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Preface

JetBrains created Kotlin for two reasons: there was no language that filled all the gaps
in Android development using (legacy) Java libraries, and a new language would
allow Android development to set trends, rather than just follow them.

In February 2015, Kotlin 1.0 was officially announced. Kotlin is concise, safe, prag‐
matic, and focused on interoperability with Java code. It can be used everywhere Java
is used today: for server-side development, Android apps, desktop or portable clients,
IoT device programming, and much, much more. Kotlin gained popularity among
Android developers quite rapidly, and Google’s decision to adopt Kotlin as the official
language of Android development resulted in skyrocketing interest in the language.
According to the Android Developers website, more than 60% of professional
Android developers currently use Kotlin.

The learning curve in Android is rather steep: admittedly, it’s hard to learn and
harder to master. Part of the Android developer “upbringing,” for many, is to be
exposed over time to unintended interactions between the Android operating system
and the application. This book intends to bring those kinds of exposures to readers in
depth and up close by examining such problems in Android. We’ll talk not only about
Kotlin and Java, but also about the concurrency problems that arise when using
Android and how Kotlin is able to solve them.

We will sometimes compare Kotlin to Java when we believe doing so provides better
insight (especially since most readers are expected to have a Java background). We
can demonstrate, with working examples, how to bridge that gap, and how the under‐
lying concepts of most Kotlin operations are more similar to the Java equivalent than
not. The tasks will be organized by topic to provide software engineers with a struc‐
tured decomposition of that mass of information, and they will show how to make an
application robust and maintainable.

Additionally, users familiar with Java—including Android developers—will find their
learning curve dramatically flatten when we present each of the common tasks in
both Java and Kotlin. Where appropriate, we’ll discuss the difference and the pitfalls
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of one or both, but we hope to provide bite-size and easily digestible examples of a
task that will “just work,” and enable the reader to consume and adapt to the modern
paradigm, as well as become aware of the significance of the updated code immedi‐
ately and instinctively.

While Kotlin is fully interoperable with Java, other Java application development
(server-side programming, desktop clients, middleware, etc.) has not caught on to the
extent that Android has. This is largely due to the maintainer of Android (Google)
strongly “encouraging” its users to make the change. Users are regularly migrating to
Kotlin, but even more still fall back to Java for mission-critical work. Our hope is that
this book will serve as the lifeline an Android developer needs to feel safe in commit‐
ting to the advantages and simplicity that Kotlin represents.

Who Should Read This Book
Any of the over six million Android engineers. We believe that virtually every Android
engineer could benefit from this book. While a small percentage will be fluent in Kot‐
lin, even they will likely learn something from the information we’ll present. But real‐
istically, we’re targeting the very large majority who haven’t made the transition to
Kotlin. This book is also for those who have dipped a toe in but not gained the same
level of familiarity with Kotlin that they may have accrued in Java-centric Android
development:

Scenario 1
A reader is proficient in Java, heard of this new Kotlin language, and wants to try
it out. So they read some online tutorial and start using it and it works great.
Soon they realize that this isn’t just a new syntax. The idioms aren’t the same (e.g.,
functional programming, coroutines) and a whole new way of developing is now
possible. But they lack guidelines, structure. For them, this book is a perfect fit.

Scenario 2
A reader is part of a small team of Java developers. They have discussions about
whether they should start including Kotlin in their project. Even if Kotlin is said
to be 100% interoperable with Java, some colleagues argue that introducing
another language will add complexity to the project. Others suggest it might limit
the number of colleagues who will be able to work on the project because of the
need to master two languages. The reader could use this book to convince their
colleagues, if they can show that the benefits will outweigh the costs.

Scenario 3
An experienced Android developer may have played around with Kotlin or writ‐
ten a feature in it, but still falls back to the home base of Java when things need to
get done. This was the scenario we found ourselves in when realizing the book
we’re pitching now would have made our lives much easier. This is also the state
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we see most commonly around us—many Android devs have touched Kotlin,
and many feel like they understand enough to write it when necessary, but they
are either unaware, or simply unconvinced, of the significance of data classes,
immutable properties, and structured concurrency. We think this book will turn
a curious person into a committed evangelist.

Why We Wrote This Book
There are plenty of books that show how Android works, how Kotlin works, or how
concurrency works. Kotlin is becoming wildly popular with Android development
for its easy adoption and cleaner syntax, but Kotlin offers Android much more than
that: it offers new ways to solve concurrency problems in Android. We wrote this
book to provide a unique and specific intersectionality of these topics in great depth.
Both Android and Kotlin are rapidly changing, separately and together. Trying to
keep up with all the changes can be difficult.

We view this book as a valuable checkpoint in history: showing where Android came
from, where it is now, and how it will continue to evolve with Kotlin as the language
matures.

Navigating This Book
Sometimes we include code snippets as screenshots instead of regular atlas code for‐
matting. This is particularly useful with coroutines and flows, as suspension points
are clearly identifiable. We also get type hints from the IDE.

Chapter 1, “Kotlin Essentials” and Chapter 2, “The Kotlin Collections Framework”
cover major notable transitions made with Android in Kotlin. While the information
in these chapters is enough to give you a good grounding in Kotlin, further chapters
will take a deeper dive into more complex/advanced features. Users familiar with Java
or similar syntactic structures will find the translation surprisingly natural.

Chapter 3, “Android Fundamentals” and Chapter 4, “Concurrency in Android” will
provide you with a foundation in the Android system in relation to memory and
threading. As in any other operating system, concurrency is hard to achieve.

Chapter 5, “Thread Safety” through Chapter 11, “Performance Considerations with
Android Profiling Tools” examine common issues surrounding memory and thread‐
ing, while indicating how the Android framework has evolved over time to grant
developers more control around them. In tandem, these chapters show how Kotlin’s
extensions and language features can help developers write better applications faster.

Chapter 12, “Trimming Down Resource Consumption with Performance Optimiza‐
tions” explores the use of powerful Android developer tools to examine performance
and memory-related analytics under the hood—to be able to see things you never
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really knew about. This book will provide engineers with professionally developed
and curated implementations of the most common tasks seen in native Android
development. Many tasks will consist of a real-world problem, followed by the corre‐
sponding solution in both Java and Kotlin. When further explanation is required, the
solutions will follow a snappy compare-and-contrast model with a focus on brevity
and natural language.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ProgrammingAndroidWithKotlin.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Programming Android
with Kotlin by Pierre-Olivier Laurence, Amanda Hinchman-Dominguez, G. Blake
Meike, and Mike Dunn (O’Reilly). Copyright 2022 Pierre-Olivier Laurence and
Amanda Hinchman-Dominguez, 978-1-492-06300-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/pak.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia
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CHAPTER 1

Kotlin Essentials

Kotlin was created by the JetBrains team from St. Petersburg, Russia. JetBrains is per‐
haps best known for the IntelliJ Idea IDE, the basis for Android Studio. Kotlin is now
used in a wide variety of environments across multiple operating systems. It has been
nearly five years since Google announced support for Kotlin on Android. According
to the Android Developers Blog, as of 2021, over 1.2 million apps in the Google Play
store use Kotlin, including 80% of the top one thousand apps.

If you’ve picked up this book, we are assuming that you are already an Android devel‐
oper and that you are familiar with Java.

Kotlin was designed to interoperate with Java. Even its name, taken from an island
near St. Petersburg, is a sly allusion to Java, an island in Indonesia. Though Kotlin
supports other platforms (iOS, WebAssembly, Kotlin/JS, etc.), a key to Kotlin’s broad
use is its support for the Java virtual machine (JVM). Since Kotlin can be compiled to
Java bytecode, it can run anywhere that a JVM runs.

Much of the discussion in this chapter will compare Kotlin to Java. It’s important to
understand, though, that Kotlin is not just warmed-over Java with some added bells
and whistles. Kotlin is a new and different language with connections to Scala, Swift,
and C# that are nearly as strong as its connection with Java. It has its own styles and
its own idioms. While it is possible to think Java and write Kotlin, thinking in
idiomatic Kotlin will reveal the full power of the language.

We realize that there may be some Android developers who have been working with
Kotlin for some time, and who have never written any Java at all. If this sounds like
you, you may be able to skim this chapter and its review of the Kotlin language. How‐
ever, even if you are fairly handy with the language, this may be a good chance to
remind yourself of some of the details.

1
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1. Dmitry Jemerov and Svetlana Isakova. Kotlin in Action. Manning, 2017.
2. Kotlin officially calls this type inferencing, which uses a partial phase of the compiler (the frontend compo‐
nent) to do type checking of the written code while you write in the IDE. It’s a plug-in for IntelliJ! Fun fact: the
entirety of IntelliJ and Kotlin is made of compiler plug-ins.

This chapter isn’t meant to be a full-fledged primer on Kotlin, so if you are completely
new to Kotlin, we recommend the excellent Kotlin in Action.1 Instead, this chapter is a
review of some Kotlin basics: the type system, variables, functions, and classes. Even
if you are not a Kotlin language expert, it should provide enough of a foundation for
you to understand the rest of the book.

As with all statically typed languages, Kotlin’s type system is the meta language that
Kotlin uses to describe itself. Because it is an essential aspect for discussing Kotlin,
we’ll start by reviewing it.

The Kotlin Type System
Like Java, Kotlin is a statically typed language. The Kotlin compiler knows the type of
every entity that a program manipulates. It can make deductions2 about those entities
and, using those deductions, identify errors that will occur when code contradicts
them. Type checking allows a compiler to catch and flag an entire large class of pro‐
gramming errors. This section highlights some of the most interesting features of
Kotlin’s type system, including the Unit type, functional types, null safety, and
generics.

Primitive Types
The most obvious difference between Java’s and Kotlin’s type systems is that Kotlin
has no notion of a primitive type.

Java has the types int, float, boolean, etc. These types are peculiar in that they do
not inherit from Java’s base type, Object. For instance, the statement int n = null;
is not legal Java. Neither is List<int> integers;. In order to mitigate this inconsis‐
tency, each Java primitive type has a boxed type equivalent. Integer, for instance, is
the analog of int; Boolean of boolean; and so on. The distinction between primitive
and boxed types has nearly vanished because, since Java 5, the Java compiler automat‐
ically converts between the boxed and unboxed types. It is now legal to say
Integer i = 1.

Kotlin does not have primitive types cluttering up its type system. Its single base type,
Any, analogous to Java’s Object, is the root of the entire Kotlin type hierarchy.
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Kotlin’s internal representation of simple types is not connected to
its type system. The Kotlin compiler has sufficient information to
represent, for instance, a 32-bit integer with as much efficiency as
any other language. So, writing val i: Int = 1 might result in
using a primitive type or a boxed type, depending on how the i
variable is used in the code. Whenever possible, the Kotlin com‐
piler will use primitive types.

Null Safety
A second major difference between Java and Kotlin is that nullability is part of Kotlin’s
type system. A nullable type is distinguished from its nonnullable analog by the ques‐
tion mark at the end of its name; for example, String and String?, Person and Per
son?. The Kotlin compiler will allow the assignment of null to a nullable type:
var name: String? = null. It will not, however, permit var name: String = null
(because String is not a nullable type).

Any is the root of the Kotlin type system, just like Object in Java. However, there’s a
significant difference: Any is the base class for all nonnullable classes, while Any? is the
base class for all nullable ones. This is the basis of null safety. In other words, it may
be useful to think of Kotlin’s type system as two identical type trees: all nonnullable
types are subtypes of Any and all nullable types are subtypes of Any?.

Variables must be initialized. There is no default value for a variable. This code, for
instance, will generate a compiler error:

val name: String // error! Nonnullable types must be initialized!

As described earlier, the Kotlin compiler makes deductions using type information.
Often the compiler can figure out the type of an identifier from information it already
has. This process is called type inference. When the compiler can infer a type, there is
no need for the developer to specify it. For instance, the assignment var name =
"Jerry" is perfectly legal, despite the fact that the type of the variable name has not
been specified. The compiler can infer that the variable name must be a String
because it is assigned the value "Jerry" (which is a String).

Inferred types can be surprising, though. This code will generate a compiler error:

var name = "Jerry"
name = null

The compiler inferred the type String for the variable name, not the type String?.
Because String is not a nullable type, attempting to assign null to it is illegal.
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It is important to note that a nullable type is not the same as its nonnullable counter‐
part. As makes sense, a nullable type behaves as the supertype of the related nonnulla‐
ble type. This code, for instance, compiles with no problem because a String is a
String?:

val name = Jerry
fun showNameLength(name: String?) { // Function accepts a nullable parameter
     // ...
}

showNameLength(name)

On the other hand, the following code will not compile at all, because a String? is not
a String:

val name: String? = null
fun showNameLength(name: String) { // This function only accepts non-nulls
    println(name.length)
}

showNameLength(name)               // error! Won't compile because "name"
                                   // can be null

Simply changing the type of the parameter will not entirely fix the problem:

val name: String? = null
fun showNameLength(name: String?) { // This function now accepts nulls
    println(name.length)            // error!
}

showNameLength(name)                // Compiles

This snippet fails with the error Only safe (?.) or non-null asserted (!!.)
calls are allowed on a nullable receiver of type String?.

Kotlin requires that nullable variables be handled safely—in a way that cannot gener‐
ate a null pointer exception. In order to make the code compile, it must correctly han‐
dle the case in which name is null:

val name: String? = null
fun showNameLength(name: String?) {
    println(if (name == null) 0 else name.length)
    // we will use an even nicer syntax shortly
}
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Kotlin has special operators, ?. and ?:, that simplify working with nullable entities:

val name: String? = null
fun showNameLength(name: String?) {
    println(name?.length ?: 0)
}

In the preceding example, when name is not null, the value of name?.length is the
same as the value of name.length. When name is null, however, the value of
name?.length is null. The expression does not throw a null pointer exception. Thus,
the first operator in the previous example, the safe operator ?., is syntactically equiv‐
alent to:

if (name == null) null else name.length

The second operator, the elvis operator ?:, returns the left expression if it is non-null,
or the right expression otherwise. Note that the expression on the right-hand side is
evaluated only if the left expression is null.

It is equivalent to:

if (name?.length == null) 0 else name.length

The Unit Type
In Kotlin, everything has a value. Always. Once you understand this, it is not difficult
to imagine that even a method that doesn’t specifically return anything has a default
value. That default value is named Unit. Unit is the name of exactly one object, the
value things have if they don’t have any other value. The type of the Unit object is,
conveniently, named Unit.

The whole concept of Unit can seem odd to Java developers who are used to a dis‐
tinction between expressions—things that have a value—and statements—things that
don’t.

Java’s conditional is a great example of the distinction between a statement and an
expression because it has one of each! In Java you can say:

if (maybe) doThis() else doThat();
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You cannot, however, say:

int n = if (maybe) doThis() else doThat();

Statements, like the if statement, do not return a value. You cannot assign the value
of an if statement to a variable, because if statements don’t return anything. The
same is true for loop statements, case statements, and so on.

Java’s if statement, however, has an analog, the ternary expression. Since it is an
expression, it returns a value and that value can be assigned. This is legal Java (pro‐
vided both doThis and doThat return integers):

int n = (maybe) ? doThis() : doThat();

In Kotlin, there is no need for two conditionals because if is an expression and
returns a value. For example, this is perfectly legal:

val n = if (maybe) doThis() else doThat()

In Java, a method with void as the return type is like a statement. Actually, this is a bit
of a misnomer because void isn’t a type. It is a reserved word in the Java language that
indicates that the method does not return a value. When Java introduced generics, it
introduced the type Void to fill the void (intended!). The two representations of
“nothing,” the keyword and the type, however, are confusing and inconsistent: a func‐
tion whose return type is Void must explicitly return null.

Kotlin is much more consistent: all functions return a value and have a type. If the
code for a function does not return a value explicitly, the function has the value Unit.

Function Types
Kotlin’s type system supports function types. For example, the following code defines
a variable, func, whose value is a function, the lambda { x -> x.pow(2.0) }:

val func: (Double) -> Double = { x -> x.pow(2.0) }

Since func is a function that takes one Double type argument and returns a Double,
it’s type is (Double) -> Double.

In the previous example, we specified the type of func explicitly. However, the Kotlin
compiler can infer a lot about the type of the variable func from the value assigned to
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it. It knows the return type because it knows the type of pow. It doesn’t, however, have
enough information to guess the type of the parameter x. If we supply that, though,
we can omit the type specifier for the variable:

val func = { x: Double -> x.pow(2.0)}

Java’s type system cannot describe a function type—there is no way
to talk about functions outside the context of the classes that con‐
tain them. In Java, to do something similar to the previous exam‐
ple, we would use the functional type Function, like this:

Function<Double, Double> func
    = x -> Math.pow(x, 2.0);

func.apply(256.0);

The variable func has been assigned an anonymous instance of the
type Function whose method apply is the given lambda.

Thanks to function types, functions can receive other functions as parameters or
return them as values. We call these higher-order functions. Consider a template for a
Kotlin type: (A, B) -> C. It describes a function that takes two parameters, one of
type A and one of type B (whatever types those may be), and returns a value of type C.
Because Kotlin’s type language can describe functions, A, B, and C can all, themselves,
be functions.

If that sounds rather meta, it’s because it is. Let’s make it more concrete. For A in the
template, let’s substitute (Double, Double) -> Int. That’s a function that takes two
Doubles and returns an Int. For B, let’s just substitute a Double. So far, we have ((Dou
ble, Double) -> Int, Double) -> C.

Finally, let’s say our new functional type returns a (Double) -> Int, a function that
takes one parameter, a Double, and returns an Int. The following code shows the
complete signature for our hypothetical function:

fun getCurve(
    surface: (Double, Double) -> Int,
    x: Double
): (Double) -> Int {
    return { y -> surface(x, y) }
}
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We have just described a function type that takes two arguments. The first is a func‐
tion (surface) of two parameters, both Doubles, that returns an Int. The second is a
Double (x). Our getCurve function returns a function that takes one parameter, a
Double (y), and returns an Int.

The ability to pass functions as arguments into other functions is a pillar of functional
languages. Using higher-order functions, you can reduce code redundancy, while not
having to create new classes as you would in Java (subclassing Runnable or Function
interfaces). When used wisely, higher-order functions improve code readability.

Generics
Like Java, Kotlin’s type system supports type variables. For instance:

fun <T> simplePair(x: T, y: T) = Pair(x, y)

This function creates a Kotlin Pair object in which both of the elements must be of
the same type. Given this definition, simplePair("Hello", "Goodbye") and simple
Pair(4, 5) are both legal, but simplePair("Hello", 5) is not.

The generic type denoted as T in the definition of simplePair is a type variable: the
values it can take are Kotlin types (in this example, String or Int). A function (or a
class) that uses a type variable is said to be generic.

Variables and Functions
Now that we have Kotlin’s type language to support us, we can start to discuss the
syntax of Kotlin itself.

In Java the top-level syntactic entity is the class. All variables and methods are mem‐
bers of some class or other, and the class is the main element in a homonymous file.

Kotlin has no such limitations. You can put your entire program in one file, if you like
(please don’t). You can also define variables and functions outside any class.

Variables
There are two ways to declare a variable: with the keywords val and var. The key‐
word is required, is the first thing on the line, and introduces the declaration:

val ronDeeLay = "the night time"

The keyword val creates a variable that is read-only: it cannot be reassigned. Be care‐
ful, though! You might think val is like a Java variable declared using the final
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keyword. Though similar, it is not the same! Although it cannot be reassigned, a val
definitely can change value! A val variable in Kotlin is more like a Java class’s field,
which has a getter but no setter, as shown in the following code:

val surprising: Double
    get() = Math.random()

Every time surprising is accessed, it will return a different random value. This is an
example of a property with no backing field. We’ll cover properties later in this chap‐
ter. On the other hand, if we had written val rand = Random(), then rand wouldn’t
change in value and would be more like a final variable in Java.

The second keyword, var, creates a familiar mutable variable: like a little box that
holds the last thing that was put into it.

In the next section, we will move on to one of Kotlin’s features as a functional lan‐
guage: lambdas.

Lambdas
Kotlin supports function literals: lambdas. In Kotlin, lambdas are always surrounded
by curly braces. Within the braces, the argument list is to the left of an arrow, ->, and
the expression that is the value of executing the lambda is to the right, as shown in
the following code:

{ x: Int, y: Int -> x * y }

By convention, the returned value is the value of the last expression in the body of the
lambda. For example, the function shown in the following code is of type (Int, Int)
-> String:

{ x: Int, y: Int -> x * y; "down on the corner" }

Kotlin has a very interesting feature that allows actually extending the language.
When the last argument to a function is another function (the function is higher-
order), you can move the lambda expression passed as a parameter out of the paren‐
theses that normally delimit the actual parameter list, as shown in the following code:

// The last argument, "callback", is a function
fun apiCall(param: Int, callback: () -> Unit)
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3. DSL stands for domain-specific language. An example of a DSL built in Kotlin is the Kotlin Gradle DSL.

This function would typically be used like this:

apiCall(1, { println("I'm called back!")})

But thanks to the language feature we mentioned, it can also be used like this:

apiCall(1) {
   println("I'm called back!")
}

This is much nicer, isn’t it? Thanks to this feature, your code can be more readable. A
more advanced usage of this feature are DSLs.3

Extension Functions
When you need to add a new method to an existing class, and that class comes from a
dependency whose source code you don’t own, what do you do?

In Java, if the class isn’t final, you can subclass it. Sometimes this isn’t ideal, because
there’s one more type to manage, which adds complexity to the project. If the class is
final, you can define a static method inside some utility class of your own, as shown
in the following code:

class FileUtils {
    public static String getWordAtIndex(File file, int index) {
        /* Implementation hidden for brevity */
    }
}

In the previous example, we defined a function to get a word in a text file, at a given
index. On the use site, you’d write String word = getWordAtIndex(file, 3), assum‐
ing you make the static import of FileUtils.getWordAtIndex. That’s fine, we’ve been
doing that for years in Java, and it works.

In Kotlin, there’s one more thing you can do. You have the ability to define a new
method on a class, even though it isn’t a real member-function of that class. So you’re
not really extending the class, but on the use site it feels like you added a method to
the class. How is this possible? By defining an extension function, as shown in the fol‐
lowing code:
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// declared inside FileUtils.kt
fun File.getWordAtIndex(index: Int): String {
    val context = this.readText()  // 'this' corresponds to the file
    return context.split(' ').getOrElse(index) { "" }
}

From inside the declaration of the extension function, this refers to the receiving
type instance (here, a File). You only have access to public and internal attributes
and methods, so private and protected fields are inaccessible—you’ll understand
why shortly.

On the use site, you would write val word = file.getWordAtIndex(3). As you can
see, we invoke the getWordAtIndex() function on a File instance, as if the File class
had the getWordAtIndex() member-function. That makes the use site more expres‐
sive and readable. We didn’t have to come up with a name for a new utility class: we
can declare extension functions directly at the root of a source file.

Let’s have a look at the decompiled version of getWordAtIndex:

public class FileUtilsKt {
    public static String getWordAtIndex(
            File file, int index
    ) {
        /* Implementation hidden for brevity */
    }
}

When compiled, the generated bytecode of our extension function
is the equivalent of a static method which takes a File as its first
argument. The enclosing class, FileUtilsKt, is named after the
name of the source file (FileUtils.kt) with the “kt” suffix.
That explains why we can’t access private fields in an extension
function: we are just adding a static method that takes the receiving
type as a parameter.

There’s more! For class attributes, you can declare extension properties. The idea is
exactly the same—you’re not really extending a class, but you can make new
attributes accessible using the dot notation, as shown in the following code:

// The Rectangle class has width and height properties
val Rectangle.area: Double
    get() = width * height
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Notice that this time we used val (instead of fun) to declare the extension property.
You would use it like so: val area = rectangle.area.

Extension functions and extension properties allow you to extend classes’ capabilities,
with a nice dot-notation usage, while still preserving separation of concern. You’re
not cluttering existing classes with specific code for particular needs.

Classes
Classes in Kotlin, at first, look a lot like they do in Java: the class keyword, followed
by the block that defines the class. One of Kotlin’s killer features, though, is the syntax
for the constructor and the ability to declare properties within it. The following code
shows the definition of a simple Point class along with a couple of uses:

class Point(val x: Int, var y: Int? = 3)

fun demo() {
    val pt1 = Point(4)
    assertEquals(3, pt1.y)
    pt1.y = 7
    val pt2 = Point(7, 7)
    assertEquals(pt2.y, pt1.y)
}

Class Initialization
Notice that in the preceding code, the constructor of Point is embedded in the decla‐
ration of the class. It is called the primary constructor. Point’s primary constructor
declares two class properties, x and y, both of which are integers. The first, x, is read-
only. The second, y, is mutable and nullable, and has a default value of 3.

Note that the var and val keywords are very significant! The declaration class
Point(x: Int, y: Int) is very different from the preceding declaration because it
does not declare any member properties. Without the keywords, identifiers x and y
are simply arguments to the constructor. For example, the following code will gener‐
ate an error:

class Point(x: Int, y: Int?)

fun demo() {
    val pt = Point(4)
    pt.y = 7 // error!  Variable expected
}
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The Point class in this example has only one constructor, the one defined in its decla‐
ration. Classes are not limited to this single constructor, though. In Kotlin, you can
also define both secondary constructors and initialization blocks, as shown in the fol‐
lowing definition of the Segment class:

class Segment(val start: Point, val end: Point) {
    val length: Double = sqrt(
            (end.x - start.x).toDouble().pow(2.0)
                    + (end.y - start.y).toDouble().pow(2.0))

    init {
        println("Point starting at $start with length $length")
    }

    constructor(x1: Int, y1: Int, x2: Int, y2: Int) :
            this(Point(x1, y1), Point(x2, y2)) {
        println("Secondary constructor")
    }
}

There are some other things that are of interest in this example. First of all, note that a
secondary constructor must delegate to the primary constructor, the : this(...), in
its declaration. The constructor may have a block of code, but it is required to dele‐
gate, explicitly, to the primary constructor, first.

Perhaps more interesting is the order of execution of the code in the preceding decla‐
ration. Suppose one were to create a new Segment, using the secondary constructor.
In what order would the print statements appear?

Well! Let’s try it and see:

>>> val s = Segment(1, 2, 3, 4)

Point starting at Point(x=1, y=2) with length 2.8284271247461903
Secondary constructor

This is pretty interesting. The init block is run before the code block associated with
secondary constructor! On the other hand, the properties length and start have
been initialized with their constructor-supplied values. That means that the primary
constructor must have been run even before the init block.

In fact, Kotlin guarantees this ordering: the primary constructor (if there is one) is
run first. After it finishes, init blocks are run in declaration order (top to bottom). If
the new instance is being created using a secondary constructor, the code block asso‐
ciated with that constructor is the last thing to run.
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Properties
Kotlin variables, declared using val or var in a constructor, or at the top level of a
class, actually define a property. A property, in Kotlin, is like the combination of a Java
field and its getter (if the property is read-only, defined with val), or its getter and
setter (if defined with var).

Kotlin supports customizing the accessor and mutator for a property and has special
syntax for doing so, as shown here in the definition of the class Rectangle:

class Rectangle(val l: Int, val w: Int) {
    val area: Int
        get() = l * w
}

The property area is synthetic: it is computed from the values for the length and
width. Because it wouldn’t make sense to assign to area, it is a val, read-only, and
does not have a set() method.

Use standard “dot” notation to access the value of a property:

val rect = Rectangle(3, 4)
assertEquals(12, rect.area)

In order to further explore custom property getters and setters, consider a class that
has a hash code that is used frequently (perhaps instances are kept in a Map), and that
is quite expensive to calculate. As a design decision, you decide to cache the hash
code, and to set it when the value of a class property changes. A first try might look
something like this:

// This code doesn't work (we'll see why)
class ExpensiveToHash(_summary: String) {

    var summary: String = _summary
        set(value) {
            summary = value    // unbounded recursion!!
            hashCode = computeHash()
        }

    //  other declarations here...
    var hashCode: Long = computeHash()

    private fun computeHash(): Long = ...
}
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The preceding code will fail because of unbounded recursion: the assignment to sum
mary is a call to summary.set()! Attempting to set the value of the property inside its
own setter won’t work. Kotlin uses the special identifier field to address this prob‐
lem. The following shows the corrected version of the code:

class ExpensiveToHash(_summary: String) {

    var summary: String = _summary
        set(value) {
            field = value
            hashCode = computeHash()
        }

    //  other declarations here...
    var hashCode: Long = computeHash()

    private fun computeHash(): Long = ...
}

The identifier field has a special meaning only within the custom getter and setter,
where it refers to the backing field that contains the property’s state.

Notice, also, that the preceding code demonstrates the idiom for initializing a prop‐
erty that has a custom getter/setter with a value provided to the class constructor.
Defining properties in a constructor parameter list is really handy shorthand. If a few
property definitions in a constructor had custom getters and setters, though, it could
make the constructor really hard to read.

When a property with a custom getter and setter must be initialized from the con‐
structor, the property is defined, along with its custom getter and setter, in the body
of the class. The property is initialized with a parameter from the constructor (in this
case, _summary). This illustrates, again, the importance of the keywords val and var
in a constructor’s parameter list. The parameter _summary is just a parameter, not a
class property, because it is declared without either keyword.

lateinit Properties
There are times when a variable’s value is not available at the site of its declaration.
An obvious example of this for Android developers is a UI widget used in an Activ
ity or Fragment. It is not until the onCreate or onCreateView method runs that the
variable, used throughout the activity to refer to the widget, can be initialized. The
button in this example, for instance:
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class MyFragment: Fragment() {
    private var button: Button? = null // will provide actual value later
}

The variable must be initialized. A standard technique, since we can’t know the value,
yet, is to make the variable nullable and initialize it with null.

The first question you should ask yourself in this situation is whether it is really nec‐
essary to define this variable at this moment and at this location. Will the button ref‐
erence really be used in several methods or is it really only used in one or two specific
places? If the latter, you can eliminate the class global altogether.

However, the problem with using a nullable type is that whenever you use
button in your code, you will have to check for nullability. For example:
button?.setOnClickListener { .. }. A couple of variables like this and you’ll end
up with a lot of annoying question marks! This can look particularly cluttered if you
are used to Java and its simple dot notation.

Why, you might ask, does Kotlin prevent me from declaring the button using a non-
null type when you are sure that you will initialize it before anything tries to access it?
Isn’t there a way to relax the compiler’s initialization rule just for this button?

It’s possible. You can do exactly that using the lateinit modifier, as shown in the fol‐
lowing code:

class MyFragment: Fragment() {
    private lateinit var button: Button // will initialize later
}

Because the variable is declared lateinit, Kotlin will let you declare it without
assigning it a value. The variable must be mutable, a var, because, by definition, you
will assign a value to it, later. Great—problem solved, right?

We, the authors, thought exactly that when we started using Kotlin. Now, we lean
toward using lateinit only when absolutely necessary, and using nullable values
instead. Why?

When you use lateinit, you’re telling the compiler, “I don’t have a value to give you
right now. But I’ll give you a value later, I promise.” If the Kotlin compiler could talk,
it would answer, “Fine! You say you know what you’re doing. If something goes
wrong, it’s on you.” By using the lateinit modifier, you disable Kotlin’s null safety for
your variable. If you forget to initialize the variable or try to call some method on it
before it’s initialized, you’ll get an UninitializedPropertyAccessException, which
is essentially the same as getting a NullPointerException in Java.
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4. You can check whether the latenit button property is initialized using this::button.isInitialized. Rely‐
ing on developers to add this check in all the right places doesn’t solve the underlying issue.

Every single time we’ve used lateinit in our code, we’ve been burned eventually. Our
code might work in all of the cases we’d foreseen. We’ve been certain that we didn’t
miss anything… and we were wrong.

When you declare a variable lateinit you’re making assumptions that the compiler
cannot prove. When you or other developers refactor the code afterward, your care‐
ful design might get broken. Tests might catch the error. Or not.4 In our experience,
using lateinit always resulted in runtime crashes. How did we fix that? By using a
nullable type.

When you use a nullable type instead of lateinit, the Kotlin compiler will force you
to check for nullability in your code, exactly in the places that it might be null.
Adding a few question marks is definitely worth the trade-off for more robust code.

Lazy Properties
It’s a common pattern in software engineering to put off creating and initializing an
object until it is actually needed. This pattern is known as lazy initialization, and is
especially common on Android, since allocating a lot of objects during app startup
can lead to a longer startup time. Example 1-1 is a typical case of lazy initialization in
Java.

Example 1-1. Java lazy initialization

class Lightweight {
    private Heavyweight heavy;

    public Heavyweight getHeavy() {
        if (heavy == null) {
            heavy = new Heavyweight();
        }
        return heavy;
    }
}

The field heavy is initialized with a new instance of the class Heavyweight (which is,
presumably, expensive to create) only when its value is first requested with a call, for
example, to lightweight.getHeavy(). Subsequent calls to getHeavy() will return the
cached instance.
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In Kotlin, lazy initialization is a part of the language. By using the directive by lazy
and providing an initialization block, the rest of the lazy instantiation is implicit, as
shown in Example 1-2.

Example 1-2. Kotlin lazy initialization

class Lightweight {
    val heavy by lazy { // Initialization block
        Heavyweight()
    }
}

We will explain this syntax in greater detail in the next section.

Notice that the code in Example 1-1 isn’t thread-safe. Multiple
threads calling Lightweight’s getHeavy() method simultaneously
might end up with different instances of Heavyweight.
By default, the code in Example 1-2 is thread-safe. Calls to
Lightweight::getHeavy() will be synchronized so that only one
thread at a time is in the initialization block.
Fine-grained control of concurrent access to a lazy initialization
block can be managed using LazyThreadSafetyMode.

A Kotlin lazy value will not be initialized until a call is made at runtime. The first time
the property heavy is referenced, the initialization block will be run.

Delegates
Lazy properties are an example of a more general Kotlin feature, called delegation. A
declaration uses the keyword by to define a delegate that is responsible for getting and
setting the value of the property. In Java, one could accomplish something similar
with, for example, a setter that passed its argument on as a parameter to a call to a
method on some other object, the delegate.

Because Kotlin’s lazy initialization feature is an excellent example of the power of
idiomatic Kotlin, let’s take a minute to unpack it.

The first part of the declaration in Example 1-2 reads val heavy. This is, we know,
the declaration of a read-only variable, heavy. Next comes the keyword by, which
introduces a delegate. The keyword by says that the next identifier in the declaration
is an expression that will evaluate to the object that will be responsible for the value of
heavy.
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The next thing in the declaration is the identifier lazy. Kotlin is expecting, an expres‐
sion. It turns out that lazy is just a function! It is a function that takes a single argu‐
ment, a lambda, and returns an object. The object that it returns is a Lazy<T> where T
is the type returned by the lambda.

The implementation of a Lazy<T> is quite simple: the first time it is called it runs the
lambda and caches its value. On subsequent calls it returns the cached value.

Lazy delegation is just one of many varieties of property delegation. Using keyword by,
you can also define observable properties (see the Kotlin documentation for delegated
properties). Lazy delegation is, though, the most common property delegation used
in Android code.

Companion Objects
Perhaps you are wondering what Kotlin did with static variables. Have no fear; Kotlin
uses companion objects. A companion object is a singleton object always related to a
Kotlin class. Although it isn’t required, most often the definition of a companion
object is placed at the bottom of the related class, as shown here:

class TimeExtensions {
    //  other code

    companion object {
        const val TAG = "TIME_EXTENSIONS"
    }
}

Companion objects can have names, extend classes, and inherit interfaces. In this
example, TimeExtension’s companion object is named StdTimeExtension and inher‐
its the interface Formatter:

interface Formatter {
    val yearMonthDate: String
}

class TimeExtensions {
    //  other code

    companion object StdTimeExtension : Formatter {
        const val TAG = "TIME_EXTENSIONS"
        override val yearMonthDate = "yyyy-MM-d"
    }
}
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When referencing a member of a companion object from outside a class that contains
it, you must qualify the reference with the name of the containing class:

val timeExtensionsTag = TimeExtensions.StdTimeExtension.TAG

A companion object is initialized when Kotlin loads the related class.

Data Classes
There is a category of classes so common that, in Java, they have a name: they are
called POJOs, or plain old Java objects. The idea is that they are simple representa‐
tions of structured data. They are a collection of data members (fields), most of which
have getters and setters, and just a few other methods: equals, hashCode, and
toString. These kinds of classes are so common that Kotlin has made them part of
the language. They are called data classes.

We can improve our definition of the Point class by making it a data class:

data class Point(var x: Int, var y: Int? = 3)

What’s the difference between this class, declared using the data modifier, and the
original, declared without it? Let’s try a simple experiment, first using the original
definition of Point (without the data modifier):

class Point(var x: Int, var y: Int? = 3)

fun main() {
    val p1 = Point(1)
    val p2 = Point(1)
    println("Points are equals: ${p1 == p2}")
}

The output from this small program will be "Points are equals: false". The rea‐
son for this perhaps unexpected result is that Kotlin compiles p1 == p2 as
p1.equals(p2). Since our first definition of the Point class did not override the
equals method, this turns into a call to the equals method in Point’s base class, Any.
Any’s implementation of equals returns true only when an object is compared to
itself.

If we try the same thing with the new definition of Point as a data class, the program
will print "Points are equals: true". The new definition behaves as intended
because a data class automatically includes overrides for the methods equals,
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hashCode, and toString. Each of these automatically generated methods depends on
all of a class’s properties.

For example, the data class version of Point contains an equals method that is
equivalent to this:

override fun equals(o: Any?): Boolean {
    // If it's not a Point, return false
    // Note that null is not a Point
    if (o !is Point) return false

    // If it's a Point, x and y should be the same
    return x == o.x && y == o.y
}

In addition to providing default implementations of equals and hashCode, a data
class also provides the copy method. Here’s an example of its use:

data class Point(var x: Int, var y: Int? = 3)
val p = Point(1)          // x = 1, y = 3
val copy = p.copy(y = 2)  // x = 1, y = 2

Kotlin’s data classes are a perfect convenience for a frequently used idiom.

In the next section, we examine another special kind of class: enum classes.

Enum Classes
Remember when developers were being advised that enums were too expensive for
Android? Fortunately, no one is even suggesting that anymore: use enum classes to
your heart’s desire!

Kotlin’s enum classes are very similar to Java’s enums. They create a class that cannot
be subclassed and that has a fixed set of instances. Also as in Java, enums cannot sub‐
class other types but can implement interfaces and can have constructors, properties,
and methods. Here are a couple of simple examples:

enum class GymActivity {
    BARRE, PILATES, YOGA, FLOOR, SPIN, WEIGHTS
}

enum class LENGTH(val value: Int) {
    TEN(10), TWENTY(20), THIRTY(30), SIXTY(60);
}
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Enums work very well with Kotlin’s when expression. For example:

fun requiresEquipment(activity: GymActivity) = when (activity) {
    GymActivity.BARRE -> true
    GymActivity.PILATES -> true
    GymActivity.YOGA -> false
    GymActivity.FLOOR -> false
    GymActivity.SPIN -> true
    GymActivity.WEIGHTS -> true
}

When the when expression is used to assign a variable, or as an expression body of a
function as in the previous example, it must be exhaustive. An exhaustive when
expression is one that covers every possible value of its argument (in this case,
activity). A standard way of assuring that a when expression is exhaustive is to
include an else clause. The else clause matches any value of the argument that is not
explicitly mentioned in its case list.

In the preceding example, to be exhaustive, the when expression must accommodate
every possible value of the function parameter activity. The parameter is of type
GymActivity and, therefore, must be one of that enum’s instances. Because an enum
has a known set of instances, Kotlin can determine that all of the possible values are
covered as explicitly listed cases and permit the omission of the else clause.

Omitting the else clause like this has a really nice advantage: if we add a new value to
the GymActivity enum, our code suddenly won’t compile. The Kotlin compiler
detects that the when expression is no longer exhaustive. Almost certainly, when you
add a new case to an enum, you want to be aware of all the places in your code that
have to adapt to the new value. An exhaustive when expression that does not include
an else case does exactly that.

What happens if a when statement need not return a value (for
instance, a function in which the when statement’s value is not the
value of the function)?
If the when statement is not used as an expression, the Kotlin com‐
piler doesn’t force it to be exhaustive. You will, however, get a lint
warning (a yellow flag, in Android Studio) that tells you that it is
recommended that a when expression on enum be exhaustive.

There’s a trick that will force Kotlin to interpret any when statement as an expression
(and, therefore, to be exhaustive). The extension function defined in Example 1-3
forces the when statement to return a value, as we see in Example 1-4. Because it must
have a value, Kotlin will insist that it be exhaustive.
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Example 1-3. Forcing when to be exhaustive

val <T> T.exhaustive: T
    get() = this

Example 1-4. Checking for an exhaustive when

when (activity) {
    GymActivity.BARRE -> true
    GymActivity.PILATES -> true
}.exhaustive // error!  when expression is not exhaustive.

Enums are a way of creating a class that has a specified, static set of instances. Kotlin
provides an interesting generalization of this capability, the sealed class.

