Northings (km)",

zlab="Kernel estimate")

You use aspect to stipulate that the x-axis should be scaled according to
a factor of xd/yd relative to the y-axis, that the y-axis is taken as the reference
scale of 1, and that the z-axis should be squashed by a factor of 0.75 relative
to the y-axis. This is arbitrarily set so that the graphic is similar to the origi-
nal persp plot in Figure 25-21 on page 685.

Let’s finish off the plot by adding a color legend. Ensure you have the
shape package loaded, resize your RGL device containing the result of the
most recent call to persp3d, and execute the following command:

bgplot3d({plot.new();

colorlegend(col=rbow,zlim=range(chor.dens.WIN$z,na.rm=TRUE),

Interactive 3D Plots 705



zval=seq(0,0.02,0.0025),main="KDE",digit=4,

posx=c(0.87,0.9),posy=c(0.2,0.8))})

Remember that bgplot3d must be used to change the background of the
current RGL device—refer to the end of Section 26.1. You might want to
experiment a little with posx and posy to find your preferred placement of
the color legend. Figure 26-7 shows the result on my machine.

Figure 26-7: An interactive persp3d representation of the Chorley-Ribble kernel
density estimate, colored according to z-axis values, with a static color legend

Exercise 26.2

Return to the measurements in the built-in airquality data frame.
Create a copy of the data frame containing the variables pertaining
to temperature, wind speed, ozone level, and month; delete all rows
with any missing values. You’re now going to experiment with an rgl

visualization of an earlier regression model for mean temperature.

a. Refit the multiple linear model from Exercise 25.4 on page 676,
which regressed temperature against the main effects and an
interactive effect of wind speed and ozone. Use expand.grid and
predict to construct a z-matrix of the response surface; include
the estimation of a 95 percent confidence interval for the fitted
mean. Then, use rgl functionality to produce an interactive 3D
plot of the response surface and color it yellow.

b. Using the built-in topo.colors palette, replot the response surface,
assigning the colors according to the z value and setting the
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opacity at 80 percent. Tidy up the axis titles, resize the RGL
device, and leave the plot open.

c. Enhance the plot from (b) as follows:

i. Generate exactly five colors from a custom palette that
goes from "red4" to "pink" and add the raw wind, ozone,
and temperature observations as points to the plot of the
response surface. The points should be colored according to
month (May through September) using these five colors in
order. Set the size of the added points to 10.

ii. Add vertical lines that denote the residuals of the fitted
model to the plot; in other words, each observation should
have a vertical line connecting it to the corresponding fitted
value of the response surface. These added lines should use
the custom palette from earlier to match the color of each
data point.

iii. Add the upper and lower 95 percent confidence limits you
stored as part of the model prediction in (a). The added
surfaces should both be gray with 50 percent opacity.

iv. Add a legend to the top-right corner of the interactive plot
referencing the five colors of points/lines according to
month. Use a pch value of 19 and a cex value of 2.

The result should look like this:

Next, load the spatstat package and revisit the clmfires data set. Exe-
cute the following lines to restrict attention to only the intentionally
lit fires and to obtain the geographical study region:

R> fire <- split(clmfires)$intentional

R> firewin <- clmfires$window
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d. Reproduce the static perspective plot from Exercise 25.5 (e)
on page 689 as an interactive perspective plot, based on the
following guidelines. Then keep the plot open.

– Calculate the KDE surface of the $x- and $y-coordinates
of fire, truncated to the study region in firewin, using a
256 × 256 evaluation grid.

– Use the built-in color palette heat.colors to color the surface
according to the z value. Set the opacity to 70 percent.

– Ensure the x-y axes have the correct ratio. Then reduce the
vertical aspect ratio to be 0.6 relative to the y-axis.

– Suppress the z-axis title but add neat "X" and "Y" titles to the
other two axes.

e. Make the following enhancements to the plot:

i. Add the raw observations so they lie underneath the surface
itself. To do this, set a constant z value for each data point as
the minimum (and non-NA) value of the z-matrix.

ii. You can obtain the vectors of the x- and y-coordinates of the
irregular polygon that forms the study region by using the
vertices function of spatstat as follows:

R> firepoly <- vertices(firewin)

R> fwx <- firepoly$x

R> fwy <- firepoly$y

By supplying these two vectors to the appropriate x and
y arguments of the lines3d function, add the study region
to surround the superimposed observations lying flush to
the x-y plane underneath the plotted surface. Again, you’ll
need to specify the z value as the minimum z-matrix value for
all drawn lines. Set lwd=2 for a slightly thicker line than the
one drawn by default.

Your production should look something like this:
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26.3 Trivariate Surfaces

So far you’ve looked at bivariate functions of the form z = f (x, y), where
your evaluation grid is two-dimensional. In other words, you evaluate the
function f from an x value and a y value; the x and y values are plotted on
the first two axes, and the values of f are used to plot a third dimension.
Next you’ll plot trivariate functions, which can be thought of as w = f (x, y, z).
That is, the evaluation grid is itself three-dimensional, and f gives you a
fourth value, w, to use for plotting the surface.

26.3.1 Evaluation Coordinates in 3D
When dealing with a trivariate mathematical function, you need an x, a y,
and a z value to evaluate the result. Rather than a flat evaluation grid, you’ll
have an evaluation lattice that sits in a cube or some other 3D prism.

As a perfect first example of a trivariate function, you’ll create a “color
cube” of RGB colors, where each point is the result of three values in red,
green, and blue—refer to Section 25.1.1 for details. You’ll use the three
physical axes to reflect the evaluation lattice in the red, green, and blue
values, and the result will be a point plotted with that color in that position
in the 3D space.

The following code sets up the evaluation lattice in the three coordinate
directions:

R> reds <- seq(0,255,25)

R> reds

[1] 0 25 50 75 100 125 150 175 200 225 250

R> greens <- seq(0,255,25)

R> blues <- seq(0,255,25)

R> full.rgb <- expand.grid(reds,greens,blues)

R> nrow(full.rgb)

[1] 1331

The first four lines generate equally spaced increasing sequences in the
three colors spanning the standard 0 to 255 RGB integer range. Then you
use the built-in expand.grid function to generate the data frame of all unique
color triplets according to these three sequences, resulting in an evaluation
lattice of exactly 113

= 1331 specific coordinates. Note that expand.grid works
in the same way for higher-dimensional evaluation grids as it does for bivari-
ate x-y grids (refer to Section 25.3.1).

Finally, a call to plot3d places spheres at each 3D evaluation coordinate
(recall the use of the rgb command from Section 25.1.1):

R> plot3d(x=full.rgb[,1],y=full.rgb[,2],z=full.rgb[,3],

col=rgb(full.rgb,maxColorValue=255),type="s",

size=1.5,xlab="Red",ylab="Green",zlab="Blue")
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Figure 26-8 shows the result from two different angles so you can see
how the intensities of the red, green, and blue components of an RGB
triplet control the color of each point.

Figure 26-8: The rgl “color cube,” created as spheres whose fourth-dimension result (color
itself) is the product of evaluating the trivariate RGB function.

26.3.2 Isosurfaces
One of the problems with plotting the individual spheres of points at each
3D evaluation coordinate is revealed by Figure 26-8—it’s difficult to see
spheres “inside” the 3D prism. This same issue complicates the more gen-
eral case of visualizing a continuous trivariate function.

To remedy this, you could instead produce an isosurface, which can be
thought of as a kind of trivariate analog of a contour plot.

With an isosurface, you select a certain level of the values w = f (x, y, z)

and join up all the entries of w at that level inside the 3D space to form a
shape or “blob.” These blobs show where in the 3D space the trivariate func-
tion takes on the chosen value. If you then plot these blobs at various lev-
els, you get a 3D version of the contour plots you created in Section 25.4.1,
showing which levels hold the highest densities of observations.

Higher-Dimensional Probability Densities

Cast your mind back to the univariate normal probability density func-
tion detailed in Section 16.2.2. First, I’ll introduce the idea of higher-
dimensional density functions with the bivariate version of the normal dis-
tribution, and then I’ll go one step further and use the trivariate version to
illustrate isosurface plotting.

To work with multivariate normal distributions, you can use the mvtnorm

package, installed with a call to install.packages("mvtnorm"). Just like the rnorm

function for the univariate normal, the rmvnorm function is used to generate
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random variates from a specified multivariate normal. Once you’ve installed
mvtnorm, execute the following code:

R> library("mvtnorm")

R> rand2d.norm <- rmvnorm(n=500,mean=c(0,0))

R> plot(rand2d.norm,xlab="x",ylab="y")

This produces the plot on the left of Figure 26-9. The rmvnorm function
is used to generate 500 independent variates from the standard bivariate
normal distribution. You center the variates around the coordinate (0,0) by
passing a numeric vector to mean. By default, independent standard deviation
components of 1 are used in both x-y coordinate directions.

Figure 26-9: Viewing randomly generated data, and the standard bivariate normal
density they came from, using mvtnorm functionality

To actually view the bivariate density function, you need to decide on
the x-y evaluation grid and construct the z-matrix as usual using expand.grid.
The following code sets up an evenly spaced sequence to use in both coordi-
nate directions and uses the dmvnorm function (this is the multivariate version
of dnorm and gives you the density function value at specified coordinates) to
fill the z-matrix:

R> vals <- seq(-3,3,length=50)

R> xy <- expand.grid(vals,vals)

R> z <- matrix(dmvnorm(xy),50,50)

Then, you can use contour (or persp or persp3d) to view the density from
which the data in rand2d.norm were generated for comparison (truncated to
the limits −3 to 3 in both axes). The following line produces the plot on the
right of Figure 26-9:

R> contour(vals,vals,z,xlab="x",ylab="y")
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Basic One-Level Isosurface

Now let’s increase the dimension once more—what does a trivariate normal
density function look like?

First, let’s take a look at some data generated from this density. The fol-
lowing code generates 500 random variates again:

R> rand3d.norm <- rmvnorm(n=500,mean=c(0,0,0))

R> plot3d(rand3d.norm,xlab="x",ylab="y",zlab="z")

However, since you supplied a vector of length 3 as the mean argument
to rmvnorm, the function knows you have three dimensions to work with.
You’re telling it that you want the data to come from a trivariate normal,
with means of 0, 0, and 0 in each coordinate direction. You can see the rgl

point cloud of the data produced via plot3d on the left of Figure 26-10.
To calculate and display the actual trivariate density function that gen-

erated these data, you’ll need a 3D evaluation lattice, as noted at the begin-
ning of Section 26.3.

Figure 26-10: Left: Viewing data randomly generated from the standard trivariate normal
distribution. Right: Concept of the 3D evaluation lattice upon which the trivariate density
function itself will be plotted.

Take a look at the plot on the right of Figure 26-10. It shows a 3D
11 × 11 × 11 evaluation lattice based on sequences spanning [−3,3] in x,
y, and z. This should give you a clear idea of how increasing the dimension
of a continuous function works. Each intersection in the 11 × 11 × 11 grid is
the 3D equivalent of each intersection of the solid lines in the 2D 6 × 4 eval-
uation grid in Figure 25-9 on page 656, and each of the 103 mini-3D cubes in
this 3D lattice is the 3D equivalent of a 2D facet, as noted in the discussion of
Figure 25-20 on page 683. (As with Figure 25-9, you can find the code to plot
this 3D lattice on the book’s website.)

To plot the result of the trivariate function, you need the unique evalua-
tion coordinates of the evaluation lattice. Using vals, the sequence of values
between −3 and 3 created earlier, the following code produces a data frame
of all 503

= 125,000 unique 3D evaluation lattice coordinates.
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R> xyz <- expand.grid(vals,vals,vals)

R> nrow(xyz)

[1] 125000

Then you use dmvnorm to get the numeric value of the standard trivariate
normal just as you did in the bivariate setting. The function automatically
knows you’re requesting the trivariate density because your data argument
xyz has three columns.

w <- array(dmvnorm(xyz),c(50,50,50))

Note that the result is stored appropriately as a 50 × 50 × 50 3D array—
refer to Section 3.4 for details on array. Look at the conceptual diagram of
a 3D array (Figure 3-3 on page 53) and compare it to the 3D lattice on the
right of Figure 26-10. The trivariate normal values in the object w are clearly
represented by a 3D block of numbers sitting at each corresponding unique
evaluation coordinate in the defined 3D space.

An isosurface can be produced using the contour3d function, part of
the misc3d package (Feng and Tierney, 2008), which works closely with rgl.
To use it, you need to decide on the level (or levels) at which to plot the
surface. For densities, you typically make this choice with respect to what’s
called the α-level contours; for more details, see the authoritative text on the
theory of multivariate densities by Scott (1992). In brief, for some density f ,
these levels delineate the (1 − α) × 100 percent “most dense” observations by
setting the isosurface to be drawn at positions in the multivariate evaluation
lattice that correspond to the density value given by α ×max( f ).

For the trivariate standard normal, the maximum value of the density is
located at the mean at the coordinate (0,0,0).

R> max3d.norm <- dmvnorm(c(0,0,0),mean=c(0,0,0))

R> max3d.norm

[1] 0.06349364

You’ll use this when producing the next couple of plots. Next, install
misc3d, load it with library("misc3d"), and then call contour3d.

R> contour3d(x=vals,y=vals,z=vals,f=w,level=0.05*max3d.norm)

This produces an isosurface in an RGL device that you can rotate and
zoom as you desire; you can see the result on the left of Figure 26-11. You
supply contour3d with the arguments x, y, and z as evenly spaced sequences in
the x-, y-, and z-coordinate directions, respectively (all are defined by the vec-
tor vals in this case). You supply the corresponding 3D array, defining the
entire result of the trivariate function to f, and pass the level (or levels) at
which you want to draw the isosurface itself to level. Here, I’ve chosen the α-
level to leave only 5 percent of the probability in the tails of the distribution,
meaning that 95 percent of the total mass is held within the “blob.”
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Figure 26-11: An isosurface of the trivariate standard normal density function produced
using contour3d of the misc3d package. Left: Stand-alone plot drawn at an α level of
0.05. Right: Adding the same surface to an existing rgl plot of randomly generated
trivariate normal observations, at 50 percent opacity.

The plot matches what you might expect—the shape of the trivariate
density is relatively clear based on the plot of the randomly generated data
you produced earlier. However, without scale, it’s little more than a statis-
tical golf ball. It’s often more helpful to view the data alongside the density
from which they came, which is also easy to do. The following code replots
the data in rand3d.norm using plot3d and calls contour3d again to draw at the α
level of 0.05:

R> plot3d(rand3d.norm,xlab="x",ylab="y",zlab="z")

R> contour3d(x=vals,y=vals,z=vals,f=w,level=0.05*max3d.norm,add=TRUE,alpha=0.5)

Just as with the traditional R contour function, if you want to use
contour3d to add to an existing rgl plot (as is the case here), you need to
explicitly specify add=TRUE. You can also use the optional alpha argument to
adjust opacity, reduced to 50 percent in this example, to “see inside” the
density isosurface.

Controlling Multiple Levels with Color and Opacity

Playing with opacity is especially useful when you want to plot the isosurface
at multiple α levels at once. Color is also useful in this way, as a variable that
can represent a fourth dimension without adding an additional physical axis
to the graph.

To view the trivariate normal density at multiple levels, consider the plot
produced by executing the following code:

R> plot3d(rand3d.norm,xlab="x",ylab="y",zlab="z")

R> contour3d(x=vals,y=vals,z=vals,f=w,

level=c(0.05,0.2,0.6,0.95)*max3d.norm,
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color=c("pink","green","blue","red"),

alpha=c(0.1,0.2,0.4,0.9),add=TRUE)

Figure 26-12 shows the result. Here, you replot the 500 randomly gener-
ated trivariate normal observations, and another call to contour3d now draws
contours at four specific α-levels of the trivariate density—0.05, 0.2, 0.6, and
0.95. You use the optional color argument to render these in pink, green,
blue, and red, respectively, and progressively increase the opacity of each
level with the alpha argument.

Figure 26-12: An isosurface of the trivariate normal density plotted
at four levels, over the randomly generated observations. Color and
opacity are used to distinguish among the different numeric levels of
the plotted function.

You should be able to see that you can gauge the increase in the dense-
ness of the points in the 3D space for this distribution in a similar way as
you’d use standard 2D contours to appraise the distribution of bivariate
observations.

26.3.3 Example: Nonparametric Trivariate Density
For an extended example using real data, look once more at the built-in
quakes data frame, which includes the spatial location, magnitude, and depth
of 1000 seismic events.

In Section 25.4.1, you constructed bivariate kernel density estimates of
the 2D longitude-latitude spatial coordinates, using the MASS function kde2D.
As noted there, KDE extends naturally to higher dimensions. The goal now
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is to calculate and visualize a density estimate of the same spatial earthquake
data, but this time to do so based on the trivariate coordinates of longitude,
latitude, and depth, in 3D space.