Sealed Classes
Consider the following code. It defines a single type, Result, with exactly two sub‐
types. Success contains a value; Failure contains an Exception:

interface Result
data class Success(val data: List<Int>) : Result
data class Failure(val error: Throwable?) : Result

Notice that there is no way to do this with an enum. All of the values of an enum must
be instances of the same type. Here, though, there are two distinct types that are sub‐
types of Result.

We can create a new instance of either of the two types:

fun getResult(): Result = try {
    Success(getDataOrExplode())
} catch (e: Exception) {
    Failure(e)
}

And, again, a when expression is a handy way to manage a Result:

fun processResult(result: Result): List<Int> = when (result) {
    is Success -> result.data
    is Failure -> listOf()
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    else -> throw IllegalArgumentException("unknown result type")
}

We’ve had to add an else branch again, because the Kotlin compiler doesn’t know
that Success and Failure are the only Result subclasses. Somewhere in your pro‐
gram, you might create another subclass of result Result and add another possible
case. Hence the else branch is required by the compiler.

Sealed classes do for types what enums do for instances. They allow you to announce
to the compiler that there is a fixed, known set of subtypes (Success and Failure in
this case) for a certain base type (Result, here). To make this declaration, use the key‐
word sealed in the declaration, as shown in the following code:

sealed class Result
data class Success(val data: List<Int>) : Result()
data class Failure(val error: Throwable?) : Result()

Because Result is sealed, the Kotlin compiler knows that Success and Failure are
the only possible subclasses. Once again, we can remove the else from a when
expression:

fun processResult(result: Result): List<Int> = when (result) {
    is Success -> result.data
    is Failure -> listOf()
}

Visibility Modifiers
In both Java and Kotlin, visibility modifiers determine the scope of a variable, class,
or method. In Java, there are three visibility modifiers:

private

References are only visible to the class that they are defined within, and from the
outer class if defined in an inner class.

protected

References are visible to the class that they are defined within, or any subclasses
of that class. In addition, they are also visible from classes in the same package.

public

References are visible anywhere.
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5. At least, as of Kotlin 1.5.20. As we write these lines, Jetbrains is considering adding a package-private visibil‐
ity modifier to the language.
6. A module is a set of Kotlin files compiled together.

Kotlin also has these three visibility modifiers. However, there are some subtle differ‐
ences. While you can only use them with class-member declarations in Java, you can
use them with class-member and top-level declarations in Kotlin:

private

The declaration’s visibility depends on where it is defined:

• A class member declared as private is visible only in the class in which it is
defined.

• A top-level private declaration is visible only in the file in which it is
defined.

protected

Protected declarations are visible only in the class in which they are defined, and
the subclasses thereof.

public

References are visible anywhere, just like in Java.

In addition to these three different visibilities, Java has a fourth, package-private,
making references only visible from classes that are within the same package. A dec‐
laration is package-private when it has no visibility modifiers. In other words, this is
the default visibility in Java.

Kotlin has no such concept.5 This might be surprising, because Java developers often
rely on package-private visibility to hide implementation details from other packages
within the same module. In Kotlin, packages aren’t used for visibility scoping at all—
they’re just namespaces. Therefore, the default visibility is different in Kotlin—it’s
public.

The fact that Kotlin doesn’t have package-private visibility has quite a significant
impact on how we design and structure our code. To guarantee a complete encapsula‐
tion of declarations (classes, methods, top-level fields, etc.), you can have all these
declarations as private within the same file.

Sometimes it’s acceptable to have several closely related classes split into different
files. However, those classes won’t be able to access siblings from the same package
unless they are public or internal. What’s internal? It’s the fourth visibility modi‐
fier supported by Kotlin, which makes the reference visible anywhere within the con‐
taining module.6 From a module standpoint, internal is identical to public.
However, internal is interesting when this module is intended as a library—for
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example, it’s a dependency for other modules. Indeed, internal declarations aren’t
visible from modules that import your library. Therefore, internal is useful to hide
declarations from the outside world.

The internal modifier isn’t meant for visibility scoping inside the
module, which is what package-private does in Java. This isn’t pos‐
sible in Kotlin. It is possible to restrict visibility a little more heavy-
handedly using the private modifier.

Summary
Table 1-1 highlights some of the key differences between Java and Kotlin.

Table 1-1. Differences between Java and Kotlin features

Feature Java Kotlin
File contents A single file contains a single top-level

class.
A single file can hold any number of classes, variables, or
functions.

Variables Use final to make a variable immutable;
variables are mutable by default. Defined at
the class level.

Use val to make a variable read-only, or var for read/write
values. Defined at the class level, or may exist independently
outside of a class.

Type
inferencing

Data types are required. Date date = 
new Date();

Data types can be inferred, like val date = Date(), or
explicitly defined, like val date: Date = Date().

Boxing and
unboxing types

In Java, data primitives like int are
recommended for more expensive
operations, since they are less expensive
than boxed types like Integer. However,
boxed types have lots of useful methods in
Java’s wrapper classes.

Kotlin doesn’t have primitive types out of the box.
Everything is an object. When compiled for the JVM, the
generated bytecode performs automatic unboxing, when
possible.

Access
modifiers

Public and protected classes, functions, and
variables can be extended and overridden.

As a functional language, Kotlin encourages immutability
whenever possible. Classes and functions are final by default.

Access
modifiers in
multi-module
projects

Default access is package-private. There is no package-private, and default access is public.
New internal access provides visibility in the same
module.

Functions All functions are methods. Kotlin has function types. Function data types look like, for
example, (param: String) -> Boolean.

Nullability Any non-primitive object can be null. Only explicitly nullable references, declared with the ? suffix
on the type, can be set to null: val date: Date? = 
new Date().

Statics versus
constants

The static keyword attaches a variable
to a class definition, rather than an
instance.

There is no static keyword. Use a private const or a
companion object.
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Congratulations, you just finished a one-chapter covering Kotlin’s essentials. Before
we start talking about applying Kotlin to Android, we need to discuss Kotlin’s built-in
library: collections and data transformations. Understanding the underlying func‐
tions of data transformations in Kotlin will give you the necessary foundation needed
to understand Kotlin as a functional language. 
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CHAPTER 2

The Kotlin Collections Framework

In the preceding chapter we offered an overview of the syntax of the Kotlin language.
As with any language, syntax is a foundation but, really, no more than that. When it
comes to getting actual work done, syntax alone won’t carry the water. To do that you
need expressions and idioms that are easy to assemble into useful code, and that are
as easy for other developers to understand and modify.

One important aspect of nearly every modern language is its collections framework:
ways of grouping objects, and libraries of functions that manipulate them.

At the time it was introduced, Java’s collection framework was state of the art. Today,
more than 20 years later, the basic data structures provided by newer languages have
not changed much. All of the containers that we’re familiar with from the Java frame‐
work (or even the earliest versions of the C++ stdlib) are still there: Iterable,
Collection, List, Set, and Map (to use their Java names). In response to broad
acceptance of functional styles of programming, however, collections frameworks for
modern languages like Swift and Scala usually provide a set of common, higher-order
functions that operate on the collections: filter, map, flatmap, zip, and more. You
will, indeed, find these functions in the collections framework from the Kotlin Stan‐
dard Library.

In this chapter, we will first visit the collections themselves and a few interesting
extensions that the Kotlin language empowers. After that, we will dig into some of the
powerful higher-order functions that operate on the collections.

Collection Basics
Kotlin’s collections framework embeds the data structures from the Java Collections
Framework as a subset. It wraps the basic Java classes with some new features and
adds functional transformations that operate on them.
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Let’s start this deep dive into the collections library with a quick look at some of the
extensions to the data structures themselves.

Java Interoperability
Because seamless interoperablity with Java is a central goal of the Kotlin language,
Kotlin collection data types are based on their Java counterparts. Figure 2-1 illustrates
the relationship.

Figure 2-1. The Kotlin collection type hierarchy and its relation to Java.

By making Kotlin collection types subtypes of their Java analogs, Kotlin preserves all
of functionality of the Java Collections Framework. For the most part, Kotlin extends,
but does not alter the Java framework. It just adds the new, functional methods.

There is one significant exception: mutability.

Mutability
It is, perhaps, only logical that a language that embeds mutability in its syntax would
also embed mutability in its collection system.

Kotlin defines two distinct type hierarchies in its collections framework, one for col‐
lections that are mutable and one for collections that are not. This can be seen in
Example 2-1.
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Example 2-1. Mutable and Immutable Lists

val mutableList = mutableListOf(1, 2, 4, 5)
val immutableList = listOf(1, 2, 4, 5)
mutableList.add(4)    // compiles

// doesn't compile: ImmutableList has no `add` method.
immutableList.add(2)

Mutable is the opposite of immutable. A mutable object can be
changed and an immutable one cannot. The distinction is critical
when trying to optimize code. Since they cannot change, immuta‐
ble objects can be shared safely among multiple threads. A mutable
object, however, must be made explicitly thread-safe if it is to be
shared. Thread safety requires locking or copying, which may be
expensive.

Unfortunately, Kotlin cannot guarantee the immutablity of its immutable collections.
Immutable collections simply do not have mutator functions (add, remove, put, etc.).
Especially when a Kotlin collection is passed to Java code—where Kotlin’s immutabil‐
ity constraints are not enforced by the type system—there can be no assurance that
the contents of the collection will not change.

Note that the mutability of a collection is not related to the mutability of the object
that the collection contains. As a very simple example, consider the following code:

val deeplist = listOf(mutableListOf(1, 2), mutableListOf(3, 4))

// Does not compile: "Unresolved reference: add"
deeplist.add(listOf(3))

deeplist[1][1] = 5      // works
deeplist[1].add(6)      // works

The variable deeplist is a List<MutableList<Int>>. It is and always will be a list of
two lists. The contents of the lists that deeplist contains, however, can grow, shrink,
and change.

The creators of Kotlin are actively investigating all things immutable. The prototype
kotlinx.collections.immutable library is intended to be a set of truly immutable
collections. To use them in your own Android/Kotlin project, add the following
dependency to your build.gradle file:
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implementation \
'org.jetbrains.kotlinx:kotlinx-collections-immutable:$IC_VERSION'

While the Kotlinx Immutable Collections Library uses state-of-the-art algorithms and
optimizes them so that they are very fast compared to other JVM implementations
of immutable collections, these true immutable collections are still an order of magni‐
tude slower than their mutable analogs. Currently, there’s nothing to be done about it.
However, many modern developers are willing to sacrifice some performance for the
safety that immutability brings, especially in the context of concurrency.1

Overloaded Operators
Kotlin supports a disciplined ability to overload the meanings of certain infix opera‐
tors, in particular, + and -. Kotlin’s collections framework makes good use of this
capability. To demonstrate, let’s look at a naive implementation of a function to con‐
vert a List<Int> to a List<Double>:

fun naiveConversion(intList: List<Int>): List<Double> {
    var ints = intList
    var doubles = listOf<Double>()
    while (!ints.isEmpty()) {
        val item = ints[0]
        ints = ints - item
        doubles = doubles + item.toDouble()
    }
    return doubles
}

Don’t do this. The only thing that this example does efficiently is demonstrate the use
of the two infix operators + and -. The former adds an element to a list and the latter
removes an element from it.

The operand to the left of a + or - operator can define the behavior of that operator.
Containers, when they appear to the left of a + or -, define two implementations for
each of those two operators: one when the right-hand operand is another container
and the other when it is not.

Adding a noncontainer object to a container creates a new container that has all of
the elements from the left-hand operand (the container) with the new element (the
right-hand operand) added. Adding two containers together creates a new container
that has all of the elements from both.
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Similarly, subtracting an object from a container creates a new container with all but
the first occurrence of the left-hand operand. Subtracting one container from another
produces a new container that has the elements of the left-hand operand, with all
occurrences of all the elements in the right-hand operand removed.

The + and - operators preserve order when the underlying con‐
tainer is ordered. For instance:

(listOf(1, 2) + 3)
    .equals(listOf(1, 2, 3))    // true
(listOf(1, 2) + listOf(3, 4))
    .equals(listOf(1, 2, 3, 4)) // true

Creating Containers
Kotlin does not have a way to express container literals. There is no syntactic way, for
instance, of making a List of the numbers 8, 9, and 54. Nor is there a way of making
a Set of the strings “Dudley” and “Mather.” Instead, there are handy methods for cre‐
ating containers that are nearly as elegant. The code in Example 2-1 showed two sim‐
ple examples of creating lists. There are also ...Of methods for creating mutable and
immutable lists, sets, and maps.

Creating literal maps requires knowing a clever trick. The mapOf function takes a list
of Pairs as its argument. Each of the pairs provides a key (the pair’s first value) and a
value (the pair’s second value). Recall that Kotlin supports an extended set of infix
operators. Among these operators is to, which creates a new Pair with its left
operand as the first element and its right operand as the second element. Combine
these two features and you can, conveniently, build a Map like this:

val map = mapOf(1 to 2, 4 to 5)

The type of the content of a container is expressed using a generic syntax very similar
to Java’s. The type of the variable map in the preceding code, for instance, is Map<Int,
Int>, a container that maps Int keys to their Int values.

The Kotlin compiler is quite clever about inferring the types of the contents of con‐
tainers created with their factory methods. Obviously in this example:

val map = mutableMapOf("Earth" to 3, "Venus" to 4)

the type of map is MutableMap<String, Int>. But what about this?
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val list = listOf(1L, 3.14)

Kotlin will choose the nearest type in the type hierarchy tree that is an ancestor of all
of the elements of the container (this type is called the upper bound type). In this case
it will choose Number, the nearest ancestor of both Long and Double. The variable
list has the inferred type List<Number>.

We can add a String, though, as in the following:

val list = mutablelistOf(1L, 3.14, "e")

The only type that is an ancestor to all of the elements, a Long, a Double, and a
String, is the root of the Kotlin type hierarchy, Any. The type of the variable list is
MutableList<Any>.

Once again, though, recall from Chapter 1 that the type Any is not the same as the
type Any?. The following will not compile (assuming the definition from the preced‐
ing example):

list.add(null)  // Error: Null cannot be a value of a non-null type Any

In order to allow the list to contain null, we’d have to specify its type explicitly:

val list: MutableList<Any?> = mutablelistOf(1L, 3.14, "e")

We can create collections now. So, what do we do with them?

Functional Programming
We operate on them! Nearly all of the operations that we will discuss here are based
on the paradigm of functional programming. In order to understand their context
and motivation, let’s review the paradigm.

Object-oriented programming (OOP) and functional programming (FP) are both para‐
digms for software design. Software architects understood the promise of functional
programming soon after its invention in the late 1950s. Early functional programs
tended to be slow, though, and it’s only recently that the functional style has been able
to challenge a more pragmatic imperative model for performance. As programs get
more complex and difficult to understand, as concurrency becomes inevitable, and as
compiler optimization improves, functional programming is changing from a cute
academic toy into a useful tool that every developer should be able to wield.
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Functional programming encourages immutability. Unlike the functions in code,
mathematical functions don’t change things. They don’t “return” anything. They sim‐
ply have a value. Just as “4” and “2 + 2” are names for the same number, a given func‐
tion evaluated with given parameters is simply a name (perhaps a verbose name!) for
its value. Because mathematical functions do not change, they are not affected by
time. This is immensely useful when working in a concurrent environment.

Though different, FP and OOP paradigms can coexist. Java was, certainly, designed as
an OO language, and Kotlin, fully interoperable, can duplicate Java algorithms nearly
word for word. As we proclaimed in the preceding chapter, though, the true power of
Kotlin lies in its extensible functional programming capabilities. It’s not uncommon
for folks to start out writing “Java in Kotlin.” As they start to feel more comfortable,
they tend to gravitate toward more idiomatic Kotlin, and much of that involves apply‐
ing the power of FP.

Functional Versus Procedural: A Simple Example
The following code shows a procedural way of working with a collection:

fun forAll() {
    for (x in collection) { doSomething(x) }
}

In the example, a for loop iterates over a list. It selects an element from collection
and assigns it to the variable x. It then calls the method doSomething on the element.
It does this for each element in the list.

The only constraint on the collection is that there must be a way to fetch each of its
elements exactly once. That capability is precisely what is encapsulated by the type
Iterable<T>.

The functional paradigm is certainly less complicated: no extra variables and no spe‐
cial syntax. Just a single method call:

fun forAll() = collection.forEach(::doSomething)

The forEach method takes a function as its argument. That argument, doSomething
in this case, is a function that takes a single parameter of the type contained in
collection. In other words, if collection is a list of Strings, doSomething must be
doSomething(s: String). If collection is a Set<Freeptootsie>, then doSomething
must be doSomething(ft: Freeptootsie). The forEach method calls its argument
(doSomething) with each element in collection as its parameter.
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This might seem like an insignificant difference. It is not. The forEach method is a
much better separation of concerns.

An Iterable<T> is stateful, ordered, and time dependent. Anyone who has ever had
to deal with a ConcurrentModificationException knows it is entirely possible that
the state of an iterator may not match the state of the collection over which it
is iterating. While Kotlin’s forEach operator is not completely immune to
ConcurrentModificationException, those exceptions occur in code that is actually
concurrent.

More importantly, the mechanism that a collection uses to apply a passed function to
each of its elements is entirely the business of the collection itself. In particular, there
is no intrinsic contract about the order in which the function will be evaluated on the
collection’s elements.

A collection could, for instance, divide its elements into groups. It could farm each of
these groups out to a separate processor and then reassemble the results. This
approach is particularly interesting at a time when the number of cores in a processor
is increasing rapidly. The Iterator<T> contract cannot support this kind of parallel
execution.

Functional Android
Android has a quirky history with functional programming. Because its virtual
machine has nothing to do with Java’s, improvements in the Java language have not
necessarily been available to Android developers. Some of the most important
changes in Java, including lambdas and method references, were not supported in
Android for quite a while after they appeared in Java 8.

Although Java could compile these new features and DEX (Android’s bytecode) could
even represent them (though, perhaps, not efficiently), the Android toolchain
couldn’t convert the representations of these features—the compiled Java bytecode—
into the DEX code that could be run on an Android system.

The first attempt to fill the gap was a package called RetroLambda. Other add-on
library solutions followed, sometimes with confusing rules (e.g., with the Android
Gradle Plugin [AGP] 3.0+, if you wanted to use the Java Streams API you had to tar‐
get, at a minimum, Android API 24).

All of these constraints are now gone with Kotlin on Android. Recent versions of the
AGP will support functional programming even on older versions of Android. You
can now use the full Kotlin collection package on any supported platform.
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Kotlin Transformation Functions
In this section, you will see how Kotlin brings functional capabilities to collections to
provide elegant and safe ways of manipulating them. Just as in the previous chapter
we didn’t visit all of Kotlin’s syntax, we will not in this chapter attempt to visit all of
Kotlin’s library functions. It isn’t necessary to memorize them all. It is essential,
though, for idiomatic and effective use of Kotlin, to get comfortable with a few key
transforms and to get a feel for how they work.

The Boolean Functions
A convenient set of collection functions return a Boolean to indicate whether the col‐
lection has—or does not have—a given attribute. The function any(), for instance,
will return true when a collection contains at least one element. If used with a predi‐
cate, as in any { predicate(it) }, any will return true if the predicate evaluates
true for any element in the collection:

val nums = listOf(10, 20, 100, 5)
val isAny = nums.any()                 // true
val isAnyOdd = nums.any { it % 1 > 0 } // true
val isAnyBig = nums.any { it > 1000}   // false

When a lambda takes only a single argument and the Kotlin com‐
piler can figure that out using type inferencing (it usually can), you
can omit the parameter declaration and use the implicit parameter
named it. The preceding example uses this shortcut twice, in the
definitions of the predicates to the any method.

Another boolean function, all { predicate }, returns true only if every element in
the list matches the predicate:

val nums = listOf(10, 20, 100, 5)
val isAny = nums.all { it % 1 > 0 } // false

The opposite of any is none. Without a predicate, none() returns true only if there
are no elements in a collection. With a predicate, none { predicate } returns true
only if the predicate evaluates to true for none of the elements in the collection. For
example:
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val nums = listOf(10, 20, 100, 5)
val isAny = nums.none()              // false
val isAny4 = nums.none { it == 4 }   // true

Filter Functions
The basic filter function will return a new collection containing only the elements
of the original collection that match the given predicate. In this example, for instance,
the variable numbers will contain a list with the single value 100:

val nums = listOf(10, 20, 100, 5)
val numbers = nums.filter { it > 20 }

The filterNot function is the reverse. It returns elements that do not match the
predicate. In this example, for instance, the variable numbers will contain three ele‐
ments, 10, 20, and 5: the elements of nums that are not greater than 20:

val nums = listOf(10, 20, 100, 5)
val numbers = nums.filterNot { it > 20 }

A beautifully convenient special case of filterNot is the function filterNotNull. It
removes all of the nulls from a collection:

val nums = listOf(null, 20, null, 5)
val numbers = nums.filterNotNull() // { 20, 5 }

In this example, the variable numbers will be a list containing two elements, 20 and 5.

Map
The map function applies its argument to each element in a collection and returns a
collection of the resulting values. Note that it does not mutate the collection to which
it is applied; it returns a new, resulting, collection.

Here is the definition of the map function, for the Array type:

inline fun <T, R> Array<out T>.map(transform: (T) -> R): List<R>

Let’s unpack this.
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Starting at the left, map is an inline function. The “fun” part should be clear by now.
But what about “inline.”

The keyword inline tells the Kotlin compiler to copy the bytecode for a function
directly into the binary whenever the method is called, instead of generating a trans‐
fer to a single compiled version. When the number of instructions necessary to call a
function is a substantial percentage of the total number necessary to run it, an inline
function makes sense as a trade-off of space for time. Sometimes, too, it can remove
the overhead of the extra object allocation that some lambda expressions require.

Next, <T, R> are the two, free, type variables used in the function definition. We’ll get
back to them.

Next is the description of the receiver, Array<out T>. This map function is an exten‐
sion function on the Array type: it is a function on an array whose elements are of
type T (or one of T’s superclasses, e.g., Any).

Next is the map’s parameter. The parameter is a function named transform. Transform
is a function transform: (T) -> R: it takes as its argument something of type T and
returns something of type R. Well! That’s interesting! The array to which the function
will be applied is full of objects of type T! The function can be applied to the elements
of the array.

Finally, there is map’s return. It is a List<R>, a list whose elements are of type R. An R
is what you get if you apply transform to an elements of the array (a T ).

It all works out. Calling map on an array with a function that can be applied to the
elements of the array will return a new List that contains the results of the applica‐
tion of the function to each of the elements in the array.

Here’s an example that returns a list of starting dates for employee records that have
those starting dates stored as strings:

data class Hire(
    val name: String,
    val position: String,
    val startDate: String
)

fun List<Hire>.getStartDates(): List<Date> {
    val formatter
        = SimpleDateFormat("yyyy-MM-d", Locale.getDefault())
    return map {
        try {
            formatter.parse(it.startDate)
        } catch (e: Exception) {
            Log.d(
                "getStartDates",
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                "Unable to format first date. $e")
            Date()
        }
    }
}

Perhaps you’re wondering: “What happens if the transform function doesn’t return a
value?” Ah! But Kotlin functions always have a value!

For example:

val doubles: List<Double?> = listOf(1.0, 2.0, 3.0, null, 5.0)
val squares: List<Double?> = doubles.map { it?.pow(2) }

In this example, the variable squares will be the list [1.0, 4.0, 9.0, null, 25.0]. Because
of the conditional operator, ?., in the transform function, the function’s value is the
square of its argument, if that argument is not null. If the argument is null, however,
the function has the value null.

There are several variations on the map function in the Kotlin library. One of them,
mapNotNull, addresses situations like this:

val doubles: List<Double?> = listOf(1.0, 2.0, 3.0, null, 5.0)
val squares: List<Double?> = doubles.mapNotNull { it?.pow(2) }

The value of the variable squares in this example is [1.0, 4.0, 9.0, 25.0].

Another variant of map is mapIndexed. mapIndexed also takes a function as its argu‐
ment. Unlike map, though, mapIndexed’s functional argument takes an element of the
collection as its second parameter (not its first and only parameter, as did map’s argu‐
ment). mapIndexed’s functional argument takes, as its first parameter, an Int. The Int
is the ordinal that gives the position in the collection of the element that is its second
paramter: 0 for the first element, 1 for the second, and so on.

There are mapping functions for most collection-like objects. There are even similar
functions for Maps (though they are not subtypes of Collection): the functions
Map::mapKeys and Map::mapValues.

flatMap
The thing that makes the flatMap function hard to understand is that it may seem
abstract and not particularly useful. It turns out that, although it is abstract, it is quite
useful.
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Let’s start with an analogy. Suppose you decide to reach out to the members of your
old high school debate team. You don’t know how to get in touch anymore. You do
remember, though, that you have yearbooks for all four years you were in the school
and that each yearbook has a picture of the debate team.

You decide to divide the process of contacting members into two steps. First you will
examine each photo of the team and try to identify each person depicted there. You
will make a list of the people you identify. You will then combine the four lists into a
single list of all debate-team members.

That’s flatmapping! It’s all about containers. Let’s generalize.

Suppose you have some kind of container of something. It is a CON<T>. In the year‐
book example, CON<T> was four photographs, a Set<Photo>. Next you have a function
that maps T -> KON<R>. That is, it takes an element of CON and turns it into a new
kind of container, a KON, whose elements are of type R. In the example, this was you
identifying each person in one of the photos, and producing a list of names of people
in the photo. KON is a paper list and R is the name of a person.

The result of the flatMap function in the example is the consolidated list of names.

The flatmap on CON<T> is the function:

fun <T, R> CON<T>.flatMap(transform: (T) -> KON<R>): KON<R>

Note, just for comparison, how flatMap is different from map. The map function, for
the container CON, using the same transform function, has a signature like this:

fun <T, R> CON<T>.map(transform: (T) -> KON<R>): CON<KON<R>>

The flatMap function “flattens” away one of the containers.

While we’re on the subject, let’s take a look at an example of the use of flatMap that is
very common:

val list: List<List<Int>> = listOf(listOf(1, 2, 3, 4), listOf(5, 6))
val flatList: List<Int> = list.flatMap { it }

The variable flatList will have the value [1, 2, 3, 4, 5, 6].

This example can be confusing. Unlike the previous example, which converted a set
of photographs to lists of names and then consolidated those lists, in this common
example the two container types CON and KON are the same: they are List<Int>. That
can make it difficult to see what’s actually going on.
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Just to prove that it works, though, let’s go through the exercise of binding the quanti‐
ties in this somewhat baffling example to the types in the function description. The
function is applied to a List<List<Int>>, so T must be a List<Int>. The transform
function is the identity function. In other words, it is (List<Int>) -> List<Int>: it
returns its parameter. This means that KON<R> must also be a List<Int> and R must
be an Int. The flatMap function, then, will return a KON<R>, a List<Int>.

It works.

Grouping
In addition to filtering, the Kotlin Standard Library provides another small set of
transformation extension functions that group elements of a collection. The signature
for the groupBy function, for instance, looks like this:

inline fun <T, K> Array<out T>
    .groupBy(keySelector: (T) -> K): Map<K, List<T>>

As is often the case, you can intuit this function’s behavior just by looking at the type
information. groupBy is a function that takes an Array of things (Array in this case:
there are equivalents for other container types). For each of the things, it applies the
keySelector method. That method, somehow, labels the thing with a value of type K.
The return from the groupBy method is a map of each of those labels to a list of the
things to which the keySelector assigned that label.

An example will help:

val numbers = listOf(1, 20, 18, 37, 2)
val groupedNumbers = numbers.groupBy {
    when {
        it < 20 -> "less than 20"
        else -> "greater than or equal to 20"
    }
}

The variable groupedNumbers now contains a Map<String, List<Int>>. The map
has two keys, “less than 20” and “greater than or equal to 20.” The value for the first
key is the list [1, 18, 2]. The value for the second is [20, 37].

Maps that are generated from grouping functions will preserve the order of the ele‐
ments in the original collection, in the lists that are the values of the keys of the out‐
put map.
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Iterators Versus Sequences
Suppose you are going to paint your desk. You decide that it will look much nicer if it
is a nice shade of brown instead of that generic tan. You head down to the paint store
and discover that there are around 57 colors that might be just the thing.

What you do next? Do you buy samples of each of the colors to take home? Almost
certainly not! Instead, you buy samples of two or three that seem promising and try
them. If they turn out not to be all your heart desires, you go back to the store and
buy three more. Instead of buying samples of all the candidate colors and iterating
over them, you create a process that will let you get the next candidate colors, given
the ones you have already tried.

A sequence differs from an iterator in a similar way. An iterator is a way of getting
each element from an existing collection exactly once. The collection exists. All the
iterator needs to do is order it.

A sequence, on the other hand, is not necessarily backed by a collection. Sequences
are backed by generators. A generator is a function that will provide the next item in
the sequence. In this example, if you need more paint samples, you have a way of get‐
ting them: you go back to the store and buy more. You don’t have to buy them all and
iterate over them. You just need to buy a couple because you know how to get more.
You can stop when you find the right color, and with luck, that will happen before
you pay for samples of all of the possible colors.

In Kotlin, you might express your search for desk paint like this:

val deskColor = generateSequence("burnt umber") {
    buyAnotherPaintSample(it)
}.first { looksGreat(it) }

println("Start painting with ${deskColor}!")

This algorithm is efficient. On average, desk painters using it will buy only 28 paint
samples instead of 57.

Because sequences are lazy—only generating the next element when it is needed—
they can be very, very useful in optimizing operations, even on collections with fixed
content. Suppose, for instance, that you have a list of URLs, and you want to know
which one is a link to a page that contains an image of a cat. You might do it like this:

val catPage = listOf(
    "http://ragdollies.com",
    "http://dogs.com",
    "http://moredogs.com")
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    .map { fetchPage(it) }
    .first { hasCat(it) }

That algorithm will download all of the pages. If you do the same thing using a
sequence:

val catPage = sequenceOf(
    "http://ragdollies.com",
    "http://dogs.com",
    "http://moredogs.com")
    .map { fetchPage(it) }
    .first { hasCat(it) }

only the first page will be downloaded. The sequence will provide the first URL, the
map function will fetch it, and the first function will be satisfied. None of the other
pages will be downloaded.

Be careful, though! Don’t ask for all of the elements of an infinite collection! This
code, for instance, will eventually produce an OutOfMemory error:

val nums = generateSequence(1) { it + 1 }
    .map { it * 7 }                 // that's fine
    .filter { it mod 10000 = 0 }    // still ok
    .asList()                       // FAIL!

An Example
Let’s make all this concrete with an example.

We just met several of the handy functions that Kotlin’s Standard Library provides for
manipulating collections. Using those functions, you can create robust implementa‐
tions of complex logic. To illustrate that, we’ll take an example inspired by a real
application used in an aircraft engine factory.

The Problem
Bandalorium Inc. builds aircraft engines. Each engine part is uniquely identifiable by
its serial number. Each part goes through a rigorous quality control process that
records numerical measurements for several of the part’s critical attributes.

An attribute for an engine part is any measurable feature. For example, the outside
diameter of a tube might be an attribute. The electrical resistance of some wire might
be another. A third might be a part’s ability to reflect a certain color of light. The only
requirement is that measuring the attribute must produce a single numerical value.
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One of the things that Bandalorium wants to track is the precision of its production
process. It needs to track the measurements of the parts it produces and whether they
change over time.

The challenge, then, is:

Given a list of measurements for attributes of parts produced during a certain interval
(say, three months), create a CSV (comma-separated value) report similar to the one
shown in Figure 2-2. As shown, the report should be sorted by the time that the
measurement was taken.

Figure 2-2. Example of CSV ouput.

If we might make a suggestion—now would be a great time to put this book aside for
a moment and consider how you would approach this problem. Maybe just sketch
enough high-level code to feel confident that you can solve it.

The Implementation
In Kotlin, we might represent an attribute like this:

data class Attr(val name: String, val tolerance: Tolerance)

enum class Tolerance {
    CRITICAL,
    IMPORTANT,
    REGULAR
}

The name is a unique identifier for the attribute. An attribute’s tolerance indicates the
significance of the attribute to the quality of the final product: critical, important, or
just regular.

Each attribute probably has lots of other associated information. There is, surely, a
record of the units of measurement (centimeters, joules, etc.), a description of its
acceptable values, and perhaps the procedure used to measure it. We will ignore those
features for this example.
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A measurement of an attribute for a specific engine part includes the following:

• The serial number of the part being measured
• A timestamp giving the time at which the measurement was made
• The measured value

A measurement, then, might be modeled in Kotlin like this:

data class Point(
    val serial: String,
    val date: LocalDateTime,
    val value: Double)

Finally, we need a way to connect a measurement to the attribute it measures. We
model the relationship like this:

data class TimeSeries(val points: List<Point>, val attr: Attr)

The TimeSeries relates a list of measurements to the Attrs that they measure.

First, we build the header of the CSV file: the column titles that comprise the first line
(see Example 2-2). The first two columns are named date and serial. The other col‐
umn names are the distinct names of the attributes in the dataset.

Example 2-2. Making the header

fun createCsv(timeSeries: List<TimeSeries>): String {
    val distinctAttrs = timeSeries
        .distinctBy { it.attr } 
        .map { it.attr }        
        .sortedBy { it.name }   

    val csvHeader = "date;serial;" +
        distinctAttrs.joinToString(";") { it.name } +
        "\n"

    /* Code removed for brevity */
}

Use the distinctBy function to get a list of TimeSeries instances that have dis‐
tinct values for the attr attribute.
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We have a list of distinct TimeSeries from the previous step and we only want
the attr, so we use the map function.

Finally, we sort alphabetically using sortedBy. It wasn’t required but why not?

Now that we have the list of distinct characteristics, formatting the header is straight‐
forward using the joinToString function. This function transforms a list into a
string by specifying a string separator to insert between each element of the list. You
can even specify a prefix and/or a postfix if you need to.

It is often useful to be able to find the types of the returns from col‐
lection transformation functions. In Example 2-2, for instance, if
you activate type hints, you’ll only get the inferred type of the
whole chain (the type of the variable distinctAttrs). There is a
nice IntelliJ/Android Studio feature that can help!

1. Click on distinctCharacs in the source code.
2. Hit Ctrl + Shift + P. You’ll see a drop-down window appear.

3. Select the step you want and the inferred type will appear
before your eyes!

After building the header, we build the content of the CSV file. This is the most tech‐
nical and interesting part.

The rest of the CSV file that we are trying to reproduce sorts the data by date. For
each given date, it gives a part’s serial number and then that part’s measurement for
each attribute of interest. That’s going to take some thought because, in the model
we’ve created, those things are not directly related. A TimeSeries contains only data
for a single attribute and we will need data for multiple attributes.

A common approach in this situation is to merge and flatten the input data into a
more convenient data structure, as shown in Example 2-3.
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Example 2-3. Merge and flatten the data

fun createCsv(timeSeries: List<TimeSeries>): String {
    /* Code removed for brevity */

    data class PointWithAttr(val point: Point, val attr: Attr)

    // First merge and flatten so we can work with a list of PointWithAttr
    val pointsWithAttrs = timeSeries.flatMap { ts ->
        ts.points.map { point -> PointWithAttr(point, ts.attr) }

   /* Code removed for brevity */
}

In this step, we associate each Point with its corresponding Attr, in a single
PointAndAttr object. This is much like joining two tables in SQL.

The flatMap function transforms a list of TimeSeries objects. Internally, the function
applied by flatMap uses the map function, series.points.map { ... }, to create a
list of PointAndAttrs for each point in the TimeSeries. If we had used map instead of
flatMap, we would have produced a List<List<PointAndAttr>>. Remember,
though, that flatMap flattens out the top layer of the container, so the result here is a
List<PointAndAttr>.

Now that we have “spread” the attribute information into every Point, creating the
CSV file is fairly straightforward.

We’ll group the list of pointWithAttrs by date to create a Map<LocalDate,
List<PointWithAttr>. This map will contain a list of pointWithAttrs for each date.
Since the example seems to have a secondary sort (by the part’s serial number), we’ll
have to group each of the lists in the previously grouped Map by serial number. The
rest is just string formatting, as shown in Example 2-4.

Example 2-4. Create data rows

fun createCsv(timeSeries: List<TimeSeries>): String {
    /* Code removed for brevity */

    val rows = importantPointsWithAttrs.groupBy { it.point.date }  
    .toSortedMap()                                     
    .map { (date, ptsWithAttrs1) ->
        ptsWithAttrs1
            .groupBy { it.point.serial }             
            .map { (serial, ptsWithAttrs2) ->
                listOf(                                        
                    date.format(DateTimeFormatter.ISO_LOCAL_DATE),
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                    serial
                ) + distinctAttrs.map { attr ->
                    val value = ptsWithAttrs2.firstOrNull { it.attr == attr }
                    value?.point?.value?.toString() ?: ""
                }
            }.joinToString(separator = "") {        
                it.joinToString(separator = ";", postfix = "\n")
            }
    }.joinToString(separator = "")

    return csvHeader + rows                               
}

Group by date, using the groupBy function.

Sort the map (by date). It’s not mandatory, but a sorted CSV is easier to read.

Group by serial number.

Build the list of values for each line.

Format each line and assemble all those lines using the joinToString function.

Finally, return the header and the rows as a single String.

Now, let’s suppose that you get an additional request to report only on attributes that
are CRITICAL or IMPORTANT. You just have to use the filter function, as shown in
Example 2-5.

Example 2-5. Filter critical and important samples

fun createCsv(timeSeries: List<TimeSeries>): String {
    /* Code removed for brevity */

    val pointsWithAttrs2 = timeSeries.filter {
        it.attr.tolerance == Tolerance.CRITICAL
                || it.attr.tolerance == Tolerance.IMPORTANT
    }.map { series ->
        series.points.map { point ->
            PointWithAttr(point, series.attr)
        }
    }.flatten()

    /* Code removed for brevity */
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    return csvHeader + rows
}

That’s it!

To test that code, we can use a predefined input and check that the output matches
your expectations. We won’t show a full-blown set of unit tests here—just an example
of CSV output, as shown in Example 2-6.

Example 2-6. Demonstrate the application

fun main() {
    val dates = listOf<LocalDateTime>(
        LocalDateTime.parse("2020-07-27T15:15:00"),
        LocalDateTime.parse("2020-07-27T15:25:00"),
        LocalDateTime.parse("2020-07-27T15:35:00"),
        LocalDateTime.parse("2020-07-27T15:45:00")
    )
    val seriesExample = listOf(
        TimeSeries(
            points = listOf(
                Point("HC11", dates[3], 15.1),
                Point("HC12", dates[2], 15.05),
                Point("HC13", dates[1], 15.11),
                Point("HC14", dates[0], 15.08)
            ),
            attr = Attr("AngleOfAttack", Tolerance.CRITICAL)
        ),
        TimeSeries(
            points = listOf(
                Point("HC11", dates[3], 0.68),
                Point("HC12", dates[2], 0.7),
                Point("HC13", dates[1], 0.69),
                Point("HC14", dates[0], 0.71)
            ),
            attr = Attr("ChordLength", Tolerance.IMPORTANT)
        ),
        TimeSeries(
            points = listOf(
                Point("HC11", dates[3], 0x2196F3.toDouble()),
                Point("HC14", dates[0], 0x795548.toDouble())
            ),
            attr = Attr("PaintColor", Tolerance.REGULAR)
        )
    )
    val csv = createCsv(seriesExample)
    println(csv)
}
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If you use the csv string as the content of a file with the “.csv” extension, you can
open it using your favorite spreadsheet tool. Figure 2-3 shows what we got using
FreeOffice.

Figure 2-3. Final output.

Using functional programming to transform data, as in this example, is particularly
robust. Why? By combining Kotlin’s null safety and functions from the Standard
Library, you can produce code which has either few or no side effects. Throw in any
list of PointWithAttr you can imagine. If even one Point instance has a null value,
the code won’t even compile. Anytime the result of transformation returns a result
which can be null, the language forces you to account for that scenario. Here we did
this in step 4, with the firstOrNull function.

It’s always a thrill when your code compiles and does exactly what you expect it to do
on the first try. With Kotlin’s null safety and functional programming, that happens
a lot.

Summary
As a functional language, Kotlin employs great ideas like mapping, zipping, and other
functional transformations. It even allows you to create your own data transforma‐
tions with the power of higher-order functions and lambdas:

• Kotlin collections include the entire Java collections API. In addition, the library
provides all the common functional transformations like mapping, filtering,
grouping, and more.

• Kotlin supports inline functions for more performant data transformations.
• The Kotlin collections library supports sequences, a way of working with collec‐

tions that are defined by intention instead of extension. Sequences are appropri‐
ate when getting the next element is very expensive, or even on collections of
unbounded size.

If you’ve ever used languages like Ruby, Scala, or Python, perhaps some of this feels
familiar to you. It should! Kotlin’s design is based on many of the same principles that
drove the development of those languages.

Summary | 51



Writing your Android code in a more functional way is as easy as using data transfor‐
mation operations offered with the Kotlin Standard Library. Now that you are famil‐
iar with Kotlin syntax and the spirit of functional programming in Kotlin, the next
chapter focuses on the Android OS and other programming fundamentals. Android
development turned toward Kotlin as an official language back in 2017, so Kotlin has
heavily influenced Android’s evolution in recent years. It will continue to do so in the
coming years.
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CHAPTER 3

Android Fundamentals

The first two chapters of this book were a whirlwind review of the Kotlin language.
This chapter will review the environment in which we will use Kotlin: Android.

Android is an operating system, like Windows and MacOS. Unlike those two systems,
Android is a Linux-based OS, like Ubuntu and Red Hat. Unlike Ubuntu and Red Hat,
though, Android has been very heavily optimized for mobile devices—battery-
powered mobile devices, in particular.

The most significant of these optimizations concerns what it means to be an applica‐
tion. In particular, as we will see, Android apps have much more in common with
web applications than they do with familiar desktop applications.

But we’ll get to that in a moment. First, let’s look in a little more detail at the Android
environment. We’ll look at the operating system as a stack—kind of a layer cake.

The Android Stack
Figure 3-1 shows one way of looking at Android: as a stack of components. Each layer
in the stack has a specific task and provides specific services; each uses the features of
the layers beneath it.

Walking up from the bottom, the layers are:

• Hardware
• Kernel
• System services
• Android Runtime Environment
• Applications
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Figure 3-1. The Android stack.

Hardware
Beneath the Android stack, of course, is hardware: a piece of warm silicon. While the
hardware is not part of the Android stack, it is important to recognize that the hard‐
ware for which Android was designed imposes some fairly tough constraints on the
system. By far, the most significant of these constraints is power. Most common oper‐
ating systems just assume an infinite power supply. The Android systems cannot.

Kernel
The Android operating system depends on the Linux kernel. A kernel is responsible
for providing the basic services that developers expect: a filesystem, threads and pro‐
cesses, network access, interfaces to hardware devices, and so on. Linux is free and
open source and, thus, a popular choice for hardware and device manufacturers.

Because it is based on Linux, Android bears some similarity to the common Linux
distributions: Debian, Centos, etc. In the layers above the kernel, however, the simi‐
larity diminishes. While most common Linux distributions are based heavily on the
GNU family of system software (and should, properly, be called GNU/Linux),
Android’s system software is quite a bit different. It is, in general, not possible to run
common Linux applications directly on an Android system.
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System Services
The system services layer is big and complex. It includes a wide variety of utilities,
from code that runs as part of the kernel (drivers or kernel modules), and long-
running applications that manage various housekeeping tasks (daemons), to libraries
that implement standard functions like cryptography and media presentation.

This layer includes several system services that are unique to Android. Among them
are Binder, Android’s essential interprocess communication system; ART, which has
replaced Dalvik as Android’s analog of the Java VM; and Zygote, Android’s applica‐
tion container.

Android Runtime Environment
The layer above the system services is the implementation of the Android Runtime
Environment. The Android Runtime Environment is the collection of libraries that
you use from your application by including them with import statements:
android.view, android.os, and so on. They are the services provided by the layers
below, made available to your application. They are interesting because they are
implemented using two languages: usually Java and C or C++.

The part of the implementation that your application imports is likely to be written in
Java. The Java code, however, uses the Java Native Interface (JNI) to invoke native
code, usually written in C or C++. It is the native code that actually interacts with the
system services.

Applications
Finally, at the top of the stack are Android applications. Applications, in the Android
universe, are actually part of the stack. They are made up of individually addressable
components that other applications can “call.” The Dialer, Camera, and Contacts pro‐
grams are all examples of Android applications that are used as services by other
applications.

This is the environment in which an Android application executes. So let’s get back to
looking at the anatomy of an application itself.

The Android Application Environment
Android applications are programs translated from a source language (Java or Kotlin)
into a transportable intermediate language, DEX. The DEX code is installed on a
device and interpreted by the ART VM, when the application is run.

Nearly every developer is familiar with the standard application environment. The
operating system creates a “process”—a sort of virtual computer that appears to
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belong entirely to the application. The system runs the application code in the pro‐
cess, where it appears to have its own memory, its own processors, and so on, com‐
pletely independent of other applications that might be running on the same device.
The application runs until it, itself, decides to stop.

That’s not how Android works. Android doesn’t really think in terms of applications.
For instance, Android apps don’t contain the equivalent of Java’s public static
void main method, the method used to start typical Java applications. Instead,
Android apps are libraries of components. The Android runtime, Zygote, manages
processes, lifecycles, and so on. It calls an application’s components only when it
needs them. This makes Android apps, as hinted earlier, very similar to web applica‐
tions: they are an assemblage of components deployed into a container.

The other end of the lifecycle, terminating an application, is perhaps even more inter‐
esting. On other operating systems, abruptly stopping an application (kill -9 or
“Force Quit”) is something that happens rarely and only when the application misbe‐
haves. On Android, it is the most common way for an application to be terminated.
Nearly every running app will eventually be terminated abruptly.

As with most web app frameworks, components are implemented as subclasses of
template base classes. Component subclasses override the methods that are called by
the framework in order to provide application-specific behavior. Often, the superclass
has important work to do when one of these template methods is called. In those
cases, the overriding method in the subclass must call the superclass method that it
overrides.

Android supports four types of components:

• Activity
• Service
• Broadcast receiver
• Content provider

Just as in a web app, the implementations of these components must be registered in a
manifest: an XML file. Android’s manifest file is called, perhaps unsurprisingly,
AndroidManifest.xml. The Android container parses this file as part of loading an
application. The application components (not some overarching application) are the
basic units of the Android app. They are individually addressable and may be pub‐
lished individually for use by other applications.

So, how does an application target an Android component? With an Intent.
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Intents and Intent Filters
In Android, components are started with Intents. An Intent is a small packet that
names the component that it targets. It has some extra room in which it can indicate a
specific action that it would like the receiving component to take and a few parame‐
ters to the request. One can think of an intent as a function call: the name of the class,
the name of a particular function within that class, and the parameters to the call. The
intent is delivered by the system to the target component. It is up to the component to
perform the requested service.

It is interesting to note that, in keeping with its component-oriented architecture,
Android doesn’t actually have any way of starting an application. Instead, clients start
a component, perhaps the Activity that is registered as main for an application
whose icon a user just tapped on the Launcher page. If the application that owns the
activity is not already running, it will be started as a side effect.

An intent can name its target explicitly, as shown here:

context.startActivity(
  Intent(context, MembersListActivity::class.java)))

This code fires an Intent at the Activity MembersListActivity. Note that the call,
startActivity here, must agree with the type of the component being started: an
Activity in this case. There are other, similar methods for firing intents at other
kinds of components (startService for a Service, and so on).

The Intent fired by this line of code is called an explicit intent because it names a
specific, unique class, in a unique application (identified by a Context, discussed in a
moment), to which the Intent is to be delivered.

Because they identify a unique, specific target, explicit intents are faster and more
secure than implicit ones. There are places that the Android system, for reasons
related to security, requires the use of explicit intents. Even when they are not
required, explicit intents should be preferred whenever possible.

Within an application, a component can always be reached with an explicit intent. A
component from another application that is publicly visible can also always be
reached explicitly. So why ever use an implicit intent? Because implicit intents allow
dynamic resolution of a request.

Imagine that the email application you’ve had on your phone for years allows editing
messages with an external editor. We now can guess that it does this by firing an
intent that might look something like this:
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val intent = Intent(Intent.ACTION_EDIT))
intent.setDataAndType(textToEditUri, textMimeType);
startActivityForResult(intent, reqId);

The target specified in this intention is not explicit. The Intent specifies neither a
Context nor the fully qualified name of a component within a context. The intent is
implicit and Android will allow any component at all to register to handle it.

Components register for implicit intents using an IntentFilter. In fact, the “Awe‐
some Code Editor” that you happen to have installed just 15 minutes ago registers for
exactly the intent shown in the preceding code, by including an IntentFilter like
this in its manifest:

<manifest ...>
  <application
    android:label="@string/awesome_code_editor">
    ...>
    <activity
      android:name=".EditorActivity"
      android:label="@string/editor">
      <intent-filter>
        <action
          android:name="android.intent.action.EDIT" />
        <category
          android:name="android.intent.category.TEXT" />
      </intent-filter>
    </activity>
  </application>
</manifest>

As you can see, the intent filter matches the intent that the email application fires.

When Android installs the Awesome Code Editor application it parses the application
manifest and notices that the EditorActivity claims to be able to handle an EDIT
action for the category android.intent.category.TEXT (see more in the Android
Developers documentation). It remembers that fact.

The next time your email program requests an editor, Android will include Awesome
Code Editor in the list of editors it offers for your use. You have just upgraded your
email program simply by installing another application. Talk about awesome!
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Android gradually increased restrictions on the use of implicit
intents in recent releases. Because they can be intercepted by any
randomly installed application, despite their power, implicit intents
are not secure. Recent versions of Android have imposed strict new
constraints on their use. In particular, as of v30, it is not possible to
register for many implicit intents in the manifest.

Context
Because Android components are just subsystems run in a larger container, they need
some way of referring to the container so that they can request services from it. From
within a component, the container is visible as a Context. Contexts come in a couple
of flavors: component and application. Let’s have a look at each of them.

Component context
We’ve already seen a call like this:

context.startActivity(
  Intent(context, MembersListActivity::class.java)))

This call uses a Context twice. First, starting an Activity is a function that a compo‐
nent requests from the framework, the Context. In this case, it called the Context
method startActivity. Next, in order to make the intent explicit, the component
must identify the unique package that contains the component it wants to start. The
Intent’s constructor uses the context passed as its first argument to get a unique
name for the application to which the context belongs: this call starts an Activity
that belongs to this application.

The Context is an abstract class that provides access to various resources, including:

• Starting other components
• Accessing system services
• Accessing SharedPreferences, resources, and files

Two of the Android components, Activity and Service, are themselves Contexts. In
addition to being Contexts, they are also components that the Android container
expects to manage. This can lead to problems, all of which are variations on the code
shown in Example 3-1.
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Example 3-1. Do NOT do this!

class MainActivity : AppCompatActivity() {
  companion object {
    var context: Context? = null;
  }

  override fun onCreate() {
    if (context == null) {
      context = this  // NO!
    }
  }
  // ...
}

Our developer has decided that it would be really handy to be able to say things like
MainActivity.context.startActivity(...) anywhere in their application. In order
to do that, they’ve stored a reference to an Activity in a global variable, where it will
be accessible for the entire life of the application. What could go wrong?

There are two things that could go wrong, one bad and the other horrible. Bad is
when the Android framework knows that the Activity is no longer needed, and
would like to free it up for garbage collection, but it cannot do so. The reference in
that companion object will prevent the Activity from being released, for the entire
lifetime of the application. The Activity has been leaked. Activitys are large objects
and leaking their memory is no small matter.

The second (far worse) thing, that could go wrong is that a call to a method on the
cached Activity could fail catastrophically. As we will explain shortly, once the
framework decides that an Activity is no longer being used, it discards it. It is done
with it and will never use it again. As a result, the object may be put into an inconsis‐
tent state. Calling methods on it may lead to failures that are both difficult to diag‐
nose and reproduce.

While the problem in that bit of code is pretty easy to see, there are variants that are
much more subtle. The following code may have a similar problem:

override fun onCreate(savedInstanceState: Bundle?) {
  super.onCreate(savedInstanceState)
  // ...
  NetController.refresh(this::update)
}

It is harder to see, but the callback this::update is a reference to a method on this,
the Activity that contains this onCreate method. Once onCreate completes, the
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NetController holds a reference to this Activity that does not honor its lifecycle
and can incur either of the problems described earlier.

Application context
There is another kind of context. When Android starts an application, it usually cre‐
ates a singleton instance of the Application class. That instance is a Context and,
though it has a lifecycle, that lifecycle is essentially congruent with the lifecycle of the
application. Because it is long-lived, it is quite safe to hold references to it in other
long-lived places. This code, similar to the dangerous code shown earlier, is fairly safe
because the context to which it stores a reference is the ApplicationContext:

class SafeApp : Application() {
  companion object {
    var context: Context? = null;
  }

  override fun onCreate() {
    if (context == null) {
      context = this
    }
  }
  // ...
}

Be sure to remember that, in order for the Android system to use the custom subclass
of Application instead of its default, the SafeApp class must be registered in the
manifest, like this:

<manifest ...>
  <application
    android:name=".SafeApp"
    ...>
    ...
  </application>
</manifest>

Now, when the framework creates the ApplicationContext it will be an instance of
SafeApp instead of the instance of Application that it would have used otherwise.

There is another way to get the ApplicationContext as well. Calling the method
Context.getApplicationContext() on any context at all, including the
ApplicationContext itself, will always return the long-lived application context.
But here’s the bad news: the ApplicationContext is not a magic bullet. An
ApplicationContext is not an Activity. Its implementations of Context methods
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behave differently from those of Activity. For instance, and probably most annoy‐
ing, you cannot launch Activity from an ApplicationContext. There is a
startActivity method on ApplicationContext, but it simply generates an error
message in all but a very limited set of circumstances.

Android Application Components: The Building Blocks
Finally, we can narrow our focus to the components themselves, the essence of an
application.

The lifecycles of Android application components are managed by the Android
framework, which creates and destroys them according to its needs. Note that this
absolutely includes instantiation! Application code must never create a new instance
of a component.

Recall that there are four types of components:

• Activity
• Service
• Broadcast receiver
• Content provider

Remember, also, that the following descriptions are nothing more than brief over‐
views, perhaps calling attention to potential pitfalls or features of interest. The
Android Developers documentation is extensive, complete, and authoritative.

The Activity and Its Friends
An Activity component manages a single page of an application’s UI. It is Android’s
analog of a web application servlet. It uses Android’s rich library of “widgets” to draw
a single, interactive page. Widgets (buttons, text boxes, and the like) are the basic UI
elements, and they combine a screen representation with the input collection that
gives the widgets behavior. We’ll discuss them in detail shortly.

As mentioned previously, it is important to understand that an Activity is not an
application! Activities are ephemeral and guaranteed to exist only while the page that
they manage is visible. When that page becomes invisible, either because the applica‐
tion presents a different page or because the user, for instance, takes a phone call,
there is no guarantee that Android will preserve either the Activity instance or any
of the state that it represents.

Figure 3-2 shows the state machine that controls the lifecycle of an Activity. The
methods—shown as state transitions—come in pairs and are the bookends of the four
states that an Activity may assume: destroyed, created, started, and running. The

62 | Chapter 3: Android Fundamentals

https://oreil.ly/PJABc


methods are called strictly in order. After a call to onStart, for instance, Android will
make only one of two possible calls: onResume, to enter the next state, or onStop, to
revert to the previous state.

Figure 3-2. The Activity lifecycle.

The first pair of bookends are onCreate and onDestroy. Between them, an Activity
is said to be created. When Android instantiates a new Activity, it calls its onCreate
method nearly immediately. Until it does so, the Activity is in an inconsistent state
and most of its functions will not work. Note, in particular, that most of an
Activity’s functionality is, inconveniently, not available from its constructor.

The onCreate method is the ideal place to do any initialization that an Activity
needs to do only once. This almost always includes setting up the view hierarchy
(usually by inflating an XML layout), installing view controllers or presenters, and
wiring up text and touch listeners.

Activitys, similarly, should not be used after the call to their onDestroy method. The
Activity is, again, in an inconsistent state and the Android framework will make no
further use of it. (It will not, for instance, call onCreate to revivify it.) Beware,
though: the onDestroy method is not necessarily the best place to perform essential
finalization! Android calls onDestroy only on a best-effort basis. It is entirely possible
that an application will be terminated before all of an Activitys’. onDestroy methods
have completed.

An Activity can be destroyed from within its own program by calling its finish()
method.

The next pair of methods are onStart and onStop. The former, onStart, will only
ever be called on an Activity that is in the created state. It moves the Activity to its
on-deck state, called started. A started Activity may be partially visible behind a
dialog or another app that only incompletely fills the screen. In started state,
an Activity should be completely painted but should not expect user input. A
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well-written Activity will not run animations or other resource-hogging tasks while
it is in the started state.

The onStop method will only be called on a started Activity. It returns it to the cre‐
ated state.

The final pair of methods are onResume and onPause. Between them, an Activity’s
page is in focus on the device and the target of user input. It is said to be running.
Again, these methods will only be called on an Activity that is in the started or run‐
ning state, respectively.

Along with onCreate, onResume and onPause are the most important in the lifecycle
of an Activity. They are where the page comes to life, starting, say, data updates, ani‐
mations, and all of the other things that make a UI feel responsive.

It is a good practice to respect the pairing of these methods: a
beginning method and an end method. If you start something run‐
ning in the beginning method of the pair, stop it in the end method
of the same pair. Trying to start, say, network polling in onResume
and stop it in onStop is a recipe for hard-to-find bugs.

Fragments

Fragments are an afterthought added to Android’s stable of component-like features
only at version 3 (Honeycomb, 2011). They can feel a bit “bolted on.” They were
introduced as a way of making it possible to share UI implementations across screens
with shapes and sizes so different that it affects navigation: in particular, phones and
tablets.

Fragments are not Contexts. Though they hold a reference to an underlying
Activity for most of their lifecycle, Fragments are not registered in the manifest.
They are instantiated in application code and cannot be started with Intents. They
are also quite complex. Compare Figure 3-3, the state diagram for a Fragment, to that
of an Activity!

A thorough discussion of how (or, for that matter, even whether) to use Fragments is
well outside the scope of this book. Briefly, however, one might think of a Fragment as
something like an iframe on a web page: almost an Activity embedded in an
Activity. They are complete, logical UI units that can be assembled in different ways
to form a page.

As shown, Fragments have lifecycles that are similar to (though more complex than)
those of an Activity. However, a Fragment is only useful when it is attached to an
Activity. This is the main reason that a Fragment lifecycle is more complex: its state
can be affected by changes in the state of the Activity to which it is attached.
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Also, just as an Activity is programmatically accessible in the inconsistent state
before its onCreate method is called, so a Fragment is programmatically accessible
before it is attached to an Activity. Fragments must be used with great care before
their onAttach and onCreateView methods have been called.

Figure 3-3. Fragment lifecycle.

The back stack
Android supports a navigation paradigm sometimes called card-deck navigation.
Navigating to a new page stacks that page on top of the previous page. When a user
presses a back button the current page is popped from the stack to reveal the one that
previously held the screen. This paradigm is fairly intuitive for most human users:
push new cards on top; pop them off to get back to where you were.

In Figure 3-4, the current Activity is the one named SecondActivity. Pushing the
back button will cause the Activity named MainActivity to take the screen.

Note that, unlike a web browser, Android does not support forward navigation. Once
the user pushes the back button, there is no simple navigational device that will allow
them to return to the popped page. Android uses this fact to infer that it can destroy
SecondActivity (in this case), should it need the resources.
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Figure 3-4. The back stack stores an Activity’s pages in last in, first out (LIFO) order.

Fragments can also go on the back stack as part of a fragment transaction, as shown
in Figure 3-5.

Figure 3-5. A Fragment transaction, on the back stack, will be reverted before the
Activity that contains it is popped.

Adding a fragment to the back stack can be particularly useful when combined with
tagging, as shown in the following code:

// Add the new tab fragment
supportFragmentManager.beginTransaction()
    .replace(
        R.id.fragment_container,
        SomeFragment.newInstance())
    .addToBackStack(FRAGMENT_TAG)
    .commit()

This code creates a new instance of SomeFragment and adds it to the back stack, tag‐
ged with the identifier FRAGMENT_TAG (a string constant). As shown in the following
code, you can use supportFragmentManager to pop everything off the back stack, all
the way to the tag:

manager.popBackStack(
    FRAGMENT_TAG,
    FragmentManager.POP_BACK_STACK_INCLUSIVE)

When the back stack is empty, pushing the back button returns the user to the
Launcher.
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Services
A Service is an Android component that is, almost exactly, an Activity with no UI.
That may sound a bit odd, given that an Activity’s sole reason for existence is that it
manages the UI!

Android was designed for hardware that is much different from that which is com‐
mon now. The first Android phone, the HTC Dream, was announced in September
of 2008. It had very little physical memory (192 MB) and did not support virtual
memory at all. It could run no more than a handful of applications simultaneously.
Android’s designers needed a way to know when an application was not doing useful
work so that they could reclaim its memory for other uses.

It’s easy to figure out when an Activity is not doing useful work. It has only one job:
to manage a visible page. If applications were composed only of Activitys, it would
be easy to tell when one was no longer useful and could be terminated. When none of
an application’s Activitys are visible, the application is not doing anything useful and
can be reclaimed. It’s that simple.

The problem comes when an application needs to perform long-running tasks that
are not attached to any UI: monitoring location, synchronizing a dataset over the net‐
work, and so on. While Android is definitely prejudiced toward “if the user can’t see
it, why do it?” it grudgingly acknowledges the existence of long-running tasks and
invented Services to handle them.

While Services still have their uses, much of the work that they were designed to do,
back on earlier versions of Android with its more limited hardware, can now be done
using other techniques. Android’s WorkManager is a terrific way to manage repeating
tasks. There are also other, simpler and more maintainable ways of running tasks in
the background, on a worker thread. Something as simple as a singleton class may be
sufficient.

Service components still exist, though, and still have important roles to play.

There are, actually, two different kinds of Service: bound and started. Despite the fact
that the Service base class is, confusingly, the template for both, the two types are
completely orthogonal. A single Service can be either or both.

Both types of Service have onCreate and onDestroy methods that behave exactly as
they do for an Activity. Since a Service has no UI, it does not need any of an
Activity’s other templated methods.

Services do have other templated methods, though. Which of them a specific Service
implements depends on whether it is started or bound.
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Started Services

A started Service is initiated by sending it an Intent. While it is possible to create a
started service that returns a value, doing so is inelegantly complex and probably
indicative of a design that could be improved. For the most part, started services are
fire-and-forget: something like “put this in the database” or “send this out to the net.”

To start a service, send it an intent. The intent must name the service, probably
explicitly by passing the current context and the service class. If the service provides
multiple functions, of course, the intent may also indicate which of them it is
intended to invoke. It might also supply parameters appropriate for the call.

The service receives the intent as the argument to a call from the Android framework,
to the method Service.onStart. Note that this is not done in the “background”! The
onStart method runs on the main/UI thread. The onStart method parses the Intent
content and processes the contained request appropriately.

A well-behaved started Service will call Service.stopSelf() whenever it completes
its work. This call is similar to Activity.finish(): it lets the framework know that
the Service instance is no longer performing useful work and can be reclaimed.
Modern versions of Android actually pay very little attention to whether a service has
stopped itself or not. Services are suspended and, possibly even terminated, using
less voluntary criteria (see the Android Developers documentation).

Bound Services

A bound Service is Android’s IPC mechanism. Bound services provide a communi‐
cation channel between a client and a server that is process agnostic: the two ends
may or may not be part of the same application. Bound services—or at least the com‐
munication channels they provide—are at the very heart of Android. They are the
mechanism through which applications send tasks to system services.

A bound service, itself, actually does very little. It is just the factory for a Binder, a
half-duplex IPC channel. While a complete description of the Binder IPC channels
and their use is beyond the scope of this book, their structure will be familiar to users
of any of the other common IPC mechanisms. Figure 3-6 illustrates the system.

Typically, a service provides a proxy that looks like a simple function call. The proxy
marshals an identifier for the requested service (essentially, the function name) and
its parameters, by converting them to data that can be transmitted over the connec‐
tion: usually aggregates of very simple data types like integers and strings. The mar‐
shaled data is communicated, in this case via the Binder kernel module, to a stub
provided by the bound service that is the target of the connection.
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Figure 3-6. Binder IPC.

The stub unmarshals the data, converting it back into a function call to the service
implementation. Notice that the proxy function and the service implementation func‐
tion have the same signature: they implement the same interface (IService, as shown
in Figure 3-6).

Android makes extensive use of this mechanism in the implementation of system
services. Functions that are actually calls to remote processes are a fundamental part
of Android.

An instance of the class ServiceConnection represents a connection to a bound ser‐
vice. The following code demonstrates its use:

abstract class BoundService<T : Service> : ServiceConnection {
    abstract class LocalBinder<out T : Service> : Binder() {
        abstract val service: T?
    }

    private var service: T? = null

    protected abstract val intent: Intent?

    fun bind(ctxt: Context) {
        ctxt.bindService(intent, this, Context.BIND_AUTO_CREATE)
    }

    fun unbind(ctxt: Context) {
        service = null
        ctxt.unbindService(this)
    }

    override fun onServiceConnected(name: ComponentName, binder: IBinder) {
        service = (binder as? LocalBinder<T>)?.service
        Log.d("BS", "bound: ${service}")
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    }

    override fun onServiceDisconnected(name: ComponentName) {
        service = null
    }
}

A subclass of BoundService provides the type of the service that will be bound, and
an Intent that targets it.

The client side initiates a connection using the bind call. In response, the framework
initiates a connection to the remote bound service object. The remote framework
calls the bound service’s onBind method with the intent. The bound service creates
and returns an implementation of IBinder that is also an implementation of the
interface the client requested. Note that this is often a reference to the bound service
itself. In other words, the Service is often not only the factory but also the
implementation.

The service side uses the implementation provided by the bound service to create
the remote-side stub. It then notifies the client side that it’s ready. The client-side
framework creates the proxy and then finally calls the ServiceConnection’s
onServiceConnected method. The client now holds a live connection to the remote
service. Profit!

As one might guess from the presence of an onServiceDisconnected method, a cli‐
ent can lose the connection to a bound service at any time. Though the notification is
usually immediate, it is definitely possible for a client call to a service to fail even
before it receives a disconnect notification.

Like a started service, bound service code does not run in the background. Unless
explicitly made to do otherwise, bound service code runs on the application’s main
thread. This can be confusing, though, because a bound service might run on the
main thread of a different application.

If the code in a service implementation must run on a background thread, it is the
service implementation that is responsible for arranging that. Client calls to a bound
service, while asynchronous, cannot control the thread on which the service itself
runs.

Services, like every other component, must be registered in the application manifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
  <application...>
    <service android:name=".PollService"/>
  </application>
</manifest>
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Android Jetpack

Content Providers
A ContentProvider is a REST-like interface to data held by an application. Because it
is an API, not simply direct access to data, a ContentProvider can exercise very fine-
grained control over what it publishes and to whom it publishes it. External applica‐
tions get access to a ContentProvider using a Binder IPC interface, through which
the ContentProvider can obtain information about the querying process, the permis‐
sions it holds, and the type of access it requests.

Early Android applications often shared data simply by putting it into publicly acces‐
sible files. Even then, Android encouraged the use of ContentProviders instead.
More recent versions of Android, in the interests of security, have made it difficult to
share files directly, making ContentProviders more relevant.

While ContentProviders provide access to stored data, you must have some kind of data
store from which to read and write the data. Android Jetpack offers the Room persistence
library as an option. As described in its official documentation, Room provides “an abstrac‐
tion layer to allow for more robust access while harnessing the full power of SQLite.”
For more information on how to save data in a local database using Room, check out the
Android Developers documentation.

One particularly interesting capability of a ContentProvider is that it can pass an
open file to another program. The requesting program need not have any way to
access the file directly using a file path. The ContentProvider can construct the file it
passes in any way that it wants. By passing an open file, though, the ContentProvider
moves itself out of the loop. It gives the requesting program direct access to the data.
Neither the ContentProvider nor any other IPC mechanism remains between the cli‐
ent and the data. The client simply reads the file just as if it had opened that file itself.

An application publishes a ContentProvider, as usual, by declaring it in the applica‐
tion manifest:

<application...>
  <provider
   android:name="com.oreilly.kotlin.example.MemberProvider"
   android:authorities="com.oreilly.kotlin.example.members"
   android:readPermission="com.oreilly.kotlin.example.members.READ"/>
 </application>
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This XML element says that the application contains the class named
com.oreilly.kotlin.example.MemberProvider, which has to be a subclass of
android.content.ContentProvider. The element declares that MemberProvider is
the authority for any requests for data from the URL content://com.oreilly.kotlin
.example.members. Finally, the declaration mandates that requesting applications
must hold the permission “com.oreilly.kotlin.example.members.READ” in order to
get any access at all and that even then they will get only read access.

ContentProviders have exactly the API one would expect from a REST interface:

query()

This fetches data from a particular table.

insert()

This inserts a new row within a content provider and returns the content URI.

update()

This updates the fields of an existing row and returns the number of rows
updated.

delete()

This deletes existing rows and returns the number of rows deleted.

getType()

This returns the MIME data type for the given Content URI.

The ContentProvider for MemberProvider would probably implement only the first
of these methods, because it is read-only.

Broadcast Receivers
The original concept for a BroadcastReceiver was as a kind of data bus. Listeners
could subscribe in order to get notification of events that were of interest. As the sys‐
tem has come of age, however, BroadcastReceivers have proved to be too expensive
and too prone to security problems to be used pervasively. They remain mostly a tool
used by the system to signal applications of important events.

Perhaps the most common use of a BroadcastReceiver is as a way of starting an
application, even if there has been no user request to do so.

The Intent android.intent.action.BOOT_COMPLETED is broadcast by the Android
system once the OS is stable, after a system restart. An application could register to
receive this broadcast, like this:

<receiver android:name=".StartupReceiver">
    <intent-filter>
        <action android:name="android.intent.action.BOOT_COMPLETED"/>
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    </intent-filter>
</receiver>

If an application does this, its StartupReceiver will be started, to receive the
BOOT_COMPLETED Intent broadcast when the OS is rebooted. As noted earlier, a side
effect of starting the StartupReceiver is that the application that contains the
receiver is also started.

Applications have used this as a way of creating a daemon: an app that is always
running. While a hack and fragile (even in early Android, behavior changed from
version to version), this trick worked well enough that many, many applications used
it. Even as Android version 26 introduced some fairly radical changes in background
process management (BroadcastReceivers cannot be registered for implicit broad‐
casts in their manifests; they must instead register them dynamically using
Context.registerReceiver), developers continue to find ways to use it.

There are exceptions to the Android 26 implicit intent rule.
Receiving SMS messaging, changing locale, detecting USB devices,
and a few other intents are permitted, and applications may register
for them, in their manifests. ACTION_USB_ACCESSORY_ATTACHED,
ACTION_CONNECTION_STATE_CHANGED, and our dear old friend
ACTION_BOOT_COMPLETED are among the permitted intents. For
more, check out the Android Developers documentation.

Activity, Service, ContentProvider, and BroadcastReceiver are the four compo‐
nents that are the essential building blocks of an Android application. As Android has
grown and improved, it has introduced new abstractions that obscure these basic
mechanisms. A modern Android application may use only one or two of these build‐
ing blocks directly, and many developers will never code a ContentProvider or a
BroadcastReceiver.

The essential lesson here, which bears repeating, is that an Android app is not an
“application” in the traditional sense. It is more like a web application: a collection of
components that provide services to a framework when requested to do so.

Android Application Architectures
So far, in this chapter we’ve discussed the Android system architecture. While under‐
standing that architecture is essential for any serious Android developer, it is not suf‐
ficient for understanding how to write resilient, bug-free Android programs. As
evidence of this, one need only look at the many tools and abstractions that have been
tried and abandoned over the years of Android’s existence. Time and experience,
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though, have honed the Android playbook and made the path to a robust, maintaina‐
ble application much easier to follow.

MVC: The Foundation
The original pattern for applications with a UI was called Model–View–Controller
(MVC). The innovation that the pattern introduced was a guarantee that the view—
what was rendered on the screen—was always consistent. It did this by insisting on a
unidirectional cycle for data flow.

It all starts with the user. They see something on the screen (the View: I told you it
was a cycle!) and, in response to what they see, take some action. They touch the
screen, type something, speak, whatever. They do something that will change the state
of the application.

Their input is fielded by the Controller. The Controller has two responsibilities. First,
it orders the user’s input. For any given user event—say, tapping the “stop” button—
all other user events happen either before that tap or after it. No two events are ever
processed at the same time.

The implication that the Controller is single-threaded is one of the
most important aspects of the original MVC pattern. Prior multi‐
threaded strategies (including Java’s Abstract Window Toolkit
[AWT]) often produced a nightmare of deadlocks as messages trav‐
eling in opposite directions—from the user and to the user—tried
to seize the same locks in different orders.

The Controller’s second responsibility is to translate user input into operations on a
Model.

The Model is the business logic of an application. It probably combines some kind of
persistent data store and perhaps a network connection with rules for combining and
interpreting the input from the Controller. In the ideal MVC architecture, it is the
only component that holds the current state of the application.

The Model, again, ideally is allowed to send only one message to the View: “things
have changed.” When the View receives such a message it does its job. It requests the
application state from the Model, interprets it, and renders it on the screen. What it
renders is always a consistent snapshot of the Model. At this point, the user can see
the new state and take new actions in response. The cycle continues.

While the MVC pattern was fairly revolutionary when it was introduced, there is
room for improvement.
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Widgets
As we mentioned earlier in the context of the Activity component, a widget is a sin‐
gle class that combines a View component with a Controller component. After the
preceding discussion of the MVC pattern and its emphasis on separating the two, it
may seem odd to find classes like Button, TextBox, and RadioButton that clearly
combine the two.

Widgets do not break MVC architecture. There is still, in each widget, distinct View
and Controller code. The Controller portion of a widget never talks directly to the
View, and the View does not receive events from the Controller. The sections are
independent; they are just bundled together into a single handy container.

Combining the two functions just seems fairly obvious. What is the use of the image
of a button, that can be placed anywhere on the screen, if it doesn’t respond to clicks?
It just makes sense that the renderer for the UI components, and the mechanism that
handles input for it, be part of the same component.

The Local Model
With the advent of the Web, browsers, and the long delay required for an entire MVC
cycle, developers began to see the need for keeping the state of the screen as a sepa‐
rate, UI-Local Model. Developers have, over time, referred to this component using
several names, depending on other features of the design pattern in which it is being
used. To avoid confusion, we will refer to it, for the rest of this chapter, as the Local
Model.

The use of a Local Model gives rise to a new pattern that is sort of a two-layer MVC—
it has even been referred to as the “Figure Eight” pattern. When the user takes an
action, the Controller updates the Local Model instead of the Model, because a Model
update may be a network connection away. The Local Model is not business logic. It
represents, as simply as possible, the state of the View: which buttons are on, which
are off, what text is in which box, and the color and length of the bars in the graph.

The Local Model does two things in response to an action. First it notifies the View
that things have changed so that the View can rerender the screen from the new Local
Model state. In addition, though, with code that is analogous to the simple MVC’s
Controller, the Local Model forwards the state changes to the Model. In response, the
Model eventually notifies—this time the Local Model—that there has been an update
and that the Local Model should sync itself. This probably results in a second request
that the View update itself.
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Android Patterns
In Android, regardless of the pattern, an Activity object—or possibly its cousin, a
Fragment—takes the role of the View. This is more or less mandated by the structure
of the Activity object: it is the thing that owns the screen and it is the thing that has
access to the widgets that comprise the view. Over time, though, as is appropriate for
an MVC-based UI, Activity objects have gotten simpler and simpler. In a modern
Android application, it is likely that an Activity will do little more than inflate the
view, delegate events inbound from the user to the Local Model, and observe Local
Model state that is of interest, redrawing itself in response to updates.

Model–View–Intent
One of the oldest versions of MVC adopted by the Android community was called
Model–View–Intent. The pattern decouples the Activity from a Model by using
Intents and their payloads. While this structure produces excellent component isola‐
tion, it can be quite slow and the code for constructing the Intents quite bulky.
Although it is still used successfully, newer patterns have largely supplanted it.

Model–View–Presenter
A goal for all of these MVC-based patterns is to loosen the coupling among the three
components and to make information flow unidirectionally. In a naive implementa‐
tion, though, the View and the Local Model each hold a reference to the other. Per‐
haps the View gets an instance of the Local Model from some sort of factory and then
registers with it. Though subtle—and regardless of the apparent direction in which
information flows—holding a reference to an object of a specific type is coupling.

Over the past few years, there have been several refinements to the MVC pattern in
an attempt to reduce this coupling. While these refinements have often resulted in
better code, the distinctions among them, and the very names used to identify them,
have not always been clear.

One of the earliest refinements replaces the View and Local Model references to each
other with references to interfaces. The pattern is often called Model–View–Presenter
(MVP). In implementations of this pattern, the Local Model holds a reference, not to
the View Activity, but simply to the implementation of some interface. The interface
describes the minimal set of operations that the Local Model can expect from its peer.
It has, essentially, no knowledge that the View is a View: it sees only operations for
updating information.

The View proxies user input events to its Presenter. The Presenter, as described ear‐
lier, responds to the events, updating Local Model and Model state as necessary. It
then notifies the View that it needs to redraw itself. Because the Presenter knows
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exactly what changes have taken place, it may be able to request that the View update
only affected sections, instead of forcing a redraw of the entire screen.

The most important attribute of this architecture, however, is that the Presenter (this
architecture’s name for the Local Model) can be unit tested. Tests need only mock the
the interface that the View provides to the Presenter to completely isolate it from the
View. Extremely thin views and testable Presenters lead to much more robust
applications.

But it is possible to do even better than this. The Local Model might hold no refer‐
ences to the View at all!

Model–View–ViewModel
Google, with its introduction of Jetpack, supports an architecture called Model–
View–ViewModel (MVVM). Because it’s supported, internally, by the modern
Android framework, it is the most common and most discussed pattern for modern
Android apps.

In the MVVM pattern, as usual, either an Activity or a Fragment takes the role of
the View. The View code will be as simple as it is possible to make it, often contained
entirely within the Activity or Fragment subclass. Perhaps some complex views will
need separate classes for image rendering or a RecyclerView. Even these, though, will
be instantiated and installed in the view, directly by the Activity or Fragment.

The ViewModel is responsible for wiring together the commands necessary to update
the View and the backend Model. The novel feature of this pattern is that a single
interface, Observable, is used to transmit changes in the state of the Local Model to
the View.

Instead of the multiple Presenter interfaces used in the MVP pattern, the ViewModel
represents viewable data as a collection of Observables. The View simply registers as
an observer for these observables and reacts to notifications of changes in the data
they contain.

The Jetpack library calls these Observables LiveData. A LiveData object is an
observable data holder class with a single generified interface that notifies subscribers
of changes in the underlying data.

Like MVP, MVVM makes mocking and unit testing easy. The important new feature
that MVVM introduces is lifecycle awareness.

The keen reader will have noticed that the version of the MVP pattern described ear‐
lier does exactly the thing we warned against in Example 3-1: it stores the reference to
an Activity, an object with an Android-controlled lifecycle, in a long-lived object!
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Applications are left to their own devices to make sure the reference doesn’t outlive
the target object.

The Jetpack-supported implementation of the MVVM pattern dramatically reduces
this problem. In its implementation, the only references to the View are the subscrip‐
tions to the LiveData observables. The LiveData objects identify Fragment and
Activity observers, and unregister them, automatically when their lifecycle ends.

Applications built with JetPack’s version of MVVM can be quite elegant. For a broad
variety of applications, the View will contain a single, simple, declarative method that
draws the screen. It will register that method as an observer for ViewModel observa‐
bles. The ViewModel translates user input into calls to the backend Model and
updates its observables in response to notifications from the Model. It’s that simple.

Summary
Congratulations, you’ve successfully covered an intimidating amount of information
in a very short chapter!

Remember that much of this material is foundational. It is not important that you
master all of the information presented here. In fact, it’s quite possible that you will
never touch, for instance, a ContentProvider or a BroadcastReceiver. Use what is
practical for you, and approach mastering items only as they become useful.

Here are some key points to take with you:

• An Android app is not an “application” in the traditional sense. It is more like a
web application: a collection of components that provide services to a frame‐
work, when requested to do so.

• The Android OS is a very specialized Linux distribution. Each application is
treated as an individual “user” and has its own private file storage.

• Android has four kinds of components. They are: Activitys, Services,
ContentProviders, and BroadcastReceiver. Activitys, Services, and the
ContentProviders must be registered and possibly given permission within the
Android manifest:
— Activitys are the UI of an Android application. They start their lifecycle at

onCreate, are live to user interaction after onResume, and may be interrupted
(onPause) at any time.

— Fragments are complex beasts with lifecycles all their own. They can be used
to organize independent UI containers, within a UI page.

— Services can be started services and/or bound. API 26 started introducing
restrictions for background use of services, so the general rule is that if the
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user interacts with a task in any way, a service ought to be made into a fore‐
ground service.

— Unless a BroadcastReceiver is using implicit intent that is explicitly allowed
by the system with the action, it is probably necessary to register the broadcast
receiver dynamically from application code.

• Use the Activity Context carefully. Activities have a lifecycle that is not under
the control of your application. A reference to an Activity must respect the
actual lifecycle of the Activity.

• General software architectures in Android, like MVI, MVP, and MVVM, are
designed to keep Fragments and Activitys lean and encourage better separation
of concern and testing and while being “lifecycle-aware.”

Now that we’ve reviewed the ground rules and explored the playing field, our journey
to achieving structured coroutines in Kotlin officially starts. In the following chapter,
we begin to apply this foundation to examining memory and threading in Android.
Understanding the details of Android’s organization will reveal the issues that the
coming chapters set out to solve.