Raw Data

First, let’s look at the raw observations. The following code creates a copy of
the quakes data, extracting those three variables and rendering depth nega-
tive. I do this so that, when plotted, earthquake depth corresponds to mov-
ing down the vertical axis to give the impression of depth below sea level.

R> quak <- quakes[,c("long","lat","depth")]

R> quak$depth <- -quak$depth

In the usual rgl fashion, you create a point cloud of the raw data with
the following:

R> plot3d(x=quak$long,y=quak$lat,z=quak$depth,

xlab="Longitude",ylab="Latitude",zlab="Depth")

Figure 26-13 shows the result. If you spin the plot so that you’re looking
down directly from the top with a bird’s-eye view, you’ll recognize the 2D
spatial patterning that you’ve plotted already; see, for example, Figure 13-1
(page 265), Figure 23-1 (page 578), or Figure 25-12 (page 662).

Figure 26-13: Viewing the 3D spatial dispersion of the earthquake
occurrences—latitude, longitude, and depth
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Calculating the 3D Estimate

The evaluation lattice for this kernel estimate will be defined by the entire
3D space in which the longitude-latitude-depth data reside, exactly as illus-
trated in Section 26.3.2.

To actually calculate the 3D KDE surface for the quak data, you’ll use
the impressive functionality of the contributed package ks (Duong, 2007).
Install the package and load it with a call to library("ks"). The kde function
within the ks package allows you to use kernel smoothing to estimate the
probability density of 1D through 6D data.

The first argument you supply to kde is your data, in the form of a matrix
or data frame, with the tag x. Note that the order of the columns in your
data object matters when using kde. When called as follows with quak, and
taking into account the extraction order of the three variables in the ear-
lier code that created quak, the x-, y-, and z-coordinate axes in the result-
ing 3D kernel estimate will correspond to longitude, latitude, and depth,
respectively.

R> quak.dens3d <- kde(x=quak,gridsize=c(64,64,64),compute.cont=TRUE)

This matches the way the data are displayed in Figure 26-13. The
gridsize argument specifies the lattice resolution in each axis. In this
example, I’ve settled on a 64 × 64 × 64 lattice; by default, kde chooses the
range of evaluation in each coordinate direction so that it’s slightly wider
than the observed data. Finally, to plot the result, it’s useful to also specify
the argument compute.cont=TRUE; I’ll go into the reason for this in a moment.

The returned object has several components. The 3D estimate is pro-
vided as an appropriately sized array as the $estimate member; if you want to
check, execution of the following line confirms it matches the desired lattice
resolution:

R> dim(quak.dens3d$estimate)

[1] 64 64 64

The $eval.points component holds a list whose members are the specific
evaluation coordinates, which are equally spaced sequences in each of the
three axes. The number of members reflects the dimension of the problem,
and their order corresponds to the specific axis. You can extract them with
the following lines:

R> x.latt <- quak.dens3d$eval.points[[1]]

R> y.latt <- quak.dens3d$eval.points[[2]]

R> z.latt <- quak.dens3d$eval.points[[3]]

If you print these vectors to your console screen, you’ll see that each is
a vector of length 64, with x.latt, y.latt, and z.latt corresponding to the
variables matching the order of the columns in the data frame quak.
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Isosurface Level Selection

The selection of the level to display depends on the range of values that
make up the result of the trivariate function itself. When you choose
compute.cont=TRUE in the call to kde, you’re automatically provided with a
collection of appropriate levels. These are returned in the component
$cont as a numeric vector with a length of exactly 99, representing each
integer between 1 percent and 99 percent.

Internally, these levels are calculated by working out the result of the
trivariate function at the location of each of the originally observed data
points and then using quantile to obtain all the integer-valued percentiles
(from 99 percent to 1 percent) of these density values (for a refresher on
quantiles, refer to Section 13.2.3). These are returned in decreasing order;
in other words, quak.dens3d$cont[1] corresponds to the 99th percentile, and
quak.dens3d$cont[99] is the 1st percentile.

Though these values are obtained in a different way from the α-levels
you experimented with when plotting the trivariate normal density, you
essentially end up with same interpretation when visualizing the result—
these values allow you to draw the isosurfaces at the level of estimated obser-
vation “denseness” that you want. For example, the lower quartile (aka the
25th percentile) is extracted with the following:

R> quak.dens3d$cont[75]

25%

2.002741e-05

This provides the value of the KDE trivariate function that is estimated
to separate the most spatially diffuse 25 percent of the observations from
the rest (in other words, so that the resulting blobs encapsulate the most
spatially dense 75 percent of the data).

NOTE At the time of writing, both the rgl and misc3d packages are dependencies of ks.
This means they are loaded automatically when you load ks, so you don’t need to
call library("rgl") or library("misc3d") explicitly in this case, and plot3d and
contour3d are already available to you. This may change as the developers update
their packages over time.

When you execute the following code, it first replots the quak data that
the density estimate is based on and then adds the corresponding isosurface
using the lower point-wise density quartile as the desired level. You can see
the result on the left of Figure 26-14.

R> plot3d(x=quak$long,y=quak$lat,z=quak$depth,

xlab="Longitude",ylab="Latitude",zlab="Depth")

R> contour3d(x=x.latt,y=y.latt,z=z.latt,f=quak.dens3d$estimate,

color="blue",level=quak.dens3d$cont[75],add=TRUE)

718 Chapter 26



Figure 26-14: Isosurfaces (3D contour plots) of a trivariate kernel density estimate drawn
at point-specific density quantiles, based on use of the contributed kde and contour3d
functions. Left: Solid blue delineation of the lower quartile—the 25 percent most diffuse
points. Right: Green delineation of the median—the 50 percent most diffuse from the
50 percent most dense—with opacity reduced by half.

Looking at the image, the blue blobs representing the 3D contour at the
specified level are clear to see. Higher levels of the trivariate function, that
is, more densely grouped points, are “inside” these blobs. In other words,
the blue shapes encapsulate the observations associated with the highest
75 percent of estimated density with respect to latitude, longitude, and
depth. To see inside the isosurfaces, you can adjust the opacity with alpha.

Let’s take the level that delineates the observations associated with the
lower and upper 50 percent of estimated density values.

R> quak.dens3d$cont[50]

50%

3.649565e-05

Then, rerun the call to plot3d to replot the raw quak data. After that, a
call to contour3d produces the result on the right of Figure 26-14, allowing
you to see through the green blobs.

R> contour3d(x=x.latt,y=y.latt,z=z.latt,f=quak.dens3d$estimate,

color="green",level=quak.dens3d$cont[50],add=TRUE,alpha=0.5)

Lastly, you’ll highlight the top 80 percent of the mostly densely clus-
tered observations using multiple levels. Execute the following:

R> qlevels <- quak.dens3d$cont[c(80,60,40,20)]

R> qlevels

20% 40% 60% 80%

1.771214e-05 2.964305e-05 4.249407e-05 9.543976e-05
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This obtains four levels—the quantiles above which the 80 percent,
60 percent, 40 percent, and 20 percent most densely clustered observations
are identified. Then set up a couple of vectors to control the color and opac-
ity of each increasing level of denseness accordingly.

R> qcols <- c("yellow","orange","red","red4")

R> qalpha <- c(0.2,0.3,0.4,0.5)

The range of colors and alpha levels means the isosurface will darken in
color and become more opaque as the density increases.

One final time, replot the raw quak data using plot3d as earlier. Then it’s
simply a matter of supplying your vectors of length 4 to each appropriate
argument in contour3d.

R> contour3d(x=x.latt,y=y.latt,z=z.latt,f=quak.dens3d$estimate,

color=qcols,level=qlevels,add=TRUE,alpha=qalpha)

Figure 26-15 shows the results. You can see that the tightest grouping of
earthquakes occurs quite deep and toward the eastern edge of the 3D spatial
prism (the visible “three-chamber” density blob is a well-known feature of
these particular data).

26.4 Handling Parametric Equations

In most of the examples in the chapter so far, the surfaces are directly
defined by the coordinates of a regular evaluation grid or lattice, but there
are situations where the final axis you want to visualize is not a function of
some evaluation grid. This occurs quite naturally when you simply want to
draw familiar geometric shapes but also extends to more complicated situa-
tions in mathematics.

In this section, you’ll plot from a collection of parametric equations,
which together define the shape or surface of interest. This section will
assume you’re familiar with the fundamental trigonometric functions sine
and cosine, as well as the conversion of angles from degrees to radians, since
by default R deals exclusively with the latter. That said, I’ll walk you through
the relevant calculations and R code as needed.

26.4.1 Simple Loci
Using mathematical terminology, a locus (plural loci) is a set of points that
satisfy, and are defined by, a particular set of parametric equations. In R,
these equations govern how individual numeric elements of the result-
ing objects are calculated, which you can then easily plot using familiar
functions.

NOTE When discussing loci, any reference to 2D or 3D space refers to Euclidian space,
which is the standard way in which you’ve dealt with coordinates in the x-, y-, and
z-axes so far.
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Figure 26-15: Three screenshots of the trivariate kernel density estimate of the earthquake
observations, taken from varying angles and with different levels of zoom. Increasing
levels of denseness are reflected by isosurfaces of darkening yellow-to-red color and
increased opacity.

2D Circle

Let’s start with a simple example. One of the most immediately recogniz-
able shapes defined in this way is a 2D circle. To find any point on a circle,
you need to know the circle’s center and its radius, and you need to pro-
vide a specific angle at which to look (typically taken to be relative to a per-
fectly horizontal line). Any planar 2D point (x, y) that lies on a circle can
be expressed with the following equations if you take the center to be at the
coordinate (a,b), with a fixed radius of r > 0 and looking at the angle θ:

x = a + r cos(θ) and y = b + r sin(θ) (26.1)
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If you’re working in degrees, then technically 0 ≤ θ < 360; to convert to
radians, you must multiply by π/180 such that 0 ≤ θ < 2π.

To draw a circle based on the equations in (26.1), first decide on a
radius, then decide on a center point, and then generate the corresponding
values of x and y. Consider the following code:

R> radius <- 3

R> a <- 1

R> b <- -4.4

R> angle <- 0:360*(pi/180)

R> x <- a+radius*cos(angle)

R> y <- b+radius*sin(angle)

R> plot(x,y,ann=FALSE)

R> abline(v=a)

R> abline(h=b)

The circle will have a radius of 3 and be centered at (1,−4.4). Given the
sequence defined as angle, note the plot will place a point at each integer
angle from 0 to 360 degrees—I’ve allowed the upper limit to be equal to
exactly 360 to fully complete the rotation—after which you convert to radi-
ans (with multiplication by π/180) in order to use the built-in R functions
cos and sin. The geometric value of pi (π = 3.1415...) is held within the
ready-to-use R object pi (see the help file ?Constants). The last three lines
execute the plot, shown in Figure 26-16.

Figure 26-16: Drawing a 2D circle in R with center
(1,−4.4) and radius 3, following the relevant
parametric equations of the locus

722 Chapter 26



The key takeaway here is that y isn’t calculated as a direct result of x in
the same way as you might obtain a fine, evenly spaced increasing sequence
in x and then evaluate y when plotting, for example, a linear regression
model. Rather, the equations in (26.1) jointly define the rules of the locus
in the 2D space.

3D Cylinder

Plotting surfaces with three dimensions is done in much the same way, only
now your equations set up the rules for all satisfying points in the x-, y-, and
z-axes.

For example, points lying on a hollow cylinder can be defined by the
following equations:

x = r cos(θ), y = r sin(θ), and z = z (26.2)

To actually plot points that satisfy these rules, you need to decide on a
fixed radius r, recognize that 0 ≤ θ < 360 (in degrees), and define a fixed
maximum height h so that you can ensure 0 ≤ z ≤ h. With that informa-
tion, to generate vectors for x, y, and z, you need to first set up numeric
sequences spanning the possible values of θ and z. Consider the follow-
ing code:

R> r <- 3

R> h <- 10

R> zseq <- 0:h

R> theta <- 0:360*(pi/180)

These lines show a radius of 3 set as r and a maximum height of 10 as h.
The sequence in z is set up as the 11 integer values from 0 to 10 in zseq—this
will allow you to place points on the locus at each of these defined z values.
The sequence for θ is set up as 0 ≤ θ < 2π in theta (note the necessary con-
version to radians). Then, you need all unique combinations of these param-
eter values to get all relevant (x, y, z) coordinates for plotting. You know how
to do that from Section 25.3.1, using expand.grid.

R> ztheta <- expand.grid(zseq,theta)

R> nrow(ztheta)

[1] 3971

Calling nrow on the result shows that you now have 11 × 361 = 3971
unique height-angle values. Now you’re able to generate the values for x, y,
and z as defined by (26.2). You could use a for loop (Section 10.2.1), cycling
through each row of ztheta, but a neater way would be to use implicit loop-
ing in apply (refer to Section 10.2.3 for details).

R> x <- apply(ztheta,1,function(vec) r*cos(vec[2]))

R> y <- apply(ztheta,1,function(vec) r*sin(vec[2]))

R> z <- apply(ztheta,1,function(vec) vec[1])
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Note that disposable functions (see Section 11.3.2) are used to operate
on the two-element height-angle (in that order) vectors that make up each
row of ztheta.

You can use persp3d from rgl to plot this kind of parametrically defined
surface, but in a slightly different way than in earlier sections of this chapter.
The calculated x, y, and z coordinates must now all be supplied as identically
sized, appropriately arranged matrices. This is because there’s no longer an
evenly spaced evaluation grid in the x- and y-coordinate directions—along
with the z values, the x and y values have all been defined through an appli-
cation of (26.2). In these types of plots, you effectively have a latent evalua-
tion grid defined by the unique combinations of parameter values (height
and angle in this case).

The matrices in all of the x-, y-, and z-coordinates are given by the three
11 × 361 matrices filled with x, y, and z in the typical column-wise fashion.

R> xm <- matrix(x,length(zseq),length(theta))

R> ym <- matrix(y,length(zseq),length(theta))

R> zm <- matrix(z,length(zseq),length(theta))

At this point, it’s worth introducing the built-in outer function, which
takes a sequence of values in two variables and produces all unique combina-
tions of values, computes the result at each combination, and then returns
the results as a matrix—doing the three tasks just done by expand.grid, apply,
and matrix in one go. With this approach, you could create xm, ym, and zm

indentically by simply calling the following:

R> xm <- outer(zseq,theta,function(z,t) r*cos(t))

R> ym <- outer(zseq,theta,function(z,t) r*sin(t))

R> zm <- outer(zseq,theta,function(z,t) z)

The only difference here is that the anonymous function provided
as the third argument must be explicitly defined in terms of two separate
arguments that represent the values of the necessary height and angle
parameters.

However you obtain xm, ym, and zm, it’s now just a matter of calling
persp3d with these coordinate matrices. Make an additional call to points3d to
emphasize the precise evaluation points that are returned in those matrices.
The result of the next two lines is shown on the left of Figure 26-17.

R> persp3d(x=xm,y=ym,z=zm,col="red")

R> points3d(x=xm,y=ym,z=zm)
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Figure 26-17: Drawing a cylinder and a cone using persp3d, with matrix arguments in
all three coordinate directions. The loci are defined by the corresponding parametric
equations. The black rings visible on the cylinder represent the actual evaluation points
stored in the required matrices xm, ym, and zm.

3D Cone

This next example will show that once you understand the procedure
involved with setting up the x-, y-, and z-coordinate matrices, you can dis-
play virtually any 3D shape or surface with ease. Taking r, h, and θ to be the
base radius, maximum height, and angle, respectively, a cone follows these
equations:

x =
h − z

h
r cos(θ), y =

h − z

h
r sin(θ), and z = z (26.3)

Using the same objects r, h, zseq, and theta from earlier, the following
code alters the disposable functions in outer to reflect (26.3). The right of
Figure 26-17 shows the result.

R> xm <- outer(zseq,theta,function(z,t) (h-z)/h*r*cos(t))

R> ym <- outer(zseq,theta,function(z,t) (h-z)/h*r*sin(t))

R> zm <- outer(zseq,theta,function(z,t) z)

R> persp3d(x=xm,y=ym,z=zm,col="green")

26.4.2 Mathematical Abstractions
Many areas of mathematics, applied mathematical modeling, and statistics
utilize high-dimensional shapes. To round off this chapter, and indeed the
book, let’s employ rgl to take a look at a couple of famous abstractions using
skills from Section 26.4.1.