Summary | 79





CHAPTER 4

Concurrency in Android

This chapter does not focus specifically on Kotlin. Instead, it will introduce some of
the issues that surround concurrent programming and that the rest of the book
addresses. It will also introduce a few tools, already available to Android developers,
for managing concurrent tasks.

Concurrent programming has a reputation as kind of a dark art: something that is
done by self-proclaimed wizards and that novices touch at their peril. Certainly, writ‐
ing correct concurrent programs can be quite challenging. This is particularly true
because errors in concurrent programs don’t always show up right away. It is nearly
impossible to test for concurrency bugs and they can be extremely difficult to repro‐
duce, even when they are known to exist.

A developer concerned about the hazards of concurrent programming would do well
to remember these three things:

• Nearly everything you do, every day, except programming, is concurrent. You get
along quite nicely in a concurrent environment. It is programming, where things
happen in order, that is odd.

• If you are trying to understand the issues that concurrent programming presents,
you are on the right path. Even an incomplete understanding of concurrency is
better than copying sample code and crossing your fingers.

• Concurrent programming is just how Android works. Anything other than the
most trivial Android application will require concurrent execution. Might as well
get on with it and figure out what it’s all about!

Before getting into specifics, let’s define some terms.
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1. It is possible for processes to share some memory (as with Binder), but they do so in very controlled ways.

The first term is process. A process is memory that an application can use, and one or
more threads of execution. The memory space belongs to the process—no other pro‐
cesses can affect it.1 An application usually runs as a single process.

That, of course, introduces the second term: thread. A thread is a sequence of instruc‐
tions, executed one at a time, in order.

And this leads us to the term that, to some extent, drives the rest of this book: thread
safe. A set of instructions is thread-safe if, when multiple threads execute it, no possi‐
ble ordering of the instructions executed by the threads can produce a result that
could not be obtained if each of the threads executed the code completely, in some
order, one at a time. That’s a little hard to parse, but it just says that the code produces
the same results whether the multiple threads execute it all at the same time or, seri‐
ally, one at a time. It means that running the program produces predictable results.

So how does one make a program thread-safe? There are lots and lots of ideas about
this. We would like to propose one that is clear, relatively easy to follow, and always
correct. Just follow one, fairly clear, fairly simple rule. We’ll state the rule in a few
pages. First, though, let’s discuss in more detail what thread safety means.

Thread Safety
We’ve already said that thread-safe code cannot produce a result, when executed by
multiple threads at the same time, that could not have been produced by some order‐
ing of the threads executing one at a time. That definition, though, is not very useful
in practice: no one is going to test all possible execution orders.

Perhaps we can get a handle on the problem by looking at some common ways that
code can be thread-unsafe.

Thread-safety failures can be divided into a few categories. Two of the most impor‐
tant are atomicity and visibility.

Atomicity
Nearly all developers understand problems of atomicity. This code is not thread-safe:

fun unsafe() { globalVar++ }

Multiple threads executing this code can interfere with each other. Each thread exe‐
cuting this code might read the same value for globalVar—say, 3. Each might incre‐
ment that value to get 4, and then each might update globalVar to have the value 4.
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Even if 724 threads executed the code, globalVar might, when all were through exe‐
cuting, have the value 4.

There is no possible way that each of those 724 threads could execute that code seri‐
ally and have globalVar end up as 4. Because the result of executing the code concur‐
rently can be different from any possible result generated by serial execution, this
code is not thread-safe, according to our definition.

To make the code thread-safe, we need to make the read, increment, and write opera‐
tions on the variable globalVar, together, atomic. An atomic operation is one that
cannot be interrupted by another thread. If the read, increment, and write operations
are atomic, then no two threads can see the same value of globalVar, and the pro‐
gram is guaranteed to behave as expected.

Atomicity is easy to understand.

Visibility
Our second category of thread-safety errors, visibility, is much more difficult to
apprehend. This code is also not thread-safe:

var shouldStop = false

fun runner() {
    while (!shouldStop) { doSomething() }
}

fun stopper() { shouldStop = true }

A thread running the function runner may never stop, even though another thread
runs stopper. The thread running runner may never notice that the value of
shouldStop has changed to true.

The reason for this is optimization. Both the hardware (using registers, multilayer
caches, etc.) and the compiler (using hoisting, reordering, etc.) do their very best to
make your code run fast. In order to do this, the instructions that the hardware
actually executes may not look much like the Kotlin source at all. In particular, while
you think that shouldStop is a single variable, the hardware probably has at least two
representations for it: one in a register and one in main memory.

You definitely want that! You would not want the loops in your code to depend on
access to main memory instead of using caches and registers. Fast memory optimizes
your code because it has access times that are several orders of magnitude faster than
main memory.
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To make the example code work, though, you have to explain to the compiler that it
cannot keep the value of shouldStop in local memory (a register or cache). If, as pro‐
posed, there are multiple representations of shouldStop in different kinds of hard‐
ware memory, the compiler must be sure that the value kept in the fast, local
representation of shouldStop is pushed to memory that is visible to all threads. This
is called publishing the value.

@Synchronized is the way to do that. Synchronization tells the compiler that it must
make sure that any side effects of the code executed within the synchronized block
are visible to all other threads, before the executing thread leaves the block.

Synchronization, then, is not so much about hardware, or tricky and complicated cri‐
teria for what must be protected and what need not be. Synchronization is a contract
between the developer and the compiler. If you don’t synchronize code, the compiler
is free to make any optimization that it can prove safe, based on serial execution. If
there is other code somewhere, running on a different thread, that makes the compil‐
er’s proof invalid, you must synchronize the code.

So, here’s the rule. If you want to write code that is thread-safe, you just have to follow
this one short, clear rule. Paraphrasing from Java’s bible of parallel programming,
Java Concurrency in Practice:2 Whenever more than one thread accesses a given state
variable, and one of them might write to it, they all must coordinate their access to it
using synchronization.

Note, by the way, that that quote does not distinguish between read access and write
access for synchronization. Unless it is guaranteed that nobody will mutate the shared
state, all access, read or write, must be synchronized.

The Android Threading Model
As noted in Chapter 3, one of the implications of an MVC architecture is a single-
threaded UI (the View and Controller). Although a multithreaded UI seems very
tempting (surely a thread for the View and a thread for the Controller would
work…), attempts to build them were abandoned back in the 1970s, when it became
clear that they, inevitably, ended in a snarl of deadlocks.

Since the general adoption of MVC, the standard UI design is a queue serviced by a
single thread (in Android, the Main-, or UI-thread). As illustrated in Figure 4-1,
events—both those that originate with a user (clicks, taps, typing, etc.) and those that
originate in the model (animation, requests to redraw/update the screen, etc.)—are
enqueued and eventually processed in order by the single UI thread.
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Figure 4-1. UI thread.

This is exactly how Android’s UI works. An application’s main thread (the application
process’s original thread) becomes its UI thread. As part of initialization, the thread
enters a tight loop. For the rest of the life of the application, it removes tasks from the
canonical UI queue one by one and executes them. Because UI methods are always
run on a single thread, UI components make no attempt to be thread-safe.

That sounds great, right? A single-threaded UI and no worries about thread safety.
There’s a problem, though. To understand it, we’ll have to switch out of our developer
hats and talk a bit about the experience of the end users of Android devices. In partic‐
ular, we’ll need to look into some details of video display.

Threads are said to deadlock when each holds a resource that the
other requires: neither can make forward progress. For instance,
one thread might hold the widget that displays a value and require
the container that holds the value to be displayed. At the same time,
another thread might hold the container and require the widget.
Deadlocks can be avoided if all threads always seize resources in
the same order.

Dropped Frames
We know, from long experience with motion pictures and TV, that the human brain
can be tricked into perceiving motion as continuous, even when it is not. A series of
still images shown rapidly, one after the other, can appear to the observer to be
smooth, uninterrupted motion. The rate at which the images are displayed is known
as the frame rate. It is measured in frames per second (fps).

The standard frame rate for movies is 24 fps. That has worked quite well for the
entire Golden Age of Hollywood. Older televisions used a frame rate of 30 fps. As you
might imagine, faster frame rates do an even better job of tricking the brain than slow
ones. Even if you can’t exactly put your finger on what you are sensing, if you watch a
high frame rate video next to one with a lower frame rate, you will likely notice a dif‐
ference. The faster one will feel “smoother.”
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Many Android devices use a frame rate of 60 fps. This translates to redrawing the
screen once approximately every 16 milliseconds (ms). That means that the UI
thread, the single thread handling UI tasks, must have a new image available, ready to
be drawn on the screen every 16 ms. If producing the image takes longer than that,
and the new image is not ready when the screen is redrawn, we say that the frame has
been dropped.

It will be another 16 ms before the screen is redrawn again and a new frame becomes
visible. Instead of 60 fps, a dropped frame lowers the frame rate to 30 fps, close to the
threshold at which the human brain notices it. Just a few dropped frames can give a
UI a choppy feeling that is sometimes called “jank.”

Consider the queue of tasks shown in Figure 4-2, at Android’s standard render rate of
60 fps.

Figure 4-2. Tasks queued for the UI thread.

The first task, handling character input from the user, takes 8 ms to execute. The next
task, updating the view, is part of an animation. In order to look smooth, the anima‐
tion needs to be updated at least 24 times per second. The third task, though, han‐
dling a user click, takes 22 ms. The last task in the diagram is the next frame of the
animation. Figure 4-3 shows what the UI thread sees.

Figure 4-3. A dropped frame.

The first task completes in 8 ms. The animation draws a frame to the display buffer in
4 ms. The UI thread then starts to handle the click. A couple of milliseconds into
handling the click, the hardware redraw takes place and the animation’s frame is now
visible on the screen.
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Unfortunately, 16 ms later, the task to handle the click is still not complete. The task
to draw the next frame of the animation, which is queued behind it, has not been pro‐
cessed. When the redraw happens, the contents of the display buffer are exactly as
they were during the previous redraw. The animation frame has been dropped.

Computer displays are usually managed using one or more display
buffers. A display buffer is an area of memory in which user code
“draws” the things that will be visible on the screen. Occasionally, at
the refresh interval (approximately 16 ms for a 60 fps display), user
code is briefly locked out of the buffer. The system uses the con‐
tents of the buffer to render the screen and then releases it back to
the user code for further updates.

A few milliseconds later, when the click handling task is complete, the animation task
gets its chance to update the display buffer. Even though the display buffer now con‐
tains the next frame of the animation, the screen will not be redrawn for several milli‐
seconds. The frame rate for the animation has been cut in half, to 30 fps, dangerously
close to visible flicker.

Some newer devices, like Google’s Pixel 4, have the ability to refresh the screen at
much higher frame rates. With a frame rate that is, for instance, twice as high (120
fps), even if the UI thread misses two frames in a row, it still only has to wait an extra
8 ms for the next redraw. The interval between the two renderings in this case is only
around 24 ms; much better than the 32 ms cost of dropping a frame at 60 fps.

Though increased frame rate may help, an Android developer must be vigilant and
make sure that an application drops as few frames as possible. If an app is in the mid‐
dle of an expensive computation and that computation takes longer than expected to
complete, it will miss the redraw time slot and drop the frame, and the application
will feel janky.

This scenario is the reason why it is absolutely necessary to deal with concurrency in
Android applications. Put simply, the UI is single-threaded and the UI thread must
never be occupied for more than a few milliseconds

The only possible solution for a nontrivial application is to pass time-consuming
work—database storage and retrieval, network interactions, and long-running
computations—to some other thread.

Memory Leaks
We’ve already dealt with one complexity introduced by concurrency: thread safety.
Android’s component-based architecture adds a second, equally dangerous complex‐
ity: memory leaks.
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A memory leak occurs when the object can’t be freed (garbage-collected) even though
it’s no longer useful. At worst, memory leaks could result in an OutOfMemoryError,
and an application crash. Even if things don’t get that bad, though, running short on
memory can force more frequent garbage collections that again cause “jank.”

As discussed in Chapter 3, Android applications are particularly susceptible to mem‐
ory leaks because the lifecycles of some of the most frequently used components—
Activitys, Fragments, Services, and so on—are not under the control of the applica‐
tion. Instances of those components can all too easily turn into dead weight.

This is particularly true in a multithreaded environment. Consider offloading a task
to a worker thread like this:

override fun onViewCreated(
    view: View,
    savedInstanceState: Bundle?
) {
    // DO NOT DO THIS!
    myButton.setOnClickListener {
        Thread {
            val status = doTimeConsumingThing()
            view.findViewById<TextView>(R.id.textview_second)
                .setText(status)
        }
            .start()
    }
}

The idea of moving the time-consuming work off the UI thread is a noble one.
Unfortunately, the preceding code has several flaws. Can you spot them?

First, as mentioned earlier in this chapter, Android UI components are not thread-
safe and cannot be accessed or modified from outside the UI thread. The call to set
Text in this code, from a thread other than the UI thread, is incorrect. Many Android
UI components detect unsafe uses like this, and throw exceptions if they occur.

One way to address this problem is to return results to the UI thread using one of the
Android toolkit methods for safe thread dispatch, as shown here. Note that this code
still has flaws!

override fun onViewCreated(
    view: View,
    savedInstanceState: Bundle?
) {
    // DO NOT DO THIS EITHER!
    myButton.setOnClickListener {
        Thread {
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            val status = doTimeConsumingThing()
            view.post {
                view.findViewById<TextView>(R.id.textview_second)
                    .setText(status)
            }
        }
            .start()
    }
}

That fixes the first issue (the UI method, setText, is now called from the Main
thread) but the code is still not correct. Though the vagaries of the language make it
hard to see the problem, it is that the thread, newly created in the ClickListener,
holds an implicit reference to an Android-managed object. Since doTimeConsuming
Thing is a method on an Activity (or Fragment), the thread, newly created in the
click listener, holds an implicit reference to that Activity, as shown in Figure 4-4.

Figure 4-4. A leaked activity.

It might be more obvious if the call to doTimeConsumingThing were written as
this.doTimeConsumingThing. If you think about it, though, it is clear that there is no
way to call the method doTimeConsumingThing on some object (in this case, an
instance of an Activity) without holding a reference to that object. Now the
Activity instance cannot be garbage-collected as long as the Runnable running on
the worker thread holds a reference to it. If the thread runs for any significant
amount of time, Activity memory has leaked.

This issue is considerably more difficult to address than the last. One approach
assumes that tasks that are guaranteed to hold such an implicit reference for only a
very short period of time (less than a second) may not cause a problem. The Android
OS itself occasionally creates such short-lived tasks.
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Android Jetpack

ViewModels and LiveData ensure that your UI always renders the freshest data, and
does it safely. Combined with Jetpack’s viewModelScope and coroutines—both to be
introduced shortly—all these things make it easier to control cancellation of back‐
ground tasks that are no longer relevant, and ensure memory integrity and thread
safety. Without the libraries, we’d have to correctly address all of these concerns
ourselves.

Careful design using Jetpacks’ lifecycle-aware, observable LiveData containers, as described
in Chapter 3, can help to eliminate both memory leaks and the danger of using an Android
component that has completed its lifecycle.

Tools for Managing Threads
There is, actually, a third flaw in the code we just discussed; a deep design flaw.

Threads are very expensive objects. They are large, they affect garbage collection, and
switching context among them is far from free. Creating and destroying threads, as
the code in the example does, is quite wasteful, ill-advised, and likely to affect applica‐
tion performance.

Spawning more threads in no way makes an application able to accomplish more
work: a CPU has only so much power. Threads that are not executing are simply an
expensive way of representing work that is not yet complete.

Consider, for instance, what would happen if a user mashed myButton, from the pre‐
vious example. Even if the operations that each of the generated threads performed
were fast and thread-safe, creating and destroying those threads would slow the app
to a crawl.

A best practice for applications is a thread policy: an application-wide strategy based
on the number of threads that is actually useful, that controls how many threads are
running at any given time. A smart application maintains one or more pools of
threads, each with a particular purpose, and each fronted by a queue. Client code,
with work to be done, enqueues tasks to be executed by the pool threads and, if nec‐
essary, recovers the task results.

The next two sections introduce two threading primitives available to Android devel‐
opers, the Looper/Handler and the Executor.
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Looper/Handler
The Looper/Handler is a framework of cooperating classes: a Looper, a MessageQueue
and the Messages enqueued on it, and one or more Handlers.

A Looper is simply a Java Thread that is initialized by calling the methods 
Looper.prepare() and Looper.start() from its run method, like this:

var looper = Thread {
    Looper.prepare()
    Looper.loop()
}
looper.start()

The second method, Looper.loop(), causes the thread to enter a tight loop in which
it checks its MessageQueue for tasks, removes them one by one, and executes them. If
there are no tasks to be executed, the thread sleeps until a new task is enqueued.

If you find yourself thinking that this sounds vaguely familiar, you
are right. Android’s UI thread is simply a Looper created from the
application process’s main thread.

A Handler is the mechanism used to enqueue tasks on a Looper’s queue, for process‐
ing. You create a Handler like this:

var handler = new Handler(someLooper);

The main thread’s Looper is always accessible using the method Looper.get
MainLooper. Creating a Handler that posts tasks to the UI thread, then, is as simple as
this:

var handler = new Handler(Looper.getMainLooper);

In fact, this is exactly how the post() method, shown in the preceding example,
works.

Handlers are interesting because they handle both ends of the Looper’s queue. In
order to see how this works, let’s follow a single task through the Looper/Handler
framework.
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There are several Handler methods for enqueuing a task. Here are two of them:

• post(task: Runnable)

• send(task: Message)

These two methods define two slightly different ways of enqueuing a task: sending
messages and posting Runnables. Actually, the Handler always enqueues a Message.
For convenience, though, the post...() group of methods attach a Runnable to the
Message for special handling.

In this example we use the method Handler.post(task: Runnable) to enqueue our
task. The Handler obtains a Message object from a pool, attaches the Runnable, and
adds the Message to the end of the Looper’s MessageQueue.

Our task is now awaiting execution. When it reaches the head of the queue, the
Looper picks it up and, interestingly, hands it right back to the exact same Handler
that enqueued it. The same Handler instance that enqueues a task is always the
instance that runs it.

This can seem a bit perplexing until you realize that the Handler code that submitted
the task might be running on any application thread. The Handler code that pro‐
cesses the task, however, is always running on the Looper, as shown in Figure 4-5.

Figure 4-5. Looper/Handler.

The Handler method called by the Looper to handle a task first checks to see if the
Message contains a Runnable. If it does—and because we used one of the post...()
methods, our task does—the Handler executes the Runnable.

If we’d used one of the send...() methods, the Handler would have passed the Mes
sage to its own overridable method, Handler.handleMessage(msg: Message). A
subclass of Handler would, in that method, use the Message attribute what to decide
which particular task it should perform, and the attributes arg1, arg2, and obj as task
parameters.

The MessageQueue is, actually, a sorted queue. Each Message includes, as one of its
attributes, the earliest time at which it may be executed. In the preceding two meth‐
ods, post and send, simply use the current time (the message will be processed “now,”
immediately).
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Two other methods, though, allow tasks to be enqueued to be run at some time in the
future:

• postDelayed(runnable, delayMillis)

• sendMessageDelayed(message, delayMillis)

Tasks created using these methods will be sorted into the MessageQueue to be exe‐
cuted at the indicated time.

As noted, a Looper can only make a best effort at running a task at
the requested time. While it will never run a delayed task before its
time, if another task hogs the thread the task may run late.

Looper/Handlers are a fantastically versatile and efficient tool. The Android system
makes extensive use of them, particularly the send...() calls, which do not do any
memory allocation.

Note that a Looper can submit tasks to itself. Tasks that execute and then reschedule
themselves after a given interval (using one of the ...Delayed() methods) are one of
the ways that Android creates animations.

Also note that because a Looper is single-threaded, a task that is only run on one par‐
ticular Looper need not be thread-safe. There is no need for synchronization or
ordering when a task, even a task that is run asynchronously, is run only on a single
thread. As mentioned earlier, the entire Android UI framework, which runs only on
the UI Looper, depends on this assumption.

Executors and ExecutorServices
Java introduced Executors and ExecutorServices in Java 5, as part of a new Concur‐
rency Framework. The new framework provided several higher-level concurrency
abstractions that allowed developers to leave behind many of the details of threads,
locks, and synchronization.

An Executor is, as its name suggests, a utility that executes tasks submitted to it. Its
contract is the single method execute(Runnable).

Java provides several implementations of the interface, each with a different execution
strategy and purpose. The simplest of these is available using the method
Executors.newSingleThreadExecutor.

A single-threaded executor is very similar to the Looper/Handler examined in the
previous section: it is an unbounded queue in front of a single thread. New tasks are
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enqueued onto the queue and then removed and executed in order on the single
thread that services the queue.

Looper/Handlers and single-threaded Executors each have their own advantages. For
instance, a Looper/Handler is heavily optimized, to avoid object allocation. On the
other hand, a single-threaded Executor will replace its thread if that thread is aborted
by a failing task.

A generalization of the single-threaded Executor is the FixedThreadPoolExecutor:
instead of a single thread, its unbounded queue is serviced by a fixed number of
threads. Like the single-threaded Executor, a FixedThreadPoolExecutor will replace
threads when tasks kill them. A FixedThreadPoolExecutor does not guarantee task
order, though, and will execute tasks simultaneously, hardware permitting.

The single-threaded scheduled Executor is Java’s equivalent of the Looper/Handler.
It’s similar to a single-threaded Executor except that, like the Looper/Handler, its
queue is sorted by execution time. Tasks are executed in time order, not submission
order. As with the Looper/Handler, of course, long-running tasks can prevent subse‐
quent tasks from being executed on time.

If none of these standard execution utilities meets your needs, you can create a cus‐
tom instance of ThreadPoolExecutor, specifying details like the size and ordering of
its queue, number of threads in its thread pool and how they are created, and what
happens when the pool’s queue is full.

There is one more type of Executor that deserves special attention—the
ForkJoinPool. Fork-join pools exist because of the observation that sometimes a sin‐
gle problem can be broken down into multiple subproblems which can be executed
concurrently.

A common example of this kind of problem is adding two same-size arrays together.
The synchronous solution is to iterate, i = 0 .. n - 1, where n is the size of the
array, and at each i to compute s[i] = a1[i] + a2[i].

There is a clever optimization that is possible, though, if the task is divided into
pieces. In this case, the task can be subdivided into n` subtasks, each of which com‐
putes s[i] = a1[i] + a2[i] for some i.

Note that an execution service creating subtasks it expects to process itself can
enqueue the subtasks on a thread-local queue. Since the local queue is used predomi‐
nantly by the single thread, there is almost never contention for the queue locks. Most
of the time, the queue belongs to the thread—it alone puts things on and takes them
off. This can be quite an optimization.

Consider a pool of these threads, each with its own fast, local queue. Suppose that one
of the threads finishes all of its work and is about to idle itself, while at the same time
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another pool thread has a queue of 200 subtasks to execute. The idle thread steals the
work. It grabs the lock for the busy thread’s queue, grabs half of the subtasks, puts
them in its own queue, and goes to work on them.

The work-stealing trick is most useful when concurrent tasks spawn their own sub‐
tasks. As we will see, it turns out that Kotlin coroutines are exactly such tasks.

Tools for Managing Jobs
Just as there can be economies of scale in the production of, say, cars, there are
important optimizations that require the large-scale view of a system. Consider the
use of the radio on a mobile phone.

When an application needs to interact with a remote service, the phone, normally in
battery-saving mode, must power up its radio, connect to a nearby tower, negotiate a
connection, and then transmit its message. Because connection negotiation is over‐
head, the phone holds the connection open for a while. The assumption is that, when
one network interaction takes place, it is likely that others will follow. When more
than a minute or so goes by without any use of the network, though, the phone goes
back to its quiescent, battery-saving state.

Given this behavior, imagine what happens when several applications phone home,
each at a different time. When the first app sends its ping, the phone powers its radio
up, negotiates the connection, transmits a message for the app, waits a bit, and then
goes back to sleep. Just as it goes back to sleep, though, the next application tries to
use the network. The phone has to power back up, renegotiate a connection, and so
on. If there are more than a handful of applications doing this, the phone radio is at
full power essentially all the time. It is also spending a lot of that time renegotiating a
network connection that it dropped just a few seconds ago.

No single application can prevent this kind of problem. It requires a system-wide
view of battery and network use to coordinate multiple apps (each with its own
requirements) and to optimize battery life.

Android 8.0 (API 26+) introduced limits on application resource consumption.
Included in these limitations are the following:

• An application is in the foreground only when it has a visible activity or is run‐
ning a foreground service. Bound and started Services no longer prevent an
application from being killed.

• Applications cannot use their manifest to register for implicit broadcasts. There
are also limitations on sending broadcasts.
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These constraints can make it difficult for an application to perform “background”
tasks: synching with a remote, recording location, and so on. In most cases, the con‐
straints can be mitigated using the JobScheduler or Jetpack’s WorkManager.

Whenever medium to large tasks have to be scheduled more than a few minutes in
the future, it is a best practice to use one of these tools. Size matters: refreshing an
animation every few milliseconds, or scheduling another location check in a couple
of seconds, is probably a fine thing to do with a thread-level scheduler. Refreshing a
database from its upstream every 10 minutes is definitely something that should be
done using the JobScheduler.

JobScheduler
The JobScheduler is Android’s tool for scheduling tasks—possibly repeating tasks—
in the future. It is quite adaptable and, in addition to optimizing battery life, provides
access to details of system state that applications used to have to infer from heuristics.

A JobScheduler job is, actually, a bound service. An application declares a special
service in its manifest to make it visible to the Android system. It then schedules tasks
for the service using JobInfo.

When the JobInfo’s conditions are met, Android binds the task service, much as we
described in “Bound Services” on page 68. Once the task has been bound, Android
instructs the service to run and passes any relevant parameters.

The first step in creating a JobScheduler task is registering it in the application mani‐
fest. That is done as shown here:

<service
    android:name=".RecurringTask"
    android:permission="android.permission.BIND_JOB_SERVICE"/>

The important thing in this declaration is the permission. Unless the service is
declared with exactly the android.permission.BIND_JOB_SERVICE permission, the
JobScheduler will not be able to find it.

Note that the task service is not visible to other applications. This is not a problem.
The JobScheduler is part of the Android system and can see things that normal
applications cannot.

The next step in setting up a JobScheduler task is scheduling it, as shown here, in the
method schedulePeriodically:
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const val TASK_ID = 8954
const val SYNC_INTERVAL = 30L
const val PARAM_TASK_TYPE = "task"
const val SAMPLE_TASK = 22158

class RecurringTask() : JobService() {
    companion object {
        fun schedulePeriodically(context: Context) {
            val extras = PersistableBundle()
            extras.putInt(PARAM_TASK_TYPE, SAMPLE_TASK)

            (context.getSystemService(Context.JOB_SCHEDULER_SERVICE)
                as JobScheduler)
                .schedule(
                    JobInfo.Builder(
                        TASK_ID,
                        ComponentName(
                            context,
                            RecurringTask::class.java
                        )
                    )
                        .setPeriodic(SYNC_INTERVAL)
                        .setRequiresStorageNotLow(true)
                        .setRequiresCharging(true)
                        .setExtras(extras)
                        .build()
                )
        }
    }

    override fun onStartJob(params: JobParameters?): Boolean {
        // do stuff
        return true;
    }

    override fun onStopJob(params: JobParameters?): Boolean {
        // stop doing stuff
        return true;
    }
}

This particular task will be run every SYNC_INTERVAL seconds but only if there is suf‐
ficient space on the device and if it is currently attached to an external power source.
These are only two of the wide variety of attributes available for scheduling a task.
The granularity and flexibility of scheduling is, perhaps, the JobScheduler’s most
appealing quality.

Note that JobInfo identifies the task class to be run in much the same way that we
identified the target for an Intent back in Chapter 3.
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The system will call the task’s onStartJob method based on the criteria set in the
JobInfo when the task is eligible to run. This is why the JobScheduler exists. Because
it knows the schedules and requirements for all scheduled tasks, it can optimize
scheduling, globally, to minimize the impact, especially on the battery.

Beware! The onStartJob method is run on the main (UI) thread. If, as is very likely,
the scheduled task is something that will take more than a few milliseconds, it must
be scheduled on a background thread, using one of the techniques described
previously.

If onStartJob returns true, the system will allow the application to run until either it
calls jobFinished or the conditions described in the JobInfo are no longer satisfied.
If, for instance, the phone running the RecurringTask in the previous example was
unplugged from its power source, the system would immediately call the running
task’s onStopJob() method to notify it that it should stop.

When a JobScheduler task receives a call to onStopJob() it must stop. The docu‐
mentation suggests that the task has a little bit of time to tidy up and terminate
cleanly. Unfortunately, it is quite vague about exactly how much time is a “little bit.” It
is quite dire, though, in its warning that “You are solely responsible for the behavior
of your application upon receipt of this message; your app will likely start to misbe‐
have if you ignore it.”

If onStopJob() returns false, the task will not be scheduled again, even if the criteria
in its JobInfo are met: the job has been cancelled. A recurring task should always
return true.

WorkManager
The WorkManager is an Android Jetpack library that wraps the JobScheduler. It
allows a single codebase to make optimal use of modern versions of Android—those
that support the JobScheduler—and still work on legacy versions of Android that do
not.

While the services provided by the WorkManager, as well as its API, are similar to
those provided by the JobScheduler that it wraps, they are one more step away from
the details of implementation, and one abstraction more concise.

Where the JobScheduler encodes the difference between a task that repeats periodi‐
cally and one that runs once in the Boolean return from the onStopJob method, the
WorkManager makes it explicit; there are two types of tasks: a OneTimeWorkRequest
and a PeriodicWorkRequest.

Enqueuing a work request always returns a token, a WorkRequest that can be used to
cancel the task, when it is no longer necessary.
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The WorkManager also supports the construction of complex task chains: “run this
and that in parallel, and run the other when both are done.” These task chains might
even remind you of the chains we used to transform collections in Chapter 2.

The WorkManager is the most fluent and concise way to both guarantee that the neces‐
sary tasks are run (even when your application is not visible on the device screen) and
to do so in a way that optimizes battery use.

Summary
In this chapter we introduced Android’s threading model, and some concepts and
tools to help you use it effectively. To summarize:

• A thread-safe program is one that behaves, no matter how concurrent threads
execute it, in a way that could be reproduced if the same threads executed it
serially.

• In the Android threading model, the UI thread is responsible for the following:
— Drawing the view
— Dispatching events resulting from user interaction with the UI

• Android programs use multiple threads in order to ensure that the UI thread is
free to redraw the screen without dropping frames.

• Java and Android provide several language-level threading primitives:
— A Looper/Handler is a queue of tasks serviced by a single, dedicated thread.
— Executors and ExecutionServices are Java constructs for implementing an

application-wide thread-management policy.
• Android offers the architectural components JobScheduler and WorkManager to

schedule tasks efficiently.

The following chapters will turn to more complex topics in Android and concur‐
rency. In them we will explore how Kotlin makes managing concurrent processes
clearer and easier and less error-prone.
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CHAPTER 5

Thread Safety

With the introduction of the java.util.concurrent package in Java 5, threads became
commonly used to improve the performance of complex applications. In graphical
(or headed) applications, they improve responsiveness by reducing the load on the
main thread that processes information to render views—programmed components
the user can see and interact with on-screen. When a thread is created within a pro‐
gram that has a concept of a main or UI thread, it’s referred to as a background thread.
These background threads often receive and process user interaction events, like ges‐
tures and text input; or other forms of data retrieval, like reading from a server; or
local stores, like a database or filesystem. On the server side, backend applications
using threads have better throughput by leveraging the multiple cores of modern
CPUs.

However, using threads has its own risks, as you will see in this chapter. Thread safety
can be seen as a set of techniques and good practices to circumvent those risks. Those
techniques include synchronization, mutexes, and blocking versus nonblocking.
Higher-level concepts like thread confinement are also important.

The goal of this chapter is to introduce you to some important thread-safety concepts
that will be used in the following chapters. However, we won’t cover thread safety
extensively. For example, we won’t explain object publication or provide details about
the Java memory model. These are advanced topics that we encourage you to learn
after you understand the concepts explained in this chapter.

An Example of a Thread Issue
To understand what thread safety is, we’ll pick a simple example of a thread-safety
issue. When a program runs several threads concurrently, each thread has the poten‐
tial to do things at the same time as other running threads. But it doesn’t necessarily
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1. Actually, interleaving of threads can happen between lines of bytecode, not just between lines of normal Java.

mean this will happen. When it does happen, you need to prevent one thread from
accessing an object that is being mutated by another thread, because it could read an
inconsistent state of the object. The same goes for simultaneous mutations. Ensuring
that only one thread at a time can access a block of code is called mutual exclusion.
Take the following, for example:

class A {
    var aList: MutableList<Int> = ArrayList()
    private set

    fun add() {
        val last = aList.last()  // equivalent of aList[aList.size - 1]
        aList.add(last + 1)
    }

    init {
        aList.add(1)
    }
}

The add() method takes the last element of the list, adds 1, and appends the result
into the list. What would be the expected behavior if two threads attempted to simul‐
taneously execute add()?

When the first thread references the last element, the other thread might have had
time to execute the entire aList.add(last + 1) line.1 In this case, the first thread
reads 2 for the last element and will append 3 to the list. The resulting list would be
[1, 2, 3]. Another scenario is possible. If the second thread didn’t have time to
append a new value, then the two threads will read the same value for the last ele‐
ment. Assuming that the rest of the execution runs without hiccups, we get the result
[1, 2, 2]. One more hazard may happen: if the two threads try to append the new
element to the list at exactly the same time, an ArrayIndexOutOfBoundsException
will be thrown.

Depending on the interleaving of the threads, the result may be different. There’s no
guarantee that we’ll get a result at all. Those are symptoms of a class or function that’s
not thread-safe, which may not behave correctly when accessed from multiple
threads.
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So, what could we do to fix this potential misbehavior? We have three options:

1. Don’t share state across threads.
2. Share immutable state across threads.
3. Change our implementation so that multiple threads can use our class and get

predictable results.

There are multiple strategies for approaching some kind of thread safety, each with its
own strengths and caveats, so it is important for a developer to be able to evaluate
their options and choose one that best fits the needs of a threading issue.

The first option is relatively obvious. When threads can work on completely inde‐
pendent datasets, there’s no risk of accessing the same memory addresses.

The second option is making use of immutable objects and collections. Immutability
is a very effective way to design robust systems. If a thread can’t mutate an object,
there’s simply no risk of reading inconsistent state from another thread. In our exam‐
ple, we could make the list immutable, but then threads wouldn’t be able to append
elements to it. This doesn’t mean that this principle can’t be applied here. In fact, it
can—but we’ll come back to it later in this chapter. We have to mention that there’s a
potential downside with using immutability. In essence, it requires more memory
because of object copying. For example, whenever a thread needs to work with
another thread’s state, a copy of the state object is performed. When done repeatedly
and at a high pace, immutability can increase the memory footprint—which may be
an issue (especially on Android).

The third option could be described like so: “Any thread which executes the add
method happens before any subsequent add accesses from other threads.” In other
words, add accesses happen serially, with no interleaving. If your implementation
enforces the aforementioned statement, then there won’t be thread-safety issues—the
class is said to be thread-safe. In the world of concurrency, the previous statement is
called an invariant.

Invariants
To properly make a class or a group of classes thread-safe, we have to define invari‐
ants. An invariant is an assertion that should always be true. No matter how threads
are scheduled, the invariant shall not be violated. In the case of our example, it could
be expressed like this (from the standpoint of a thread):

When I’m executing the add method, I’m taking the last element of the list and when
I’m appending it to the list, I’m sure that the inserted element is greater than the previ‐
ous one by a difference of 1.
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Mathematically, we could write:

list n = list n − 1 + 1

We’ve seen from the beginning that our class wasn’t thread-safe. Now we can say so
because when executed in a multithreaded environment, the invariant is sometimes
violated or our program just crashes.

So, what can we do to enforce our invariants? Actually, this is a complex matter, but
we’ll cover some of the most common techniques:

• Mutexes
• Thread-safe collections

Mutexes
Mutexes allow you to prevent concurrent access of a state—which can be a block of
code or just an object. This mutual exclusion is also called synchronization. An
Object called a mutex or lock guarantees that when taken from a thread, no other
thread can enter the section guarded by this lock. When a thread attempts to acquire
a lock held by another thread, it’s blocked—it cannot proceed with its execution until
the lock is released. This mechanism is relatively easy to use, which is why it’s often
the go-to response of developers when facing this situation. Unfortunately, this is also
like opening a Pandora’s box to problems like deadlocks, race conditions, etc. These
problems that can arise from improper synchronization are so numerous that draw‐
ing a complete picture is way beyond the scope of this book. However, later in the
book we will discuss some of them, like deadlocks in communicating sequential
processes.

Thread-Safe Collections
Thread-safe collections are collections that can be accessed by multiple threads while
keeping their state consistent. The Collections.synchronizedList is a useful way to
make a List thread-safe. It returns a List that wraps access to the List passed as a
parameter, and regulates concurrent access with an internal lock.

At first sight, it looks interesting. So you could be tempted to use it:

class A {
    var list =
        Collections.synchronizedList<Int>(object : ArrayList<Int?>() {
            init {
                add(1)
            }
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        })

    fun add() {
        val last = list.last()
        list.add(last + 1)
    }
}

For the record, here is the equivalent in Java:

class A {
    List<Integer> list = Collections.synchronizedList(
        new ArrayList<Integer>() {{
           add(1);
        }}
    );

    void add() {
        Integer last = list.get(list.size() - 1);
        list.add(last + 1);
    }
}

There’s a problem with both implementations. Can you spot it?

We could also have declared the list as:

var list: List<Int> = CopyOnWriteArrayList(lis
tOf(1))

which, in Java, is the equivalent of:

List<Integer> list = new CopyOnWriteArray
List<>(Arrays.asList(1));

CopyOnWriteArrayList is a thread-safe implementation of Array
List in which all mutative operations like add and set are imple‐
mented by making a fresh copy of the underlying array. Thread A
can safely iterate through the list. If in the meantime, thread B adds
an element to the list, a fresh copy will be created and only visible
from thread B. This in itself doesn’t make the class thread-safe—it
is because add and set are guarded by a lock. This data structure is
useful when we are iterating over it more often than we are modi‐
fying it, as copying the entire underlying array can be too costly.
Note that there is also a CopyOnWriteArraySet, which is simply a
Set implementation rather than a List implementation.
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We’ve indeed fixed the concurrent access issue, although our class still doesn’t con‐
form to our invariant. In a test environment, we created two threads and started
them. Each thread executes the add() method once, on the same instance of our
class. The first time we ran our test, after the two threads finished their job, the result‐
ing list was [1, 2, 3]. Curiously, we ran this same test multiple times, and the result
was sometimes [1, 2, 2]. This is due to the exact same reason shown earlier: when
a thread executes the first line inside add(), the other thread can execute the whole
add() method before the first thread proceeds with the rest of its execution. See how
pernicious a synchronization issue can be: it looks good, but our program is broken.
And we can easily have it wrong, even on a trivial example.

A proper solution is:

class A {
    val list: MutableList<Int> = mutableListOf(1)

    @Synchronized
    fun add() {
        val last = list.last()
        list.add(last + 1)
    }
}

It ay help to see the Java equivalent:

public class A {
    private List<Integer> list = new ArrayList<Integer>() {{
        add(1);
    }};

    synchronized void add() {
        Integer last = list.get(list.size() - 1);
        list.add(last + 1);
    }
}

As you can see, we actually didn’t need to synchronize the list. Instead, the add()
method should have been synchronized. Now when the add() method is first exe‐
cuted by a thread, the other one blocks when it tries to execute add(), until the first
thread leaves the add() method. No two threads execute add() at the same time. The
invariant is then honored.

This example demonstrates that a class can internally use thread-safe collections
while not being thread-safe. A class or code is said to be thread-safe when its
invariants are never violated. Those invariants, and how the class should be used
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according to their creators, define a policy that should be clearly expressed in the jav‐
adoc.

This is Java’s built-in mechanism to enforce mutual exclusion. A
synchronized block is made of a lock and a block of code. In Java,
every Object can be used as a lock. A synchronized method is a
synchronized block whose lock is the instance of the class instance.
When a thread enters a synchronized block, it acquires the lock.
And when a thread leaves the block, it releases the lock.
Also note that the add method could have been declared as using a
synchronized statement:

void add() {
    synchronized(this) {
        val last = list.last()
        list.add(last + 1)
    }
}

A thread cannot enter a synchronized block whose lock is already
acquired by another thread. As a consequence, when a thread
enters a synchronized method it prevents other threads from exe‐
cuting any synchronized method or any block of code guarded by
this (also called intrinsic lock).

Thread Confinement
Another way to ensure thread safety is to ensure that only one thread owns the state.
If the state isn’t visible to other threads, there’s simply no risk of having concurrency
issues. For example, a public variable of a class (where usage is intended to be thread-
confined to the main thread) is a potential source of bugs since a developer (unaware
of this thread policy) could use the variable in another thread.

The immediate benefit of thread confinement is simplicity. For example, if we follow
the convention that every class of type View should only be used from the main
thread, then we can save ourselves from synchronizing our code all over the place.
But this comes at a price. The correctness of the client code is now on the shoulders
of the developer who uses our code. In Android, as we’ve seen in the previous chap‐
ter, manipulating views should only be done from the UI thread. This is a form of
thread confinement—as long as you don’t break the rules, you shouldn’t have issues
involving concurrent access to UI-related objects.

Another noteworthy form of thread confinement is ThreadLocal. A ThreadLocal
instance can be seen as a provider to some object. This provider ensures that the
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given instance of the object is per-thread unique. In other words, each thread owns
its own instance of the value. An example of usage is:

private val myConnection =
        object : ThreadLocal<Connection>() {
            override fun initialValue(): Connection? {
                return DriverManager.getConnection(connectionStr)
            }
        }

Often used in conjunction with JDBC connections, which aren’t thread-safe,
ThreadLocal ensures that each thread will use its own JDBC connection.

Thread Contention
Synchronization between threads is hard because a lot of problems can happen. We
just saw potential thread-safety issues. There is another hazard that can affect perfor‐
mance: thread contention, which we encourage all programmers to familiarize them‐
selves with. Consider this example:

class WorkerPool {
    private val workLock = Any() // In Java, we would have used `new 
Object()`

    fun work() {
        synchronized(workLock) {
            try {
                Thread.sleep(1000) // simulate CPU-intensive task
            } catch (e: Exception) {
                e.printStackTrace()
            }
        }
    }

    // other methods which may use the intrinsic lock
}

So, we have a WorkerPool, which controls the work done by worker threads in such a
way that only one worker at a time can do the real work inside the work method. This
is the kind of situation you may encounter when the actual work involves the use of
non-thread-safe objects and the developer decided to solve this using this locking
policy. A dedicated lock was created for the work method, instead of synchronizing
on this, because other methods can now be called by workers without mutual exclu‐
sion. This is also the reason why the lock is named after the related method.
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2. IO operations aren’t necessarily blocking. Nonblocking IO exists, though it’s much more complicated to rea‐
son about. Android Link is helpful enough to warn you when you perform an HTTP request on the main
thread, but other IO tasks—like reading a file or querying a database—do not do this. This may even be a delib‐
erate and accepted practice if done under extremely thoughtful and careful supervision; while possible, this
should be a rare exception to the standard.
3. Even for worker threads, executing a long-running task like working with 8-megapixel images, those block‐
ing calls possibly block task packets the UI is waiting on.

If several worker threads are started and call this work method, they will contend for
the same lock. Eventually, depending on the interleaving of the threads, a worker is
blocked because another one acquired the lock. This isn’t a problem if the time spent
waiting for the lock is significantly less than the rest of the execution time. If this isn’t
the case, then we have a thread contention. Threads spend most of their time waiting
for each other. Then the operating system may preemptively stall some threads so
that other threads in the wait state can resume their execution, which makes the sit‐
uation even worse because context switches between threads aren’t free. It can result
in a performance impact when they occur frequently.

As a developer, you should always avoid thread contention as it can rapidly degrade
throughput and have consequences beyond the affected threads, since the rate of con‐
text switches is likely to increase, which in itself impacts performance overall.

One of the most effective ways to avoid such a situation is to avoid blocking calls,
which we explain in the next section.

Blocking Call Versus Nonblocking Call
So far, we know that a thread can be blocked when attempting to obtain a lock held
by another thread. The function that led the thread to be blocked is then a blocking
call. Even if the lock might be acquired immediately, the fact that the call may poten‐
tially block makes it a blocking call. But this is just a particular case. There are
actually two other ways of blocking a thread. The first one is by running CPU-
intensive computations—this is also called a CPU-bound task. The second one is by
waiting for a hardware response. For example, it happens when a network request
causes the calling thread to wait for the response from a remote server—we then talk
about an IO-bound task.2

Everything else that makes the call return quickly is considered nonblocking.

When you’re about to make a blocking call, you should avoid doing it from the main
thread (also called the UI thread, on Android).3 This is because this thread runs the
event loop that processes touch events, and all UI-related tasks like animations. If the
main thread gets blocked repeatedly and for durations exceeding a few milliseconds,
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4. Although not all work queues use this data structure arrangement. Some of them are more sophisticated, like
Android’s MessageQueue.

the responsiveness is impacted and this is the cause of Android’s application not
responding (ANR) errors.

Nonblocking calls is one building block of a responsive app. You need now to recog‐
nize patterns which leverage this technique. Work queues is one of them, and we’ll
encounter various forms of them throughout this book.

Most often, the terms synchronous and asynchronous are respec‐
tively used as synonyms for blocking and nonblocking. While they
are conceptually close concepts, the usage of, for instance, asyn‐
chronous instead of nonblocking depends on the context. Asyn‐
chronous calls usually involve the idea of a callback, while this is
not necessarily the case for nonblocking.

Work Queues
Communication between threads and, in particular, work submission from one
thread to another is widely used in Android. It’s an implementation of the producer-
consumer design pattern. Applied to threads, the producer is in this context a thread
which generates data that needs to be further processed by a consumer thread.
Instead of having the producer directly interacting with the consumer through shared
mutable state, a queue is used in between to enqueue the work generated by the pro‐
ducer. It decouples the producer from the consumer—but this isn’t the only benefit,
as we’ll see. Often, the Queue works in a FIFO (first in, first out) manner.4

Semantically it can help to think of a Queue like a queue of moviegoers. As the first
viewer arrives, they are put at the front of the queue. Each additional viewer is added
behind the last. When the doors open and viewers are allowed to enter, the first per‐
son in line is let in first, then the next, and so on, until the entire Queue is empty.

The producer puts an object at the head of the queue, and the consumer pops an
object at the tail of the queue. The put method might be a blocking call, but if it can
be proven that most of the time it effectively doesn’t block (and when it does, it’s for a
short time), then we have a very efficient way to offload work from the producer to
the consumer in a nonblocking way (from the standpoint of the producer), as shown
in Figure 5-1.

In practice, enqueued objects are often Runnable instances submitted by a back‐
ground thread and processed by the main thread. Also, this isn’t limited to one pro‐
ducer and one consumer. Multiple producers can submit work to the queue,
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5. Even with one producer and one consumer, the queue must be thread-safe.

concurrently with multiple consumers taking work out of the queue. This implies
that the queue must be thread-safe.5

Figure 5-1. Producer-consumer.

Don’t confuse a Queue with a Stack, which uses LIFO (last in, first
out) instead of FIFO.
Semantically, let’s imagine a Stack as a stack of pancakes. When the
kitchen makes more pancakes, they go on the top of the stack.
When the diner eats pancakes, they also take them from the top of
the stack.

Back Pressure
Imagine now that our producer is much faster than our consumer. The work objects
then accumulate in the queue. If the queue happens to be unbounded, we risk
exhausting memory resources and potentially an unrecoverable exception: the appli‐
cation may crash. While not only is this experience jarring and unpleasant for the
user, but in an unhandled error like this, you’re almost assuredly going to lose what‐
ever stateful information was present. Unless you’ve taken great care to be aware of—
and react to—this circumstance, you may experience a sudden termination without
an opportunity to perform any cleanup you might do normally. In Android, when a
Bitmap instance is no longer being used, the recycle method can be used to mark
each underlying memory allocation as unreachable and eligible for garbage collec‐
tion. In an untidy system exit, you might not have an opportunity to do that and may
risk leaking that data.

In this case, a wise choice is to use a bounded queue. But what should happen when
the queue is full and a producer attempts to put an object?

We’ll circle back to it with coroutines, but since we’re only talking about threads for
now, the answer is: it should block the producer thread until the consumer takes at
least one object out of the queue. Although this blocking should be part of the design
and anticipate whatever circumstance or logic branch might deliver the user to this
point in the program. While blocking a thread seems harmful, a blocked producer
allows the consumer to catch up and free up enough space into the queue so that the
producer is released.
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This mechanism is known as back pressure—the ability of a data consumer that can’t
keep up with incoming data to slow down the data producer. It’s a very powerful way
to design robust systems. Example 5-1 shows a implementation of back pressure.

Example 5-1. Back pressure example

fun main() {
    val workQueue = LinkedBlockingQueue<Int>(5)  // queue of size 5

    val producer = thread {
        while (true) {
            /* Inserts one element at the tail of the queue,
             * waiting if necessary for space to become available. */
            workQueue.put(1)
            println("Producer added a new element to the queue")
        }
    }

    val consumer = thread {
        while (true) {
            // We have a slow consumer - it sleeps at each iteration
            Thread.sleep(1000)
            workQueue.take()
            println("Consumer took an element out of the queue")
        }
    }
}

Since Java 7, a family of queues for this purpose is BlockingQueue—it’s an interface,
and implementations range from a single-ended queue with LinkedBlockingQueue to
a double-ended queue with LinkedBlockingDequeue (other implementations exist).
The output of Example 5-1 is:

Producer added a new element to the queue
Producer added a new element to the queue
Producer added a new element to the queue
Producer added a new element to the queue
Producer added a new element to the queue
Consumer took an element out of the queue
Producer added a new element to the queue
Consumer took an element out of the queue
Producer added a new element to the queue
...

You can see that the producer quickly filled the queue with five elements. Then, on
the sixth attempt to add a new element, it’s blocked because the queue is full. One
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second later, the consumer takes an element out of the queue, releasing the producer
which can now add a new element. At this point, the queue is full. The producer tries
to add new elements but is blocked again. Again, one second later, the consumer
takes one element—and so on.

It’s important to note that the insertion of an element into a BlockingQueue isn’t nec‐
essarily blocking. If you use the put method, then it blocks when the queue is full.
Since put might block, we say that this is a blocking call. However, there’s another
method available to add a new element: offer, which attempts to immediately add
the new element and returns a Boolean—whether or not the operation succeeded.
Since the offer method does not block the underlying thread and only returns false
when the queue is full, we say that offer is nonblocking.

Had we used offer instead of put in Example 5-1, the producer would never be
blocked, and the output would be filled with Producer added a new element to
the queue. There would be no back pressure at all—don’t do this!

The offer method can be useful in situations where losing work is affordable, or if
blocking the producer thread isn’t suitable. The same reasoning applies when taking
an object out of the queue, with take and poll, which are respectively blocking and
nonblocking.

Conversely, if the consumer is faster than the producer, then the queue eventually
becomes empty. In the case of a BlockingQueue, using the take method on a con‐
sumer site will block until the producer adds new elements in the queue. So in this
case, the consumer is slowed down to match the rate of the producer.

Summary
• A class or code is said to be thread-safe when its invariants are never violated. So,

thread safety always refers to a policy that should be clearly defined in the class
javadoc.

• A class can use internally thread-safe data structures while not being thread-safe.
• Avoid or reduce thread contention as much as possible. Thread contention is

often the consequence of a poor locking strategy. An efficient way to reduce this
risk is to do nonblocking calls whenever possible.

• Work queues is a pattern you will often encounter in Android and other plat‐
forms like backend services. It simplifies how a producer (like UI thread) offloads
tasks to consumers (your background threads). Consumers process the tasks
whenever they can. When the task completes, a consumer can use another work
queue to send back to the original producer the result of its work.
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• A bounded BlockingQueue blocks a put operation when it’s full. So a too-fast
producer eventually gets blocked, which gives consumers the opportunity to
catch up. This is an implementation of back pressure, which has one major
downside: the thread of the producer might get blocked. Is it possible to have
back pressure without blocking the producer thread? Yes—we’ll see that in
Chapter 9.
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1. Nonblocking IO using java.nio.channels.SocketChannel can be done on the UI thread without blocking
it. However, most of the time when dealing with IO, you will be using blocking APIs like java.io.InputStream.

CHAPTER 6

Handling Concurrency Using Callbacks

The idiomatic way of handling concurrency in Kotlin is by using coroutines. However,
for some time this has been done in Java using threads and callbacks. So why do we
need coroutines?

To answer this question, we will revisit a typical Kotlin implementation on Android
and discuss the pitfalls of using threads. Knowing the weak points of the traditional
approach is the key to understanding the motivation behind the design of coroutines.

In Android applications, long-running tasks shouldn’t be done on the UI thread, as
you’ve seen in the previous chapter. If you block the main thread—the UI thread—
your app might not have the resources it needs to draw the screen or update it appro‐
priately. In fact, lint will complain if you attempt to do an obvious IO call (e.g., make
an HTTP connection) while on the UI thread.

An Android application runs smoothly when the main thread completes all its tasks
in less than frame time, which is 16 ms on most devices. This is a rather short amount
of time, and all blocking calls, like network requests (blocking IO), should be per‐
formed on a background thread.1

When you delegate a task to another thread, you typically call a function which starts
the asynchronous job. In some cases this is “fire-and-forget,” but you’re usually wait‐
ing for a result—and you need to act on it. This is done by providing a function
which will be called once the job finishes. This function is called a callback. A callback
often accepts arguments, so the background thread commonly calls the callback with
the result of the job. Doing computation that calls an arbitrary or injected function
when complete is known as the callback pattern.
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Using callbacks is quite efficient, though it has some limitations and drawbacks. To
illustrate this, we’ll implement a simple yet realistic example in Kotlin. Coroutines
address all issues with callbacks, but before jumping right into coroutines, it’s impor‐
tant to understand which problem they aim to solve.

Example-of-Purchase Feature
Suppose you’re working on a paid feature of an Android application. After a user reg‐
isters, you check the list of purchases this user has already made, then act on it. To get
the list of purchases, let’s use an object called BillingClient. Note that we’re not
talking about the actual BillingClient provided by the Android framework,
com.android.billingclient.api.BillingClient. We’re using our own, much sim‐
pler version of the basic concept, as shown in the following code:

interface BillingClient {
    fun interface BillingCallback {
        fun onInitDone(provider: PurchasesProvider?)
    }

    /* Implementations should be nonblocking */
    fun init(callback: BillingCallback)
}

A typical task flow would be:

1. Initialize a connection to the BillingClient. Wait for it to be ready—your call‐
back provides a PurchasesProvider, or null in case of error. For now, we won’t
handle errors.

2. Use the returned PurchasesProvider to asynchronously fetch the user’s list of
purchases.  Your  program  will  wait  for  the  response,  which  will  contain  the  list
of purchases and perhaps some additional metadata.

3. React to this new information; you might show a list of purchases with UI to pro‐
vide even more details, or request status, cancel an item in an order, etc.

For further references, we’ll call the preceding flow our logic.

As you can see, this is just an interface with a single method, taking a BillingCall
back as input. The BillingCallback is declared inside the BillingClient interface
because this callback is only used inside BillingClient. When an interface is
declared inside a class or interface, it tells you about the relationship between the
class and the interface: the author intended that the class shouldn’t depend on
another entity to provide the interface. This avoids the risk of breaking the compati‐
bility between the class and the interface. The two are coupled, and if you ship a
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BillingClient, you also ship a BillingCallback. Notice that we’re using Kotlin 1.4’s
new fun interface instead of a classic interface. This will allow for a concise syn‐
tax when we’ll provide implementations. Also, the documentation of the init method
says that implementations should be nonblocking. If you haven’t read the previous
chapter, it means that whatever thread calls this method, it isn’t blocked waiting for
the method to return.

Similarly, our PurchasesProvider is shown in the following code:

interface PurchasesProvider {
    fun interface PurchaseFetchCallback {
        fun onPurchaseFetchDone(purchases: List<String>)
    }

    fun fetchPurchases(user: String, callback: PurchaseFetchCallback)
}

For now, let’s assume that we provide those abstractions and their implementations.
Even though a real application would use framework-provided classes, the important
part of this example is the business logic, not the implementations of BillingClient
and PurchasesProvider.

As an Android developer, we hope that you’re familiar with the core concepts of
Android Jetpack’s ViewModel, but don’t worry if this isn’t the case, because the details
of ViewModel operation aren’t the focus of this discussion. Even without ViewModel,
you’ve probably got some version of MVC or MVP or MVVM, all of which largely
follow the same pattern. The view does presentation work, the model does logical
work, and the controller or view-model is the glue that connects them and serves as
the network that allows the two to communicate. The important part is the imple‐
mentation of the logic inside the view-model. Everything else is context or framework
code—but still important nevertheless. Figure 6-1 shows the target architecture.

Figure 6-1. MVVM architecture.
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2. A single activity and multiple fragments.
3. Developing to interfaces, and not to actual implementations, improves the testability and portability of your
code. Inside a test environment, you’re able to swap the actual implementations of the dependencies with
custom-mocked ones. By portability, let’s assume you have an interface called AnalyticsManager that provides
some methods that you’ll implement to notify your analytics service. Considering that a robust analytics SaaS
with dashboards and heavy data visualization and authorization is a heavy lift by itself, most app developers are
going to leverage a third-party library to handle that part of their flow. If, for example, you change from one
provider to another, as long as you’ve composed your interactions to match the AnalyticsManager interface,
your client code never gets touched, or changes, or potentially introduces a new bug; all that’s updated is the
business logic of the AnalyticsManager implementation.

Suppose now that you’ve structured your application following the single-activity
architecture.2 The view should be a fragment that displays the purchases of the cur‐
rent user. The lifecycle of the fragment should be taken into account in the design. At
any moment, the device could be rotated, and the fragment re-created. The user
could go back, and the fragment could be put into the back stack, if not destroyed.

This is where LiveData, a lifecycle-aware component, comes into play. Every time the
fragment is created, it requests an instance of PurchaseViewModel. We will explain in
more detail how it works later.

Creating the App
In this section, we’ll show you a typical implementation inside an Android applica‐
tion. If you’re already familiar with this, you might jump directly to the next section,
where we discuss the implementation of the logic.

View-Model
So the business logic is implemented inside a ViewModel (see Example 6-1). The view-
model requires a BillingClient instance to be constructor-injected3 by some other
component, as you’ll see shortly. BillingClient is a dependency of the ViewModel,
and PurchaseProvider is a dependency of BillingClient.

The view that interacts with this ViewModel triggers the getUserPurchases method
(which we haven’t implemented yet) in the getter of the purchasesLiveData property.
You may have noticed that the type of the purchasesLiveData property is LiveData
while the private backing property, _purchases, is a MutableLiveData. This is
because the ViewModel should be the sole component to change the value of the Live
Data. So the exposed type to clients of this ViewModel is only LiveData, as shown in
Example 6-1.
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Example 6-1. PurchasesViewModel

class PurchasesViewModel internal constructor(
    private val billingClient: BillingClient,
    private val user: String
) : ViewModel() {
    private var _purchases = MutableLiveData<UserPurchases>()

    private fun getUserPurchases(user: String) {
        // TODO: implement
    }

    val purchasesLiveData: LiveData<UserPurchases>
        get() {
            getUserPurchases(user)
            return _purchases
        }

    interface BillingClient { /* removed for brevity*/ }

    interface PurchasesProvider { /* removed for brevity*/ }
}

We’re almost done—now all we’re missing is the view.

View
In our architecture, the view is a Fragment. As you can see in the following code, the
view depends on the view-model. This shows how we can use the view-model from
inside the view:

class PurchasesFragment : Fragment() {
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        /* Create a ViewModel the first time this Fragment is created.
         * Re-created Fragment receives the same ViewModel instance after
         * device rotation. */
        val factory: ViewModelProvider.Factory = PurchaseViewModelFactory() 

        val model by viewModels<PurchasesViewModel> { factory }             

        model.purchasesLiveData.observe(this) { (_, purchases) ->           

            // update UI
            println(purchases)
        }
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    }
}

Every time the fragment is created, it subscribes to updates of UserPurchases by fol‐
lowing three steps:

Create a factory for the ViewModel (remember, the ViewModel has dependencies,
and it’s certainly not the responsibility of the Fragment to supply them). Strictly
speaking, this factory shouldn’t be created inside the fragment, as the factory is
now tightly coupled with your fragment—a PurchasesFragment always uses a
PurchaseViewModelFactory. In a test environment, where you should test the
view independently, this would be a problem. So this factory should be injected
inside the Fragment through either a dependency injection framework or manual
injection. For the sake of simplicity, we’ve decided to create it here inside the
fragment. For the record, ViewModel factory is shown in Example 6-2.

An instance of PurchasesViewModel is obtained from the viewModels function.
This is the recommended way to get a ViewModel instance.

Finally, a LiveData instance is retrieved from the ViewModel, and is observed by
an Observable instance using the method of the same name (“observe”). In this
example, the observer is only a lambda function which prints the list of purchases
into the console. In a production application you would typically trigger an
update of all the related views inside the fragment.

A ViewModel also has its own lifecycle, which depends on whether the ViewModel
is bound to  a  fragment  or  an  activity.  In  this  example,  it  is  bound  to  a  fragment.
You can tell that by the use of by viewModels<..>. If instead we had used by
activityViewModels<..>, the view-model would have been bound to the activity.

When bound to the fragment, the ViewModel survives device rotations but is
destroyed when it isn’t used anymore (e.g., when all fragments that were bound to it
are destroyed, except for device rotation). If the ViewModel had been bound to the
activity, it would outlive the activity on device rotation but would be destroyed in
every other scenario where the activity is destroyed.

As a ViewModel is retained through configuration change, which
destroys and re-creates the containing activity, it should never ref‐
erence a view, Lifecycle instance, or any class instance that may
hold a reference to the activity context. It can, however, reference
the Application context.
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If you look at the actual code of the BillingClient, you can see that creating a Bill
ingClient.Builder requires that you supply a context. It can be an activity context,
because internally the builder calls context.getApplicationContext() and this is
the only context reference kept by the BillingClient. An ApplicationContext
remains the same during the whole Application lifetime. Therefore, you won’t create
a memory leak by referencing the ApplicationContext somewhere in your app. This
is the reason why it is safe to reference BillingClient inside a ViewModel.

As shown in Example 6-2, the dependencies of the ViewModel are created inside
PurchaseViewModelFactory.

Example 6-2. PurchaseViewModelFactory

class PurchaseViewModelFactory : ViewModelProvider.Factory {
    private val provider: PurchasesProvider = PurchasesProviderImpl()
    private val billingClient: BillingClient = BillingClientImpl(provider)
    private val user = "user" // Get in from registration service

    override fun <T : ViewModel?> create(modelClass: Class<T>): T {
        if (modelClass.isAssignableFrom(PurchasesViewModel::class.java)) {
            return PurchasesViewModel(billingClient, user) as T
        }
        throw IllegalArgumentException("Unknown ViewModel class")
    }
}

BillingClientImpl is the real implementation of the previously shown Billing
Client interface (see Example 6-3 and Example 6-4).

Example 6-3. BillingClientImpl

class BillingClientImpl(private val purchasesProvider: PurchasesProvider) : 
BillingClient {
    private val executor =
        Executors.newSingleThreadExecutor()

    override fun init(callback: BillingCallback) {
        /* perform asynchronous work here */
        executor.submit {
            try {
                Thread.sleep(1000)
                callback.onInitDone(purchasesProvider)
            } catch (e: InterruptedException) {
                e.printStackTrace()
            }
        }
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    }
}

Example 6-4. PurchasesProviderImpl

class PurchasesProviderImpl : PurchasesProvider {
    private val executor =
        Executors.newSingleThreadExecutor()

    override fun fetchPurchases(
        user: String,
        callback: PurchaseFetchCallback
    ) {
        /* perform asynchronous work */
        executor.submit {
            try {
                // Simulate blocking IO
                Thread.sleep(1000)
                callback.onPurchaseFetchDone(
                    listOf("Purchase1", "Purchase2")
                )
            } catch (e: InterruptedException) {
                e.printStackTrace()
            }
        }
    }
}

To conform to the application design we established, the init and fetchPurchases
methods should be nonblocking. This can be achieved with a background thread.
For efficiency reasons (see the upcoming section), you may not want to create
a new thread every time you connect to the BillingClient. Instead you can use a
thread pool, which can be created using ThreadPoolExecutor instances directly,
or many common configurations are available via the factory methods of
java.util.concurrent.Executors. Using Executors.newSingleThreadExecutor(),
you have a single dedicated thread at your disposal which can be reused for each
asynchronous call. You might think that PurchasesProviderImpl and
BillingClientImpl should share the same thread pool. It’s up to you—though for
brevity we didn’t do it here. For a production app, you may have multiple
ThreadPoolExecutors that service different parts of your app.

If you look at how callbacks are used in those implementations, you can see that
they’re called right after Thread.sleep() (which simulates a blocking IO call). Unless
explicitly posted to the main thread (generally through an instance of the Handler
class, or through a LiveData instance’s postValue method), callbacks are invoked
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within the context of the background thread. This is critical, and it’s very important
to be aware of how to communicate between thread contexts, as you’ll see in the next
section.

Be aware of which thread runs the provided callback, as it depends
on the implementation. Sometimes the callback is asynchronously
run on the calling thread, whereas it can be synchronously exe‐
cuted on the background thread.

Implement the Logic
Now that all the necessary components are set in place, the logic can be implemented.
The steps are shown in Example 6-5.

Example 6-5. Logic

private fun getUserPurchases(user: String) {
   billingClient.init { provider ->                   
       // this is called from a background thread
       provider?.fetchPurchases(user) { purchases ->  
           _purchases.postValue(UserPurchases(user, purchases))
       }
   }
}

Call billingClient.init and supply a callback which will be called whenever
the client’s initialization process finishes. If the client supplies a non-null
PurchasesProvider instance, proceed with the next step.

At this point you have the PurchasesProvider instance ready for use. Call fetch
Purchases, providing the current user as the first parameter, and the callback
that should be executed once the provider has done its job. Look carefully at the
content of the callback:

_purchases.postValue(UserPurchases(user, purchases))

On a MutableLiveData instance, you use either the setValue or the postValue
method. The difference between the two is that you’re only allowed to use setValue
if you’re calling it from the main thread. When this isn’t the case, using postValue
adds the new value into a queue that the MutableLiveData will process on the next
frame of the main thread. This is an implementation of the work queue pattern (see
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“Work Queues” on page 110), and a thread-safe way to assign a new value to a
MutableLiveData.

Discussion
So this is it. It works—or at least it fulfills the specifications. We invite you to step
back a little and look at the big picture. What’s the structure of getUserPurchases?
It’s made of a function call, which is provided another function, which itself calls a
function, which is provided another function…. It’s like Russian nesting dolls. It’s
already a little hard to follow, and adding exception handling can quickly turn it into
“nesting hell” (see Figure 6-2). In order to keep our example logic simple and easy to
follow, we’ve omitted corner cases where some API calls fail; for example, networking
issues or authorization errors make some IO background work brittle and prone to
failure, and production code should be able to handle this.

Figure 6-2. Callback usage.

The code that specifies what happens upon a response of the BillingClient (call‐
back 2) is included in the code of the first callback. If you decide to inline all this code,
like we did in Example 6-5, you have several levels of indentations, which rapidly
grow as the problem to solve becomes more complex. On the other hand, if you
decide to encapsulate the first callback into its own function, you will indeed reduce
the indentation level of getUserPurchases and its apparent complexity. At the same
time, you would increase the number of directions to follow to fully understand the
business logic.

This is the first drawback of code using callbacks. It rapidly becomes complex, and
may become hard to maintain if not administered with caution and thoughtful
design. Some would consider that even with careful precautions this path is danger‐
ous. As developers, we strive to create a system that we and our coworkers can
handle.
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Using CompletableFuture or another similar library like RxJava,
you can rewrite getUserPurchases like this:

private void getUserPurchases(String user) {
    billingClient.initAsync()
    .thenCompose { provider ->
        fetchPurchasesAsync(provider, user)
    }
    .thenAccept { purchases ->
        this.purchases.postValue(...)
    }
}

It’s a bit cleaner, with no nested indentations, and even handles
exceptions properly. However, you can see that it relies on the com‐
binators thenCompose and thenAccept, which operate on Completa
bleFuture<T>. While our simple example uses only two
combinators, a lot of them exist, each one for a specific purpose.
Some would consider the learning curve of another, unfamiliar pat‐
tern and API to be a weakness of this pattern.

Structured concurrency
Imagine now that some API calls are quite expensive computationally. For example, a
user of your app navigates to a view which triggers some of those API calls, but as the
content isn’t loading instantly they lose patience and tap back, and start a new series
of operations in another part of the app. In this situation, you don’t want your expen‐
sive API calls to continue running, as they may put unnecessary load on your back‐
end servers, or even on the application itself. Further, what happens if a UI that
should be updated when a callback fires no longer exists? A NullPointerException is
probably your best case, and a memory leak your worst. Instead, let’s cancel the pro‐
cedure initialized inside the view-model. How would you do that? You would have to
listen to a particular lifecycle event of the fragment lifecycle termination events:
onStop, onPause, or onDestroy. In this specific case, you’d probably want to do that
inside onStop, which would be fired just before resources are reclaimed. onPause
would fire each time the application in the background in favor of an incoming call
or when switching between apps, and onDestroy happens a little later than we need.
When the onStop event fires, you should notify the view-model that it should stop
any background processing. This requires a thread-safe way of interrupting threads.
A volatile isCancelled Boolean would be checked inside the callbacks to decide
whether they should proceed or not. So it’s definitely possible, but cumbersome and
fragile.
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What if this cancellation was done automatically? Imagine that the background pro‐
cessing was tied to the lifecycle of the view-model. The moment that the view-model
is destroyed, all background processing gets cancelled. It’s not a fairy tale—it even has
a name: structured concurrency.

Memory leaks
Automatically cancelling dangling background threads has another benefit: the less
risk of a memory leak. A callback might hold a reference on a component which
either has a lifecycle or is a child of a component that has one. If this component is
eligible for garbage collection, while a reference of that component exists in some
running thread, the memory can’t be reclaimed, and you have a memory leak. Using
LiveData like in the previous example is safe even if you don’t cancel background
tasks. Nevertheless, more generally speaking, it’s never good to leave tasks running for
nothing.

Cancellation isn’t the only possible thing that can go wrong. There are other pitfalls to
using threads as primitives for asynchronous computations (which we’ll refer to as
the threading model), and we’ll cover them in the next section.

Limitations of the Threading Model
In an Android application, processes and tasks are always competing for memory.
With only one main thread, or UI thread, the clever Android developer must find
ways to manipulate and handle threading efficiently.

When using a single thread, asynchronous tasks offloaded to that thread execute seri‐
ally—one task after another. If one of the tasks takes forever to execute, the remaining
work cannot be processed until that task completes, as shown in Figure 6-3.

Figure 6-3. Tasks execute serially inside a thread.

In situations where a background task might take a long time to execute, you need
more than one background thread. The ThreadPoolExecutor primitive lets you spin
up a number of threads and toss onto it blocks of work to execute, as shown in
Figure 6-4.
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4. Thread switching involves saving and loading CPU registers and memory maps.

Figure 6-4. A ThreadPoolExecutor handles all the heavy lifting of spinning up the
threads, load-balancing work across those threads, and even killing those threads.

However, having more threads isn’t always a good thing. Here are some caveats:

• CPUs can only execute a certain number of threads in parallel.
• Threads themselves are expensive in terms of memory—each thread costs you at

least 64 Kb of RAM.
• When a CPU core switches execution from one thread to another, a thread con‐

text switch happens.4 Those switches aren’t free. While it’s not a problem when
you have a few threads, the impact of thread context switches can be noticeable if
you keep adding more threads. You could reach a point were your code is
actually slower than if you were using fewer threads.

Summary
• You can implement asynchronous logic using callbacks. You might also want to

check out some other related framework APIs like Handler and HandlerThread.
Using callbacks can lead to complex nested function calls, or to situations where
the flow of the logic is split in several classes and may become hard to follow. If
this becomes problematic, one solution is to rely on CompletableFutures, or a
similar API; the third-party framework RxJava has this kind of functionality, but
requires learning yet another set of APIs that can quickly become coupled to
your business logic and change the way you write your application code.

• Most often, asynchronous logic is about retrieving and manipulating data which
is then rendered as view instances on-screen. To this purpose, Android Jetpack’s
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ViewModel offers lifecycle-aware components which help you produce more
organized and maintainable code.

• When a component reaches the end of its lifecycle, chances are that some related
background tasks should now be cancelled; otherwise, they just consume mem‐
ory and increase the risk of memory leaks, or even an application crash. Struc‐
tured concurrency is the ideal solution to this, which we’ll cover in the next
chapter.

• Using threads as concurrency primitives has its limitations. You need to make
sure you are not creating too many of them because of their memory cost, and
performance could suffer due to too many thread-context switches.

Coroutines are meant to address the limitations of the threading model. The next four
chapters—which focus on coroutines, structured concurrency, channels, and flows—
are the “peak” of the book and highlight how Kotlin gives Android developers a true
advantage in gaining control over asynchronous computations.
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CHAPTER 7

Coroutines Concepts

In the previous chapter, you learned of the pitfalls of the threading model. As an
alternative to the threading model, the Kotlin language has a library called
kotlinx.coroutines which aims at fixing the previously mentioned limitations.
Coroutine-enabled primitives allow developers to write sequential, asynchronous
code at a low cost. The design of coroutines comprises suspending functions, struc‐
tured concurrency, and other specific considerations like coroutine context and corou‐
tine scope. The subjects are closely related to one another. We’ll cover each one of
these considerations in a way that is incremental and digestible.

What Exactly Is a Coroutine?
The official Kotlin documentation qualifies coroutines as “lightweight threads” in an
effort to leverage an existing and well-known paradigm. You may conceptualize
coroutines as blocks of code that can be dispatched to threads that are nonblocking.

Coroutines are indeed lightweight, but it is important to note that coroutines aren’t
threads themselves. In fact, many coroutines can run on a single thread, although
each has a lifecycle of its own. Rather, you’ll see in this section that they really are just
state machines, with each state corresponding to a block of code that some thread will
eventually execute.

You might be surprised to find that the concept of coroutines goes
all the way back to the early 1960s with the creation of Cobol’s
compiler, which used the idea of suspending and launching func‐
tions in assembly language. Coroutines can also be spotted in the
languages Go, Perl, and Python.
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The coroutine library offers some facilities to manage those threads out of the box.
However, you can configure the coroutine builder to manage your threads yourself if
you need to.

Your First Coroutine
Throughout this section, we’ll introduce a lot of new vocabulary and concepts from
the kotlinx.coroutines package. To make this learning smooth, we chose to start
with a simple coroutine usage, and explain how this works along the way.

The following example, as well as the others in this chapter, uses semantics declared
in the kotlinx.coroutines package:

fun main() = runBlocking {
    val job: Job = launch {
        var i = 0
        while (true) {
            println("$i I'm working")
            i++
            delay(10)
        }
    }

    delay(30)
    job.cancel()
}

The method runBlocking runs a new coroutine and blocks the current thread until
the coroutine work has completed. This coroutine builder is typically used in main
functions and testing as it serves as a bridge to regular blocking code.

Inside the code block, we create a coroutine with the launch function. Since it creates
a coroutine, it’s a coroutine builder—you’ll see later that other coroutine builders exist.
The method launch returns a reference to a Job, which represents the lifecycle of the
coroutine launched.

Inside the coroutine, there’s a while-loop that executes indefinitely. Below the job
coroutine, you may notice that the job is cancelled later on. To demonstrate what this
means, we can run our program and the output is as follows:

0 I'm working
1 I'm working
2 I'm working
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It appears that the coroutine ran like clockwork. In tandem, the code continues to
execute in the main thread, giving us a total of three printed lines within a 30 ms win‐
dow given to us by the delay call, as shown in Figure 7-1.

Figure 7-1. First coroutine.

The delay function looks suspiciously like Thread.sleep in its usage. The major dif‐
ference is that delay is nonblocking while Thread.sleep(...) is blocking. To demon‐
strate what we mean, let’s examine our code again, but replace the delay call in our
coroutine with Thread.sleep:

fun main() = runBlocking {
    val job: Job = launch {
        while (true) {
            println("I'm working")
            Thread.sleep(10L)
        }
    }

    delay(30)
    job.cancel()
}

Observe what happens when we run the code again. We get the following output:

I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
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1. In this scenario, job.cancel() has no effect on the coroutine started by launch. We’ll touch on that in the
next chapter (a coroutine must be cooperative with cancellation to be cancellable).

I'm working
.....

The output seems to run infinitely now. When the coroutine executes, the
Thread.sleep(10L) call blocks the main thread until the coroutine started by launch
completes. As the coroutine started with launch makes the main thread either sleep
or print, the coroutine never completes, so execution never leaves the coroutine,1 as
shown in Figure 7-2.

Figure 7-2. Never-ending program.

It’s important to remember the following:

• The launch coroutine builder is “fire-and-forget” work—in other words, there is
no result to return.

• Once called, it immediately returns a Job instance, and starts a new coroutine. A
Job represents the coroutine itself, like a handle on its lifecycle. The coroutine
can be cancelled by calling the cancel method on its Job instance.

• A coroutine that is started with launch will not return a result, but rather, a refer‐
ence to the background job.

If, on the other hand, you need to get a result from an asynchronous computation,
then you should use the async coroutine builder.
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The async Coroutine Builder
The async coroutine builder can be compared to Java’s Future/Promise model to
support asynchronous programming:

class WorkingClass() {
    public CompletableFuture<SomeOtherResult> doBothAsync() {
        somethingAsync().thenAcceptBoth(somethingElseAsync()) {
            one, two ->
            // combine results of both calls here
        };
    }
}

Instead of making a blocking call to get the data, an asynchronous function immedi‐
ately returns a wrapper around the result. Depending on the library you use, this
wrapper is called Future, CompletableFuture, Promise, etc. This wrapper is like a
handle from which you can check if the result is available or not. If you wish, you can
block a thread until the result is available with the Future.get() method.

Just like a Future, the async coroutine builder returns a wrapper around a result; and
the type of this wrapper is Deferred<T> (the generic type is the type of the result), as
shown in the following code:

fun main() = runBlocking {
    val slow: Deferred<Int> = async {
        var result = 0
        delay(1000)   // simulate some slow background work
        for (i in 1..10) {
            result += i
        }
        println("Call complete for slow: $result")
        result
    }

    val quick: Deferred<Int> = async {
        delay(100)   // simulate some quick background work
        println("Call complete for quick: 5")
        5
    }

    val result: Int = quick.await() + slow.await()
    println(result)
}
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2. This suspends the calling coroutine until the value is retrieved, or an exception is thrown if the coroutine
started with async is cancelled or failed with an exception. More on that later in this chapter.

The data types quick and slow are a future result as an implementation of
Deferred<Int>, otherwise known as a Job with a result. By calling the method await
on each Deferred<Int> instance, the program waits for the result of each coroutine.

This time, we’ve launched two coroutines using the async coroutine builder. The
code itself can give us a good guess at what might happen, but let’s run it anyway to
see the following output:

Call complete for quick: 5
Call complete for slow: 55
60

The preceding program delays the slow async job delays it by 1,000 ms while the
quick async job by 100 ms—the result waits for both to complete before printing
out the result.

It’s important to remember the following:

• The async coroutine builder is intended for parallel decomposition of work—that
is, you explicitly specify that some tasks will run concurrently.

• Once called, an async immediately returns a Deferred instance. Deferred is a
specialized Job, with a few extra methods like await. It’s a Job with a return
value.

• Very similarly to Futures and Promises, you invoke the await method on the
Deferred instance to get the returned value.2

You may have noticed by now that the examples provided with the coroutine builders
launch and async are wrapped with a runBlocking call. We mentioned earlier that
runBlocking runs a new coroutine and blocks the current thread until the coroutine
work has completed. To better understand the role of runBlocking, we must first give
a sneak preview on structured concurrency, a concept which will be explored in detail
in the next chapter.

A Quick Detour About Structured Concurrency
Coroutines aren’t just yet another fancy way to launch background tasks. The corou‐
tines library is built around the structured concurrency paradigm. Before going fur‐
ther in your discovery of coroutines, you should understand what it is, and the
problems the coroutine library aims to solve.

134 | Chapter 7: Coroutines Concepts



3. We assume that exceptions are handled and don’t interfere with the execution flow.

Making development easier is a worthwhile goal. In the case of structured concur‐
rency, it’s almost a happy side effect of a response to a more general problem. Con‐
sider the simplest construct every developer is familiar with: a function.

Functions are predictable in the sense that they are executed from top to bottom. If
we put aside the possibility that exceptions can be thrown from inside the function,3

we know that prior to a function returning a value, execution order is serial: each
statement executes prior to the next. What if inside the function, your program cre‐
ates and starts another thread? It’s perfectly legal, but now you have two flows of exe‐
cution, as shown in Figure 7-3.

Figure 7-3. Two flows.

Calling this function doesn’t only produce one result; it has the side effect of creating
a parallel flow of execution. This can be problematic for the following reasons:

Exceptions aren’t propagated
If an exception is thrown inside the thread, and it isn’t handled, then the JVM
calls the thread’s UncaughtExceptionHandler, which is a simple interface:

interface UncaughtExceptionHandler {
    fun uncaughtException(t: Thread, e: Throwable)
}

You can provide a handler using the Thread.setUncaughtExceptionHandler
method on your thread instance. By default, when you create a thread, it doesn’t
have a specific UncaughtExceptionHandler. When an exception isn’t caught, and
you haven’t set a specific one, the default handler is invoked.