Interactive 3D Plots 725



Möbius Strip

A classic example is the Möbius strip—a continuous surface that has only one
side and one edge. It can be expressed using the parametric equations

x = F (v, θ) cos θ, x = F (v, θ) sin θ, and z =
v

2
sin

(

θ

2

)

(26.4)

where

F (v, θ) = 1 +
v

2
cos

(

θ

2

)

with −1 ≤ v ≤ 1 and 0 ≤ θ < 2π (assuming angles measured in radians). The
parameter v controls the position of the point along the width of the strip,
and θ controls the rotation angle.

You can draw the strip in the same way as the cylinder and cone from
earlier. First, set up the sequences over the possible values of v and θ, done
here at a resolution of 200 each:

R> res <- 200

R> vseq <- seq(-1,1,length=res)

R> theta <- seq(0,2*pi,length=res)

Next, use outer to obtain the 200 × 200 matrices in each of the x-, y-, and
z-coordinates as per (26.4).

R> xm <- outer(vseq,theta,function(v,t) (1+v/2*cos(t/2))*cos(t))

R> ym <- outer(vseq,theta,function(v,t) (1+v/2*cos(t/2))*sin(t))

R> zm <- outer(vseq,theta,function(v,t) v/2*sin(t/2))

Then, a quick call to plot3d from the rgl package will show you the
40,000 locations, based on the defined vseq and theta sequences, that lie
on the Möbius strip. The result of the following line is shown on the left of
Figure 26-18:

R> plot3d(x=xm,y=ym,z=zm)

Let’s display the strip as a continuous surface using persp3d to fully
appreciate the one-side/one-edge phenomenon. The image on the right
of Figure 26-18 shows the result of the following code:

R> persp3d(x=xm,y=ym,z=zm,col="orange",axes=FALSE,xlab="",ylab="",zlab="")

Note the use of axes to suppress the default box and axes and the use of
empty strings to remove the default axis titles denoting xm, ym, and zm.
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Figure 26-18: Drawing a Möbius strip in R. Left: Specifically calculated points on the
strip, visualized with plot3d. Right: Surface formed by joining up the points on the left
via persp3d.

You could also use color in a more interesting way to emphasize the
wraparound nature of a Möbius strip. Taking inspiration from a similar
collection of colors defined in Section 25.1.3, create the following custom
palette:

R> patriot.colors <- colorRampPalette(c("red4","red","white","blue",

"white","red","red4"))

This palette has been specifically generated to go from a dark red to
white to blue but also to wrap around from the blue back to white and the
dark red. This is needed for the way in which colors from patriot.colors will
be assigned, in a point-wise fashion, to the plotted strip.

The color vector for plotting the surface will need to be of length 2002
=

40,000 given the preset value of res (governing the length of both vseq and
theta). To fill the vector, execute the following:

R> patcols <- patriot.colors(2*res-1)

R> stripcols <- rep(NA,res^2)

R> for(i in 0:(res-1)){

+ stripcols[1:res+res*i] <- patcols[1:res+i]

+ }

The first line generates exactly 399 colors from patriot.colors, and the
second sets up a vector of the required length, which will store the assigned
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colors (stripcols). The for loop ensures that at the first iteration, the ele-
ments 1 through 200 in stripcols will be assigned colors 1 through 200 from
patcols; at the second iteration, the elements 201 through 400 will be assigned
colors 2 through 201 from patcols, and so on. This gives the colors their
wraparound appearance.

To properly understand the for loop, first look at the order of the argu-
ments as supplied to the calls to outer. Having vseq first and theta second
implies that each column of 200 in the resulting matrices corresponds to a
span from −1 to 1 in v, which refers to moving from one end of one of the
lines of points to the other, that is, along the width of the strip. By using an
index variable i from 0 to 199 (inclusive), the loop assigns each consecutive
block of 200 elements in stripcols (increased at every iteration via +res*i)
the 200 elements from the 399 patcols by collectively moving forward exactly
one element (increased at every iteration via +i). What that does is change
the color from red to white to blue in the plotted lines of points in the early
stages of the loop, but as it progresses, working its way around the strip, the
specific span of that palette is incrementally shifted until it goes from blue to
white to red as you rotate around to the last few plotted lines of points. The
effect is a smooth change in color as you alter both v and θ. You can see the
result of the following in Figure 26-19:

R> persp3d(x=xm,y=ym,z=zm,col=stripcols,aspect=c(2,2.5,1.5),axes=FALSE,

xlab="",ylab="",zlab="")

Figure 26-19: A patriotic Möbius strip, created
with the careful construction of an appropriate
color vector.
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The plot can still be rotated and zoomed as usual on your computer.
You can experiment with aspect to alter the specific axis aspect ratios purely
to enhance the appearance of the final product; here I’ve widened both the
x- and y-axes relative to the z-axis.

Torus

Another shape often expressed in 3D space is a ring torus (plural tori). This
is the classic topological “shape with one hole” and resembles, for lack of
a better word, a doughnut. The mathematical properties of tori are quite
useful in many fields.

Parameterization of a torus may be achieved with these equations:

x = F (θ2; α, β) cos θ1, x = F (θ2; α, β) sin θ1, and z = α sin θ2 (26.5)

where
F (θ2; α, β) = β + α cos θ2

with 0 ≤ θ1 < 2π and the same for θ2 (assuming angles measured in radi-
ans). The fixed values α and β control the radius of the “tube” (in other
words, the relative thickness of the doughnut) and the overall size of the
torus in terms of distance from the middle of the hole to the middle of the
tube. Provided α < β, the equations in (26.5) give you the classic ring torus
shape; you can get different kinds of tori by relaxing that condition on α
and β.

Setting α = 1 and β = 2, the following code uses the theta object defined
earlier for the Möbius strip to compute the matrices in the x-, y-, and z-
coordinate directions as per (26.5):

R> alpha <- 1

R> beta <- 2

R> xm <- outer(theta,theta,function(t1,t2) (beta+alpha*cos(t2))*cos(t1))

R> ym <- outer(theta,theta,function(t1,t2) (beta+alpha*cos(t2))*sin(t1))

R> zm <- outer(theta,theta,function(t1,t2) alpha*sin(t2))

Refer to Section 26.4.1 to remind yourself of the usage of outer if you
need to do so.

Then, this line reveals the calculated points of the torus:

R> plot3d(x=xm,y=ym,z=zm)

And this gives you the final appearance of the continuous surface:

R> persp3d(x=xm,y=ym,z=zm,col="seagreen4",axes=FALSE,xlab="",ylab="",zlab="")

Figure 26-20 shows the results of both.

Interactive 3D Plots 729



Figure 26-20: Drawing a ring torus in R. Left: Specifically calculated points on the surface,
visualized with plot3d. Right: Shape formed by joining up the points on the left using
persp3d.

Earlier, you used a specifically constructed color vector to color the
Möbius strip, but you can assign color on any such surface by identifying the
specific points in the defined matrices that you want to exert control over.
Since it’s the last example in the book, let’s have a little fun with the current
mathematical doughnut to illustrate this point-wise indexing.

First, the dough needs to look authentic. The following line sets up the
vector of length 2002

= 40,000 to store the colors you’re going to use. Ini-
tially, every element is set as a dough-colored tan.

R> donutcols <- rep("tan",res^2)

Next, add some icing. If you look at the distribution of the points, dis-
played in the plot on the left of Figure 26-20, you can see that the “top half”
of plotted locations on the surface of this torus are at z-coordinates greater
than zero. With this, you can overwrite the relevant elements of donutcols
with the following line:

R> donutcols[as.vector(zm)>0] <- "pink"

Lastly, any premium doughnut should have sprinkles. You need a mech-
anism to identify random locations on the top half of the surface and color
them appropriately. To do this, you can use the built-in sample function to
randomly select a subset of elements from an existing vector. If you have the
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integers 1 through 10, for example, and you want to randomly select four,
you can execute the following:

R> sample(x=1:10,size=4)

[1] 8 9 2 6

The argument x takes the vector from which to select a sample, and size

takes the number of elements you want to draw from that vector. Note that
you’re likely to get a different set of four random numbers when executing
this line.

With that knowledge, you can use this code to make sprinkles:

R> sprinkles <- c("blue","green","red","violet","yellow")

R> donutcols[sample(x=which(as.vector(zm)>0),size=300)] <- sprinkles

This sets up five distinct sprinkle colors; then randomly selects 300 loca-
tions, strictly from locations on the iced surface area; and finally assigns to
them the five colors. The nature of vector recycling means there will be
exactly 60 of each color sprinkle, randomly placed on the top half of the
torus. You can add more sprinkles by increasing size, though given the num-
ber of colors, you should ensure size remains evenly divisible by 5.

The following call completes the visual treat, shown in Figure 26-21:

R> persp3d(xm,ym,zm,col=donutcols,aspect=c(1,1,0.4),axes=FALSE,

xlab="",ylab="",zlab="")

Figure 26-21: A delicious mathematical doughnut. Coloring of
the torus surface is achieved by identification of corresponding
positions in a color vector and subsequent element replacement.
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You can find a more serious (and technical) visualization of a ring torus,
in its role as a convenient computational structure used for generating
specially defined high-dimensional random normal variates, in Davies and
Bryant (2013).

Exercise 26.3

Ensure you have the functionality of the mvtnorm, rgl, misc3d, and ks

packages available in your current R session. By specifying different
covariance matrices, you can control how the different components of
a multivariate normal random variable relate to one another, which
affects the appearance of the distribution itself. In the standard
trivariate normal density, for example, the three elements (x, y, z)

are independent of one another. Executing the following code will
generate 1000 observations from a nonstandard trivariate normal
distribution where the three elements are related to one another in a
specific way:

R> covmat <- matrix(c(1,0.8,0.4,0.8,1,0.6,0.4,0.6,1),3,3)

R> rand3d.norm <- rmvnorm(1000,mean=c(0,0,0),sigma=covmat)

Note that the covariance matrix covmat is supplied to the optional
sigma and that the mean of this collection of points remains centered
at (0,0,0).

a. Plot the generated data as an interactive 3D point cloud, with
simple axis titles "x", "y", and "z". You should see how the points
form an elliptical shape, in contrast to the spherical shape in the
standard trivariate normal in Figures 26-11 and 26-12. Keep the
plot open.

b. Using a 50 × 50 × 50 evaluation lattice between −3 and 3 in each
of the three axes, calculate this particular trivariate normal den-
sity function using dmvnorm and store it as an appropriately sized
array. Note that you’ll also need to set sigma=covmat in any use
of dmvnorm. Calculate the maximum value of the density and use
this to superimpose upon the point cloud isosurfaces at three
specific α levels—0.1, 0.5, and 0.9. Color the three isosurfaces
"yellow", "seagreen4", and "navyblue" and set them at 20 percent,
40 percent, and 60 percent opacity, respectively.

c. Now, use ks functionality to calculate a 3D kernel estimate of the
density based on the 1000 generated observations. Ensure that
the returned object contains the vector of 99 sensible contour
levels. Replot the point cloud of (a) in a new RGL device and
then make two separate calls to contour3d as follows.
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i. The first should superimpose the theoretical contour at an α
level of 0.5 from (b) only. Use the same color and opacity as
you did in (b).

ii. The second should draw the isosurface at the 50th percentile
as estimated from the point-specific KDE surface. Make it red
and reduce the opacity to 20 percent.

Here are my results from (b) on the left and (c) on the
right. Note that the appearance of your KDE isosurface will vary
because of the random generation of the 1000 data points, which
dictate the final estimate.

The MASS package has another data set you’ve not yet met. The Boston

data frame object contains a number of descriptive observations
concerning house prices in suburbs of Boston, Massachusetts, in the
1970s (Harrison and Rubinfeld, 1978). Load the MASS package and
inspect the help file ?Boston to learn about the present variables.

d. Focus on the variables for average number of rooms, percentage
of lower-socioeconomic-status dwellings, and median value—
you’re going to experiment with the visualization of a 3D scatter-
plot as follows:

i. Use rgl functionality to plot the three variables, with rooms,
status, and value on the x-, y-, and z-axes, respectively; supply
tidy axis titles. The data points should be plotted as gray
spheres, with a size of 0.5. Keep the plot open.

ii. Use ks functionality to estimate the trivariate density function
of these data. Base the estimate on a 64 × 64 × 64 evaluation
lattice; ensure the 99 integer percentiles of the observation-
specific density levels are returned. Superimpose isosur-
face contours delineating the 75 percent, 50 percent, and
10 percent “most dense” observations using green, yellow,
and blue. Set the opacity at 10 percent, 40 percent, and
50 percent, respectively.
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iii. Finally, add reference grids along the three planes identified
at the lower z-, upper x-, and upper y-axis locations.

e. Interpret the final plot from (d). For example, what values of the
present variables tend to characterize the most common types of
houses in Boston’s suburbs?

Here’s the result:

The umbilic torus is another interesting 3D shape in mathematics and
can be defined by the following parametric equations:

x = sin(θ)F (θ,φ)

y = cos(θ)F (θ,φ)

z = sin(θ/3 − 2φ) + 2 sin(θ/3 + φ)

In these equations, F (θ,φ) = 7+cos(θ/3−2φ)+2 cos(θ/3+φ), and
you allow for both −π ≤ θ ≤ π and −π ≤ φ ≤ π.

f. Using a sequence of length 1000 for both θ and φ, as well as
1000 colors generated from the built-in rainbow palette assigned
directly to the col argument, produce an interactive 3D plot
of the umbilic torus. Suppress the box, axes, and axis titles. In
viewing the object from different perspectives, note that, much
like the Möbius strip you plotted earlier, this shape has only
one edge.
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Here’s the result:

Important Code in This Chapter

Function/operator Brief description First occurrence

plot3d Interactive 3D point cloud Section 26.1.1, p. 692
legend3d Add RGL device legend Section 26.1.2, p. 693
bg3d Reset RGL device background Section 26.1.2, p. 693
segments3d Add 3D line segments Section 26.1.3, p. 696
grid3d Add plane grid Section 26.1.3, p. 696
bgplot3d Alter/replot RGL device background Section 26.1.3, p. 696
persp3d Interactive 3D perspective surface Section 26.2.1, p. 700
points3d Add 3D points Section 26.2.2, p. 701
text3d Add 3D text Section 26.2.2, p. 702
rmvnorm Random multivariate normal variates Section 26.3.2, p. 711
dmvnorm Multivariate normal density Section 26.3.2, p. 711
contour3d Draw isosurface Section 26.3.2, p. 713
kde Multivariate kernel estimation Section 26.3.3, p. 717
pi Geometric value π Section 26.4.1, p. 722
sin, cos Sine and cosine Section 26.4.1, p. 722
outer Outer array product Section 26.4.1, p. 724
sample Random sample from vector Section 26.4.2, p. 731
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A
INSTALLING R AND

CONTRIBUTED PACKAGES

This appendix provides more detail
on where to find R and how to install it

and its contributed packages. R is avail-
able through CRAN—the Comprehensive R

Archive Network—accessed through the R website
at https://www.r-project.org/ . I’ll cover only the funda-
mentals here, but you’ll find a substantial amount of
information in the R FAQ by Hornik (2015) at http://CRAN.R-project.org/doc/
FAQ/R-FAQ.html . This should be your first port of call if you need help with
installing R and its packages. Installation of R and its contributed packages is
dealt with in Sections 2 and 5 of the FAQ, respectively.

A.1 Downloading and Installing R

Once at the R website, click the CRAN mirror link in the welcoming text or
the CRAN link under the Download heading on the left, as shown in Fig-
ure A-1, and a page will load that asks you to select a CRAN mirror.

https://www.r-project.org/
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html


Figure A-1: The R home page

Pick one close to your geographical location and click the link. Fig-
ure A-2 shows my local mirror, which is at the University of Auckland; yours
will look the same.

Figure A-2: A CRAN mirror site. This is where you’ll find the various download links.
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Then click the link for your operating system.

• If you’re a Windows user, click the Windows link, and from that page
choose the installation file (the binary executable) for the base distribu-
tion. Double-click the executable file and follow the instructions in the
installation wizard. You’ll want either the 32- or 64-bit version depend-
ing on your current Windows installation—you can find out which you
have by going to Control Panel→ System.

• If you’re a Mac user, click the Mac OS X link and you’ll be taken to a
page with the packaged binary files. At the time of writing, there are
still two versions available: one for OS X 10.9 (Mavericks) and later,
and another for OS X 10.6 to 10.8 (this file has the snowleopard desig-
nation), though support for Snow Leopard is being phased out. Down-
load the correct file for your operating system. Once the download is
complete, double-clicking it will immediately launch the installer; follow
the instructions therein. I also recommend getting the XQuartz window
system, freely downloadable from http://xquartz.macosforge.org/ , which
provides support for additional devices for graphics.

• Linux users will be taken to a subdirectory with folders named after
operating systems such as Debian or Ubuntu. Click the link relevant to
you and you’ll be taken to a page providing step-by-step command line
instructions for installing R.