In the Android framework, it’s important to note that the default UncaughtExcep
tionHandler will cause your app to crash by killing the app’s native process.
Android designers made this choice because it’s generally better for an Android
application to fail-fast, as the system shouldn’t make decisions on behalf of the
developer when it comes to unhandled exceptions. The stacktrace is then rele‐
vant to the real problem—while recovering from it might produce inconsistent
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4. The join() method of a thread causes the calling thread to go into a waiting state. It remains in a waiting
state until the original thread terminates.

behaviors and problems that are less transparent, because the root cause can be
much earlier in the call stack.

In our example, there’s nothing in place to inform our function if something bad
happens in the background thread. Sometimes this is just fine because errors can
be directly handled from the background thread, but you may have logic that is
more complex and requires the calling code to monitor issues to react differently
and specifically.

There is a mechanism involved before the default handler is
invoked. Every thread can belong to a ThreadGroup which can
handle exceptions. Each thread group can also have a parent
thread group. Within the Android framework, two groups are
statically created: “system,” and a child of the system group
known as “main.” The “main” group always delegates excep‐
tion handling to the “system” group parent, which then dele‐
gates to Thread.getDefaultUncaughtExceptionHandler() if
it isn’t null. Otherwise, the “system” group prints the exception
name and stacktrace to System.err.

Execution flow is hard to control
Since a thread can be created and started from anywhere, imagine that your
background thread instantiates and starts three new threads to delegate some of
its work, or performs tasks in reaction to computation performed in the parent
thread’s context, as shown in Figure 7-4.

Figure 7-4. Multiple flows.

How do you make sure the function returns only when all background process‐
ing is done? This can be error-prone: you need to make sure that you wait for all
child threads to finish their work.4 When using a Future-based implementation

136 | Chapter 7: Coroutines Concepts



5. A failure of an entity corresponds to any abnormal event the entity cannot recover from. This is typically
implemented using unhandled or thrown exceptions.

(for example, CompletableFutures), even omitting a Future.get invocation
might cause the flow of execution to terminate prematurely.

Later, and while the background thread and all of its children are still running, all
this work might have to be cancelled (the user exited the UI, an error was
thrown, etc.). In this case, there’s no automatic mechanism to cancel the entire
task hierarchy.

When working with threads, it’s really easy to forget about a background task.
Structured concurrency is nothing but a concept meant to address this issue.

In the next section, we’ll detail this concept and explain how it relates to coroutines.

The Parent-Child Relationship in Structured Concurrency
Until now, we’ve spoken about threads, which were represented by arrows in the pre‐
vious illustrations. Let’s imagine a higher level of abstraction where some parent
entity could create multiple children, as shown in Figure 7-5.

Figure 7-5. Parent-child.

Those children can run concurrently with each other as well as the parent. If the par‐
ent fails or is cancelled, then all its children are also cancelled.5 Here is the first rule of
structured concurrency:

Cancellation always propagates downward.

How the failure of one child affects other children of the same level
is a parameterization of the parent.
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Just as a parent entity could fail or be cancelled, this can happen to any of the chil‐
dren. In the case of cancellation of one of the children, referencing the first rule, we
know that the parent will not be cancelled (cancellation propagates downward, not
upward). In case of failure, what happens next depends on the problem you’re trying
to solve. The failure of one child should or should not lead to the cancellation of the
other children, as shown in Figure 7-6. Those two possibilities characterize the
parent-child failure relationship, and is a parameterization of the parent.

Figure 7-6. Cancellation policy.

The parent always waits for all its children to complete.

Other rules could be added around exception propagation, but they would be imple‐
mentation specific, and it’s time to introduce some concrete examples.

Structured  concurrency  is  available  in  Kotlin  coroutines  with  CoroutineScopes  and
CoroutineContexts.  Both  CoroutineScopes  and  CoroutineContexts  play  the  role
of  the parent in previous illustrations, while Coroutines, on play the role of the chil‐
dren.

In the following section, we’ll cover CoroutineScope and CoroutineContext in more
detail.

CoroutineScope and CoroutineContext
We’re about to dive into the details of the kotlinx.coroutine library. There will be a lot
of new concepts in the upcoming section. While those concepts are important if you
want to master coroutines, you don’t have to understand everything right now to get
started and be productive with coroutines. There will be a lot of examples following
this section and in the next chapter, which will give you a good sense of how corou‐
tines work. Therefore, you might find it easier to come back to this section after
you’ve practiced a bit.
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Now that you have an idea of what structured concurrency is, let’s revisit the whole
runBlocking thing again. Why not just call launch or async outside a runBlocking
call?

The following code will not compile:

fun main() {
   launch {
       println("I'm working")       // will not compile
   }
}

The compiler reports: “Unresolved reference: launch.” This is because coroutine
builders are extension functions of CoroutineScope.

A CoroutineScope controls the lifecycle of a coroutine within a well-defined scope or
lifecycle. It’s an object that plays the role of the parent in structured concurrency—its
purpose is to manage and monitor the coroutines you create inside it. You might be
surprised to find that in the previous example with the async coroutine builder, a
CoroutineScope had already been provided to launch a new coroutine. That
CoroutineScope was provided by the runBlocking block. How? This is the simplified
signature of runBlocking:

fun <T> runBlocking(
    // function arguments removed for brevity
    block: suspend CoroutineScope.() -> T): T { // impl
}

The last argument is a function with a receiver of type CoroutineScope. Conse‐
quently, when you supply a function for the block argument, there is a Coroutine
Scope at your disposal which can invoke extension functions of CoroutineScope. As
you can see in Figure 7-7, Android Studio is able to pick up the implicit type-
referencing in Kotlin so that if you enable “type hints,” you are able to see the type
parameter.

Figure 7-7. Type hint in Android Studio.
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Besides providing a CoroutineScope, what is the purpose of runBlocking? runBlock
ing blocks the current thread until its completion. It can be invoked from regular
blocking code as a bridge to code containing suspending functions (we’ll cover sus‐
pending functions later in this chapter).

To be able to create coroutines, we have to bridge our code to the “regular” function
main in our code. However, the following sample won’t compile, as we’re trying to
start a coroutine from regular code:

fun main() = launch {
    println("I'm a coroutine")
}

This is because the launch coroutine builder is actually an extension function of
CoroutineScope:

fun CoroutineScope.launch(
    context: CoroutineContext = EmptyCoroutineContext,
    // other params removed for brevity,
    block: suspend CoroutineScope.() -> Unit
): Job { /* implementation */ }

Since regular code doesn’t provide a CoroutineScope instance, you cannot directly
invoke coroutine builders from there.

So what’s this CoroutineContext? To answer this question, you need to understand
the details of CoroutineScope.

If you look at the source code, a CoroutineScope is an interface:

interface CoroutineScope {
    val coroutineContext: CoroutineContext
}

In other words, a CoroutineScope is a container for a CoroutineContext.

The purpose of a CoroutineScope is to encapsulate concurrent tasks (coroutines and
other scopes) by applying structured concurrency. Scopes and coroutines form a tree-
like architecture with a scope at its root, as shown in Figure 7-8.
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Figure 7-8. Tree-like relationship (coroutines are represented as rectangles).

A CoroutineContext, which we’ll refer to as a context for future reference, is a
broader concept. It’s an immutable union set of context elements. For future refer‐
ence, we’ll use the term “element” to designate context element.

That’s the theory. In practice, you’ll most often use a special context element to con‐
trol which thread, or which thread pool, will execute your coroutine(s). For example,
imagine that you have to run CPU-heavy computations inside a launch, while not
blocking the main thread. This is where the coroutine library is really handy because
thread pools for most common usages are available out of the box. In the case of
CPU-bound tasks, you don’t have to define your own thread pool. All you have to do
is use the special Dispatchers.Default context element like so:

fun main() = runBlocking<Unit> {
    launch(Dispatchers.Default) {
        println("I'm executing in ${Thread.currentThread().name}")
    }
}

The output is now:

I'm executing in DefaultDispatcher-worker-2 @coroutine#2

Dispatchers.Main is a context element. As you’ll see later, different context elements
can be combined using operators to tweak the behavior of coroutines even more.
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As its name suggests, the purpose of a Dispatcher is to dispatch coroutines on a spe‐
cific thread or thread pool. By default, there are four Dispatchers available out of the
box—Main, Default, IO, and Unconfined:

Dispatchers.Main

This uses the main thread, or the UI thread, of the platform you’re using.

Dispatchers.Default

This is meant for CPU-bound tasks, and is backed by a thread pool of four
threads by default.

Dispatchers.IO

This is meant for IO-bound tasks, and is backed by a thread pool of 64 threads by
default.

Dispatchers.Unconfined

This isn’t something you should use or even need as you’re learning coroutines.
It’s primarily used in the internals of the coroutines library.

By just changing the dispatcher, you can control which thread or thread pool your
coroutine will be executed on. The context element Dispatcher.Default is a subclass
of CoroutineDispatcher, but other context elements also exist.

By providing a dispatcher context, you can easily designate where logic flow executes.
Thus, it is the developer’s responsibility to supply the context to the coroutine builder.

In coroutine framework parlance, a coroutine always runs inside a context. This con‐
text is provided by a coroutine scope and is different from the context you supply. To
avoid confusion, we’ll call the context of the coroutine the coroutine context, and we’ll
call the context you supply to the coroutine builder the supplied context.

The difference is subtle—remember the Job object? A Job instance is a handle on the
lifecycle of the coroutine—it’s part of the coroutine context too. Every coroutine has a
Job instance that represents it, and this job is part of the coroutine context.

It’s time to unveil how those contexts are created. Look at Example 7-1, which differs
slightly from the previous example.

Example 7-1. Dispatchers example

fun main() = runBlocking<Unit>(Dispatchers.Main) {
    launch(Dispatchers.Default) {
        val threadName = Thread.currentThread().name
        println("I'm executing in $threadName")
    }
}
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This block of code creates two coroutines with their own respective Job instance: run
Blocking starts the first coroutine, and the other one is started by launch.

The coroutine created by runBlocking has its own context. Since this is the root
coroutine started inside the scope, we call this context the scope context. The scope
context encompasses the coroutine context, as shown in Figure 7-9.

Figure 7-9. Contexts.

You’ve seen that launch is an extension function of CoroutineScope (which holds a
context), and that it can receive a context as its first parameter. So there are two con‐
texts at our disposal in this function, as shown in Example 7-1: one from the receiver
type (the scope context), and the other one from the context parameter (the supplied
context).

What does launch do in its implementation before calling our provided function? It
merges the two contexts so that the elements from the context parameter take prece‐
dence over the other elements from the scope. From this merge operation we obtain
the parent context. At this point, the Job of the coroutine isn’t created yet.

At last, a new Job instance is created as a child of the Job from the parent context.
This new Job is then added to the parent context, replacing the Job instance of the
parent context to obtain the coroutine context.

These relationships and interactions are represented in Figure 7-10, in which a con‐
text is represented by a rectangle containing other context elements.

Figure 7-10. Representation of a Context.
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6. You may have noticed that nothing prevents you from passing a Job instance inside the “provided context.”
What happens then? Following the logic explained, this Job instance becomes the parent of the Job of the corou‐
tine context (e.g., the newly created coroutine). So the scope is no longer the parent of the coroutine; the parent-
child relationship is broken. This is the reason why doing this is strongly discouraged, except in specific
scenarios which will be explained in the next chapter.

Figure 7-10 represents a context that contains a Job instance, and a dispatcher which
is Dispatchers.Main. With that representation in mind, Figure 7-11 shows how we
would represent the context of Example 7-1.

Figure 7-11. Context detail.

Everything you provide in the supplied context to the launch method takes prece‐
dence over the scope context. This results in a parent context, which inherits elements
from the scope context which were not provided in the supplied context (a Job, in
this case). Then a new Job instance is created (with a dot in the upper-right corner),
as a child of the parent Job which is also, in this case, the Job of the scope context.
The resulting coroutine context is made of elements from the parent context except
for Job (which is a child Job of the Job in the parent context).

This coroutine context is the context in which the lambda we provide to launch will
be executed.

Structured concurrency is possible because the Job in the coroutine context is a child
of the Job from the parent context. If the scope is cancelled for any reason, every
child coroutine started is then automatically cancelled.6

More importantly, the coroutine context inherits context elements from the scope
context, which are not overridden by the context supplied as a parameter to launch;
the async method behaves identically in this regard.

144 | Chapter 7: Coroutines Concepts



Suspending Functions
We’ve examined how to launch a coroutine with the coroutine builders launch and
async, and touched on what it means for something to be blocking or nonblocking.
At its core, Kotlin coroutines offer something different that will really reveal how
powerful coroutines can be: suspending functions.

Imagine that you invoke two tasks serially. The first task completes before the second
can proceed with its execution.

When task A executes, the underlying thread cannot proceed with executing other
tasks—task A is then said to be a blocking call.

However, task A spending a reasonable amount of time waiting for a longer-running
job (e.g., an HTTP request) ends up blocking the underlying thread, rendering the
waiting task B useless.

So task B waits for task A to complete. The frugal developer may see this scenario as a
waste of thread resources, since the thread could (and should) proceed with execut‐
ing another task while task A is waiting for the result of its network call.

Using suspending functions, we can split tasks into chunks which can suspend. In the
case of our example, task A can be suspended when it performs its remote call, leav‐
ing the underlying thread free to proceed with another task (or just a part of it).
When task A gets the result of its remote call, it can be resumed at a later point in
time, as shown in Figure 7-12.

Figure 7-12. The time saved is represented at the end.

As you can see, the two tasks complete sooner than in the previous scenario. This
interleaving of bits of tasks leaves the underlying thread always busy executing a task.
Therefore, a suspending mechanism requires fewer threads to produce the same
overall throughput, and this is quite important, when each thread has its own stack
which costs a minimum of 64 Kb of memory. Typically, a thread occupies 1 MB of
RAM.

Using a suspending mechanism, we can be more frugal by using more of the same
resources.
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Suspending Functions Under the Hood
So far, we’ve introduced a new concept: the fact that a task can suspend. A task can
“pause” its execution without blocking the underlying thread. While this might sound
like magic to you, it’s important to understand that it all comes down to lower-level
constructs, which we’ll explain in this section.

A task, or more precisely, a coroutine, can suspend if it makes use of at least one sus‐
pending function. A suspending function is easily recognizable as it’s declared with the
suspend modifier.

When the Kotlin compiler encounters a suspending function, it compiles to a regular
function with an additional parameter of type Continuation<T>, which is just an
interface, as shown in Example 7-2:

Example 7-2. Interface Continuation<T>

public interface Continuation<in T> {
    /**
     * The context of the coroutine that corresponds to this continuation.
     */
    public val context: CoroutineContext

    /**
     * Resumes the execution of the corresponding coroutine passing a success-
ful
     * or failed [result] as the return value of the last suspension point.
     */
    public fun resumeWith(result: Result<T>)
}

Assuming that you define this suspending function as follows:

suspend fun backgroundWork(): Int {
    // some background work on another thread, which returns an Int
}

At compile time, this function is transformed into a regular function (without the
suspend modifier), with an additional Continuation argument:

fun backgroundWork(callback: Continuation<Int>): Int {
    // some background work on another thread, which returns an Int
}
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7. Actually, when a suspending function only invokes a single suspending function as a tail call, a state machine
isn’t required.

8. viewModelScope is coming from the AndroidX implementation of ViewModel. A viewModelScope is scoped
to the ViewModel lifetime. More on that in the next chapter.

Suspending functions are compiled to regular functions taking an
additional Continuation object argument. This is an implementa‐
tion of Continuation Passing Style (CPS), a style of programming
where control flow is passed on in the form of a Continuation
object.

This Continuation object holds all the code that should be executed in the body of
the backgroundWork function.

What does the Kotlin compiler actually generate for this Continuation object?

For efficiency reasons, the Kotlin compiler generates a state machine.7 A state-
machine implementation is all about allocating as few objects as possible, because
coroutines being lightweight, thousands of them might be running.

Inside this state machine, each state corresponds to a suspension point inside the body
of the suspending function. Let’s look at an example. Imagine that in an Android
project, we use the presenter layer to execute some long-running processes surround‐
ing IO and graphics processing, where the following code block has two suspension
points with the self-managed coroutine launched from the viewModelScope:8

suspend fun renderImage() {
    val path: String = getPath()
    val image = fetchImage(path)    // first suspension point (fetchImage 
is a suspending function)
    val clipped = clipImage(image)  // second suspension point (clipImage 
is a suspending function)
    postProcess(clipped)
}

/** Here is an example of usage of the [renderImage] suspending function */
fun onStart() {
    viewModelScope.launch(Dispatchers.IO) {
        renderImage()
    }
}

The compiler generates an anonymous class which implements the Continuation
interface. To give you a sense of what is actually generated, we’ll provide pseudocode
of what is generated for the renderImage suspending function. The class has a state
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field holding the current state of the state machine. It also has fields for each variable
that are shared between states:

object : Continuation<Unit>  {
   // state
   private var state = 0

   // fields
   private var path: String? = null
   private var image: Image? = null

   fun resumeWith(result: Any) {
      when (state) {
         0 -> {
            path = getPath()
            state = 1
            // Pass this state machine as Continuation.
            val firstResult = fetchImage(path, this)
            if (firstResult == COROUTINE_SUSPENDED) return
            // If we didn't get COROUTINE_SUSPENDED, we received an
            // actual Image instance, execution shall proceed to
            // the next state.
            resumeWith(firstResult)
         }
         1 -> {
            image = result as Image
            state = 2
            val secondResult = clipImage(image, this)
            if (secondResult == COROUTINE_SUSPENDED) return
               resumeWith(secondResult)
            }
         2 -> {
            val clipped = result as Image
            postProcess(clipped)
         }
         else -> throw IllegalStateException()
      }
   }
}

This state machine is initialized with state = 0. Consequently, when the coroutine
started with launch invokes the renderImage suspending function, the execution
“jumps” to the first case (0). We retrieve a path, set the next state to 1, then invoke
fetchImage—which is the first suspending function in the body of renderImage.
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At this stage, there are two possible scenarios:

1. fetchImage requires some time to return an Image instance, and immediately
returns the COROUTINE_SUSPENDED value. By returning this specific value, fetch
Image basically says: “I need more time to return an actual value, so give me your
state-machine object, and I’ll use it when I have a result.” When fetchImage
finally has an Image instance, it invokes stateMachine.resumeWith(image).
Since at this point state equals 1, the execution “jumps” to the second case of the
when statement.

2. fetchImage immediately returns an Image instance. In this case, execution pro‐
ceeds with the next state (via resumeWith(image)).

The rest of the execution follows the same pattern, until the code of the last state
invokes the postProcess function.

This explanation is not the exact state of the state machine gener‐
ated in the bytecode, but rather, pseudocode of its representative
logic to convey the main idea. For everyday use, it’s less important
to know the implementation details of the actual finite state
machine generated in the Kotlin bytecode than it is to understand
what happens under the hood.
Conceptually, when you invoke a suspending function, a callback
(Continuation) is created along with generated structures so that
the rest of the code after the suspending function will be called only
when the suspending function returns. With less time spent on
boilerplate code, you can focus on business logic and high-level
concepts.

So far, we’ve analyzed how the Kotlin compiler restructures our code under the hood,
in such a way that we don’t have to write callbacks on our own. Of course, you don’t
have to be fully aware of finite state-machine code generation to use suspending func‐
tions. However, the concept is important to grasp! For this purpose, nothing is better
than practicing!
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Using Coroutines and Suspending Functions:
A Practical Example
Imagine that in an Android application you wish to load a user’s profile with an id.
When navigating to the profile, it might make sense to fetch the user’s data based on
the id in a method named fetchAndLoadProfile.

You can use coroutines for that, using what you learned in the previous section.
For  now,  assume  that  somewhere  in  your  app  (typically  a  controller  in  MVC
architecture, or a ViewModel in MVVM) you have a CoroutineScope which has the
Dispatchers.Main dispatcher in its CoroutineContext. In this case, we say that this
scope dispatches coroutines on the main thread, which is identical to default behav‐
ior. In the next chapters we will give you detailed explanations and examples of
coroutine scopes, and how you can access and create them yourself if you need to.

The fact that scope defaults to the main thread isn’t limiting in any way, since you can
create coroutines with any CoroutineDispatcher you want inside this scope. This
implementation of fetchAndLoadProfile illustrates this:

fun fetchAndLoadProfile(id: String) {
    scope.launch {                                          
        val profileDeferred = async(Dispatchers.Default) {  
            fetchProfile(id)
        }
        val profile = profileDeferred.await()               
        loadProfile(profile)                                
    }
}

This is done in four steps:

Start with a launch. You want the fetchAndLoadProfile to return immediately
so that you can proceed serially on the main thread. Since the scope defaults to
the main thread, a launch without additional context inherits the scope’s context,
so it runs on the main thread.

Using async and Dispatchers.Default, you call fetchProfile, which is a
blocking call. As a reminder, using Dispatchers.Default results in having fetch
Profile executed on a thread pool. You immediately get a Deferred<Profile>,
which you name profileDeferred. At this point, ongoing background work is
being done on one of the threads of the thread pool. This is the signature of
fetchProfile: fun fetchProfile(id: String): Profile { // impl }. It’s a
blocking call which might perform a database query on a remote server.
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You cannot use profileDeferred right away to load the profile—you need
to wait for the result of the background query. You do this by using
profileDeferred.await(), which will generate and return a Profile instance.

Finally, you can invoke loadProfile using the obtained profile. As the outer
launch inherits its context from the parent scope, loadProfile is invoked on the
main thread. We’re assuming that this is expected, as most UI-related operations
have to be done on the main thread.

Whenever you invoke fetchAndLoadProfile, background processing is done off the
UI thread to retrieve a profile. As soon as the profile is available, the UI is updated.
You can invoke fetchAndLoadProfile from whatever thread you want—it won’t
change the fact that loadProfile is eventually called on the UI thread.

Not bad, but we can do better.

Notice how this code reads from top to bottom, without indirection or callbacks. You
could argue that the “profileDeferred” naming and the await calls feel clunky. This
could be even more apparent when you fetch a profile, wait for it, then load it. This is
where suspending functions come into play.

Suspending functions are at the heart of the coroutine framework.

Conceptually, a suspending function is a function which may not
return immediately. If it doesn’t return right away, it suspends the
coroutine that called this suspending function while computation
occurs. This inner computation should not block the calling thread.
Later, the coroutine is resumed when the inner computation
completes.
A suspending function can only be called from inside a coroutine
or from another suspending function.

By “suspend the coroutine,” we mean that the coroutine execution is stopped. Here is
an example:

suspend fun backgroundWork(): Int {
    // some background work on another thread, which returns an Int
}

First off, a suspending function isn’t a regular function; it has its own suspend key‐
word. It can have a return type, but notice that in this case it doesn’t return a
Deferred<Int>—only bare Int.

Second, it can only be invoked from a coroutine, or another suspending function.
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Back to our previous example: fetching and waiting for a profile was done with an
async block. Conceptually, this is exactly the purpose of a suspending function. We’ll
borrow the same name as the blocking fetchProfile function and rewrite it like this:

suspend fun fetchProfile(id: String): Profile {
    // for now, we’re not showing the implementation
}

The two major differences with the original async block are the suspend modifier
and the return type.

This allows you to simplify fetchAndLoadProfile:

fun fetchAndLoadProfile(id: String) {
    scope.launch {
        val profile = fetchProfile(id)   // suspends
        loadProfile(profile)
    }
}

Now that fetchProfile is a suspending function, the coroutine started by launch is
suspended when invoking fetchProfile. Suspended means that the execution of the
coroutine is stopped, and that the next line does not execute. It will remain sus‐
pended until the profile is retrieved, at which point the coroutine started by launch
resumes. The next line (loadProfile) is then executed.

Notice how this reads like procedural code. Imagine how you would implement com‐
plex, asynchronous logic where each step requires a result from the previous one. You
would call suspending functions like this, one after another, in a classic procedural
style. Code that is easy to understand is more maintainable. This is one of the most
immediately helpful aspects of suspending functions.

As a bonus, IntelliJ IDEA and Android Studio help you in spotting suspending calls
in one glimpse. In Figure 7-13, you can see a symbol in the margin indicating a sus‐
pending call.

Figure 7-13. Suspending call.
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9. We’ll show you how to do this in Chapter 8.

When you see this symbol in the margin, you know that a coroutine can temporarily
suspend at this line.

Don’t Be Mistaken About the suspend Modifier
However impressive it looks, adding the suspend modifier to a regular function
doesn’t magically turn it into a nonblocking function. There’s more to it. Here is an
example with the suspending fetchProfile function:

suspend fun fetchProfile(id: String) = withContext(Dispatchers.Default) {
   // same implementation as the original fetchProfile, which returns a Pro
file instance
}

fetchProfile(...) uses the withContext function from the coroutines framework,
which accepts a CoroutineContext as parameter. In this case, we provide Dispatch
ers.Default as the context. Almost every single time you use withContext, you’ll
only provide a Dispatcher.

The thread that will execute the body of withContext is determined by the provided
Dispatcher. For example, using Dispatchers.Default, it would be one of the
threads of the thread pool dedicated for CPU-bound tasks. In the case of Dispatch
ers.Main, it would be the main thread.

Why and how does fetchProfile suspend? This is an implementation detail of with
Context and of the coroutine framework in general.

The most important concept to remember is simple: a coroutine calling a suspending
function might suspend its execution. In coroutine parlance, we say that it reaches a
suspension point.

Why did we say that it might suspend? Imagine that inside your implementation of
fetchProfile, you check whether you have the associated profile in the cache. If you
have the data in the cache, you may immediately return it. Then there’s no need to
suspend the execution of the outer coroutine.9

There are several ways to create a suspending function. Using withContext is only
one of them, although probably the most common.
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10. The coroutine mechanism resumes a coroutine when the suspending function which caused it to suspend
exits.

Summary
• Coroutines are always launched from a CoroutineScope. In structured concur‐

rency parlance, the CoroutineScope is the parent, and coroutines themselves are
children of that scope. A CoroutineScope can be a child of an existing Coroutine
Scope. See the next chapter on how to get a CoroutineScope or make one.

• A CoroutineScope can be seen as a root coroutine. In fact, anything that has a
Job can technically be considered a coroutine. The only difference is the intended
usage. A scope is meant to encompass its child coroutines. As you’ve seen in the
beginning of this chapter, a cancellation of a scope results in the cancellation of
all of its child coroutines.

• launch is a coroutine builder which returns a Job instance. It is meant for “fire-
and-forget.”

• async is a coroutine builder which can return values, very much like Promise
and Future. It returns an instance of Deferred<T>, which is a specialized Job.

• A Job is a handle on the lifecycle of a coroutine.
• The context of a newly created coroutine started with launch or async, the

coroutine context, inherits from the scope context and from the context passed
in as a parameter (the supplied context)—the latter taking precedence over the
former. One context element is always freshly created: the Job of the coroutine.
For example:

launch(Dispatchers.Main) {
   async {
      // inherits the context of the parent, so is dispatched on
      // the main thread
   }
}

• A suspending function denotes a function which might not return immediately.
Using withContext and the appropriate Dispatcher, any blocking function can
be turned into a nonblocking suspending function.

• A coroutine is typically made of several calls to suspending functions. Every time
a suspending function is invoked, a suspension point is reached. The execution of
the coroutine is stopped at each of those suspension points, until it is resumed.10
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A final word on this chapter: scope and context are new notions and are just parts of
the coroutine machinery. Other topics like exception handling and cooperative cancel‐
lation will be covered in the next chapter.
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CHAPTER 8

Structured Concurrency with Coroutines

In the previous chapter, we introduced a new asynchronous programming
paradigm—coroutines. When using coroutines, it’s important to know how to use
suspending functions appropriately; we’ll cover that topic in this chapter. As most
programs have to deal with exception handling and cancellation, we’ll also cover
these topics—and you’ll see that, in this regard, coroutines have their own set of rules
you should be aware of.

The first section of this chapter covers the idiomatic usage of suspending functions.
We’ll take the example of a hiking app to compare two implementations: one based
on threads and the other one based on suspending functions and coroutines. You’ll
see how this comparison highlights the power of coroutines in some situations.

As is common for most mobile apps, the hiking example requires a cancellation mech‐
anism. We’ll cover all you need to know about cancellation with coroutines. In order
to prepare for most situations, we’ll then cover parallel decomposition and supervison.
Using these concepts, you’ll be able to implement complex concurrent logic if you
need to.

Finally, this chapter ends with an explanation of exception handling with coroutines.

Suspending Functions
Imagine that you’re developing an application to help users plot, plan, track, draw,
and share information about hiking. Your users should be able to navigate to any of
the hikes they’ve already completed or that are in progress. Before going out for a
given hike, some basic statistics are useful, like:

• Total distance
• The length of the last hike in both time and distance
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• The current weather along the trail they chose
• Favorite hikes

Such an application would require various interactions between the client and
server(s) for meteorological data and user information. How might we choose to
store data for such an application?

We may choose to store this data locally for later use, or on remote servers (which is
referred to as persistence strategies). Longer-running tasks, especially networking or
IO tasks, can take shape with background jobs like reading from a database, a local
file, or a protobuf; or querying a remote server. At its core, reading data from a host
device will always be faster than reading the same data from the network.

So, the retrieved data may come at variable rates, depending on the nature of the
query. Our worker logic must be resilient and flexible enough to support and survive
this situation, and tough enough to handle circumstances beyond our control or even
awareness.

Set the Scene
You need to build out a feature that allows users to retrieve their favorite hikes along
with the current weather for each of those hikes.

We’ve already gone ahead and provided some library code of the application
described in the beginning of the chapter. The following is a set of classes and func‐
tions already made available to you:

data class Hike(
   val name: String,
   val miles: Float,
   val ascentInFeet: Int)

class Weather // Implementation removed for brevity

data class HikeData(val hike: Hike, val weather: Weather?)

Weather isn’t a Kotlin data class, because we need a name for a type for the weather
attribute for HikeData (if we had declared Weather as a data class without providing
attributes, the code wouldn’t compile).
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A Hike, in this example, is only:

1. A name
2. A total number of miles
3. The total ascent in feet

A HikeData pairs a Hike object with a nullable Weather instance (if we couldn’t get
the weather data for some reason).

We are also provided with the methods to fetch the list of a Hike given a user id along
with weather data for a hike:

fun fetchHikesForUser(userId: String): List<Hike> {
    // implementation removed for brevity
}

fun fetchWeather(hike: Hike): Weather {
    // implementation removed for brevity
}

Those two functions might be long-running operations—like querying a database or
an API. In order to avoid blocking the UI thread while fetching the list of hikes or the
current weather, we’ll leverage suspending functions.

We believe that the best way to understand how to use suspending functions is to
compare the following:

• A “traditional” approach using threads and Handler
• An implementation using suspending functions with coroutines

First we’ll show you how the traditional approach has its limitations in some situa‐
tions, and that it’s not easy to overcome them. Then we’ll show you how using sus‐
pending functions and coroutines changes the way we implement asynchronous logic
and how we can solve all the problems we had with the traditional approach.

Let’s start with the thread-based implementation.
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1. When performing CPU-bound tasks, a worker is bound to a CPU core.

Traditional Approach Using java.util.concurrent.ExecutorService
fetchHikesForUser and fetchWeather functions should be invoked from a back‐
ground thread. In Android, that might be done in any number of ways. Java has the
traditional Thread library of course, and the Executors framework. The Android
standard library has the (now legacy) AsyncTask, HandlerThread, as well as the
ThreadPoolExecutor class.

Among all those possibilities, we want to take the best implementation in terms of
expressiveness, readability, and control. For those reasons, we decided to leverage the
Executors framework.

Inside a ViewModel, suppose you use one of the factory methods for ExecutorSer
vice from the Executors class to get back a ThreadPoolExecutor for performing
asynchronous work using the traditional thread-based model.

In the following, we’ve chosen a work-stealing pool. Compared to a simple-thread
pool with a blocking queue, a work-stealing pool can reduce contention while keep‐
ing a targeted number of threads active. The idea behind this is that enough work
queues are maintained so that an overwhelmed worker1 might have one of its tasks
“stolen” by another worker which is less loaded:

class HikesViewModel : ViewModel() {
    private val ioThreadPool: ExecutorService =
        Executors.newWorkStealingPool(10)

    fun fetchHikesAsync(userId: String) {
        ioThreadPool.submit {
            val hikes = fetchHikesForUser(userId)
            onHikesFetched(hikes)
        }
    }

    private fun onHikesFetched(hikes: List<Hike>) {
        // Continue with the rest of the view-model logic
        // Beware, this code is executed from a background thread
    }
}

When performing IO operations, having 10 threads is reasonable, even on Android
devices. In the case of Executors.newWorkStealingPool, the actual number of
threads grows and shrinks dynamically, depending on the load. Do note, however,
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that a work-stealing pool makes no guarantees about the order in which submitted
tasks are executed.

We could also have leveraged the Android primitive ThreadPoolEx
ecutor class. More specifically, we could have created our thread
pool this way:

private val ioThreadPool: ExecutorService =
    ThreadPoolExecutor(
        4,   // Initial pool size
        10,  // Maximum pool size
        1L,
        TimeUnit.SECONDS,
        LinkedBlockingQueue()
    )

The usage is then exactly the same. Even if there are subtle differ‐
ences with the work-stealing pool we initially created, what’s
important to notice here is how you can submit tasks to the thread
pool.

Using a thread pool just for fetchHikesForUser could be overkill—especially if you
don’t invoke fetchHikesForUser for different users concurrently. Consider the rest of
the implementation that uses an ExecutorService for more sophisticated concurrent
work, as shown in the following code:

class HikesViewModel : ViewModel() {
    // other attributes
    private val hikeDataList = mutableListOf<HikeData>()
    private val hikeLiveData = MutableLiveData<List<HikeData>>()

    fun fetchHikesAsync(userId: String) { // content hidden }

    private fun onHikesFetched(hikes: List<Hike>) {
        hikes.forEach { hike  ->
            ioThreadPool.submit {
                val weather = fetchWeather(hike)         
                val hikeData = HikeData(hike, weather)   
                hikeDataList.add(hikeData)               
                hikeLiveData.postValue(hikeDataList)     
            }
        }
    }
}
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2. See Java Concurrency in Practice (Addison-Wesley), Brian Goetz et al., 16.2.2.

For each Hike, a new task is submitted. This new task:

Fetches weather information

Stores Hike and Weather objects inside a HikeData container

Adds the HikeData instance to an internal list

Notifies the view that the HikeData list has changed, which will pass the newly
updated state of that list data

We explicitly left a common mistake in the preceding code. Can you spot it?
Although it runs fine as is, imagine that we add a public method to add a new hike:

fun addHike(hike: Hike) {
    hikeDataList.add(HikeData(hike, null))
    // then fetch Weather and notify view using hikeLiveData
}

In step 3 in the onHikesFetched method, we added a new element to hikeDataList
from one of the background threads of ioThreadPool. What could go wrong with
such a harmless method?

You could try to invoke addHike from the main thread while hikeDataList is being
modified by a background thread.

Nothing enforces the thread from which the public addHike is going to be called. In
Kotlin on the JVM, a mutable list is backed by an ArrayList. However, an ArrayList
isn’t thread-safe. Actually, this isn’t the only mistake we’ve made. hikeDataList isn’t
correctly published—there’s no guarantee that in step 4 the background thread sees
an updated value for hikeDataList. There is no happens before2 enforcement here
from the Java memory model—the background thread might not see an up-to-date
state of hikeDataList, even if the main thread put a new element in the list
beforehand.

Consequently, the iterator within the onHikesFetched chain will throw a Concurrent
ModificationException when it realizes the collection has been “magically” modi‐
fied. Populating hikeDataList from a background thread isn’t safe in this case (see
Figure 8-1).
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3. We mentioned this in Chapter 5. In this case, it means that we add a new element to hikeDataList from the
main thread.

Figure 8-1. addHike adds to the existing hikeDataList that is already being modified in
the background thread.

Falling into this pattern, even when safe, increases the likelihood that habit overtakes
sensibility and that during the same day or week or month, this mistake repeats in a
less safe circumstance. Consider other team members with edit access to the same
codebase and you can see that we quickly lose control.

Thread safety matters anytime multiple threads are attempting to access the same
resource at the same time, and it’s hard to get right. This is why defaulting to the main
thread3 is considered a good practice.

So how would you do this? Are you able to get the background thread to tell the main
thread “add this element to this list whenever you can, then notify the view with the
updated list of HikeData”? For this purpose, you can use the handy HandlerThread
and Handler classes.

A Reminder About HandlerThread
A HandlerThread is a thread to which a “message loop” is attached. It’s an implemen‐
tation of the producer-consumer design pattern, where the HandlerThread is the con‐
sumer. A Handler sits between the actual message queue and other threads that can
send new messages. Internally, the loop that consumes the message queue is created
using the Looper class (also called “looper”). A HandlerThread completes when you
invoke its quit or quickSafely method. Paraphrasing Android’s documentation, the
quit method causes the handler thread’s looper to terminate without processing any
more messages in the message queue. The quitSafely method causes the handler
thread’s looper to terminate as soon as all remaining messages in the message queue,
that are already due to be delivered, have been handled.
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Be really careful about remembering to stop a HandlerThread. For example, imagine
you start a HandlerThread within the lifecycle of an activity (say, in an onCreate
method of a fragment). If you rotate the device, the activity is destroyed and then re-
created. A new HandlerThread instance is then created and started while the old one
is still running, leading to a serious memory leak (see Figure 8-2)!

Figure 8-2. A HandlerThread consumes tasks coming from the MessageQueue.

On Android, the main thread is a HandlerThread. Because creating a Handler to post
messages to the main thread is very common, a static method on the Looper class
exists to get the reference on the main thread’s Looper instance. Using a Handler, you
can post a Runnable to be executed on the thread that the Looper instance associated
with the Handler is attached to. The Java signature is:

public final boolean post(@NonNull Runnable r) { ... }

Since a Runnable only has one abstract method, run, it can be nice and syntactically
sweetened in Kotlin using a lambda, as shown in the following code:

// Direct translation in Kotlin (though not idiomatic)
handler.post(object: Runnable {
      override fun run() {
         // content of run
      }
   }
)

// ..which can be nicely simplified into:
handler.post {
    // content of `run` method
}
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In practice, you just create it like this:

val handler: Handler = Handler(Looper.getMainLooper())

Then you can can utilize the loop handler in the previous example, as shown in the
following code:

class HikesViewModel : ViewModel() {
    private val ioThreadPool: ExecutorService = Executors.newWorkStealing
Pool(10)
    private val hikeDataList = mutableListOf<HikeData>()
    private val hikeLiveData = MutableLiveData<List<HikeData>>()
    private val handler: Handler = Handler(Looper.getMainLooper())

    private fun onHikesFetched(hikes: List<Hike>) {
        hikes.forEach { hike  ->
            ioThreadPool.submit {
                val weather = fetchWeather(hike)
                val hikeData = HikeData(hike, weather)

                // Here we post a Runnable
                handler.post {
                    hikeDataList.add(hikeData)           
                    hikeLiveData.value = hikeDataList    
                }
            }
        }
    }

    // other methods removed for brevity
}

This time, we post a Runnable to the main thread, in which:

A new HideData instance is added to hikeDataList.

hikeLiveData is given the hikeDataList as an updated value. Notice that we
can use the highly readable and intuitive assignment operator here:
hikeLiveData.value = .., which is nicer than hikeLiveData.postValue(..).
This is because the Runnable will be executed from the main thread—postValue

is only useful when updating the value of a LiveData from a background thread.

Doing this, all accessors of hikeDataList are thread-confined to the main thread (see
Figure 8-3), eliminating all possible concurrency hazards.
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Figure 8-3. The main thread can only access hikeDataList.

That’s it for the “traditional” approach. Other libraries like RxJava/RxKotlin and
Arrow could have been used to perform essentially the same thing. The logic is made
of several steps. You start the first one, giving it a callback containing the set of
instructions to run when the background job is done. Each step is connected to the
next by the code inside the callbacks. We’ve discussed it in Chapter 6, and we hope
that we’ve illuminated some potential pitfalls and given you the tools to avoid them.

Interestingly, callback complexity doesn’t seem to be an issue in this example—every‐
thing is done with two methods, a Handler and a ExecutorService. However, an
insidious situation arises in the following scenario:

A user navigates to a list of hikes, then fetchHikesAsync is called on the ViewModel.
The user just installed the application on a new device; thus the history isn’t in cache,
so the app has to access remote APIs to fetch fresh data from some remote service.

Let’s assume that the wireless network is slow, but not so slow as to cause IO timeout
errors. The view keeps showing that the list is updating, and the user might think that
there is in fact a suppressed error, and retry the fetch (which might be available using
some refresh UI like a SwipeRefreshLayout, an explicit refresh button, or even just
using navigation to reenter the UI and presume a fetch will be called implicitly).