A.2 Using Packages

R packages (or libraries) are collections of code that hold data and functional-
ity used in R. It’s essential to get comfortable with loading these libraries to
access certain features and commands.

Packages come in three flavors. Those that make up the core function-
ality of the software are included with the installation and are automati-
cally loaded when you open R. Also, a handful of recommended packages are
included with a typical R installation but aren’t automatically loaded. Finally,
a huge collection of user-contributed packages—more than 7000 at the time
of writing—extend R’s applications vastly.

A.2.1 Base Packages
The base packages provide the essential syntax and commands for program-
ming, computing, and graphics production, as well as the built-in data sets,
basic arithmetic, and statistical functionality, and they are immediately avail-
able when you start R. At the time of writing, there are 14.

base compiler datasets grDevices graphics grid methods

parallel splines stats stats4 tlctk tools utils

You’ll find a brief description each of these base packages in Sec-
tion 5.1.1 of Kurt Hornik’s R FAQ.
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A.2.2 Recommended Packages
At the time of writing, there are 15 recommended packages, as noted in Sec-
tion 5.1.2 of the R FAQ. These packages are included with any standard
R installation, and they extend the functionality of the base packages to
include slightly more specialized (yet still ubiquitous) statistical methods
and computational tools. In this book, you’ll only be using MASS and boot

from this list.

KernSmooth MASS Matrix boot class cluster

codetools foreign lattice mgcv nlme nnet

rpart spatial survival

These recommended packages aren’t loaded automatically. If you want
to access functions or data sets from these packages, load them manually
with a call to library. For example, to access the data sets available as part of
MASS, execute the following at the prompt:

R> library("MASS")

Some packages provide a short welcome message upon loading, and R
always informs you of any masking (see Section 12.3.1) that has occurred.

When you close your current R session, the package will close too, so
you need to reload it if you open another instance of R and want to use it
again. If you decide you no longer need a package in any given session and
want to unload it to, for example, avoid any potential masking issues, use
detach as follows:

R> detach("package:MASS",unload=TRUE)

You can find topics and technical details concerning package loading
and unloading in Sections 9.1 and 12.3.1 of this book.

A.2.3 Contributed Packages
On top of these built-in and recommended packages, there’s a massive col-
lection of user-contributed packages available through CRAN, serving all
kinds of purposes and applications in statistics and mathematics, computing,
and graphics. If you navigate to your local CRAN mirror site, the Packages
link on the left of the page (see Figure A-2) will take you to a page with fur-
ther links that provide up-to-date lists of all the available packages on CRAN.
You’ll also find the useful CRAN Task Views web page, which is a collection
of subject-specific articles giving an overview of relevant packages, as shown
in Figure A-3. This is a great way to get familiar with the types of specialized
analyses that are possible in R.

Because of the sheer number of available packages, naturally R doesn’t
include them all upon its installation, and as a researcher you’ll only ever be
interested in a relatively small subset of methods at any one time.
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Figure A-3: The CRAN Task Views web page. Each article discusses prominent CRAN
packages in use in the field.

In this book, you’ll make use of a handful of contributed packages.
Some are used to access certain data sets or objects, and others are used for
their unique functionality or to illustrate statistical methodology. They are
listed here:

car faraway GGally ggplot2 ggvis

gridExtra ks misc3d mvtnorm rgl

scatterplot3d shape spatstat tseries

When you want access to any contributed package, you need an Internet
connection to first download and install it. Packages are generally less than
a few megabytes in size. Once a package is installed, you then load it with
the usual call to library to access the relevant functionality. For the packages
listed above, you’ll be prompted to do this when necessary in the relevant
parts of the book.

You’ll now look at a few ways to perform a package download and instal-
lation for R, using the ks package (Duong, 2007) as an example.

NOTE Contributed R packages tend to be of good quality in terms of correctness, speed and
efficiency, and user-friendliness. Although there are fundamental compatibility checks
that must be passed before a submitted package is made available on CRAN, pass-
ing them isn’t a sign of the overall quality and usability of a given package. You can
gauge that only by using the package, studying its documentation, and seeking out
any related publications.
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Finding Packages on CRAN

Every R package on CRAN has its own standard web page, providing the
direct links to the downloadable files and important information about the
package. Locate the package name on one of the lists on CRAN and click it,
or do a quick Google search for, in our case, ks r cran. Figure A-4 shows the
top of the web page for ks.

Figure A-4: Descriptive information on the CRAN web page for the ks package

Along with basic information such as the version number and the main-
tainer’s name and contact information, you’ll see the Depends field. This is
important for installation; if the R package you’re interested in is dependent
on other contributed packages (not all are), then you also need to install
those packages for your package to install successfully.

Looking at Figure A-4, you can see that your R version needs to be later
than 1.4, that ks requires KernSmooth (already installed—it’s one of the rec-
ommended packages noted in Section A.2.2), and that it also needs misc3d,
mvtnorm, and rgl. Fortunately, if you install an R package directly from R, the
dependencies are also installed automatically.

Installing Packages at the Prompt

The quickest way to download and install a contributed R package is to use
the install.packages command directly from the R prompt. Starting with a
fresh installation of R, I see the following on my iMac:

R> install.packages("ks")

--- Please select a CRAN mirror for use in this session ---

also installing the dependencies 'misc3d', 'mvtnorm', 'rgl'

--snip--
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You may first be asked to choose a CRAN mirror. The list pops up and
defaults to the secure HTTPS servers only; choosing HTTP will switch to the
unsecured ones. I chose HTTP, found the New Zealand mirror, and clicked
OK, as shown in Figure A-5. Once you’ve done this, your selected mirror will
remain set as the go-to site until you reset it; see Section A.4.1.

Figure A-5: Pop-up windows for selecting a CRAN
mirror site to use for downloading contributed packages.
Left: Optional selection of HTTP servers (as opposed
to HTTPS). Right: Selection of my local HTTP mirror.

After you click OK, R lists any dependencies that will also be down-
loaded and installed and then presents download notifications for each
package (in the snipped output).

Some additional notes are warranted:

• You need to install a package only once, and it will save to your hard
drive to be loaded with a call to library as usual.

• You might be prompted to use or create a local folder on your computer
to store installed packages. This is done to ensure R knows where to get
packages from when they’re requested with library. Agreeing to this
means you have a user-specific library of packages, which is generally a
good idea.

• There are a number of optional arguments for install.packages; see the
help file given by a call to ?install.packages at the prompt. For example,
if you want to specify a CRAN mirror in the console, supply the relevant
URL as a character string to the repos argument, or if you want to pre-
vent dependencies from installing, use the dependencies argument.
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• You can also install R packages from source, that is, from the uncom-
piled code, which may have more recent updates than the precompiled
binary version of the package. If you’re an OS X user, recent versions of
R will ask you whether you’d like to download packages from source for
packages with versions available that are more recent than the precom-
piled binary version. To do so, you need certain command line tools
installed on your system; if the download fails, you can stick with the
binary version by answering n (“no”) at the download from source prompt.

Installing Packages with the GUI

The basic R graphical user interface (GUI) used in this book gives you the
option to download and install contributed packages from the console using
menu items. Here, you’ll look briefly at the Windows and OS X versions.

On Windows, click the Packages→ Install package(s)... menu item,
shown on the left of Figure A-6. Select a CRAN mirror and a tall window
will open, listing all available packages in alphabetical order. Scroll to select
the package you’re interested in. You can see my selection of ks on the
right of Figure A-6. Click OK to download and install the packages and
dependencies.

Figure A-6: Initiating download and installation of a contributed R
package (and any missing dependencies automatically) via GUI
menus in Windows

For OS X R, click the Packages & Data→ Package Installer item in
the OS X menu bar, as shown on the top of Figure A-7. When the pack-
age installer opens, click the Get List button to bring up the table of avail-
able packages. Select the package you want, being sure to select the Install
Dependencies box near the bottom of the installer before clicking Install
Selected. R will then download and install everything it needs, including any
dependencies, as shown on the bottom of Figure A-7. You can select more
than one package. Note that the options on the bottom left of the installer
allow you to choose exactly where the installed packages will be stored; if
you’re a nonadmin user, you may need to create a user-specific library, as
mentioned earlier.
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Figure A-7: Initiating download and installation of a contributed
R package (and any missing dependencies) using the GUI-based
package installer in OS X

Installing Packages Using Local Files

Lastly, you can download the required package files from CRAN through
your Internet browser as you’d download anything else, store them on your
local drive, and then direct R to those local files.

On the CRAN web page for ks, you’ll find a Downloads section as shown
in Figure A-8. For Linux, choose the Package source file. For Windows or
OS X, choose the corresponding .zip or .pkg file labeled r-release. The r-oldrel
and r-devel versions should be used only if you’re experiencing compatibility
issues. The Old sources link holds archived source files for old versions.

On Windows, select Packages→ Install package(s) from local zip files...
(shown on the left of Figure A-6). This will open a file browser so you can
navigate to the downloaded .zip file for the package; R will do the rest.
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Figure A-8: The Downloads section of the CRAN web page for ks

On OS X, once you’ve downloaded the .pkg file, select Packages &
Data→ Package Installer. Use the drop-down menu at the top of the
installer to select Local Binary Package, as shown in Figure A-9. To open
a file browser to find the local file, you need to click the Install... button at
the bottom of the installer. R will take it from there.

Figure A-9: Using the package installer on
OS X to install an R package from a local file

It’s important to know that this method does not automatically install any
dependencies. You’ll also need to install any packages your package depends
on, any dependencies of those, and so on—so be sure to check the Depends
field on the CRAN package web page, as noted earlier.

It’s far easier to use install.packages directly from the R prompt, or
through the GUI, to automate this process. You need to do local file installa-
tions only if the automatic methods fail for some reason, if you’re installing a
package that isn’t on CRAN (or any other readily accessible repository—see
Section A.4.2), or if the package isn’t directly available for your operating
system.

A.3 Updating R and Installed Packages

There are roughly four new releases of R a year that address functionality,
compatibility issues, and bug fixes. It’s a good idea to keep up-to-date with
these new releases. The R project home page and any CRAN mirror site will
tell you the latest release, and you can execute news() at the R prompt for
details on what’s new.
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Contributed R packages are also periodically updated and new pack-
age files uploaded to CRAN. Packages you’ve installed won’t auto-update,
so it’s up to you to update them. It’s difficult to predict how often such
updates will be released, since it’s completely up to the maintainers, but it’s
worth checking for newer versions of the packages you’ve installed every few
months or, at the very least, when you upgrade your version of R.

Checking for package updates is easy. A simple call to update.packages(),
with no arguments, will systematically look through your installed packages
and flag any that have more recent versions available.

For example, on my current installation, executing the following tells
me that a later version of MASS is available (along with several other packages
not shown in this snipped output).

R> update.packages()

MASS :

Version 7.3-43 installed in /Library/Frameworks/R.framework/Versions/3.2/

Resources/library

Version 7.3-44 available at http://cran.stat.auckland.ac.nz

Update (y/N/c)? y

--snip--

Enter y to download the updated package from CRAN. If there are sev-
eral packages with updates available, R will ask you one at a time whether
you’d like to update, and you have to enter y (or N or c) for each.

You can also perform package updates using the R GUI menus (or man-
ually with local file installation). In Windows, select Packages→ Update
packages... to open a list of available updates to your current packages. On
OS X, a column in the populated table in the package installer provides
information on the version of every package you currently have installed,
as well as the version currently on CRAN, giving you the option to install
the more recent version. There’s also the Update All button, which is what
you’d typically use.

A.4 Using Other Mirrors and Repositories

Sometimes you might want to change the CRAN mirror associated with your
typical package installation process or, indeed, change the target repository
itself to one other than CRAN—there are several options.

A.4.1 Switching CRAN Mirror
You’ll rarely need to change your CRAN mirror, but you might want to if,
say, your usual mirror site is inaccessible for some reason or you want to
use R from a different location. To query your currently set repository, call
getOption with "repos".
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R> getOption("repos")

CRAN

"http://cran.stat.auckland.ac.nz"

To change this to, say, the mirror at the University of Melbourne, simply
assign the new URL to the repos component in a call to options as follows:

R> options(repos="http://cran.ms.unimelb.edu.au/")

Any subsequent usage of install.packages or update.packages will now use
this Australian mirror for downloads.

A.4.2 Other Package Repositories
CRAN isn’t the only repository of R packages. Other repositories include
Bioconductor (see https://www.bioconductor.org/), Omegahat (see http://
www.omegahat.org/), and R-Forge (see https://r-forge.r-project.org/), and there
are several more. These repositories tend to deal with different subjects.
Bioconductor, for example, hosts packages that deal with DNA microarray
and other genomic analysis methodologies; Omegahat hosts packages that
focus on web- and Java-based applications.

In terms of general statistical analyses, CRAN is the go-to repository for
most users. To learn more about the other repositories, you can visit the
associated websites.

A.5 Citing and Writing Packages

It’s important that the work put into R and its packages is recognized in the
appropriate way when the software is used in, for example, data analysis
as part of your research projects. Indeed, when you get to the stage where
you’re thinking about writing your own packages, it pays to be aware of the
following.

A.5.1 Citing R and Contributed Packages
For citing R and/or its packages, the citation command produces the rele-
vant output.

R> citation()

To cite R in publications use:

R Core Team (2016). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/.

A BibTeX entry for LaTeX users is
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@Manual{,

title = {R: A Language and Environment for Statistical Computing},

author = {{R Core Team}},

organization = {R Foundation for Statistical Computing},

address = {Vienna, Austria},

year = {2016},

url = {https://www.R-project.org/},

}

We have invested a lot of time and effort in creating R, please cite it when

using it for data analysis. See also 'citation("pkgname")' for citing R

packages.

Note that LATEX users are conveniently catered to via automatically gen-
erated BIBTEX entries.

You can also cite individual packages if these have been instrumental in
completing a particular piece of work. Here’s an example:

R> citation("MASS")

To cite the MASS package in publications use:

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S.

Fourth Edition. Springer, New York. ISBN 0-387-95457-0

A BibTeX entry for LaTeX users is

@Book{,

title = {Modern Applied Statistics with S},

author = {W. N. Venables and B. D. Ripley},

publisher = {Springer},

edition = {Fourth},

address = {New York},

year = {2002},

note = {ISBN 0-387-95457-0},

url = {http://www.stats.ox.ac.uk/pub/MASS4},

}

A.5.2 Writing Your Own Packages
Once you become an R expert, you may find yourself with a suite of func-
tions, data sets, and objects that others might find useful or that you use
often enough to warrant packaging them up in a standardized, easily load-
able format. There’s certainly no obligation to submit your packages to
CRAN or any other repository, but if you do aim to do so, note that there
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are rather strict requirements to assure users of the stability and compatibil-
ity of your package.

If you’re interested in constructing your own installable R package, see
the official Writing R Extensions manual, accessible on any CRAN mirror
site by clicking the Manuals link under Documentation on the left of the
home page; you can see this link in Figure A-2. If you’re interested, you may
also want to seek out the book by Wickham (2015b), which provides useful
instruction on the R package-writing process and associated dos and don’ts.
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B
WORKING WITH RSTUDIO

Although the base R application and GUI
are all you need to unleash the full suite

of available functionality, the bare-bones
appearance of the console and code editor can

be off-putting to some, especially beginners. One of
the best integrated development environments (IDEs)
designed specifically to enhance day-to-day use of the
R language is RStudio.

Like R, the desktop version of RStudio (RStudio Team, 2015) is free
and can be used on Windows, OS X, and Linux systems. Before installing
RStudio, you must first have R installed, as described in Appendix A (OS X
users will also want XQuartz; see Section A.1). Then, you can download
RStudio from the official website at https://www.rstudio.com/products/rstudio/
download/ .

The RStudio website also hosts a variety of useful support articles
and links, as well as instructions for various special enhancements, some
of which are noted in Section B.2. If you need help with RStudio, see
https://support.rstudio.com/hc/en-us/ . In particular, you should take time
to click the Documentation link; you can also view this through RStudio by
selecting Help→ RStudio Docs.

https://www.rstudio.com/products/rstudio/download/
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In this appendix, you’ll get an overview of RStudio and its most com-
monly used tools.

B.1 Basic Layout and Usage

The RStudio IDE is split into four panes, and you can customize the content
and layout to suit your preferences. Figure B-1 shows my setup. In it, I’m
playing with the ggvis code from Section 24.4.

Figure B-1: RStudio in action. The four panes can be arranged and suppressed as you
like; here, you can see the code editor (top left), the console (bottom left), the help pages
(top right), and the graphics viewer (bottom right). The panes on the right also have
additional tabs to choose from.

You write R code in the built-in editor and execute it in the console;
the shortcut “send code to console” keystrokes are CTRL-ENTER or CTRL-R
in Windows and -RETURN on a Mac. The textual output appears in the con-
sole as usual.