Unfortunately, nothing in our implementation anticipates this. When fetchHikesA
sync is called, a workflow is launched and cannot be stopped. Imagining the worst
case, every time a user navigates back and reenters in the hike list view, a new work‐
flow is launched. This is clearly poor design.

A cancellation mechanism might be one possible solution. We might implement a
cancellation mechanism by ensuring that every new call of fetchHikesAsync cancels
any previous in-flight or pending call. Alternatively, you could discard new calls of
fetchHikesAsync while a previous call is still running. Implementing that in this con‐
text requires thoughtfulness and deliberation.
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A cancellation mechanism isn’t as fire-and-forget as we might find in other flows,
because you have to ensure that every background thread effectively stops their
execution.

As you know from the previous chapter, coroutines and suspending functions can be
a great fit here, and in similar circumstances. We chose this hiking app example
because we have a great opportunity to use suspending functions.

Using Suspending Functions and Coroutines
As a reminder, we’ll now implement the exact same logic; but this time we’ll be using
suspending functions and coroutines.

You declare a suspending function when the function may not return immediately.
Therefore, any blocking function is eligible to be rewritten as a suspending function.

The fetchHikesForUser function is a good example because it blocks the calling
thread until it returns a list of Hike instances. Therefore, it can be expressed as a sus‐
pending function, as shown in the following code:

suspend fun hikesForUser(userId: String): List<Hike> {
    return withContext(Dispatchers.IO) {
        fetchHikesForUser(userId)
    }
}

We had to pick another name for the suspending function. In this example, blocking
calls are prefixed with “fetch” by convention.

Similarly, as shown in Example 8-1, you can declare the equivalent for fetchWeather.

Example 8-1. fetchWeather as suspending function

suspend fun weatherForHike(hike: Hike): Weather {
    return withContext(Dispatchers.IO) {
        fetchWeather(hike)
    }
}

Those suspending functions are wrappers around their blocking counterpart. When
invoked from inside a coroutine, the Dispatcher supplied to the withContext func‐
tion determines which thread pool the blocking call is executed on. Here, Dispatch
ers.IO is a perfect fit and is very similar to the work-stealing pool seen earlier.

Suspending Functions | 167



4. Unless the Dispatchers.IO suffers from thread starvation, which is highly unlikely.

Once you’ve wrapped blocking calls in suspending blocks like the
suspending weatherForHike function, you’re now ready to use
those suspending functions inside coroutines—as you’ll see shortly.
Actually, there’s a convention with suspending functions to make
everyone’s life simpler: a suspending function never blocks the calling
thread. In the case of weatherForHike, this is indeed the case, since
regardless of which thread invokes weatherForHike from within a
coroutine, the withContext(Dispatchers.IO) statement causes
the execution to jump to another thread.4

Everything we’ve done using the callback pattern can now fit in a single public update
method, which reads like procedural code. This is possible thanks to the suspending
functions, as shown in Example 8-2.

Example 8-2. Using suspending functions in the view-model

class HikesViewModel : ViewModel() {
    private val hikeDataList = mutableListOf<HikeData>()
    private val hikeLiveData = MutableLiveData<List<HikeData>>()

    fun update() {
        viewModelScope.launch {                                 
            /* Step 1: get the list of hikes */
            val hikes = hikesForUser("userId")                  

            /* Step 2: for each hike, get the weather, wrap into a
             * container, update hikeDataList, then notify view
             * listeners by updating the corresponding LiveData */
            hikes.forEach { hike ->                             
                launch {
                    val weather = weatherForHike(hike)          
                    val hikeData = HikeData(hike, weather)
                    hikeDataList.add(hikeData)
                    hikeLiveData.value = hikeDataList
                }
            }
        }
    }
}
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We’re going to provide the details of Example 8-2 step by step:

When update is called, it immediately starts a coroutine, using the launch corou‐
tine builder. As you know, a coroutine is never launched out of the blue. As we’ve
seen in Chapter 7, a coroutine must always be started within a CoroutineScope.
Here, we’re using viewModelScope.

Where does this scope come from? The Android Jetpack team from Google
know that using Kotlin and coroutines requires a CoroutineScope. To ease
your life, they maintain Android KTX, which is a set of Kotlin extensions on the
Android platform and other APIs. The goal is to use Kotlin idioms while still
integrating nicely with the Android framework. They leverage extension func‐
tions, lambdas, parameter default values, and coroutines. Android KTX is made
of several libraries. In this example, we used lifecycle-viewmodel-ktx. To use it in
your app, you should add the following to your dependencies listed in your
build.gradle (use a newer version if available): implementation

"androidx.lifecycle:lifecycle-viewmodel-ktx:2.2.0".

The line val hikes = hikesForUser("userId") is the first suspension point.
The coroutine started by launch is stopped until hikesForUser returns.

You’ve got your list of Hike instances. Now you can concurrently fetch the
weather data for each of them. We can use a loop and start a new coroutine for
each hike using launch.

val weather = weatherForHike(hike) is another suspension point. Each of the
coroutines started in the for loop will reach this suspension point.

Let’s have a closer look at the coroutine started for each Hike instance in the following
code:

launch {
    val weather = weatherForHike(hike)
    val hikeData = HikeData(hike, weather)
    hikeDataList.add(hikeData)
    hikeLiveData.value = hikeDataList
}

Suspending Functions | 169

https://oreil.ly/e3sqR


5. It’s just a subclass of the regular CoroutineScope, which invokes coroutineContext.cancel() inside its
close() method.

Since the parent scope (viewModelScope) defaults to the main thread, every single
line inside the launch block is executed on the main thread, except the content of
the suspending function weatherForHike, which uses Dispatchers.IO (see
Example 8-1). The assignment of weather is done on the main thread. Therefore, the
usages of hikeDataList are confined to the main thread—there are no thread-safety
issues. As for hikeLiveData, you can use the setter of its value (and since we’re in
Kotlin, that means the assignment operator), instead of postValue, since we know
we’re calling this from the main thread.

When using a coroutine scope, you should always be conscious
of how it manages your coroutines, especially knowing what
Dispatcher the scope uses. The following code shows how it’s
declared in the source code of the library:

val ViewModel.viewModelScope: CoroutineScope
  get() {
    val scope: CoroutineScope? = this.get
Tag(JOB_KEY)
    if (scope != null) {
       return scope
    }
    return setTagIfAbsent(
       JOB_KEY,
       CloseableCoroutineScope(
          SupervisorJob() +  Dispatchers.Main.imme
diate))
  }

As you can see in this example, viewModelScope is declared as an
extension property on the ViewModel class. Even if the ViewModel
class has absolutely no notion of CoroutineScope, declaring it in
this manner enables the syntax in our example. Then, an internal
store is consulted to check whether a scope has already been cre‐
ated or not. If not, a new one is created using CloseableCoroutine
Scope(..).5 For instance, don’t pay attention to SupervisorJob—
we’ll explain its role later when we discuss cancellation. What’s par‐
ticularly relevant here is Dispatchers.Main.immediate, a variation
of Dispatcher.Main, which executes coroutines immediately when
they are launched from the main thread. Consequently, this scope
defaults to the main thread. This is a critical piece of information
that you’ll need to know moving forward from here.
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6. Notice that the material on the suspending functions approach is relatively shorter (three and a half pages
compared to seven pages for the traditional approach)—probably because suspending functions is an easier (and
easier-to-explain) solution.

Summary of Suspending Functions Versus Traditional Threading
Thanks to suspending functions, asynchronous logic can be written like procedural
code. Since the Kotlin compiler generates all the necessary callbacks and boilerplate
code under the hood, the code you write using a cancellation mechanism can be
much more concise.6 For example, a coroutine scope that uses Dispatchers.Main
doesn’t need Handlers or other communication primitives to pass data to and from a
background thread to the main thread, as is still the case with purely multithreaded
environments (without coroutines). Actually, all the problems we had in the thread-
based approach are now nicely solved using coroutines—and that includes the can‐
cellation mechanism.

Code using coroutines and suspending functions can also be more readable, as there
can be far fewer implicit or indirect instructions (like nested calls, or SAM instances,
as described in Chapter 6). Moreover, IntelliJ and Android Studio make those sus‐
pending calls stand out with a special icon in the margin.

In this section, we only scratched the surface of cancellation. The following section
covers all you need to know about cancellation with coroutines.

Cancellation
Handling task cancellation is a critical part of an Android application. When a user
navigates for the first time to the view displaying the list of hikes along with statistics
and weather, a decent number of coroutines are started from the view-model. If for
some reason the user decides to leave the view, then the tasks launched by the view-
model are probably running for nothing. Unless of course the user later navigates
back to the view, but it’s dangerous to assume that. To avoid wasting resources, a good
practice in this scenario is to cancel all ongoing tasks related to views no longer
needed. This is a good example of cancellation you might implement yourself, as part
of your application design. There’s another kind of cancellation: the one that happens
when something bad happens. So we’ll distinguish the two types here:

Designed cancellation
For example, a task that’s cancelled after a user taps a “Cancel” button in a cus‐
tom or arbitrary UI.

Failure cancellation
For example, a cancellation that’s caused by exceptions, either intentionally
(thrown) or unexpectedly (unhandled).

Cancellation | 171



7. When started lazily, a coroutine is in the New state. Only after invoking job.start() does the coroutine move
to the Active state. Calling job.join() also starts the coroutine.

Keep those two types of cancellation in mind, as you’ll see that the coroutine frame‐
work handles them differently.

Coroutine Lifecycle
To understand how cancellation works, you need to be aware that a coroutine has a
lifecycle, which is shown in Figure 8-4.

Figure 8-4. Coroutine lifecycle.

When a coroutine is created, for example, with the launch {..} function with no
additional context or arguments, it’s created in the Active state. That means it starts
immediately when launch is called. This is also called eagerly started. In some situa‐
tions, you might want to start a coroutine lazily, which means it won’t do anything
until you manually start it. To do this, launch and async can both take a named argu‐
ment “start,” of type CoroutineStart. The default value is CoroutineStart.DEFAULT
(eager start), but you can use CoroutineStart.LAZY, as in the following code:

val job = scope.launch(start = CoroutineStart.LAZY) { ... }
// some work
job.start()

Don’t forget to call job.start()! Because when started lazily, a coroutine needs to be
explicitly started.7 You don’t have to do this by default, as a coroutine is created in the
Active state.

When a coroutine is done with its work, it remains in the Completing state until all of
its children reach the Completed state (see Chapter 7). Only then does it reach the
Completed state. As usual, let’s crack open the source code and take a look at the
following:
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viewModelScope.launch {
    launch {
        fetchData()   // might take some time
    }
    launch {
        fetchOtherData()
    }
}

This viewModelScope.launch completes its work almost instantly: it only starts two
child coroutines and does nothing else on its own. It quickly reaches the Completing
state and moves to the Completed state only when the child coroutines complete.

Coroutine cancellation

While in Active or Completing state, if an exception is thrown or the logic calls
cancel(), the coroutine transitions to Cancelling state. If required, this is when you
perform necessary cleanup. The coroutine remains in this Cancelling state until the
cleanup job is done with its work. Only then will the coroutine transition to the
Cancelled state.

Job holds the state

Internally, all those states of the lifecycle are held by the Job of the coroutine. The Job
doesn’t have a property named “state” (whose values would range from “NEW” to
“COMPLETED”). Instead, the state is represented by three Booleans (flags):
isActive, isCancelled, and isCompleted. Each state is represented by a combina‐
tion of those flags, as you can see in Table 8-1.

Table 8-1. Job states

State isActive isCompleted isCancelled

New (optional initial state) false false false

Active (default initial state) true false false

Completing (transient state) true false false

Cancelling (transient state) false false true

Cancelled (final state) false true true

Completed (final state) false true false

As you can see, there is no way to distinguish the Completing state from the Active
state using only those Booleans. Anyway, in most cases what you will really care about
is the value of a particular flag, rather than the state itself. For example, if you check
for isActive, you’re actually checking for Active and Completing states at the same
time. More on that in the next section.
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Cancelling a Coroutine
Let’s take a look at the following example, where we have a coroutine which simply
prints on the console "job: I'm working.." twice per second. The parent coroutine
waits a little before cancelling this coroutine:

val startTime = System.currentTimeMillis()
val job = launch(Dispatchers.Default) {
    var nextPrintTime = startTime
    while (true) {
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}
delay(1200)
println("main: I'm going to cancel this job")
job.cancel()
println("main: Done")

You can see that the instance of Job returned by launch has a cancel() method. As
its name suggests, it cancels the running coroutine. By the way, a Deferred instance—
which is returned by the async coroutine builder—also has this cancel() method
since a Deferred instance is a specialized Job.

Back to our example: you might expect this little piece of code to print “job: I’m work‐
ing..” three times. Actually, the output is:

job: I'm working..
job: I'm working..
job: I'm working..
main: I'm going to cancel this job
main: Done
job: I'm working..
job: I'm working..

So the child coroutine is still running despite the cancellation from the parent. This is
because the child coroutine isn’t cooperative with cancellation. There are several ways
to change that. The first one is by periodically checking for the cancellation status of
the coroutine, using isActive, as shown in the following code:

val job = launch(Dispatchers.Default) {
    var nextPrintTime = startTime
    while (isActive) {
        if (System.currentTimeMillis() >= nextPrintTime) {
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            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}

You can call isActive this way because it’s an extension property on Coroutine
Scope, as shown in the following code:

/**
 * Returns true when the current Job is still active (has not
 * completed and was not cancelled yet).
 */
val CoroutineScope.isActive: Boolean (source)

Now that the code is cooperative with cancellation, the result is:

job: I'm working..
job: I'm working..
job: I'm working..
main: I'm going to cancel this job
main: Done

Using isActive is simply reading a Boolean value. Determining whether the job
should be stopped, and both the setup and execution of that logic, is your r[.keep-
together] esponsibility.

In lieu of isActive, ensureActive can be used. The difference between isActive and
ensureActive is that the latter immediately throws a CancellationException if the
job is no longer active.

So ensureActive is a drop-in replacement of the following code:

if (!isActive) {
    throw CancellationException()
}

Similarly to Thread.yield(), there is a third possibility: yield(), which is a
suspending function. In addition to checking the cancellation status of the job, the
underlying thread is released and is made available for other coroutines. This is espe‐
cially useful when performing CPU-intensive computations inside a coroutine using
Dispatchers.Default (or similar). Placing yield() at strategic places, you can avoid
exhausting the thread pool. In other words, you probably don’t want a coroutine to be
too selfish, and keep a core busy with specific contextual responsibilities for an
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extended period of time, if those resources could be better served in another process.
To be more cooperative, a greedy CPU-bound coroutine should yield() from time
to time, giving other coroutines the opportunity to run.

Those ways of interrupting a coroutine are perfect when the cancellation is happen‐
ing inside your code. What if you just delegated some work to a third-party library,
like an HTTP client?

Cancelling a Task Delegated to a Third-Party Library
OkHttp is a widely deployed HTTP client on Android. If you’re not familiar with this
library, the following is a snippet taken from the official documentation, to perform
an synchronous GET:

fun run() {
    val request = Request.Builder()
        .url("https://publicobject.com/helloworld.txt")
        .build()

    client.newCall(request).execute().use { response ->
      if (!response.isSuccessful)
          throw IOException("Unexpected code $response")

      for ((name, value) in response.headers) {
        println("$name: $value")
      }

      println(response.body?.string())
    }
}

This example is pretty straightforward. client.newCall(request) returns an
instance of Call. You enqueue an instance of Callback while your code proceeds
unfazed. Is this cancellable? Yes. A Call can be manually cancelled using
call.cancel().

When using coroutines, the preceding example is the kind of code you might write
inside a coroutine. It would be ideal if this cancellation was done automatically upon
cancellation of the coroutine inside of which the HTTP request is done. Otherwise,
the following shows what you would have to write:

if (!isActive) {
    call.cancel()
    return
}
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The obvious caveat is that it pollutes your code—not to mention that you could forget
to add this check, or have it at the wrong place. There must be a better solution to
this.

Thankfully, the coroutine framework comes with functions specifically designed to
turn a function that expects a callback into a suspending function. They come in sev‐
eral flavors including suspendCancellableCoroutine. The latter is designed to craft a
suspending function which is cooperative with cancellation.

The following code shows how to create a suspending function as an extension func‐
tion of Call, which is cancellable and suspends until you get the response of your
HTTP request, or an exception occurs:

suspend fun Call.await() = suspendCancellableCoroutine<ResponseBody?> {
    continuation ->

    continuation.invokeOnCancellation {
        cancel()
    }

    enqueue(object : Callback {
        override fun onResponse(call: Call, response: Response) {
            continuation.resume(response.body)
        }

        override fun onFailure(call: Call, e: IOException) {
            continuation.resumeWithException(e)
        }
    })
}

If you’ve never seen code like this, it’s natural to be afraid of its off-putting complex‐
ity. The great news is that this function is fully generic—it only needs to be written
once. You can have it inside a “util” package of your project if you want, or in your
parallelism package; or just remember the basics and use some version of it when
performing conversions like that.

Before showing the benefits of such a utility method, we owe you a detailed
explanation.

In Chapter 7, we explained how the Kotlin compiler generates a Continuation
instance for each suspending function. The suspendCancellableCoroutine function
gives you the opportunity to use this instance of Continuation. It accepts a lambda
with CancellableContinuation as receiver, as shown in the following code:
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public suspend inline fun <T> suspendCancellableCoroutine(
    crossinline block: (CancellableContinuation<T>) -> Unit
): T

A CancellableContinuation is a Continuation that is cancellable. We can register a
callback that will be invoked upon cancellation, using invokeOnCancellation
{ .. }. In this case, all we want is to cancel the Call. Since we’re inside an extension
function of Call, we add the following code:

continuation.invokeOnCancellation {
    cancel()   // Call.cancel()
}

After we’ve specified what should happen upon cancellation of the suspending
function,  we  perform  the  actual  HTTP  request  by  invoking  Call.enqueue(),  giv‐
ing a Callback instance. A suspending function “resumes” or “stops suspending”
when the corresponding Continuation is resumed, with either resume or
resumeWithException.

When you get the result of your HTTP request, either onResponse or onFailure will
be called on the Callback instance you provided. If onResponse is called, this is the
“happy path.” You got a response and you should now resume the continuation with a
result of your choice. As shown in Figure 8-5, we chose the body of the HTTP
response. Meanwhile, on the “sad path,” onFailure is called, and OkHttp API gives
you an instance of an IOException.

Figure 8-5. (1) First, a device will send an HTTP request to the server. (2) The type of
the response being returned will determine what happens next. (3) If the request is a suc‐
cess, then onResponse is called. Otherwise, onFailure is executed.

178 | Chapter 8: Structured Concurrency with Coroutines



It is important to resume the continuation with this exception, using
resumeWithException. This way, the coroutine framework knows about the failure of
this suspending function and will propagate this event all the way up the coroutine
hierarchy.

Now, for the best part: a showcase of how to use it inside a coroutine, as shown in the
following:

fun main() = runBlocking {
    val job = launch {                                        
        val response = performHttpRequest()                   
        println("Got response ${response?.string()}")
    }
    delay(200)                                                
    job.cancelAndJoin()                                       
    println("Done")
}

val okHttpClient = OkHttpClient()
val request = Request.Builder().url(
    "http://publicobject.com/helloworld.txt"
).build()

suspend fun performHttpRequest(): ResponseBody? {
     return withContext(Dispatchers.IO) {
         val call = okHttpClient.newCall(request)
         call.await()
     }
}

We start off by launching a coroutine with launch.

Inside the coroutine returned by launch, we invoke a suspending function per
formHttpRequest, which uses Dispatchers.IO. This suspending function creates
a new Call instance and then invokes our suspending await() on it. At this
point, an HTTP request is performed.

Concurrently, and while step 2 is done on some thread of Dispatchers.IO, our
main thread proceeds execution of the main method, and immediately encoun‐
ters delay(200). The coroutine running on the main thread is suspended for
200 ms.

After 200 ms have passed, we invoke job.cancelAndJoin(), which is a conve‐
nience method for job.cancel(), then job.join(). Consequently, if the HTTP
request takes longer than 200 ms, the coroutine started by launch is still in the
Active state. The suspending performHttpRequest hasn’t returned yet. Calling
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job.cancel() cancels the coroutine. Thanks to structured concurrency, the
coroutine knows about all of its children. The cancellation is propagated all the
way down the hierarchy. The Continuation of performHttpRequest gets cancel‐
led, and so does the HTTP request. If the HTTP request takes less than 200 ms,
job.cancelAndJoin() has no effect.

No matter how deep in the coroutine hierarchy the HTTP request is performed, if
our predefined Call.await() is used, the cancellation of the Call is triggered if a
parent coroutine is cancelled.

Coroutines That Are Cooperative with Cancellation
You’ve just seen the various techniques to make a coroutine cancellable. Actually, the
coroutine framework has a convention: a well-behaved cancellable coroutine throws
a CancellationException when it’s cancelled. Why? Let’s look at this suspending
function in the following code:

suspend fun wasteCpu() = withContext(Dispatchers.Default) {
    var nextPrintTime = System.currentTimeMillis()
    while (isActive) {
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}

It is indeed cancellable thanks to the isActive check. Imagine that you need to do
some cleanup when this function is cancelled. You know when this function is cancel‐
led when isActive == false, so you can add a cleanup block at the end, as shown in
the following:

suspend fun wasteCpu() = withContext(Dispatchers.Default) {
    var nextPrintTime = System.currentTimeMillis()
    while (isActive) {
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }

    // cleanup
    if (!isActive) { .. }
}

180 | Chapter 8: Structured Concurrency with Coroutines



Sometimes you’ll need to have the cleanup logic outside the cancelled function;
for example, when this function comes from an external dependency. So you need
to find a way to notify the call stack that this function is cancelled. Exceptions are
perfect for this. This is why the coroutine framework follows this convention of
throwing a CancellationException. Actually, all suspending functions from the
kotlinx.coroutines package are cancellable and throw CancellationException when
cancelled. withContext is one of them, so you could react to wasteCpu cancellation
higher in the call stack, as shown in the following code:

fun main() = runBlocking {
    val job = launch {
        try {
            wasteCpu()
        } catch (e: CancellationException) {
            // handle cancellation
        }
    }
    delay(200)
    job.cancelAndJoin()
    println("Done")
}

If you run this code, you’ll find that a CancellationException is caught. Even
though we never explicitly threw a CancellationException from inside wasteCpu(),
withContext did it for us.

By throwing CancellationException only in case of cancellation,
the coroutine framework is able to differentiate a simple cancella‐
tion from a failure of a coroutine. In the latter case, an exception
will be raised that isn’t a subtype of CancellationException.
If you wish to investigate coroutine cancellation, you can name
your coroutines and enable debugging of coroutines inside the IDE
by adding the VM option -Dkotlinx.coroutines.debug. To name
a coroutine, simply add a CoroutineName context element like so:
val job = launch(CoroutineName("wasteCpu")) {..}. This way,
when catching a CancellationException, the stacktrace is much
more explicit and begins with the following line:

kotlinx.coroutines.JobCancellationException: 
StandaloneCoroutine was cancelled; job="waste-
Cpu#2":StandaloneCoroutine{Cancelling}@53bd815b
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In the previous example, if you swap wasteCpu() with performHttpRequest()—the
suspending function we made earlier with suspendCancellableCoroutine—you will
also find that a CancellationException is caught. So a suspending function made
with suspendCancellableCoroutine also throws a CancellationException when
cancelled.

delay Is Cancellable
Remember delay()? Its signature is shown in the following code:

public suspend fun delay(timeMillis: Long) {
    if (timeMillis <= 0) return // don't delay
    return suspendCancellableCoroutine sc@ { .. }
}

suspendCancellableCoroutine again! So this means that anywhere you use delay,
you’re giving a coroutine or suspending function the opportunity to cancel. Building
on this, we could rewrite wasteCpu() as in the following:

private suspend fun wasteCpu() = withContext(Dispatchers.Default) {
    var nextPrintTime = System.currentTimeMillis()
    while (true) {       
        delay(10)        
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}

Notice that:

We removed the isActive check.

Then we added a simple delay, with a small enough sleep time (so the behavior
is similar to the previous implementation).

This new version of wasCpu turns out to be cancellable just like the original, and
throws CancellationException when cancelled. This is because this suspending
function spends most of its time in the delay function.
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To summarize this section, you should strive to make your sus‐
pending functions cancellable. A suspending function can be made
of several suspending functions. All of them should be cancellable.
For example, if you need to perform a CPU-heavy computation,
then you should use yield() or ensureActive() at strategic places.
For example:

suspend fun compute() = withContext(Dispatch
ers.Default) {
     blockingCall()  // a regular blocking call, 
hopefully not blocking too long
     yield()  // give the opportunity to cancel
     anotherBlockingCall()   // because why not
}

Handling Cancellation
In the previous section, you learned that it is possible to react to cancellation using a
try/catch statement. However, imagine that inside the code handling the cancellation,
you need to call some other suspending functions. You could be tempted to imple‐
ment the strategy shown in the following code:

launch {
    try {
        suspendCall()
    } catch (e: CancellationException) {
       // handle cancellation
       anotherSuspendCall()
   }
}

Sadly, the preceding code doesn’t compile. Why? Because a cancelled coroutine isn’t
allowed to suspend. This is another rule from the coroutine framework. The solution
is to use withContext(NonCancellable), as shown in the following code:

launch {
    try {
        suspendCall()
    } catch (e: CancellationException) {
       // handle cancellation
       withContext(NonCancellable) {
            anotherSuspendCall()
       }
   }
}
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8. NonCancellable is actually a special implementation of Job which is always in Active state. So suspending
functions that use ensureActive() under this context are never cancelled.

NonCancellable is specifically designed for withContext to make sure the supplied
block of code won’t be cancelled.8

Causes of Cancellation
As we’ve seen before, there are two kinds of cancellation: by design and by failure. Ini‐
tially, we said that a failure is encountered when an exception is thrown. It was a bit of
an overstatement. You’ve just seen that, when voluntarily cancelling a coroutine, a
CancellationException is thrown. This is in fact what distinguishes the two kinds of
cancellation.

When cancelling a coroutine Job.cancel (by design), the coroutine terminates
without affecting its parent. If the parent also has other child coroutines, they also
aren’t affected by this cancellation. The following code illustrates this:

fun main() = runBlocking {
    val job = launch {
        val child1 = launch {
            delay(Long.MAX_VALUE)
        }
        val child2 = launch {
            child1.join()
            println("Child 1 is cancelled")

            delay(100)
            println("Child 2 is still alive!")
        }

        println("Cancelling child 1..")
        child1.cancel()
        child2.join()
        println("Parent is not cancelled")
    }
    job.join()
}

The output of this program is:

Cancelling child 1..
Child 1 is cancelled
Child 2 is still alive!
Parent is not cancelled
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child1 delays forever while child2 waits for child1 to proceed. The parent quickly
cancels child1, and we can see that child1 is indeed cancelled since child2 contin‐
ues its execution. Finally, the output “Parent is not cancelled” is proof that the parent
wasn’t affected by this cancellation (nor was child2, by the way).

On the other hand, in the case of a failure (if an exception different from
CancellationException was thrown), the default behavior is that the parent gets
cancelled with that exception. If the parent also has other child coroutines, they are
also cancelled. Let’s try to illustrate this. Spoiler alert—don’t do what we show in the
following:

fun main() = runBlocking {
    val scope = CoroutineScope(coroutineContext + Job())    

    val job = scope.launch {                                
        launch {
            try {
                delay(Long.MAX_VALUE)                       
            } finally {
                println("Child 1 was cancelled")
            }
        }

        launch {
            delay(1000)                                     
            throw IOException()
        }
    }
    job.join()                                              
}

What we’re trying to create is a circumstance in which a child fails after some time,
and we want to check that it causes the parent to fail. Then we need to confirm that
all other child coroutines of that parent should be cancelled too, assuming that’s the
cancellation policy we passed.

At first glance, this code looks OK:

We’re creating the parent scope.

We’re starting a new coroutine inside this scope.

The first child waits indefinitely. If this child gets cancelled, it should print “Child
1 was cancelled” since a CancellationException would have been thrown from
the delay(Long.MAX_VALUE).
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Another child throws an IOException after a delay of 1 second.

Wait for the coroutine started in step 2. If you don’t do this, the execution of
runBlocking terminates and the program stops.

Running this program, you indeed see “Child 1 was cancelled,” though the program
crashes right after with an uncaught IOException. Even if you surround job.join()
with a try/catch block, you’ll still get the crash.

What we’re missing here is the origination of the exception. It was thrown from
inside a launch, which propagates exceptions upward through the coroutine hierar‐
chy until it reaches the parent scope. This behavior cannot be overridden. Once that
scope sees the exception, it cancels itself and all its children, then propagates the
exception to its parent, which is the scope of runBlocking.

It’s important to realize that trying to catch the exception isn’t going to change the fact
that the root coroutine of runBlocking is going to be cancelled with that exception.

In some cases, you might consider this as an acceptable scenario: any unhandled
exception leads to a program crash. However, in other scenarios you might prefer to
prevent the failure of scope to propagate to the main coroutine. To this purpose, you
need to register a CoroutineExceptionHandler (CEH):

fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, exception ->
        println("Caught original $exception")
    }
    val scope = CoroutineScope(coroutineContext + ceh + Job())

    val job = scope.launch {
         // same as in the previous code sample
    }
}

A CoroutineExceptionHandler is conceptually very similar to Thread.UncaughtEx
ceptionHandler—except it’s intended for coroutines. It’s a Context element, which
should be added to the context of a scope or a coroutine. The scope should create its
own Job instance, as a CEH only takes effect when installed at the top of a coroutine
hierarchy. In the preceding example, we added the CEH to the context of the scope.
We could very well have added it to the context of the first launch, like so:
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fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, exception ->
        println("Caught original $exception")
    }

    // The CEH can also be part of the scope
    val scope = CoroutineScope(coroutineContext + Job())

    val job = scope.launch(ceh) {
        // same as in the previous code sample
    }
}

Running this sample with the exception handler, the output of the program now is:

Child 1 was cancelled
Caught original java.io.IOException

The program no longer crashes. From inside the CEH implementation, you could
retry the previously failed operations.

This example demonstrates that by default, the failure of a coroutine causes its parent
to cancel itself along with all the other children of that parent. What if this behavior
doesn’t match your application design? Sometimes the failure of a coroutine is accept‐
able and doesn’t require the cancellation of all other coroutines started inside the
same scope. This is called supervision in the coroutine framework.

Supervision
Consider the real-world example of loading a fragment’s layout. Each child View
might require some background processing to be fully constructed. Assuming you’re
using a scope which defaults to the main thread, and child coroutines for the back‐
ground tasks, the failure of one of those tasks shouldn’t cause the failure of the parent
scope. Otherwise, the whole fragment would become unresponsive to the user.

To implement this cancellation strategy, you can use SupervisorJob, which is a Job
for which the failure or cancellation of a child doesn’t affect other children; nor does it
affect the scope itself. A SupervisorJob is typically used as a drop-in replacement for
Job when building a CoroutineScope. The resulting scope is then called a “supervisor
scope.” Such a scope propagates cancellation downward only, as shown in the follow‐
ing code:
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fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, e -> println("Handled $e") }
    val supervisor = SupervisorJob()
    val scope = CoroutineScope(coroutineContext + ceh + supervisor)
    with(scope) {
        val firstChild = launch {
            println("First child is failing")
            throw AssertionError("First child is cancelled")
        }

        val secondChild = launch {
            firstChild.join()

            delay(10) // playing nice with hypothetical cancellation
            println("First child is cancelled: ${firstChild.isCancelled}, 
but second one is still active")
        }

        // wait until the second child completes
        secondChild.join()
    }
}

The output of this sample is:

First child is failing
Handled java.lang.AssertionError: First child is cancelled
First child is cancelled: true, but second one is still active

Notice that we’ve installed a CEH in the context of the scope. Why? The first child
throws an exception that is never caught. Even if a supervisor scope isn’t affected by
the failure of a child, it still propagates unhandled exceptions—which, as you know,
might cause the program to crash. This is precisely the purpose of a CEH: to handle
uncaught exceptions. Interestingly enough, the CEH could also have been installed
into the context of the first launch, with the same result, as shown in the following:

fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, e -> println("Handled $e") }
    val supervisor = SupervisorJob()
    val scope = CoroutineScope(coroutineContext + supervisor)
    with(scope) {
        val firstChild = launch(ceh) {
            println("First child is failing")
            throw AssertionError("First child is cancelled")
        }

        val secondChild = launch {
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            firstChild.join()

            delay(10)
            println("First child is cancelled: ${firstChild.isCancelled}, 
but second one is still active")
        }

        // wait until the second child completes
        secondChild.join()
    }
}

A CEH is intended to be installed at the top of a coroutine hierarchy, as this is the
place where uncaught exceptions can be handled.

In this example, the CEH is installed on a direct child of the coroutine scope. You can
install it on a nested coroutine, as in the following:

val firstChild = launch {
    println("First child is failing")
    launch(ceh) {
       throw AssertionError("First child is cancelled")
    }
}

In this case, the CEH isn’t accounted for, and the program might crash.

supervisorScope Builder
Similarly to coroutineScope builder—which inherits the current context and creates
a new Job—supervisorScope creates a SupervisorJob. Just like coroutineScope, it
waits for all children to complete. One crucial difference with coroutineScope is that
it only propagates cancellation downward, and cancels all children only if it has failed
itself. Another difference with coroutineScope is how exceptions are handled. We’ll
delve into that in the next section.

Parallel Decomposition
Imagine that a suspending function has to run multiple tasks in parallel before
returning its result. Take, for example, the suspending function weatherForHike
from our hiking app at the beginning of this chapter. Fetching the weather could
involve multiple APIs, depending on the nature of the data. Wind data and tempera‐
ture could be fetched separately, from separate data sources.
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Assuming you have suspending functions fetchWind and fetchTemperatures, you
could implement weatherForHike as follows:

private suspend fun weatherForHike(hike: Hike): Weather =
        withContext(Dispatchers.IO) {
   val deferredWind = async { fetchWind(hike) }
   val deferredTemp = async { fetchTemperatures(hike) }
   val wind = deferredWind.await()
   val temperatures = deferredTemp.await()
   Weather(wind, temperatures) // assuming Weather can be built that way
}

async can also be used in this example because withContext provides a Coroutine
Scope—its last argument is a suspending lambda with CoroutineScope as the
receiver. Without withContext, this sample wouldn’t compile, because there wouldn’t
be any scope provided for async.

withContext is particularly useful when you need to change the dispatcher inside
your suspending function. What if you don’t need to change your dispatcher? The
suspending weatherForHike could very well be called from a coroutine which is
already dispatched to the IO dispatcher. Then, using withContext(Dispatchers.IO)
would be redundant. In such situations, you could use coroutineScope instead of or
in conjunction with withContext. It’s a CoroutineScope builder, which you use as in
the following:

private suspend fun weatherForHike(hike: Hike): Weather = coroutineScope {
    // Wind and temperature fetch are performed concurrently
    val deferredWind = async(Dispatchers.IO) {
        fetchWind(hike)
    }
    val deferredTemp = async(Dispatchers.IO) {
        fetchTemperatures(hike)
    }
   val wind = deferredWind.await()
   val temperatures = deferredTemp.await()
   Weather(wind, temperatures) // assuming Weather can be built that way
}

Here, coroutineScope replaces withContext. What does this coroutineScope do?
First of all, have a look at its signature:

public suspend fun <R> coroutineScope(block: suspend CoroutineScope.() -> 
R): R
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From the official documentation, this function creates a CoroutineScope and calls
the specified suspend block with this scope. The provided scope inherits its
coroutineContext from the outer scope, but overrides the context’s Job.

This function is designed for parallel decomposition of work. When any child corou‐
tine in this scope fails, this scope fails and all the rest of the children are cancelled (for
a different behavior, use supervisorScope). This function returns as soon as the given
block and all its child coroutines are completed.

Automatic Cancellation
Applied to our example, if fetchWind fails, the scope provided by coroutineScope
fails and fetchTemperatures is subsequently cancelled. If fetchTemperatures

involves allocating heavy objects, you can see the benefit of the cancellation.

coroutineScope really shines when you need to perform several tasks concurrently.

Exception Handling
Exception handling is an important part of your application design. Sometimes you
will just catch exceptions immediately after they’re raised, while other times you’ll let
them bubble up the hierarchy until the dedicated component handles it. To that
extent, the language construct try/catch is probably what you’ve used so far. How‐
ever, in the coroutine framework, there’s a catch (pun intended). We could have
started this chapter with it, but we needed to introduce you to supervision and
CoroutineExceptionHandler first.

Unhandled Versus Exposed Exceptions
When it comes to exception propagation, uncaught exceptions can be treated by the
coroutine machinery as on of the following:

Unhandled to the client code
Unhandled exceptions can only be handled by a CoroutineExceptionHandler.

Exposed to the client code
Exposed exceptions are the ones the client code can handle using try/catch.

In this matter, we can distinguish two categories of coroutine builders based on how
they treat uncaught exceptions:

• Unhandled (launch is one of them)
• Exposed (async is one of them)
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First of all, do note that we’re talking about uncaught exceptions. If you catch an
exception before it is handled by a coroutine builder, everything works as usual—you
catch it, so the coroutine machinery isn’t aware of it. The following shows an example
with launch and try/catch:

scope.launch {
    try {
        regularFunctionWhichCanThrowException()
    } catch (e: Exception) {
        // handle exception
    }
}

This example works as you would expect, if regularFunctionWhichCanThrowExcep
tion is, as its name suggests, a regular function which does not involve, directly or
indirectly, other coroutine builders—in which case, special rules can apply (as we’ll
see later in this chapter).

The same idea applies to the async builder, as shown in the following:

fun main() = runBlocking {

    val itemCntDeferred = async {
        try {
            getItemCount()
        } catch (e: Exception) {
            // Something went wrong. Suppose you don't care and consider it 
should return 0.
            0
        }
    }

    val count = itemCntDeferred.await()
    println("Item count: $count")
}

fun getItemCount(): Int {
    throw Exception()
    1
}

The output of this program is, as you can easily guess:

Item count: 0
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Alternatively, instead of try/catch, you could use runCatching. It allows for a nicer
syntax if you consider that the happy path is when no exception is thrown:

scope.launch {
     val result = runCatching {
           regularFunctionWhichCanThrowException()
     }

     if (result.isSuccess) {
         // no exception was thrown
     } else {
         // exception was thrown
     }
}

Under the hood, runCatching is nothing but a try/catch, returning a Result object,
which offers some sugar methods like getOrNull() and exceptionOrNull(), as in
the following:

/**
 * Calls the specified function [block] with `this` value as its receiver
 * and returns its encapsulated result if invocation was successful,
 * catching and encapsulating any thrown exception as a failure.
 */
public inline fun <T, R> T.runCatching(block: T.() -> R): Result<R> {
    return try {
        Result.success(block())
    } catch (e: Throwable) {
        Result.failure(e)
    }
}

Some extension functions are defined on the Result and available out of the box, like
getOrDefault which returns the encapsulated value of the Result instance if
Result.isSuccess is true or a provided default value otherwise.

Exposed Exceptions
As we stated before, you can catch exposed exceptions using built-in language sup‐
port: try/catch. The following code shows where we have created our own scope
inside of which two concurrent tasks, task1 and task2, are started in a supervisor
Scope. task2 immediately fails:
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fun main() = runBlocking {

    val scope = CoroutineScope(Job())

    val job = scope.launch {
        supervisorScope {
            val task1 = launch {
                // simulate a background task
                delay(1000)
                println("Done background task")
            }

            val task2 = async {
                // try to fetch some count, but it fails
                throw Exception()
                1
            }

            try {
                task2.await()
            } catch (e: Exception) {
                println("Caught exception $e")
            }
            task1.join()
        }
    }

    job.join()
    println("Program ends")
}

The output of this program is:

Caught exception java.lang.Exception
Done background task
Program ends

This example demonstrates that inside a supervisorScope, async exposes uncaught
exceptions in the await call. If you don’t surround the await call with a try/catch
block, then the scope of supervisorScope fails and cancels task1, then exposes to its
parent the exception that caused its failure. So this means that even when using a
supervisorScope, unhandled exceptions in a scope lead to the cancellation of the
entire coroutine hierarchy beneath that scope—and the exception is propagated up.
By handling the exception the way we did in this example, task 2 fails while task 1
isn’t affected.
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Interestingly enough, if you don’t invoke task2.await(), the program executes as if
no exception was ever—thrown`task2` silently fails.

Now we’ll use the exact same example, but with a coroutineScope instead of
supervisorScope:

fun main() = runBlocking {

    val scope = CoroutineScope(Job())

    val job = scope.launch {
        coroutineScope {
            val task1 = launch {
                delay(1000)
                println("Done background task")
            }

            val task2 = async {
                throw Exception()
                1
            }

            try {
                task2.await()
            } catch (e: Exception) {
                println("Caught exception $e")
            }
            task1.join()
        }
    }

    job.join()
    println("Program ends")
}

The output of this program is:

Caught exception java.lang.Exception

Then the program crashes on Android due to java.lang.Exception—we’ll explain
this shortly.