B.1.1 Editor Features and Appearance Options
One of the most useful features of RStudio editor is the color-themed code
highlighting and bracket matching. This makes for an easier coding expe-
rience than in the base R editor, particularly when writing long chunks
of code. There are also autocomplete options that pop up as you’re typ-
ing in either the editor or the console. You can see an example of this in
Figure B-2.
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Figure B-2: RStudio’s autocomplete feature includes hints about each option.

These features and more can be enabled, disabled, and customized
using the RStudio options (select Tools→ Global Options... on both Win-
dows and OS X; for OS X, you can also select RStudio→ Preferences...);
you can see the Code and Appearance options in Figure B-3.

Figure B-3: The options panes for code editing (left) and appearance (right)

B.1.2 Customizing Panes
Next you’ll probably want to sort out the arrangement and content of the
four RStudio panes. Two panes will always be the editor and the console,
but you can set up a number of additional tabs to be displayed on the two
utility panes. These include a file browser that you can use to search for and
open R scripts on your local machine, plot and document viewers, standard
R function help files, and a package installer.

You can configure your utility panes with the drop-down menus and
checkboxes in the Pane Layout section of the RStudio options. Figure B-4
shows my current settings; one change I’ve made from the default arrange-
ment is to make the help files appear in the topmost utility pane, with the
graphical displays on the bottom, since I often want to refer to function doc-
umentation while experimenting with my plots.
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Figure B-4: Pane layout and arrangement options

B.2 Auxiliary Tools

RStudio gives you access to a number of handy tools to use in conjunction
with R, which I’ll briefly highlight here. For more information on a partic-
ular feature, check the supporting documentation at https://support.rstudio.
com/hc/en-us/ .

B.2.1 Projects
RStudio projects assist with development and file management when you’re
working on more complicated endeavors. In these situations, you’re typ-
ically working with multiple script files, you might want to save separate
R workspaces, or you might have certain R options set to specific or non-
default values. RStudio facilitates this process so you don’t have to set it up
manually.

At the top right of the RStudio window, you’ll see a Project: (None)
button. Click it and you’ll see a short menu, as shown in Figure B-5; set
up a basic project folder by clicking New Project and selecting the New
Directory→ Empty Project items.

Essentially, creating a new project does the following:

• Sets the working directory as the project folder

• Saves, by default, the R workspace, history, and all .R source files in said
folder

• Creates a .Rproj file, which can be used to open a saved project at a later
date, and stores RStudio options set specifically for that project
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Figure B-5: RStudio project menus; setting up a basic project directory

When you’re working on a specific project, its name will appear in place
of (None) on the Project: (None) button.

B.2.2 Package Installer and Updater
RStudio provides a package installer to manage the downloads and instal-
lations of contributed packages. You’ll find the package manager in the
Packages tab on your chosen utility pane. It lists only those packages that
you currently have installed, along with their version numbers, and you can
use the checkboxes next to each package name to load it (instead of using
library at the R console prompt).

Mine appears in Figure B-6. I’ve just selected the box for the car pack-
age, which automatically executes the relevant call to library in the console.

Figure B-6: The RStudio package installer, showing car being loaded by clicking its
checkbox
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The figure also shows the Install and Update buttons for packages. To
install a package, click the Install button and enter the package you want
in the field. RStudio will give you options as you type, as shown for the ks

package on the left of Figure B-7. Ensure “Install dependencies” is checked
in order to automatically install any additionally required packages.

To update packages, click the Update button to bring up the dialog box
on the right of Figure B-7; here you can choose to update either individual
packages or all of them by clicking the Select All button.

Figure B-7: Package installation and update features in RStudio

Naturally, you can still use the install.packages, update.packages, and
library commands directly from the console prompt within RStudio if you
prefer.

B.2.3 Support for Debugging
Another nice feature of RStudio is its built-in tools for code debugging.
Debugging strategies usually involve being able to “pause” your code at a
specific point to inspect your objects and function values in a given “live”
state. Specific techniques are best left to more advanced texts such as The
Art of Debugging (Matloff and Salzman, 2008) and The Art of R Programming
(Matloff, 2011); see also Chapter 9 of Advanced R (Wickham, 2015a). But
I mention it here since the tools available in RStudio provide more conve-
nient, higher-level support for debugging than do base R commands alone.

Once you’re at the stage where you’re starting to write programs com-
prised of multiple interlinked R functions, you might like to learn more.
With respect to R and RStudio in particular, there’s a good introductory
article by Jonathan McPherson on the support website at https://support.
rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio/ .

B.2.4 Markup, Document, and Graphics Tools
When writing up reports on a project or tutorials for particular analyses,
researchers often use a markup language. One of the best-known markup
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languages, particularly in the sciences, is LATEX; it facilitates a unified
approach to typesetting, formatting, and layout of technical documents.

There are specialized packages that incorporate R code into the com-
pilation of these documents. These are in turn incorporated into RStudio,
allowing you to create dynamic documents that make use of R code and
graphics without switching between different applications.

You’ll need a TEX installation on your computer to use these tools,
which you can find at https://www.latex-project.org/ . In this section, I’ll briefly
discuss the most widely used enhancements.

Sweave

Sweave (Leisch, 2002) was arguably the first markup language to become
popular with R; its functionality is included with any standard R installa-
tion. Sweave follows typical LATEX markup rules; in your document, you
declare special fields called chunks, in which you write R code and instruct
any corresponding output to be displayed; the output can include both
console text and graphics. When you compile the Sweave file (which has
a .Rnw extension), the R code fields are sent to R for live evaluation, with
the results appearing in the specified places of the finished product. To
start a new document, choose File→ New File→ R Sweave, as shown in
Figure B-8. For some examples and resources, visit the Sweave home page
at https://www.statistik.lmu.de/~leisch/Sweave/ .

Figure B-8: Starting a new Sweave document in RStudio. The editor is used for markup
and live code fields, and you use the Compile PDF button to render the result.

knitr

knitr (Xie, 2015) is an R package designed as an extension to Sweave, with
some additional features that make document creation easier and more
flexible. You can select knitr as the document “weaver” in the Sweave tab
of the RStudio options, found by selecting Tools→ Global Options... (see
Figure B-9). To learn more about Sweave and knitr with respect to RStudio,
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consult Josh Paulson’s article at https://support.rstudio.com/hc/en-us/articles/
200552056-Using-Sweave-and-knitr/ .

Figure B-9: Choosing knitr as the weaver of your markup
document in the Sweave tab of the RStudio options

R Markdown

R Markdown (Allaire et al., 2015) is another dynamic document creation
tool, downloadable from CRAN as the rmarkdown package. Like both Sweave
and knitr, its goal is to produce polished documents that can include R
code and output automatically. Unlike Sweave and knitr, however, one
of the objectives of R Markdown is to minimize the need to learn compli-
cated markup languages like LATEX, and as a result, its syntax is considerably
simpler. Working from a .Rmd source file, you can create a variety of output
document types, such as PDF, HTML, and Word.

To start a new R Markdown document, click the R Markdown...
menu item under File→ New File, as shown on the left of Figure B-8;
this opens the New R Markdown dialog shown at the top of Figure B-10.
Here, you can choose the appropriate document type for your project,
and then you’re provided with a basic template in the RStudio editor;
one such template is shown on the bottom of Figure B-10. The template
even points you toward the R Markdown home page at http://rmarkdown.
rstudio.com/ , which you should certainly investigate if you’re interested in
learning more. Garrett Grolemund also provides a useful collection of
links for using R Markdown at https://support.rstudio.com/hc/en-us/articles/
205368677-R-Markdown-Dynamic-Documents-for-R/ .
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Figure B-10: Starting a new R Markdown file in RStudio. Templates relevant to your
chosen output file type are automatically provided.

Shiny

Shiny is a framework for creating interactive web applications developed by
the RStudio team. If you’re interested in sharing your data, statistical models
and analyses, and graphics, you can craft a Shiny app. The R package shiny

(Chang et al., 2015) provides the required functionality. Shiny apps require
you to have an R session running behind the scenes, which is what drives the
plots as the user interacts with the application in a web browser.

Like other tools associated with RStudio, Shiny is a high-level framework
intended to be friendly for both users and developers. Its emphasis is on
creating interactive visuals not unlike the graphics you produced using ggvis

in Section 24.4, which you can then deploy online for anyone to use.
You can find the Shiny website at http://shiny.rstudio.com/ . The devel-

opment team has put a tremendous amount of work into creating com-
prehensive tutorials, as well as a host of examples. Once you’re comfort-
able with the app, you can even use Shiny to create interactive documents
via R Markdown—notice the Shiny document option in the top image of
Figure B-10.
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Symbols and Numbers

& (element-wise AND operator), 
65, 319

&& (single comparison AND 
operator), 65

<- (arrow) notation, for assigning 
values, 22, 28

< (less than) operator, 61, 386
<= (less than or equal to) 

operator, 61
> (greater than) operator, 61, 386
>= (greater than or equal to) 

operator, 61
* (asterisk)

as cross-factor notation, 517, 
520, 524

as multiplication operator, 17, 49
\ (backslash), 74, 76
\\ escape sequence, for backslash, 76
\" escape sequence, for double 

quotation mark, 76
\b escape sequence, for 

backspace, 76
\n escape sequence, for newline, 76
\t escape sequence, for tab, 76
{ } (braces), 666
^ (exponent operator), 17
: (colon) 

for creating numeric 
sequences, 24

for grouping variables, 446, 
516, 524

:: (double colon), for specifying 
function version, 253

:= operator, 624–625
$ (dollar) operator, 92, 256, 461
.~. notation, 534, 535, 539

" (double quotation mark), 7, 73
= (equal sign), 21–22
== (equal to) operator, 61
! (factorial operator), 333
! (NOT operator), 65, 107
!= (not equal to) operator, 61
/ (forward slash) 

for division, 17
for file paths, 7

# (hash mark)
for comments, 6
for hexadecimal color codes, 632

∞ (infinity), 104–106
- (subtraction operator), 17, 49
· (matrix multiplication), 488
≠ (not equal sign), 386, 459
() (parentheses), 17, 19, 601
%>% (pipe) operator, 624
%*% (matrix product operator), 50
| (element-wise OR operator), 

65, 452
|| (single comparison OR 

operator), 65
+ (addition operator), 17
?? command, 10
; (semicolon), 666
[] (square brackets). See square 

brackets ([])
~ (tilde), 299, 445, 490
2D circle, 721–723
3D cone, 725
3D cylinder, 723–725
3D plots. See 3D scatterplots; 

interactive 3D plots
3D scatterplots, 649–653 

basic syntax, 649–650 
visual enhancements, 650–653

I N D E X



768   Index

A

α (significance level), 387
abline function, 134, 137, 456, 525
add1 function, 533, 571
add_axis function, 626, 628, 629, 630
addition, 17, 18

of matrices, 49–50
additive effect, 468
add_legend function, 626, 628, 

629, 630
add.smooth argument, 552
adjust argument, 628
adjustcolor command, 612–613, 

643–645, 665
adjusted measure, 460
Adjusted R-squared (coefficient of 

determination), 460, 548
advanced plot customization. 

See customizing plots; 
plotting

aesthetic mapping, with geoms, 
143–146

aggregate function, 444, 
446–447, 450

AIC (Akaike’s Information 
Criterion), 541–548

AIC function, 542
airquality data frame, 614, 615, 617, 

653, 676, 698
Akaike’s Information Criterion 

(AIC), 541–548
algorithms, model selection, 

529–548 
backward selection, 537–541 
forward selection, 533–537 
nested comparisons, 529–532 
stepwise AIC selection, 541–548

all function, 63, 64
alpha (significance level), 426
alpha argument, 643, 644, 701, 714
alpha.f argument, 613, 643
alternative argument, 391, 405
alternative hypothesis, 386
American Standard Code for 

Information Interchange 
(ASCII), 160

analysis of variance. See ANOVA
AND operator, 65
Anderson-Darling test, 438
angle argument, 370
anonymous functions, 236
anorexia data set, 401
ANOVA (analysis of variance), 

435–450 
Kruskal-Wallis test, 447–450 
one-way, 435–442 

ANOVA table construction, 
439–440 

building ANOVA tables with 
aov function, 440–442 

equivalence with, 481–483 
hypotheses and diagnostic 

checking, 436–439 
two-way, 443–447 

main effects and inter-
actions, 444–447 

suite of hypotheses, 443–444
anova function, 531, 571
any value, 63, 64
aov function, 440–442, 481
appearance constants, setting with 

geoms, 141–143
apply function, 204–209, 236, 723
args.legend argument, 292
arguments, 8, 222–232 

defaults, setting, 225–227 
ellipses and, 176–177, 228–233 
lazy evaluation, 222–225 
matching, 172–177 

ellipses and, 176–177 
exact, 172–173 
mixed, 175–176 
partial, 173–174 
positional, 174–175 

missing, checking for, 227–228
Arguments section, of help files, 10
arithmetic, 18–19. See also math
arithmetic operators, displaying in 

plots, 601
array function, 53, 58
arrays, multidimensional, 52–58
arr.ind argument, 71
arrows function, 134, 138, 353, 585
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ASCII (American Standard 
Code for Information 
Interchange), 160

as-dot functions, 121, 248
as.matrix function, 124
as.numeric function, 278, 438, 462, 

469, 638
asp argument, 705
aspect argument, 695, 705
aspect ratio, of bivariate surfaces, 

704–708
assigning objects, 21–22
as.vector function, 123–124
asymmetric distribution, 326
attach function, 256–257
attributes, 114–116
attributes function, 114–115, 117
automatic plot types, 129–130
average squared distance, 277
axes, 577 

customizing, 594–596 
labeling, 130–131, 299 
spacing, 595 
tick marks, 606

axis function, 594–595, 604

B

\b (backspace) escape sequence, 76
β (Type II error), 424, 426
β0 (intercept), 454
β1 (slope), 454
backslash (\) symbol, 74, 76
backward selection, 537–541
barplot function, 290–291, 316
barplots, 289–293
base distribution, 739
base packages, 253, 739
base R graphics, 139
baseline hypothesis, 386, 421
bases, of logarithms, 19
Bayesian Information Criterion 

(BIC), 548
Bayesian probability, 310
Bernoulli distribution, 332–334
between-group variability, 440
bg3d function, 693
bgplot3 function, 696, 706

bias, 377
BIC (Bayesian Information 

Criterion), 548
bimodal distribution, 326
binary variables, 332, 468–472 

linear regression model of, 
470–471 

predictions from, 471–472
binding, matrices, 41–42
binomial distribution, 333–337 

dbinom function, 335–336 
pbinom function, 336 
qbinom function, 337 
rbinom function, 337–338

binomial random variable, 339
bivariate surfaces, 699–708 

adding points, 701 
adding surfaces, 701–703 
basic perspective surface, 700 
coloring by z value, 703–704 
dealing with aspect ratio, 

704–708
body code, of a function, 216
Bonferroni correction, 423
boot package, 500, 523, 687, 740
border argument, 682
Boston data frame, 733
box function, 583
box-and-whisker plots. See boxplots
boxes, customizing, 593–594
boxplot function, 298–299, 606
boxplots, 298–300, 469–470

side-by-side, 299–300, 437, 
448–449 

stand-alone, 298–299
braced area, of a function, 216
braces, for enclosing commands, 666
breaks argument, 85, 295
bty parameter, 593
built-in data sets, 148–149
built-in palettes, 635–636
byrow argument, 40

C

c function, 58, 83
calculations, controlling order of, 17
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calling functions, 165–177
argument matching, 172–177

ellipses and, 176–177
exact, 172–173
mixed, 175–176
partial, 173–174
positional, 174–175

scoping, 165–171
environments, 166–168
reserved and protected 

names, 170–172
search path, 168–170

car package, 254, 628, 646, 741
Cars93 data frame, 450
case-sensitivity, 7
cat command, 74–75, 219, 244
categorical predictors, 468–483

binary variables, 468–472
changing reference level, 

477–478 
equivalence with one-way 

ANOVA, 481–483 
interactions

between two, 519–521
with continuous predictors, 

515–519
higher-order, 523–526

multilevel variables, 472–477 
dummy coding, 472–474 
linear regression model of, 

474–476 
treating categorical variables as 

numeric, 478–480
categorical variables, 262–263, 

490, 515 
facets mapped to, 619–623 
testing, 410–420 

single categorical variable, 
410–415 

two categorical variables, 
415–420

categories 
exhaustive, 410 
mutually exclusive, 410

categorization, indexing 
continuums using color 
palettes via, 637–639

cbind function, 41–42, 98

central limit theorem (CLT), 
369, 401

centrality, 267–270
cex (character expansion) 

parameter, 129, 693, 707
cex.lab argument, 599
char argument, 250
characters, 72–79 

concatenation of, 74–76 
escape sequences, 76–77 
expansion, 129 
matching, 77–79 
strings of, 73–74 
substrings and matching, 77–79

χ (chi) symbol, 410
ChickWeight data set, 148
chickwts data frame, 263, 269, 279
chisq.test function, 414–415, 419
chi-squared test 

of distribution, 411–414 
of independence, 416–419

chorley data set, 678
circles, 2D, 721–723
CIs. See confidence intervals (CIs)
citation command, 748
citing R packages, 748–749
class function, 117, 118, 119
classes. See object class
classical probability, 310
clmfires data set, 707
close function, 249–250
CLT (central limit theorem), 

369, 401
cm.colors function, 635
coef argument, 518
coef function, 457
coefficient of determination, 

458, 460
coefficients component, 457
coercion, 120–126
col (color) parameter, 129, 605, 

682, 693
col2rgb function, 632–634
collective fashion, 477
collinearity, 549, 569–572 

correlated predictors, example 
of, 569–572 

potential warning signs, 569
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color, 631–648. See also color 
palettes 

coloring facets, 682–686 
controlling multiple levels in 

isosurfaces with, 714–715 
including color legend, 641–643 
opacity, 643–645 
on plots, 131–132 
RGB alternatives, 645–648 
RGB hexadecimal color codes, 

632–635
color argument, 715
color palettes 

built-in palettes, 635–636 
custom palettes, 636–637 
using to index continuum, 

637–641 
via categorization, 637–639 
via normalization, 639–641

colorlegend function, 641–643, 
644, 647, 648, 651, 669, 
675, 690

color.palette argument, 663
colorRamp function, 639, 640, 

646, 690
colorRampPalette function, 636–637, 

639, 645–646, 664
colors function, 131, 632
cols argument, 633
colSums function, 417
columns 

binding together matrices as, 
41–42 

extracting from matrices, 43–44
combination plots, 333, 563
commands 

built-in, 7 
scrolling through, 5

commas, in code, 13
comma-separated values (.csv), 150
comments, 6
compiler package, 739
complement of an event, 312–313
completion time, 250–252
complexity vs. goodness-of-fit, 

527–528 
general guidelines, 528–529 
principle of parsimony, 528

Comprehensive R Archive 
Network. See CRAN 
(Comprehensive R 
Archive Network)

compute.cont argument, 717
concatenation, of characters, 74–76
conditional probability, 311
conditions. See if statements
cones, 3D, 725
confidence bands, 507
confidence intervals (CIs), 378–384, 

461–462 
interpretation of, 382–384 
for mean, 378–381 
for proportion, 381–382

confint function, 460, 495
conf.level argument, 405, 410
confounding, 486
console pane, 5–6
continuous predictors, 493, 515–519, 

521–523
continuous random variables, 

318–326 
cumulative probability 

distributions of, 323–324 
mean and variance of, 326–329

continuums, indexing using color 
palettes, 637–641 

via categorization, 637–639 
via normalization, 639–641

contour function, 657–658, 661–663
contour plots, 657–668 

color-filled contours, 663–668 
drawing contour lines, 657–663 

nonparametric bivariate 
density estimate example, 
660–663 

parametric response surface, 
659–660 

topographical map example, 
657–658

contour3d function, 713, 719
contributed data sets, 149–150
control flow mechanisms, 209–214. 

See also loops 
declaring break or next, 209–211 
repeat statement, 211–214

cook.levels argument, 565
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Cook’s distance 
graphically combining 

with residuals and 
leverage, 563–568 

overview, 559–563
cooks.distance function, 561
coord_flip function, 292–293
cor function, 281–285, 453
correct argument, 405
correlation, 280–285
cos function, 722
cosine function, 720
counts, 271–273
cov function, 281–284
covariance, 280–285
covariance matrices, 732
CRAN (Comprehensive R Archive 

Network) 
finding packages on, 742 
mirror link, 737 
obtaining and installing R 

from, 3 
switching CRAN mirror, 

747–748
cross-factor notation (*), 517, 

520, 524
.csv (comma-separated values), 150
cumsum function, 316
custom color palettes, 636–637
customizing plots, 575–608 

axes, 594–596 
boxes, 593–594 
default styles, suppressing, 

592–593 
fonts, 597–598 
graphics devices, handling, 

576–582 
closing, 578 
manually opening new, 

576–608 
multiple plots in one, 

578–582 
switching between, 577–578 

Greek symbols, 598–599 
mathematical expressions, 

displaying, 599–601

point-and-click coordinate 
interaction, 586–591 

ad hoc annotation, 588–591 
retrieving coordinates 

silently, 586–587 
visualizing selected 

coordinates, 587–588 
regions and margins, 582–586 

clipping, 584–586 
custom spacing, 583–584 
default spacing, 582–583 

scatterplot, fully annotated, 
601–608 

cut function, 638, 705
cylinders, 3D, 723–725

D

.dat file format, 155
data frames, 95–102 

adding data columns, 98–100 
combining, 98–100 
creating, 96–98 
logical record subsets, 100–102

data function, 147
data sets, 147–150, 156–157 

built-in, 148–149 
contributed, 149–150

data visualization, 289–308 
barplots, 289–293 
box-and-whisker plots, 298–300 

side-by-side boxplots, 
299–300 

stand-alone boxplots, 
298–299 

histograms, 294–298 
pie charts, 293–294 
scatterplots, 300–308 

matrix of plots, 303–308 
single plot, 301–302

data.frame class, 120
data.frame function, 96, 97
datasets package, 148, 263, 739
dbeta function, 363
dbinom function, 334, 335–336
dchisq function, 362, 412
debugging, 244
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decimal places (d.p.), 13
decreasing argument, 26, 27, 59, 60
degrees of freedom

for chi-squared distribution, 362
for F -distribution, 363
for t-distribution, 357–358

deleting
elements from matrices, 44–46
elements from vectors, 29

delimiter, in table-format files, 150
demo(plotmath) demonstration, 601
density command, 614
density functions, 342–363 

exponential, 359–362 
dexp function, 359–360 
pexp function, 360–361 
qexp function, 361–362 

normal, 348–357 
dnorm function, 350 
example, 356–357 
pnorm function, 350–353 
qnorm function, 353–354 
rnorm function, 355–356 

Student’s t-distribution, 357–359 
uniform, 343–347 

dunif function, 344–346 
punif function, 346 
qunif function, 346–347 
runif function, 347

dependencies argument, 743
Description section, of help files, 10
detach function, 255, 257, 740
Details section, of help files, 10
dev.new function, 576, 579–580
dev.off function, 157, 578
dev.set function, 577, 578
dexp function, 359–360
df argument, 362, 412
df function, 363
df1 argument, 363
df2 argument, 363
d-function, 342, 344
dgamma function, 363
dgeom function, 342
dget command, 160, 161
dhyper function, 342

diabetes data frame, 516, 531, 
620–621, 652

diag command, 46, 48
diagnostic checks, 438, 550
diagonal element extraction, 558
dichotomous variables, 332
digit argument, 643
digits argument, 272
dim function, 42, 49, 97, 114, 115, 657
dimensions, of matrices, 42
dimnames argument, 115–116, 413
direct-access function, 457
discrete random variables, 315–318 

cumulative probability 
distributions of, 315–317 

mean and variance of, 317–318
discrete numeric variables, 262
disposable functions, 236
distributions, chi-squared test 

of, 411–414. See also 
probability distributions; 
sampling distributions

division, 17, 18
dmultinom function, 342
dmvnorm function, 711, 713
dnbinom function, 342
dnorm function, 350, 648, 711
dodged barplot, 290
dollar ($) operator, 92, 256, 461
double colon (::), for specifying 

function version, 253
double quotation marks ("), 7, 73

escape sequence (\"), 76
download from source prompt, 744
downloading R, 737–739
d.p. (decimal places), 13
dpois function, 340–341
dput command, 160, 161
drop1 function, 537, 571
dt function, 357
dummy functions, 220
Duncan data set, 420
Dunedin temperatures example, 

369–373
dunif function, 344–346
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E

e (Euler’s number), 19
each argument, 25–26, 417
earthquake data example, 660–663
editor, in RStudio, 752–753
editor pane, 5–6
element-wise checks, 184–186
ellipses, arguments and, 176–177, 

228–233
else statements, 183–184
empty parentheses, 216
empty pixels, 671–679
end argument, 635, 672
e-notation, 20–21
environments, 166–168 

global, 166 
local, 167–168 
package environments and 

namespaces, 166–167
equal sign (=), 21–22
errors. See also exception handling 

overview, 420–421 
Type I errors, 421–423 

Bonferroni correction, 423 
simulating, 421–423 

Type II errors, 424–428 
other influences on error 

rate, 426–428 
simulating, 425–426

escape sequences, 76–77
Euclidian space, 720
Euler’s number (e), 19
evaluation grid, constructing, 

654–655
events, probability and, 310 

complement of an event, 312–313 
intersection of two events, 

311–312 
union of two events, 312

exact argument matching, 172–173
Examples section, of help files, 10
Excel, file format for, 153
exception handling, 241–248 

errors and warnings, 242–244 
try statements, 244–248 

suppressing warning 
messages, 246–248 

using in body of function, 
245–246

exp function, 19
expand argument, 682, 688, 705
expand.grid function, 654–655, 659, 

675, 678, 706, 709, 724
explanatory variables, 451, 453, 

485, 490, 528, 589
explicit attributes, 114, 115
exponential distribution, 359–362 

dexp function, 359–360 
vs. exponential function, 361
pexp function, 360–361 
qexp function, 361–362

exponential function, 19–20
exponents, 17
expression function, 598–599
externally defined helper 

functions, 234–235
extractAIC function, 542
extraction 

of elements in vectors 
using indexes, 28–32
using logicals, 68–72 

from matrices, 43–44
extraneous variables, 486
extrapolation, 466

F

F (abbreviation for FALSE), 60
F (cumulative distribution 

function), 323
facet_grid command, 619–620
facets 

coloring, 682–686 
multiple plots using, 616–623 

facets mapped to categorical 
variable, 619–623 

independent plots, 616–618
facet_wrap command, 619–620
factor function, 80
factor variable, 435
factors, 79–87 

combining and cutting, 83–86 
defining and ordering levels, 

82–83 
identifying categories, 79–81
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faithful data frame, 667
FALSE value, 27, 60
family parameter, 597
faraway package, 513, 516, 526, 531, 

620–621, 652, 741
F -distribution, 363
Fibonacci sequence, 216–218
figure margins, 582
figure margins too large error, 584
figure region, of a plot, 582
file formats, for plots, 157
file paths, 7
file.choose command, 152, 156
filled.contour function, 663, 

666, 690
fitted function, 457, 560
fitted models, 518, 529
fitted values, 458, 462, 551
fitted.values component, 457
fitting linear models, 454
five-number summary, 274–275
flag vectors, logical, 68
floating-point numbers, 117
floor operation, 394
font parameter, 597
fonts, 597–598
for loops, 193–200 

looping via index or value, 
194–197 

nesting, 197–200
forecasting, 498
foreign package, 156, 740
formula argument, 535
forward selection, 533–537
forward slashes (/), 7
frac operator, 601
frequentist probability, 310
from argument, 24
F -test, partial, 529–532
FUN argument, 270, 272, 444
function command, 215–222, 236 

creating functions, 218–219 
return statement and, 220–222

functions, documentation for, 8–10. 
See also calling functions; 
writing functions

G

geom argument, 296
geom_bar function, 292–293
geom_density function, 614–615
geometric distribution, 342
geometric mean, 238
geom_histogram function, 297, 611
geom_hline function, 145
geom_line function, 142, 145
geom_point function, 142, 145
geoms (geometric modifiers) 

aesthetic mapping with, 143–146 
setting appearance constants 

with, 141–143
geom_segment function, 145
geom_smooth function, 612, 613, 

621, 630
geom_vline function, 297, 610
getOption function, 747
getwd function, 7
GGally package, 304, 741
ggpairs function, 304–306
ggplot function, 609–611
ggplot2 package 

aesthetic mapping with geoms, 
143–146 

multiple plots and variable-
mapped facets, 616–623 

facets mapped to categorical 
variable, 619–623 

independent plots, 616–618 
qplot function vs. ggplot 

function, 609–611 
setting appearance constants 

with geoms, 141–143 
smoothing and shading, 

611–615 
adding LOESS trends, 

611–614 
constructing smooth density 

estimates, with KDE, 
614–615

ggsave function, 159
ggtitle function, 610, 615
ggvis package, 623–630, 741
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global environment, 166
.GlobalEnv, 253
goodness-of-fit vs. complexity, 

527–528 
general guidelines, 528–529 
principle of parsimony, 528

grammar of graphics, 139
graphical parameters, 129–134
graphical user interface. See 

GUI (graphical user 
interface)

graphics devices, 576–582 
closing, 578 
manually opening new, 576–608 
multiple plots in one, 578–582 

defining particular layout, 
580–582 

setting mfrow parameter, 
579–580 

switching between, 577–578
graphics files, 157–159
graphics package, 739
graphs. See plotting
gray palette, 635, 639, 677
gray.colors palette, 635, 636, 

677, 690
grDevices package, 739
greater than operator (>), 61, 386
greater than or equal to operator 

(>=), 61
greater-than statement, 386
Greek symbols, 598–599
grep command, 78
grid function, 605
grid package, 739
grid3d function, 694–696
grid.arrange function, 616–618
gridExtra package, 616, 617, 741
gridsize argument, 717
group_by function, 628
gsub function, 78
GUI (graphical user interface) 

installing packages with, 
744–745 

overview, 4–6

H

HairEyeColor data set, 419
hash mark (#) 

for comments, 6
for hexadecimal color codes, 632

hatvalues function, 558, 561, 571
HCL (hue-chroma-luminance), 645
hcl function, 645
header, in table-format files, 150
heat.colors palette, 635, 638, 678, 

689, 708
height argument, 579, 603
help files, 8–10
helper functions, 233–236 

externally defined, 234–235 
internally defined, 235–236

heteroscedasticity, 550, 551
hexadecimal color codes, 632
higher-dimensional probability 

densities, 710–711
higher-order interactions, 523–526
high-level programming language, 

R as, 3
hist function, 294–297
histograms, 294–298, 577
homoscedasticity, 550
HSV (hue-saturation-value), 645
hsv function, 645
hue-chroma-luminance (HCL), 645
hue-saturation-value (HSV), 645
hypergeometric distribution, 342
hypothesis testing, 385–433 

categorical variables, 410–420 
single categorical variable, 

410–415 
two categorical variables, 

415–420 
components of, 385–388 

hypotheses, 386 
p -value, 387 
significance level, 387–388 
test statistic, 387 

criticisms of, 388 
errors, 420–421 

Type I errors, 421–423 
Type II errors, 424–428 
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means, 388–402 
single mean, 389–392 
two means, 392–402 

proportions, 402–410 
single proportion, 402–405 
two proportions, 405–410 

statistical power, 428–433 
power curves, 431–433 
simulating power, 429–431

I

I function, 505
ice.river data set, 148
identity matrix, 48
IDEs (integrated development 

environments), 751
id.n argument, 552
if statements, 179–193 

else statements and, 183–184 
nesting and stacking, 186–189 
stand-alone, 180–183 
switch function and, 189–193

ifelse function, using for element-
wise checks, 184–186

image function, 668, 672, 673, 
682–683

implicit attributes, 114
implicit looping, with apply 

function, 204–209
include.lowest argument, 85
independence, chi-squared test of, 

416–419
INDEX argument, 270, 444
indexes 

of lists, 90–91
looping via, 194–197 
of vector elements, 28–32
vectors of, 30

Inf function, 104, 107
infinity (∞), 104–106
influence, 555–557
inheritance, 116
input_ functions, 624, 627
input_checkbox function, 626
input_numeric function, 626
input_radiobuttons function, 626
input_select function, 626

input_slider function, 624–625, 627
InsectSprays data set, 273, 306
inside.owin function, 674, 675, 

678, 690
installing R, 737–750 

from CRAN, 3 
downloading, 737–739 
packages, 739–746 

base packages, 739 
contributed packages, 

740–746 
finding on CRAN, 742 
installing at prompt, 

742–744 
installing from GUI, 

744–745 
installing using local files, 

745–755 
recommended packages, 740 
updating, 746–747 

using other mirrors and 
repositories, 747–748 

other package 
repositories, 748 

switching CRAN mirror, 
747–748

install.packages command, 8, 
742, 756

integers, 117–118
integrated development environ-

ments (IDEs), 751
intensities (of RGB colors), 632
interaction.plot function, 446
interactions with plot coordinates, 

point-and-click, 586–591
ad hoc annotation, 588–591
retrieving coordinates silently, 

586–587
visualizing selected coordinates, 

587–588
interactive 3D plots, 691–735 

bivariate surfaces, 699–708 
adding points, 701 
adding surfaces, 701–703 
basic perspective surface, 700 
coloring by z value, 703–704 
dealing with aspect ratio, 

704–708 
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interactive 3D plots, continued 
parametric equations, 720–735 

mathematical abstractions, 
725–735 

simple loci, 720–725 
point clouds, 691–699 

adding further 3D 
components, 694–699 

basic 3D cloud, 692–693 
visual enhancements and 

legends, 693–694 
trivariate surfaces, 709–719 

evaluation coordinates in 
3D, 709–710 

isosurfaces, 710–715 
nonparametric trivariate 

density example, 715–720
interactive effects, 443, 514–515

between categorical and 
continuous predictors, 
515–519

between two categorical 
variables, 519–521

between two continuous 
predictors, 521–523

higher-order, 523–526
interactive.arrow function, 590, 608
intercept parameter, estimating, 

454–455
intercept-only model, 542
internally defined helper functions, 

235–236
interpolation, 480, 498
interquartile range (IQR), 277, 287
intersection of two events, 311–312
interval argument, 463
inversion, of matrices, 51–52
involutory function, 603
inward-facing tick marks, 596
IQR (interquartile range), 277, 287
IQR function, 278–279
iris data frame, 649–650, 692
is-dot functions, 119–120
is.factor(survey$Smoke) function, 474
is.finite function, 105
is.infinite function, 105
is.integer function, 125

is.matrix function, 223
is.na function, 109
is.nan function, 107
is.null function, 111
is.numeric function, 125
isosurfaces, 710–715 

basic one-level isosurface, 
712–714 

controlling multiple levels 
with color and opacity, 
714–715 

higher-dimensional probability 
densities, 710–711

italic function, 600–601
italicized alphabetic variables, 601
iterative looping, 237

J

jitter function, 276
jittering, 276
.jpeg files, 157–158

K

k categories, 410, 637
KDE (kernel density estimation), 

614, 660
kde function, 717, 719
kde2d function, 660, 671, 674, 

678, 690
kernel density estimation (KDE), 

614, 660
KernSmooth package, 740
keystroke shortcuts, 6
key.title argument, 664
knitr package, 757–758
kruskal.test function, 448
Kruskal-Wallis test, 447–450
ks package, 741

L

label notation, specialized, 597–601 
font, 597–598 
Greek symbols, 598–599 
mathematical expressions, 

599–601
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labels argument, 85, 557
labs function, 297
lambda parameter, 341
lapply function, 238
las parameter, 595–596
lattice package, 740
layer_densities function, 628
layer_histograms function, 624, 

628, 630
layer_points function, 626
layers, 53, 139
layer_smooths function, 627, 628, 630
layout function, 580, 664
layout.show function, 581
lazy evaluation, 222–225
least-squares regression, 455, 456
left argument, 645
legend function, 134, 138, 232, 605
legend3d function, 693
legends, on interactive 3D plots, 

693–694
legend.text argument, 292
length function, 27, 80
length.out value, 24, 25
less than operator (<), 61, 386
less than or equal to operator 

(<=), 61
less-than statement, 386
letters object, 655
levels function, 80, 115, 661
leverage, 550 

calculating, 555–558 
combining with residuals and 

Cook’s distance, 563–568 
illustrating, 555–557

libraries. See packages
library command, 7–8, 148
line of best fit, 458, 487
line type (lty) parameter, 129, 133, 

605, 659
line width (lwd) parameter, 129, 

133, 659
linear model selection and 

diagnostics 
goodness-of-fit vs. complexity, 

527–528 
general guidelines, 528–529 
principle of parsimony, 528 

model selection algorithms, 
529–548 

backward selection, 537–541 
forward selection, 533–537 
nested comparisons, 

529–532 
stepwise AIC selection, 

541–548
residual diagnostics, 548–568 

assessing normality, 554–555 
calculating leverage, 

555–558 
Cook’s distance, 559–563 
graphically combining 

residuals, leverage, and 
Cook’s distance, 563–568 

illustrating outliers, 
leverage, and influence, 
555–557 

inspecting and interpreting 
residuals, 549–554

linear regression. See multiple 
linear regression; 
simple linear regression

lines 
adding to plots, 134–139 
contour lines, drawing, 657–663 

nonparametric bivariate 
density estimate example, 
660–663 

parametric response surface, 
659–660 

topographical map example, 
657–658 

on plots, 133
lines function, 134
lines3d function, 694, 708
list command, 92, 230
list slicing, 91
list.files function, 151
lists of objects, 89–95 

definition and component 
access, 89–91 

naming, 91–93 
nesting, 93–95

lm command, fitting linear models 
with, 455–456

load command, 11
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loading 
packages, 7–8 
workspace image files, 11–12

local environments, 167–168
locally weighted scatterplot 

smoothing (LOESS), 
611–614

locator function, 586–587, 608, 
633–634

loci, 720–725 
2D circle, 721–723 
3D cone, 725 
3D cylinder, 723–725

LOESS (locally weighted scatterplot 
smoothing), 611–614

loess function, 612
log function, 20
logarithmic scale, 509
logarithms, 19–20, 508–512 

fitting log transformation, 
509–511 

plotting log transformation fit, 
511–512

logical flag vector, 547
logical operators, 64–67
logical values, 26–27, 59–72 

logical operators, 64–67 
logical subsetting and 

extraction, 68–72 
numbers as, 67–68 
relational operators, 60–64 
TRUE or FALSE, 60

log-likelihood, 542
loops, 193–209 

for loops, 193–200 
looping via index or value, 

194–197 
nesting, 197–200 

implicit looping with apply 
function, 204–209 

rotating with, 686–690 
while loops, 200–204

lower quartile, 274
lower-tail probability, 351
lower-tailed test, 386, 394
ls command, 22

lty (line type) parameter, 129, 133, 
605, 659

lty.hplot argument, 650
lurking variable, 486
lwd (line width) parameter, 129, 

133, 659

M

main (plot title) parameter, 129
Mann-Whitney U test, 401
mar parameter, 582, 594
margins, plotting, 582–586 

clipping, 584–586 
custom spacing, 583–584 
default spacing, 582–583

markup tools, 601
masking, 252–258 

data frame variable distinction, 
255–258 

function and object distinction, 
252–255

mass functions, 332–342, 344 
Bernoulli distribution, 332–334 
binomial distribution, 333–337 

dbinom function, 335–336 
pbinom function, 336 
qbinom function, 337 
rbinom function, 337–338 

Poisson distribution, 338–342 
dpois function, 340–341 
ppois function, 340–341 
qpois function, 341 
rpois function, 341–342

MASS package, 254–255, 401, 450, 
474, 611, 622, 629, 637, 
660, 686, 697, 740

matching, of characters in strings, 
77–79

math, 17–21, 599–601. See also 
matrices; vectors 

arithmetic, 18–19 
e-notation, 20–21 
exponentials, 19–20 
logarithms, 19–20

mathematical abstractions, 725–735 
Möbius strip, 726–729 
torus, 729–735
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matrices, 303–308 
addition of, 49–50 
algebra and, 47–52
binding together, 41–42 
defining, 39–42 
deleting elements from, 44–47
dimensions of, 42 
extracting elements from, 43–44 
filling direction, 40–41 
identity matrix, 48 
inversion of, 51–52 
multiplication of, 50–51 
omitting and overwriting 

elements from, 44–47 
operations and algebra, 47–52 
scalar multiple of, 49 
subsetting elements from, 42–47 
subtraction of, 49–50 
transpose of, 47–48

matrix command, 40, 58
max function, 268–269
maxColorValue argument, 633, 643
mean 

of continuous random variable, 
326–329 

of discrete random variable, 
317–318

mean function, 9, 268–270, 453
mean square (MS), 439, 440
mean squared error (MSE) 

effect, 440
mean squared group (MSG) 

effect, 440
means, hypothesis tests of, 388–402 

single mean, 389–392 
two means, 392–402 

paired/dependent samples, 
398–402 

pooled variance, 396–398 
unpooled variances, 

393–395
median function, 268–269
member references, 90
mfrow parameter, 579–580, 581, 616, 

666, 688
mgp parameter, 595–596
Microsoft Office Excel, file format 

for, 153

min function, 268
mirrors, installing packages using, 

747–748
misc3d package, 713, 718, 741
missing function, 227
missing value, in table-format 

files, 150
Möbius strip, 726–729
modality, 326
model diagnostics, 548
model selection, 492, 525, 528
model-based inference, 458
MS (mean square), 439, 440
MSE (mean squared error) 

effect, 440
MSG (mean squared group) 

effect, 440
mtcars data frame, 287, 290, 478, 

503, 514, 521, 526, 653, 
664, 669, 702

mtext function, 584
multicollinearity. See collinearity
multidimensional arrays, 52–58 

definition, 53–55 
subsets, extractions, and 

replacements, 55–58
multilevel variables, 472–477 

dummy coding, 472–474 
linear regression model of, 

474–476 
predictions from, 476–477

multinomial distribution, 342
multiple linear regression, 485–526 

implementing in R and 
interpreting, 490–501 

additional predictors, 
490–493 

finding confidence 
intervals, 495 

interpreting marginal 
effects, 493–494 

omnibus F -test, 496–498 
predicting from multiple 

linear model, 498–501 
visualizing multiple linear 

model, 494–495 
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multiple linear regression, continued
interactive terms, 514–526 

concept and motivation, 
514–515 

higher-order interactions, 
523–526 

one categorical, one 
continuous, 515–519 

two categorical, 519–521 
two continuous, 521–523 

terminology, 486 
theory, 486–489 

basic example, 488–489 
estimating in matrix form, 

487–488 
extending simple model to 

multiple model, 487 
transforming numeric variables, 

501–514 
logarithmic, 508–512 
polynomial, 502–508

multiple plots, using facets, 
616–623 

facets mapped to categorical 
variable, 619–623 

independent plots, 616–618
Multiple R-squared (coefficient of 

determination), 460
multiple testing problem, 423
multiple-factor ANOVA, 443
multiplication of matrices, 50–51
multivariate data, 264–265
multivariate model, 494
mvtnorm package, 710, 741

N

\n (newline) escape sequence, 76
NA (Not Available) value, 108–110
names function, 93, 115
namespaces, 166–167
naming lists of objects, 91–93
NaN (Not a Number) value, 106–108
na.omit function, 110, 638, 653, 

676, 697
na.rm argument, 270, 469, 640, 684
natural log, 19

ncol argument, 40, 168, 620
ncol function, 42, 97
negative binomial distribution, 342
negative coefficient

of categorical predictors, 
468–476

of continuous predictors, 
454, 522

negative power, 20
negative skew, 326
nesting 

if statements, 186–189 
lists of objects, 93–95 
for loops, 197–200

newdata argument, 463, 471, 511, 659
newline escape sequence (\n), 76
news function, 746
no-change hypothesis, 386, 421
nominal variables, 262. See also 

categorical variables
non-numeric values. See characters; 

factors; logical values
nonparametric bivariate density 

estimate example, 
660–663

nonparametric smoothing, 611
nonparametric trivariate density 

example, 715–720 
calculating 3D estimate, 717 
isosurface level selection, 

717–720 
normal distribution, 348–357 

dnorm function, 350 
example, 356–357 
pnorm function, 350–353 
qnorm function, 353–354 
rnorm function, 355–356

normalization, indexing continuums 
using color palettes via, 
639–641

normalize function, 640, 644, 646, 
651, 677

Not a Number (NaN) value, 106–108
Not Available (NA) value, 108–110
NOT operator, 65
Notes section, of help files, 10
nrow argument, 40, 620
nrow function, 97, 101, 271, 675, 723
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nuclear data frame, 500, 533, 546, 
666, 687

nuisance variables, 486
null device, 576, 580
null hypothesis, 386, 421
null model, 496, 542
NULL value, 110–114
numbers, as logical values, 67–68
numeric variables, 262, 515 

transforming, 501–514 
logarithmic, 508–512 
polynomial, 502–508

numerical simulation, 421

O

object class, 116–119 
multiple classes, 119 
other data structures, 118–119 
stand-alone vectors, 117–118

object-oriented programming 
language, R as, 116

objects, assigning, 21–22
observed count, 411, 416
oma parameter, 582
omitting elements

from matrices, 44–47
from vectors, 28–33, 68–72

omnibus F -test, 482, 496–498
one-factor analysis, 435
one-sided statement, 386
one-to-one transformations, 514
one-way ANOVA, 443
opacity, 643–645, 714–715
OR operator, 65
order of operations, 18
ordinal variables, 262. See also 

categorical variables
orthogonal contrasts, 477
outer function, 724
outer region, of a plot, 582
outliers, 285–288, 555–557
overwriting elements

from matrices, 44–47
from vectors, 28–33, 68–72

owin class, 672

P

package environments, 166–167
packages, 7 

citing, 748–749
finding on CRAN, 742 
installer and updater in 

RStudio, 755–756 
installing, 8 

with graphical user interface 
(GUI), 744–745 

at prompt, 742–744 
using local files, 745–755 

loading, 7–8 
masking, 254–255 
updating, 8
writing, 749–750

padding space, on a plot, 592
pairs function, 303
palette function, 632
palettes. See color palettes
panes, in RStudio, customizing, 

753–754
par function, 579–580, 666, 688
parameters, 265–266
parametric equations, 720–735 

mathematical abstractions, 
725–735 

Möbius strip, 726–729 
torus, 729–735 

simple loci, 720–725 
2D circle, 721–723 
3D cone, 725 
3D cylinder, 723–725

parametric response surface, 
659–660

parentheses (()), 17, 19, 601
parsimony, 528, 548
partial argument matching, 

173–174
partial F -tests, 529–531
paste function, 74–75, 601
pattern matching, 77–79
pbeta function, 363
pbinom function, 334, 336
pch (point character) parameter, 

129, 133, 647, 651, 707
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pchisq function, 362, 414
pcol function, 633, 634
.pdf files, 157–158
PEMDAS (order of operations), 18
percentages, 271–273
percentiles, 274–275
persp function, 680, 682–683, 686
persp3d function, 700–706, 724–731
perspective plots, 679–690 

basic plots and angle 
adjustment, 679–682 

coloring facets, 682–686 
rotating with loops, 686–690

persprot function, 686–687, 690
pexp function, 360–361
pf function, 363
p-function, 331, 337, 342, 346, 361
pgamma function, 363
pgeom function, 342
phyper function, 342
PI (prediction interval), 462
π (pi) symbol, 373, 403
pi object, 722
pie charts, 293–294
pie function, 293
pipe operator (%>%), 624
pixel images, 668–679 

one grid point = one pixel, 
668–671 

surface truncation and empty 
pixels, 671–679

PlantGrowth data set, 401
plot function, 128, 129, 134, 230, 

469, 551, 571, 610, 642, 
662, 672

plot3d function, 692
plot.axes argument, 665
plot.new function, 696
plotrix package, 643
plotting, 127–146. See also 

customizing plots; 
interactive 3D plots; 
scatterplots 

3D scatterplots, 649–653 
basic syntax, 649–650 
visual enhancements, 

650–653 

adding points, lines, and text, 
134–139 

automatic plot types, 129–130 
barplots, 289–293
boxplots, 298–300, 469–470

side-by-side, 299–300, 437, 
448–449 

stand-alone, 298–299
color, 131–132 
contour plots, 657–668 

color-filled contours, 
663–668 

drawing contour lines, 
657–663 

graphical parameters, 129–134 
line and point appearances, 133 
perspective plots, 679–690 

basic plots and angle 
adjustment, 679–682 

coloring facets, 682–686 
rotating with loops, 686–690 

pie charts, 293–294
pixel images, 668–679 

one grid point = one pixel, 
668–671 

surface truncation and 
empty pixels, 671–679 

preparing surface for, 653–657 
conceptualizing z-matrix, 

656–657 
constructing evaluation grid, 

654–655 
constructing z-matrix, 

655–656 
region limits, 133–134 
title and axis labels, 130–131 
using plot with coordinate 

vectors, 127–129 
writing plots to file, 157–159

pnbinom function, 342
.png files, 157, 159
pnorm function, 350–353, 376
point character (pch) parameter, 

129, 133, 647, 651, 707
point clouds, 691–699 

adding further components, 
694–699 

basic 3D cloud, 692–693 



Index   785

visual enhancements and 
legends, 693–694

point-and-click coordinate 
interaction, 586–591 

ad hoc annotation, 588–591 
retrieving coordinates silently, 

586–587 
visualizing selected coordinates, 

587–588
points 

adding to bivariate surfaces, 701 
adding to plots, 134–139 
on plots, 133

points function, 134, 635, 661
points3d function, 694, 698, 701
Poisson distribution, 338–342, 360 

dpois function, 340–341 
ppois function, 340–341 
qpois function, 341 
rpois function, 341–342

polygon function, 322, 345, 
352–353, 370

polynomials, 502–508 
fitting polynomial trans-

formation, 503–506 
pitfalls of, 508 
plotting polynomial fit, 506–508

pooled variance, 396–398
positional argument matching, 

174–175
positive coefficient

of categorical predictors, 
468–476

of continuous predictors, 
454, 522

positive skew, 295, 326
power. See statistical power
ppois function, 340–341
ppp object, 671
predict function, 463, 659, 706
prediction, 461–468. See also 

categorical predictors 
confidence interval or 

prediction interval, 
461–462 

interpolation vs. extrapolation, 
466–468 

interpreting intervals, 462–464 
confidence intervals for 

mean heights, 463 
prediction intervals for 

individual observations, 
463–464 

plotting intervals, 464–466
prediction interval (PI), 462
pretty function, 594
print command, 244
prob argument, 274
probability, 309–329. See also 

probability distributions 
complement of an event, 

312–313 
conditional probability, 311 
events and, 310 
intersection of two events, 

311–312 
overview, 309–310 
random variables, 313–329 

continuous random 
variables, 318–326 

discrete random variables, 
315–318 

realizations, 314 
union of two events, 312

probability densities, higher-
dimensional, 710–711

probability distributions, 331–363 
density functions, 342–363 

exponential, 359–362 
normal, 348–357 
Student’s t-distribution, 

357–359 
uniform, 343–347 

mass functions, 332–342 
Bernoulli distribution, 

332–334 
binomial distribution, 

333–337 
other mass functions, 342 
Poisson distribution, 

338–342
proc.time function, 251
progress bars, 249–250
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prompt
customizing, 5
installing packages at,  

742–744
proportions, 271–273 

testing, 402–410 
single proportion, 402–405 
two proportions, 405–410

prop.test function, 405, 407–410
protected names, 170–172
pt function, 357, 380
punif function, 346
p -value, 386, 387, 390, 412

Q

q function, 12
qbeta function, 363
qbinom function, 334, 337
qchisq function, 362
qexp function, 361
qf function, 363
q-function, 331, 337, 341, 342, 

346, 353
qgamma function, 363
qgeom function, 342
qhyper function, 342
qnbinom function, 342
qnorm function, 353–354, 425
qplot function, 140–141, 144, 145, 

296, 609–611
qpois function, 341
QQ (quantile-quantile) plot, 353, 

438, 554
qqline command, 354, 438
qqnorm function, 354, 438
qt function, 357–359
quadratic equation, 232
quakes data frame, 264, 275, 392, 

576, 644, 660
quantile function, 274, 278, 

347, 718
quantile-quantile (QQ) plot, 353, 

438, 554
quantiles, 274–275
Quartz window system, 576
qunif function, 346–347

R

.R extension, 5
R markdown, 758–759
R programming language. See also 

installing R 
comments, 6 
console and editor panes, 5–6 
help files and function 

documentation, 8–10 
obtaining and installing from 

CRAN, 3 
project website, 3 
saving work and exiting, 11–12 
third-party editors, 11 
updating, 746–747 
working directory, 7

R> prompt, 5, 13
radians, 720
rainbow palette, 635, 643, 684, 704
random variables, 313–329 

continuous, 318–326 
cumulative probability 

distributions of, 323–324 
mean and variance of, 

326–329 
discrete, 315–318 

cumulative probability 
distributions of, 315–317 

mean and variance of, 
317–318 

realizations, 314
range function, 268, 673
raw data, describing, 261–266 

categorical variables, 262–263 
numeric variables, 262 
parameters, 265–266 
univariate and multivariate 

data, 264–265
rbenchmark package, 251
rbeta function, 363
rbind function, 41–42, 98, 99, 322
rbinom function, 334, 337
rchisq function, 362
RColorBrewer package, 645
.RData file, 11, 12
read.csv function, 154
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reading and writing files, 147–162 
reading in external data files, 

150–156 
R-ready data sets, 147–150 
writing out data files and plots, 

156–159
read.table function, 151, 152, 154, 155
real roots, 233
records, in data frames, 96
recursive functions, 237–240
red-green-blue. See RGB 

(red-green-blue)
reference level, 468, 473, 477–478
References section, of help files, 10
regions, plotting, 582–586 

clipping, 584–586 
custom spacing, 583–584 
default spacing, 582–583 
limits or regions, 133–134

regression coefficients, 454
regular expressions, 72
relational operators, 60–64
relative device coordinates, 642
relevel function, 477
rep function, 25–26
repeat statement, 211–214, 218, 219
repeating values, 25–26
replacement argument, 78
repos argument, 743
repositories, installing packages 

using, 748
rescaling variables, 348
reserved names, 170–172
resid function, 457
residual diagnostics, 548–568 

assessing normality, 554–555 
calculating leverage, 555–558 
Cook’s distance, 559–563 
graphically combining residuals, 

leverage, and Cook’s 
distance, 563–568 

illustrating outliers, leverage, 
and influence, 555–557 

inspecting and interpreting 
residuals, 549–554

residual standard error, 481, 491
residuals, illustrating, 456–458

resolution, 668
response-predictor data, 563
return statement, 216, 220–222, 223
rev function, 613
rexp function, 361
rf function, 363
r-function, 342, 347
rgamma function, 363
RGB (red-green-blue) 

alternatives to, 645–648 
hexadecimal color codes, 

632–635
rgb function, 633, 634, 640, 643, 

644, 709
rgeom function, 342
rgl package, 691, 699, 718, 741
rhyper function, 342
right skew, 295, 326
ring torus, 729
RJDBC package, 156
rmarkdown package, 758
rmultinom function, 342
rmvnorm function, 710–711
RMySQL package, 156
rnbinom function, 342
rnorm function, 355–356
.Rnw extension, 757
RODBC package, 156
rotating, with loops, 686–690
round function, 272, 335
rownames function, 702
rows 

binding together matrices as, 
41–42 

extracting from matrices, 43–44
rowSums function, 417
rpois function, 341
.Rproj file, 754
R-squared value, 476, 491
rstandard function, 571
RStudio, 11, 751–779 

auxiliary tools, 754–759 
markup, document, and 

graphics tools, 756–759 
package installer and 

updater, 755–756 
projects, 754–755 
support for debugging, 756 
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RStudio, continued
basic layout and usage, 752–754 

customizing panes, 753–754 
editor features and 

appearance options, 
752–753

rt function, 357
runif function, 347

S

S3 classing structure, 116
Salaries data frame, 622–623, 

628, 646
sample function, 730–731
sampling distributions, 367–377 

distribution for sample mean, 
368–373 

Dunedin temperatures 
example, 369–373 

standard deviation 
known, 369 

standard deviation 
unknown, 369 

distribution for sample 
proportion, 373–377

sapply function, 223
saturations, 632
save.image command, 11
saving 

scripts, 12 
workspace image files, 11–12

scalar multiple, of matrices, 49
scale_fill_grey function, 292–293
scale_linetype_manual function, 297
scale_shape_manual function, 304
scale_x_discrete function, 292–293
scale_y_continuous function, 

292–293
scatterplot3d function, 649, 652
scatterplot3d package, 741
scatterplots, 300–308 

matrix of plots, 303–308 
single plot, 301–302

scatter.smooth function, 612
scope argument, 533, 539, 542

scoping, 165–171 
environments, 166–168 

global environment, 166 
local environments, 167–168 
package environments and 

namespaces, 166–167 
reserved and protected names, 

170–172 
search path, 168–170

scripts 
overview, 5 
saving, 12

scrolling through commands, 5
sd (standard deviation), 277, 278
search function, 168–169, 252
search path, 168–170
segments function, 134, 137, 345
segments3d function, 694–696, 702
semicolon, 666
seq function, 24–26, 169, 350, 

638, 654
sequences, creating numeric, 24–26
setTxtProgressBar function, 249–250
setwd function, 7, 151
shade argument, 682, 700
shading. See smoothing and shading
shape package, 644, 647, 648, 652, 

653, 669, 705, 741
shapiro.test function, 554, 571
Shapiro-Wilk test, 438, 554
shiny package, 759
short-form logical operator, 452
side-by-side boxplots, 299–300
sigma argument, 350, 422, 560
significant digits, 643
silent argument, 244, 246
simple linear regression, 451–483 

categorical predictors, 468–483 
binary variables, 468–472 
changing reference level, 

477–478 
equivalence with one-way 

ANOVA, 481–483 
multilevel variables, 472–477 
treating categorical variables 

as numeric, 478–480 
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example of linear relationship, 
451–453 

general concepts, 453–458 
definition of model, 

453–454 
estimating intercept and 

slope parameters, 
454–455 

fitting linear models with lm, 
455–456 

illustrating residuals, 
456–458 

prediction, 461–468 
confidence interval or 

prediction interval, 
461–462 

interpolation vs. 
extrapolation, 466–468 

interpreting intervals, 
462–464 

plotting intervals, 464–466 
statistical inference, 458–461 

coefficient of deter-
mination, 460 

other summary output, 
460–461 

regression coefficient 
significance tests, 
459–460 

summarizing fitted model, 
458–459

sin function, 722
sine function, 720
single categorical predictor,  

481–482
singular matrices, 51
skip argument, 155–156
slicing, of lists, 91
slope parameter, estimating, 

454–455
smoothing and shading, 611–615 

adding LOESS trends, 611–614 
constructing smooth density 

estimates, 614–615
solve function, 247
sort function, 26–27, 59–60
sorting, vectors, 26–27

spatstat package, 254, 671, 674, 678, 
689, 741

special values, 103–114 
infinity (Inf), 104–106 
Not a Number (NaN), 106–108 
Not Available (NA), 108–110 
NULL, 110–114

specialized functions, 233–240 
disposable functions, 236 
helper functions, 233–236 

externally defined, 234–235 
internally defined, 235–236 

recursive functions, 237–240
split.screen function, 582
spread, 275–280. See also variance
spreadsheet workbooks, reading, 

153–154
sqrt command, 18, 278, 318
square brackets ([]) 

double, for referencing list 
members, 90–91

for inclusion of values in 
intervals, 85

for indexes in vectors, 28–31, 
42–43, 44

for list slicing, 91
square root, 18
SS (sum-of-squares), 439, 440
stacking, if statements, 186–189
stand-alone boxplots, 298–299
stand-alone if statements, 180–183
standard deviation (sd), 277, 278
state.abb object, 306
statistical power, 428–433 

power curves, 431–433 
simulating power, 429–431

statistics, 261–288 
describing raw data, 261–266 

categorical variables, 
262–263 

numeric variables, 262 
parameters, 265–266 
univariate and multivariate 

data, 264–265 
summary statistics, 267–288 

centrality, 267–270 
correlation, 280–285 
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statistics, continued
summary statistics, continued

counts, 271–273 
covariance, 280–285 
five-number summary, 

274–275 
outliers, 285–288 
percentages, 271–273 
percentiles, 274–275 
proportions, 271–273 
quantiles, 274–275 
spread, 275–280

step function, 542–543
stop function, 242–243
stopping condition, 237
strings 

of characters, 73–74 
format of, 72

stringsAsFactors argument, 97
Student’s t-distribution, 357–359
style argument, 250
subclasses, 119
subsetting elements 

from matrices, 42–47 
in vectors

using indexes, 28–33
using logicals, 68–72

substr function, 77
substrings and matching, of 

characters, 77–79
sum function, 253
summary function, 275, 279, 441, 458, 

461, 497
sum-of-squares (SS), 439, 440
superscripts, 601
suppressWarnings function, 247
surface truncation, 671–679
survey data frame, 448, 451, 497, 

611, 697
survival package, 740
Sweave markup language, 757
switch function, 189–193
Sys.sleep function, 249–250
system.time function, 251
Sys.time function, 250–251

T

T (abbreviation for TRUE), 60
\t (tab) escape sequence, 76
table function, 268–269, 271, 436
tables, ANOVA 

building with aov function, 
440–442 

construction of, 439–440
tapply function, 270, 272, 279, 

436, 444
tcl parameter, 595–596, 603
t-distribution, 369, 372
terrain.colors function, 635, 

647, 688
testing. See hypothesis testing
text, adding to plots, 134–139

font, 597–598 
Greek symbols, 598–599 
mathematical expressions, 

599–601
text function, 134, 353, 585, 702
text3d function, 702
textual progress bars, 249–250
theme_bw function, 292–293
third-party editors, 11
ticktype argument, 681
times argument, 25–26
timing, 250–252
title function, 598–599
title labels, on plots, 130–131
to argument, 24
topo.colors palette, 635, 653, 665, 

677, 699, 706
topographical map example, 

657–658
tori, 729–735
trace.factor argument, 446
trace.label argument, 446
traditional R graphics, 139
transpose, of matrices, 47–48
trees data frame, 516, 526
trimodal distribution, 326
triplet, 632
trivariate functions, 709, 712
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trivariate surfaces, 709–719 
evaluation coordinates in 3D, 

709–710 
isosurfaces, 710–715 

basic one-level isosurface, 
712–714 

controlling multiple levels 
with color and opacity, 
714–715 

higher-dimensional 
probability densities, 
710–711 

nonparametric trivariate density 
example, 715–720 

calculating 3D estimate, 717 
isosurface level selection, 

717–720 
raw data, 716

TRUE value, 27, 60
try statements, 244–248 

suppressing warning messages, 
246–248 

using in body of function, 
245–246

tryCatch function, 246
"try-error" class, 244
tseries package, 149, 741
t.test function, 391–392,  

397–398
t-tests 

two-sample, 393 
Welch’s, 394

.txt extension, 150
txtProgressBar function, 249, 

250, 258
Type I errors, 421–423 

Bonferroni correction, 423 
simulating, 421–423

Type II errors, 424–428 
influences on error rate, 

426–428 
simulating, 425–426

type graphical parameter, 129
typeof function, 119

U

umbilic torus, 734–735
uniform distribution, 343–347 

dunif function, 344–346 
punif function, 346 
qunif function, 346–347 
runif function, 347

union of two events, 312
units argument, 157
univariate data, 264–265
unpooled variances, 393–395
update function, 533, 571
update.packages function, 8, 747, 756
updating, R and installed packages, 

746–747
Usage section, of help files, 10
USArrests, 306
UScereal data frame, 622–623, 629

V

values. See also logical values 
looping via, 194–197 
non-numeric. See characters; 

factors; logical values
var function, 278
var.equal argument, 397, 402
variable-mapped facets, and 

multiple plots, 616–623 
facets mapped to categorical 

variable, 619–623 
independent plots, 616–618

variance, 275–280
of continuous random variable, 

326–329 
of discrete random variable, 

317–318
vector-oriented behavior, of R, 

33–37
vectors, 23–37 

creating, 23 
extracting elements

using indexes, 28–33
using logicals, 68–72 
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vectors, continued 
of indexes, 30 
length of, 27 
repeating values, 25–26 
sequences, 24–25 
sorting, 26–27 
stand-alone, 117–118 
subsetting

using indexes, 28–33 
using logicals, 68–72 

viewing angle, of perspective plots, 
679–682

visualization of data. See data 
visualization

volcano data set, 657, 668

W

warning function, 242
warning messages 

overview, 242–244 
suppressing, 246–248

Warnings section, of help files, 10
warpbreaks data frame, 443, 444, 519
web-based files, reading, 154–155
Welch’s t-test, 394
which function, 69, 70, 71, 80, 

431, 551
while loops, 200–204
width argument, 579, 603, 625, 628
Wilcoxon rank-sum test, 401
wilcox.test function, 401
Wilson score interval, 405
wireframe, 679
working directory, 7
workspace image files, saving and 

loading, 11–12
write.csv function, 156
write.table function, 156
writing files. See reading and 

writing files
writing functions, 215–240 

arguments, 222–232 
defaults, setting, 225–227 
ellipses and, 228–233 

lazy evaluation, 222–225 
missing, checking for, 

227–228 
function command, 215–222 

creating functions, 218–219 
return statement, 220–222 

specialized functions, 233–240 
disposable functions, 236 
helper functions, 233–236 
recursive functions, 237–240

writing R packages, 749–750

X

xaxs parameter, 592
xaxt parameter, 593
x.factor argument, 446–447
xlab (axis label) parameter, 129, 130
XLConnect function, 153
xlim (plotting region limit) 

parameter, 129, 133, 
642, 673

xpd parameter, 584

Y

yaxs parameter, 592
yaxt parameter, 593
ylab (axis label) parameter, 129, 130
ylim (plotting region limit) 

parameter, 129, 133, 673

Z

z value, coloring bivariate surfaces 
by, 703–704

zlim argument, 641, 647, 648, 688
z-matrix, 654, 655 

conceptualizing, 656–657 
constructing, 655–656

Z.test function, 409
Z -tests, 402
zval argument, 641, 642, 648
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