From this you can learn that inside a coroutineScope, async exposes uncaught excep‐
tions but also notifies its parent. If you don’t call task2.await(), the program still
crashes because coroutineScope fails and exposes to its parent the exception that
caused its failure. Then, scope.launch treats this exception as unhandled.
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9. By JVM, we mean on a desktop application, or on the server side.

10. “Program ends” is printed because the unhandled exception makes scope fail, not the scope from
runBlocking.

11. A root coroutine builder is a scope’s direct child. In the previous example, at the line val job =
scope.launch {..}, launch is a root coroutine builder.

Unhandled Exceptions
The coroutine framework treats unhandled exceptions in a specific way: it tries to use
a CEH if the coroutine context has one. If not, it delegates to the global handler. This
handler calls a customizable set of CEH and calls the standard mechanism of unhan‐
dled exceptions: Thread.uncaughtExceptionHandler. By default on Android, the
previously mentioned set of handlers is only made of a single CEH which prints the
stacktrace of the unhandled exception. However, it is possible to register a custom
handler which will be called in addition to the one that prints the stacktrace. So you
should remember that if you don’t handle an exception, the Thread.uncaughtExcep
tionHandler will be invoked.

The default UncaughtExceptionHandler on Android makes your application crash,
while on the JVM,9 the default handler prints the stacktrace to the console. Conse‐
quently, if you execute this program not on Android but on the JVM, the output is:10

Caught exception java.lang.Exception
(stacktrace of java.lang.Exception)
Program ends

Back to Android. How could you handle this exception? Since coroutineScope
exposes exceptions, you could wrap coroutineScope inside a try/catch statement.
Alternatively, if you don’t handle it correctly, the preceding coroutineScope,
scope.launch, treats this exception as unhandled. Then your last chance to handle
this exception is to register a CEH. There are at least two reasons you would do that:
first, to stop the exception’s propagation and avoid a program crash; and second, to
notify your crash analytics and rethrow the exception—potentially making the appli‐
cation crash. In any case, we’re not advocating for silently catching exceptions. If you
do want to use CEH, there are a couple of things you should know. A CEH only
works when registered to:

• launch (not async) when launch is a root coroutine builder11

• A scope
• supervisorScopes direct child
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In our example, the CEH should be registered either on scope.launch or on the
scope itself. The following code shows this on the root coroutine:

fun main() = runBlocking {

    val ceh = CoroutineExceptionHandler { _, t ->
        println("CEH handle $t")
    }

    val scope = CoroutineScope(Job())

    val job = scope.launch(ceh) {
        coroutineScope {
            val task1 = launch {
                delay(1000)
                println("Done background task")
            }

            val task2 = async {
                throw Exception()
                1
            }

            task1.join()
        }
    }

    job.join()
    println("Program ends")
}

The output of this program is:

Caught exception java.lang.Exception
CEH handle java.lang.Exception
Program ends

Here is the same example, this time with the CEH registered on the scope:

fun main() = runBlocking {

    val ceh = CoroutineExceptionHandler { _, t ->
        println("CEH handle $t")
    }

    val scope = CoroutineScope(Job() + ceh)

    val job = scope.launch {
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       // same as previous example
    }
}

Finally, we illustrate the use of a CEH on a supervisorScope direct child:

fun main() = runBlocking {

    val ceh = CoroutineExceptionHandler { _, t ->
        println("CEH handle $t")
    }

    val scope = CoroutineScope(Job())

    val job = scope.launch {
        supervisorScope {
            val task1 = launch {
                // simulate a background task
                delay(1000)
                println("Done background task")
            }

            val task2 = launch(ceh) {
                // try to fetch some count, but it fails
                throw Exception()
            }

            task1.join()
            task2.join()
        }
    }

    job.join()
    println("Program ends")
}

Notice that the coroutine builder on which the CEH is registered is a launch. It
wouldn’t have been taken into account with an async, which exposes uncaught excep‐
tions, which can be handled with try/catch.
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Summary
• When a function might not return immediately, it’s a good candidate to be imple‐

mented as a suspending function. However, the suspend modifier doesn’t magi‐
cally turn a blocking call into a nonblocking one. Use withContext along with
the appropriate Dispatcher, and/or call other suspending functions.

• A coroutine can be deliberately cancelled using Job.cancel() for launch, or
Deferred.cancel() for async. If you need to call some suspending functions
inside your cleanup code, make sure you wrap your cleanup logic inside a with
Context(NonCancellable) { .. } block. The cancelled coroutine will remain
in the cancelling state until the cleanup exits. After the cleanup is done, the afore‐
mentioned coroutine goes to the cancelled state.

• A coroutine always waits for its children to complete before completing itself. So
cancelling a coroutine also cancels all of its children.

• Your coroutines should be cooperative with cancellation. All suspending func‐
tions from the kotlinx.coroutines package are cancellable. This notably includes
withContext. If you’re implementing your own suspending function, make sure
it is cancellable by checking isActive or calling ensureActive() or yield() at
appropriate steps.

• There are two categories of coroutine scope: the scopes using Job and the ones
using SupervisorJob (also called supervisor scopes). They differ in how cancel‐
lation is performed and in exception handling. If the failure of a child should also
cancel other children, use a regular scope. Otherwise, use a supervisor scope.

• launch and async differ in how they treat uncaught exceptions. async exposes
exceptions, which can be caught by wrapping the await call in a try/catch. On
the other hand, launch treats uncaught exceptions as unhandled, which can be
handled using a CEH.

• A CEH is optional. It should only be used when you really need to do something
with unhandled exceptions. Unhandled exceptions typically should make your
application crash. Or, at least, recovering from some exceptions might leave your
application in an undetermined state. Nevertheless, if you decide to use a CEH,
then it should be installed at the top of the coroutine hierarchy—typically into
the topmost scope. It can also be installed on a supervisorScope direct child.

• If a coroutine fails because of an uncaught exception, it gets cancelled along with
all of its children and the exceptions propagate up.
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Closing Thoughts
You learned how to write your own suspending functions, and how to use them
inside coroutines. Your coroutines live within scopes. In order to implement the
desired cancellation policy, you know how to choose between coroutineScope and
supervisorScope. The scopes you create are children of other scopes higher in the
hierarchy. In Android, those “root” scopes are library-provided—you don’t create
them yourself. A good example is the viewModelScope available in any ViewModel
instance.

Coroutines are a perfect fit for one-time or repetitive tasks. However, we often have
to work with asynchronous streams of data. Channels and Flows are designed for that,
and will be covered in the next two chapters.
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1. We’ll sometimes refer to Channels as channels in the rest of this chapter.

CHAPTER 9

Channels

In the previous chapter, you learned how to create coroutines, cancel them, and deal
with exceptions. So you know that if task B requires the result of task A, you can
implement them as two suspending functions called sequentially. What if task A pro‐
duces a stream of values? async and suspending functions don’t fit this use case. This
is what Channels1 are meant for—making coroutines communicate. In this chapter
you’ll learn in detail what channels are and how to use them.

Using nothing but channels and coroutines, we can design complex asynchronous
logic using communicating sequential processes (CSP). What is CSP? Kotlin was
inspired by several existing programming languages, such as Java, C#, JavaScript,
Scala, and Groovy. Notably, Go (the language) inspired coroutines with its
“goroutines.”

In computer science, CSP is a concurrent programming language which was first
described by Tony Hoare in 1978. It has evolved ever since, and the term CSP is now
essentially used to describe a programming style. If you’re familiar with the Actor
model, CSP is quite similar—although there are some differences. If you’ve never
heard of CSP, don’t worry—we’ll briefly explain the idea behind it with practical
examples. For now, you can think of CSP as a programming style.

As usual, we’ll start with a bit of theory, then implement a real-life problem. In the
end, we’ll discuss the benefits and trade-offs of CSP, using coroutines.
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Channels Overview
Going back to our introductory example, imagine that one task asynchronously pro‐
duces a list of three Item instances (the producer), and another task acts on each of
those items (the consumer). Since the producer doesn’t return immediately, you
could implement it like the following getItems suspending function:

suspend fun getItems(): List<Item> {
     val items = mutableListOf<Item>()
     items.add(makeItem())
     items.add(makeItem())
     items.add(makeItem())
     return items
}

suspend fun makeItem(): Item {
    delay(10) // simulate some asynchronism
    return Item()
}

As for the consumer, which consumes each of those items, you could simply imple‐
ment it like so:

fun consumeItems(items: List<Item>) {
     for (item in items) println("Do something with $item")
}

Putting it all together:

fun main() = runBlocking {
     val items = getItems()
     consumeItems(items)
}

As you would expect, “Do something with ..” is printed three times. However, in this
case, we’re most interested in the order of execution. Let’s take a closer look at what’s
really happening, as shown in Figure 9-1.

In Figure 9-1, item consumption only begins after all items have been produced. Pro‐
ducing items might take quite some time, and waiting for all of them to be produced
isn’t acceptable in some situations. Instead, we could act on each asynchronously pro‐
duced item, as shown in Figure 9-2.
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Figure 9-1. Process all at once.

Figure 9-2. Process one after another.

To achieve this, we can’t implement getItems as a suspending function like before. A
coroutine should act as a producer of Item instances, and send them to the main
coroutine. It’s a typical producer-consumer problem.
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In Chapter 5, we explained how BlockingQueues can be used to implement work
queues—or, in this case, a data queue. As a reminder, a BlockingQueue has blocking
methods put and take to respectively insert and take an object from the queue.
When the queue is used as the only means of communication between two threads (a
producer and a consumer), it offers the great benefit of avoiding a shared mutable
state. Moreover, if the queue is bounded (has a size limit), a too-fast producer will
eventually get blocked in a put call if consumers are too slow. This is known as back
pressure: a blocked producer gives the consumers the opportunity to catch up, thus
releasing the producer.

Using a BlockingQueue as a communication primitive between coroutines wouldn’t
be a great idea, since a coroutine shouldn’t involve blocking calls. Instead, coroutines
can suspend. A Channel can be seen just like that: a queue with suspending functions
send and receive, as shown in Figure 9-3. A Channel also has nonsuspending coun‐
terparts: trySend and tryReceive. These two methods are also nonblocking. trySend
tries to immediately add an element to the channel, and returns a wrapper class
around the result. That wrapper class, ChannelResult<T>, also indicates the success
or the failure of the operation. tryReceive tries to immediately retrieve an element
from the channel, and returns a ChannelResult<T> instance.

Figure 9-3. Channel.

Like queues, Channels come in several flavors. We’ll cover each of those Channel var‐
iants with basic examples.

Rendezvous Channel
“Rendezvous” is a French word that means “appointment” or “a date”—it depends on
the context (we don’t mean CoroutineContext here). A rendezvous channel does not
have any buffer at all. An element is transferred from sender to receiver only when
send and receive invocations meet in time (rendezvous), so send suspends until
another coroutine invokes receive, and receive suspends until another coroutine
invokes send.

As another way to put it, a rendezvous channel involves a back-and-forth communi‐
cation between producers (coroutines calling send) and consumers (coroutines call‐
ing receive). There can’t be two consecutive sends without a receive in the middle.

By default, when you create a channel using Channel<T>(), you get a rendezvous
channel.
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2. Specifically, Channel doesn’t implement Iterable.

We can use a rendezvous channel to correctly implement our previous example:

fun main() = runBlocking {
    val channel = Channel<Item>()
    launch {                        
        channel.send(Item(1))       
        channel.send(Item(2))       
        println("Done sending")
    }

    println(channel.receive())      
    println(channel.receive())      

    println("Done!")
}

data class Item(val number: Int)

The output of this program is:

Item(number=1)
Item(number=2)
Done!
Done sending

In this example, the main coroutine starts a child coroutine with launch, at , then
reaches  and suspends until some coroutine sends an Item instance in the channel.
Shortly after, the child coroutine sends the first item at , then reaches and suspends
at the second send call at  until some coroutine is ready to receive an item. Subse‐
quently, the main coroutine (which is suspended at ) is resumed and receives the
first item from the channel and prints it. Then the main coroutine reaches  and
immediately receives the second item since the child coroutine was already sus‐
pended in a send call. Immediately after, the child coroutine continues its execution
(prints “Done sending”).

Iterating over a Channel

A Channel can be iterated over, using a regular for loop. Note that since channels
aren’t regular collections,2 you can’t use forEach or other similar functions from the
Kotlin Standard Library. Here, channel iteration is a specific language-level feature
that can only be done using the for-loop syntax:
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for (x in channel) {
   // do something with x every time some coroutine sends an element in
   // the channel
}

Implicitly, x is equal to channel.receive() at each iteration. Consequently, a corou‐
tine iterating over a channel could do so indefinitely, unless it contains conditional
logic to break the loop. Fortunately, there’s a standard mechanism to break the loop:
closing the channel. Here is an example:

fun main() = runBlocking {
    val channel = Channel<Item>()
    launch {
        channel.send(Item(1))
        channel.send(Item(2))
        println("Done sending")
        channel.close()
    }

    for (x in channel) {
        println(x)
    }
    println("Done!")
}

This program has similar output, with a small difference:

Item(number=1)
Item(number=2)
Done sending
Done!

This time, “Done sending” appears before “Done!” This is because the main corou‐
tine only leaves the channel iteration when channel is closed. And that happens
when the child coroutine is done sending all elements.

Internally, closing a channel sends a special token into the channel to indicate that no
other elements will be sent. As items in the channel are consumed serially (one after
another), all items sent to the rendezvous channel before the close special token are
guaranteed to be sent to the receiver.
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Beware—trying to call receive from an already-closed channel
will throw a ClosedReceiveChannelException. However, trying to
iterate on such a channel doesn’t throw any exception:

fun main() = runBlocking {
    val channel = Channel<Int>()
    channel.close()

    for (x in channel) {
        println(x)
    }
    println("Done!")
}

The output is: Done!

Other flavors of Channel

In the previous example, the Channel appears to be created using a class constructor.
If you look at the source code, you can see that it’s actually a public function named
with a capital C, to give the illusion that you’re using a class constructor:

public fun <E> Channel(capacity: Int = RENDEZVOUS): Channel<E> =
    when (capacity) {
        RENDEZVOUS -> RendezvousChannel()
        UNLIMITED -> LinkedListChannel()
        CONFLATED -> ConflatedChannel()
        BUFFERED -> ArrayChannel(CHANNEL_DEFAULT_CAPACITY)
        else -> ArrayChannel(capacity)
    }

You can see that this Channel function has a capacity parameter that defaults to
RENDEZVOUS. For the record, if you step into the RENDEZVOUS declaration, you can see
that it’s equal to 0. For each capacity value there is a corresponding channel imple‐
mentation. There are four different flavors of channels: rendezvous, unlimited, confla‐
ted, and buffered. Don’t pay too much attention to the concrete implementations (like
RendezvousChannel()), because those classes are internal and may change in the
future. On the other hand, the values RENDEZVOUS, UNLIMITED, CONFLATED, and
BUFFERED are part of the public API.

We’ll cover each of those channel types in the next sections.
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Unlimited Channel
An unlimited channel has a buffer that is only limited by the amount of available
memory. Senders to this channel never suspend, while receivers only suspend when
the channel is empty. Coroutines exchanging data via an unlimited channel don’t need
to meet in time.

At this point, you might be thinking that such a channel should have concurrent
modification issues when senders and receivers are executed from different threads.
After all, coroutines are dispatched on threads, so a channel might very well be used
from different threads. Let’s check the Channel’s robustness ourselves! In the follow‐
ing example, we send Ints from a coroutine dispatched on Dispatchers.Default
while another coroutine reads the same channel from the main thread, and if the
Channels aren’t thread-safe, we will notice:

fun main() = runBlocking {
    val channel = Channel<Int>(UNLIMITED)
    val childJob = launch(Dispatchers.Default) {
        println("Child executing from ${Thread.currentThread().name}")
        var i = 0
        while (isActive) {
            channel.send(i++)
        }
        println("Child is done sending")
    }

    println("Parent executing from ${Thread.currentThread().name}")
    for (x in channel) {
        println(x)

        if (x == 1000_000) {
            childJob.cancel()
            break
        }
    }

    println("Done!")
}
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3. If you want to learn how such an algorithm works, we recommend that you read Section 15.4, “NonBlocking
Algorithms,” in Java Concurrency in Practice, by Brian Goetz et al. There is also this interesting YouTube video,
Lock-Free Algorithms for Kotlin Coroutines (Part 1) from Roman Elizarov, lead designer of Kotlin coroutines.

The output of this program is:

Parent executing from main
Child executing from DefaultDispatcher-worker-2
0
1
..
1000000
Done!
Child is done sending

You can run this sample as much as you want, and it always completes without con‐
current issues. That’s because a Channel internally uses a lock-free algorithm.3

Channels are thread-safe. Several threads can concurrently invoke
send and receive methods in a thread-safe way.

Conflated Channel
This channel has a buffer of size 1, and only keeps the last sent element. To create a
conflated channel, you invoke Channel<T>(Channel.CONFLATED). For example:

fun main() = runBlocking {
    val channel = Channel<String>(Channel.CONFLATED)

    val job = launch {
        channel.send("one")
        channel.send("two")
    }

    job.join()
    val elem = channel.receive()
    println("Last value was: $elem")
}
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The output of this program is:

Last value was: two

The first sent element is “one.” When “two” is sent, it replaces “one” in the channel.
We wait until the coroutine-sending elements complete, using job.join(). Then we
read the value two from the channel.

Buffered Channel
A buffered channel is a Channel with a fixed capacity—an integer greater than 0.
Senders to this channel don’t suspend unless the buffer is full, and receivers from this
channel don’t suspend unless the buffer is empty. To create a buffered channel of Int
with a buffer of size 2, you would invoke Channel<Int>(2). Here is an example of
usage:

fun main() = runBlocking<Unit> {
    val channel = Channel<Int>(2)

    launch {
        for (i in 0..4) {
            println("Send $i")
            channel.send(i)
        }
    }

    launch {
        for (i in channel) {
            println("Received $i")
        }
    }
}

The output of this program is:

Send 0
Send 1
Send 2
Received 0
Received 1
Received 2
Send 3
Send 4
Received 3
Received 4
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In this example, we’ve defined a Channel with a fixed capacity of 2. A coroutine
attempts to send five integers, while another coroutine consumes elements from the
channel. The sender coroutine manages to send 0 and 1 in one go, then attempts to
send 3. The println("Send $i") is executed for the value 3 but the sender coroutine
gets suspended in the send call. The same reasoning applies for the consumer corou‐
tine: two elements are received consecutively with an additional print before
suspending.

Channel Producers
Until now, you’ve seen that a Channel can be used for both sending and receiving ele‐
ments. Sometimes you might want to be more explicit about how a channel should be
used for either sending or receiving. When you’re implementing a Channel that is
meant to be read only by other coroutines, you can use the produce builder:

fun CoroutineScope.produceValues(): ReceiveChannel<String> = produce {
    send("one")
    send("two")
}

As you can see, produce returns a ReceiveChannel—which only has methods rele‐
vant to receiving operations (receive is among them). An instance of ReceiveChan
nel cannot be used to send elements.

Also, we’ve defined produceValues() as an extension function of
CoroutineScope. Calling produceValues will start a new coroutine
that sends elements into a channel. There’s a convention in Kotlin:
every function that starts coroutines should be defined as an exten‐
sion function of CoroutineScope. If you follow this convention,
you can easily distinguish in your code which functions are starting
new coroutines from suspending functions.

The main code that makes use of produceValues could be:

fun main() = runBlocking {
    val receiveChannel = produceValues()

    for (e in receiveChannel) {
        println(e)
    }
}
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Conversely, a SendChannel only has methods relevant to sending operations. Actually,
looking at the source code, a Channel is an interface deriving from both ReceiveChan
nel and SendChannel:

public interface Channel<E> : SendChannel<E>, ReceiveChannel<E> {
    // code removed for brevity
}

Here is how you can use a SendChannel:

fun CoroutineScope.collectImages(imagesOutput: SendChannel<Image>) {
    launch(Dispatchers.IO) {
        val image = readImage()
        imagesOutput.send(image)
    }
}

Communicating Sequential Processes
Enough of the theory, let’s get started and see how channels can be used to implement
a real-life problem. Imagine that your Android application has to display “shapes” in
a canvas. Depending on the inputs of the user, your application has to display an arbi‐
trary number of shapes. We’re purposely using generic terms—a shape could be a
point of interest on a map, an item in a game, anything that may require some back‐
ground work like API calls, file reads, database queries, etc. In our example, the main
thread, which already handles user input, will simulate requests for new shapes to be
rendered. You can already foresee that it’s a producer-consumer problem: the main
thread makes requests, while some background task handles them and returns the
results to the main thread.

Our implementation should:

• Be thread-safe
• Reduce the risk of overwhelming the device memory
• Have no thread contention (we won’t use locks)
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Model and Architecture
A Shape is made of a Location and some useful ShapeData:

data class Shape(val location: Location, val data: ShapeData)
data class Location(val x: Int, val y: Int)
class ShapeData

Given a Location, we need to fetch the corresponding ShapeData to build a Shape. So
in this example, Locations are the input, and Shapes the output. For brevity, we’ll use
the words “location” for Location and “shape” for Shape.

In our implementation, we’ll distinguish two main components:

view-model
This holds most of the application logic related to shapes. As the user interacts
with the UI, the view gives the view-model a list of locations.

shapeCollector

This is responsible for fetching shapes given a list of locations.

Figure 9-4 illustrates the bidirectional relationship between the view-model and the
shape collector.

Figure 9-4. High-level architecture.

The ShapeCollector follows a simple process:

               fetchData
Location ---------------------> ShapeData

As an additional prerequisite, our ShapeCollector should maintain an internal “reg‐
istry” of locations being processed. Upon receiving a location to process, the Shape
Collector shouldn’t attempt to download it if it’s already being processed.
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A First Implementation
We can start with this first naïve implementation of the ShapeCollector, which is far
from being complete, but you’ll get the idea:

class ShapeCollector {
    private val locationsBeingProcessed = mutableListOf<Location>()

    fun processLocation(location: Location) {
        if (locationsBeingProcessed.add(location)) {
             // fetch data, then send back a Shape instance to
             // the view-model
        }
    }
}

If we were programming with threads, we would have several threads sharing an
instance of ShapeCollector, executing processLocation concurrently. Using this
approach, however, leads to sharing mutable states. In the previous snippet, loca
tionsBeingProcessed is one example.

As you learned in Chapter 5, making mistakes using locks is surprisingly easy. Using
coroutines, we don’t have to share mutable state. How? Using coroutines and chan‐
nels, we can share by communicating instead of communicate by sharing.

The key idea is to encapsulate mutable states inside coroutines. In the case of the list
of Locations being processed, it can be done with:

launch {
    val locationsBeingProcessed = mutableListOf<Location>()     

    for (location in locations) {                               
        // same code from previous figure
    }
}

In the preceding example, only the coroutine that started with launch can touch
the mutable state, which is locationsBeingProcessed.

However, we now have a problem. How do we provide the locations? We have
to somehow provide this iterable to the coroutine. So we’ll use a Channel, and use
it as input of a function we’ll declare. Since we’re launching a coroutine inside a
function, we declare this function as an extension function of CoroutineScope:
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private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>
) = launch {
     // code removed for brevity
}

As this coroutine will be receiving Locations from the view-model, we declare the
Channel as a ReceiveChannel. By the way, you’ve seen in the previous section that a
Channel can be iterated over, just like a list. So now, we can fetch the corresponding
ShapeData for each Location instance received from the channel. As you’ll want to
do this in parallel, you might be tempted to write something like so:

private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>
) = launch {
     val locationsBeingProcessed = mutableListOf<Location>()

     for (loc in locations) {
         if (!locationsBeingProcessed.contains(loc) {
              launch(Dispatchers.IO) {
                   // fetch the corresponding `ShapeData`
              }
         }
    }
}

Beware, as there’s a catch in this code. You see, for each received location, we start a
new coroutine. Potentially, this code might start a lot of coroutines if the locations
channel debits a lot of items. For this reason, this situation is also called unlimited
concurrency. When we introduced coroutines, we said that they are lightweight. It’s
true, but the work they do might very well consume significant resources. In this case,
launch(Dispatchers.IO) in itself has an insignificant overhead, while fetching the
ShapeData could require a REST API call on a server with limited bandwidth.

So we’ll have to find a way to limit concurrency—we don’t want to start an unlimited
number of coroutines. When facing this situation with threads, a common practice is
to use a thread pool coupled with a work queue (see Chapter 5). Instead of a thread
pool, we’ll create a coroutine pool, which we’ll name worker pool. Each coroutine from
this worker pool will perform the actual fetch of ShapeData for a given location. To
communicate with this worker pool, collectShapes should use an additional chan‐
nel to which it can send locations to the worker pool, as shown in Figure 9-5.
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Figure 9-5. Limit concurrency.

When you use Channels, be careful not to have unlimited concur‐
rency. Imagine that you have to instantiate a lot of Bitmap instan‐
ces. The underlying memory buffer which stores pixel data takes a
nonnegligible amount of space in memory. When working with a
lot of images, allocating a fresh instance of Bitmap every time you
need to create an image causes significant pressure on the system
(which has to allocate memory in RAM while the garbage collector
cleans up all the previously created instances that aren’t referenced
anymore). A canonical solution to this problem is Bitmap pooling,
which is only a particular case of the more general pattern of object
pooling. Instead of creating a fresh instance of Bitmap, you can pick
one from the pool (and reuse the underlying buffer when possible).

This is how you would modify collectShapes to take an additional channel
parameter:

private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>,
     locationsToProcess: SendChannel<Location>,
) = launch {
     val locationsBeingProcessed = mutableListOf<Location>()

     for (loc in locations) {
         if (!locationsBeingProcessed.contains(loc) {
              launch(Dispatchers.IO) {
                   locationsToProcess.send(loc)
              }
         }
    }
}

Notice how collectShapes now sends a location to the locationsToProcess chan‐
nel, only if the location isn’t in the list of locations currently being processed.
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As for the worker implementation, it simply reads from the channel we just created—
except that from the worker perspective, it’s a ReceiveChannel. Using the same
pattern:

private fun CoroutineScope.worker(
        locationsToProcess: ReceiveChannel<Location>,
) = launch(Dispatchers.IO) {
        for (loc in locationsToProcess) {
             // fetch the ShapeData, see later
        }
}

For now, we are not focusing on how to fetch a ShapeData. The most important
notion to understand here is the for loop. Thanks to the iteration on the
locationsToProcess channel, each individual worker coroutine will receive its own
location without interfering with the others. No matter how many workers we’ll start,
a location sent from collectShapes to the locationsToProcess channel will only be
received by one worker. You’ll see that each worker will be created with the same
channel instance when we wire all those things up. In message-oriented software, this
pattern, which implies delivery of a message to multiple destinations, is called
fan-out.

Looking back at the missing implementation inside the for loop, this is what we’ll do:

1. Fetch the ShapeData (which from now on we’ll simply refer to as “data”).
2. Create a Shape from the location and the data.
3. Send the shape to some channel, which other components in our application will

use to get the shapes from ShapeCollector. Obviously, we haven’t created such a
channel yet.

4. Notify the collectShapes coroutine that the given location has been processed,
by sending it back to its sender. Again, such a channel has to be created.

Do note that this isn’t the only possible implementation. You could imagine other
ways and adapt to your needs. After all, this is what this chapter is all about: to give
you examples and inspiration for your next developments.

Back on our horse, Example 9-1 shows the final implementation of the worker
coroutine.

Example 9-1. Worker coroutine

private fun CoroutineScope.worker(
    locationsToProcess: ReceiveChannel<Location>,
    locationsProcessed: SendChannel<Location>,
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    shapesOutput: SendChannel<Shape>
) = launch(Dispatchers.IO) {
    for (loc in locationsToProcess) {
        try {
            val data = getShapeData(loc)
            val shape = Shape(loc, data)
            shapesOutput.send(shape)
        } finally {
            locationsProcessed.send(loc)
        }
    }
}

Just like the collectShapes was adapted earlier to take one channel as an argument,
this time we’re adding two more channels: locationsProcessed and shapesOutput.

Inside the for loop, we first get a ShapeData instance for a location. For the sake of
this simple example, Example 9-2 shows our implementation.

Example 9-2. Getting shape data

private suspend fun getShapeData(
    location: Location
): ShapeData = withContext(Dispatchers.IO) {
        /* Simulate some remote API delay */
        delay(10)
        ShapeData()
}

Since the getShapeData method might not return immediately, we implement it as a
suspend function. Imagining that the downstream code involves a remote API, we
use Dispatchers.IO.

The collectShapes coroutine has to be adapted again, since it has to accept one
more channel—the one from which the workers send back locations they’re done
processing. You’re starting to get used to it—it’ll be a ReceiveChannel from the
collectShapes perspective. Now collectShapes accepts two ReceiveChannels and
one SendChannel.
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Let’s try it:

private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>,
     locationsToProcess: SendChannel<Location>,
     locationsProcessed: ReceiveChannel<Location>
): Job = launch {
     ...
     for (loc in locations) {
          // same implementation, hidden for brevity
     }
     // but.. how do we iterate over locationsProcessed?
}

Now we have a problem. How can you receive elements from multiple
ReceiveChannels at the same time? If we add another for loop right below the loca
tions channel iteration, it wouldn’t work as intended as the first iteration only ends
when the locations channel is closed.

For that purpose, you can use the select expression.

The select Expression
The select expression waits for the result of multiple suspending functions simulta‐
neously, which are specified using clauses in the body of this select invocation. The
caller is suspended until one of the clauses is either selected or fails.

In our case, it works like so:

select<Unit> {
    locations.onReceive { loc ->
        // do action 1
    }
    locationsProcessed.onReceive { loc ->
        // do action 2
    }
}

If the select expression could talk, it would say: “Whenever the locations channel
receives an element, I’ll do action 1. Or, if the locationsProcessed channel receives
something, I’ll do action 2. I can’t do both actions at the same time. By the way, I’m
returning Unit.”

The “I can’t do both actions at the same time” is important. You might wonder what
would happen if action 1 takes half an hour—or worse, if it never completes. We’ll
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describe a similar situation in “Deadlock in CSP” on page 227. However, the imple‐
mentation that follows is guaranteed never to block for a long time in each action.

Since select is an expression, it returns a result. The result type is inferred by the
return type of the lambdas we provide for each case of the select—pretty much like
the when expression. In this particular example, we don’t want any result, so the
return type is Unit. As select returns after either the locations or locationsPro
cessed channel receives an element, it doesn’t iterate over channels like our previous
for loop. Consequently, we have to wrap it inside a while(true). The complete
implementation of collectShapes is shown in Example 9-3.

Example 9-3. Collecting shapes

private fun CoroutineScope.collectShapes(
    locations: ReceiveChannel<Location>,
    locationsToProcess: SendChannel<Location>,
    locationsProcessed: ReceiveChannel<Location>
) = launch(Dispatchers.Default) {

    val locationsBeingProcessed = mutableListOf<Location>()

    while (true) {
        select<Unit> {
            locationsProcessed.onReceive {                     
                locationsBeingProcessed.remove(it)
            }
            locations.onReceive {                              
                if (!locationsBeingProcessed.any { loc ->
                    loc == it }) {
                    /* Add it to the list of locations being processed */
                    locationsBeingProcessed.add(it)

                    /* Now download the shape at location */
                    locationsToProcess.send(it)
                }
            }
        }
    }
}

When the locationsProcessed channel receives a location, we know that this
location has been processed by a worker. It should now be removed from the list
of locations being processed.

When the locations channel receives a location, we have to first check whether
we’ve already been processing the same location or not. If not, we’ll add the
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location to the locationsBeingProcessed list, and then send it to the
locationsToProcess channel.

Putting It All Together
The final architecture of the ShapeCollector takes shape, as shown in Figure 9-6.

Figure 9-6. Final architecture.

Remember that all the channels we used to implement the collectShapes and
worker methods have to be created somewhere. To respect encapsulation, a good
place to do that is in a start method, as shown in Example 9-4.

Example 9-4. Shape collector

class ShapeCollector(private val workerCount: Int) {
    fun CoroutineScope.start(
        locations: ReceiveChannel<Location>,
        shapesOutput: SendChannel<Shape>
    ) {
        val locationsToProcess = Channel<Location>()
        val locationsProcessed = Channel<Location>(capacity = 1)

        repeat(workerCount) {
             worker(locationsToProcess, locationsProcessed, shapesOutput)
        }
        collectShapes(locations, locationsToProcess, locationsProcessed)
    }

    private fun CoroutineScope.collectShapes // already implemented

    private fun CoroutineScope.worker        // already implemented

    private suspend fun getShapeData         // already implemented
}
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This start method is responsible for starting the whole shape collection machinery.
The two channels that are exclusively used inside the ShapeCollector are created:
locationsToProcess and locationsProcessed. We are not explicitly creating
ReceiveChannel or SendChannel instances here. We’re creating them as Channel
instances because they’ll further be used either as ReceiveChannel or SendChannel.
Then the worker pool is created and started, by calling the worker method as many
times as workerCount was set. It’s achieved using the repeat function from the stan‐
dard library.

Finally, we call collectShapes once. Overall, we started workerCount + 1 coroutines
in this start method.

You might have noticed that locationsProcessed is created with a capacity of 1. This
is intended, and is an important detail. We’ll explain why in the next section.

Fan-Out and Fan-In
You just saw an example of multiple coroutines receiving from the same channel.
Indeed, all worker coroutines receive from the same locationsToProcess channel. A
Location instance sent to the locationsToProcess channel will be processed by only
one worker, without any risk of concurrent issues. This particular interaction between
coroutines is known as fan-out, as shown in Figure 9-7. From the standpoint of the
coroutine started with the collectShapes function, locations are fanned-out to the
worker pool.

Figure 9-7. Fan-out and fan-in.

Fan-out is achieved by launching several coroutines which all iterate over the same
instance of ReceiveChannel (see the worker implementation in Example 9-1). If one
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of the workers fails, the other ones will continue to receive from the channel—mak‐
ing the system resilient to some extent.

Inversely, when several coroutines send elements to the same SendChannel instance,
we’re talking about fan-in. Again, you’ve got a good example since all workers send
Shape instances to shapesOutput.

Performance Test
Alright! Time to test the performance of our ShapeCollector. The following snippet
has a main function, which calls the functions consumeShapes and sendLocations.
Those functions start a coroutine that, respectively, consumes Shape instances from
the ShapeCollector and sends Location instances. Overall, this code is close to what
you’d write in a real view-model, as shown in Example 9-5.

Example 9-5. Shape collector

fun main() = runBlocking<Unit> {
    val shapes = Channel<Shape>()                
    val locations = Channel<Location>()

    with(ShapeCollector(4)) {                    
        start(locations, shapes)
        consumeShapes(shapes)
    }

    sendLocations(locations)
}

var count = 0

fun CoroutineScope.consumeShapes(
    shapesInput: ReceiveChannel<Shape>
) = launch {
    for (shape in shapesInput) {
        // increment a counter of shapes
        count++                                  
    }
}

fun CoroutineScope.sendLocations(
    locationsOutput: SendChannel<Location>
) = launch {
    withTimeoutOrNull(3000) {                    
        while (true) {
            /* Simulate fetching some shape location */
            val location = Location(Random.nextInt(), Random.nextInt())
            locationsOutput.send(location)
        }
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    }
    println("Received $count shapes")
}

We set up the channels according to the needs of the ShapeCollector—see
Figure 9-4.

We create a ShapeCollector with four workers.

The consumeShapes function only increments a counter. That counter is declared
globally—which is fine because the coroutine started with consumeShapes is the
only one to modify count.

In the sendLocations functions, we set up a timeout of three seconds.
withTimeoutOrNull is a suspending function that suspends until the provided
time is out. Consequently, the coroutine started with sendLocations only prints
the received count after three seconds.

If you recall the implementation of getShapeData in Example 9-2, we added
delay(10) to simulate a suspending call of 10 ms long. Running four workers for
three seconds, we would ideally receive 3,000 / 10 × 4 = 1,200 shapes, if our imple‐
mentation had zero overhead. On our test machine, we got 1,170 shapes—that’s an
efficiency of 98%.

Playing a little bit with more workers (64), with delay(5) in each worker, we got
122,518 shapes in 10 seconds (the ideal number being 128,000)—that’s an efficiency
of 96%.

Overall, the throughput of ShapeCollector is quite decent, event with a sendLoca
tions function that continuously sends Location instances without any pause
between two sends.

Back Pressure
What happens if our workers are too slow? This could very well happen if a remote
HTTP call takes time to respond, or a backend server is overwhelmed—we don’t
know. To simulate this, we can dramatically increase the delay inside getShapeData
(see Example 9-2). Using delay(500), we got only 20 shapes in three seconds, with
four workers. The throughput decreased, but this isn’t the interesting part. As always
with producer-consumer problems, issues can arise when consumers slow down—as
producers might accumulate data and the system may ultimately run out of memory.
You can add println() logs inside the producer coroutine and run the program
again:
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fun CoroutineScope.sendLocations(locationsOutput: SendChannel<Location>) = 
launch {
    withTimeoutOrNull(3000) {
        while (true) {
            /* Simulate fetching some shape location */
            val location = Location(Random.nextInt(), Random.nextInt())
            println("Sending a new location")
            locationsOutput.send(location)      // suspending call
        }
    }
    println("Received $count shapes")
}

Now, “Sending a new location” is printed only about 25 times in the console.

So the producer is being slowed down. How?

Because locationsOutput.send(location) is a suspending call. When workers are
slow, the collectShapes function (see Example 9-3) of the ShapeCollector class
quickly becomes suspended at the line locationsToProcess.send(it). Indeed, loca
tionsToProcess is a rendezvous channel. Consequently, when the coroutine started
with collectShapes reaches that line, it’s suspended until a worker is ready to receive
the location from locationsToProcess. When the previously mentioned coroutine is
suspended, it can no longer receive from the locations channel—which corresponds
to locationsOutput in the previous example. This is the reason why the coroutine
that started with sendLocation is in turn suspended. When workers finally do their
job, collectShapes can resume, and so does the producer coroutine.

Similarities with the Actor Model
In CSP, you create coroutines that encapsulate mutable state. Instead of communicat‐
ing by sharing their state, they share by communicating (using Channels). The corou‐
tine started with the collectShapes function (see Example 9-3) uses three channels
to communicate with other coroutines—one SendChannel and two ReceiveChannels,
as shown in Figure 9-8.

In CSP parlance, collectShapes and its three channels is a process. A process is a
computational entity that communicates with other actors using asynchronous mes‐
sage passing (channels). It can do only one thing at a time—reading, writing to chan‐
nels, or processing.

In the Actor model, an actor is quite similar. One noticeable difference is that an actor
only has one channel—called a mailbox. If an actor needs to be responsive and non‐
blocking, it must delegate its long-running processing to child actors. This similarity
is the reason why CSP is sometimes referred to as an Actor model implementation.
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Figure 9-8. Process in CSP.

Execution Is Sequential Inside a Process
We’ve just seen that a process is made of a single coroutine and channels. The very
nature of a coroutine is for it to be executed on some thread. So unless this coroutine
starts other child coroutines (which run concurrently, and in some cases in parallel),
all lines of that coroutine are executed sequentially. That includes receiving from
channels, sending objects to other channels, and mutating some private state. Conse‐
quently, the actors implemented in this chapter could either receive from a channel or
send to another channel, but not do both at the same time. Under load, this kind of
actor can be efficient because it doesn’t involve blocking calls, only suspending func‐
tions. When a coroutine is suspended, the overall efficiency isn’t necessarily affected,
because the thread executing the suspended coroutine can then execute another
coroutine which has something to do. This way, threads can be used to their full
potential, never contending to some lock.

Final Thoughts
This mechanism using CSP style has very little internal overhead. Thanks to Chan
nels and coroutines, our implementation is lock-free. Therefore, there’s no thread
contention—the ShapeCollector is less likely to impact other threads of your applica‐
tion. Similarly, there’s a chance that the Dispatchers we use in the ShapeCollector
might also be used in other features in our application. By leveraging lock-free imple‐
mentations, a coroutine suspended while receiving from a channel won’t prevent the
underlying thread from executing other coroutines. In other words, we can do more
with the same resources.

Moreover, this architecture provides built-in back pressure. If some ShapeData
instances suddenly take more time to fetch, producers of ShapeLocation instances
will be slowed down so that locations don’t accumulate—which reduces the risk of
running out of memory. This back pressure comes for free—you didn’t explicitly
write code for such a feature.
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The example given in this chapter is generic enough to be taken as is and adapted to
fit your needs. In the event that you need to significantly deviate from our example,
then we owe you a deeper explanation. For example, why did we set a capacity of 1 for
the locationsProcessed channel in Example 9-4? The answer is admittedly nontriv‐
ial. If we had created a regular rendezvous channel, our ShapeCollector would have
suffered from a deadlock—which brings us to the next section.

Deadlock in CSP
Deadlocks are most commonly encountered when working with threads. When
thread A holds lock 1 and attempts to seize lock 2, while thread B holds lock 2 and
attempts to seize lock 1, you have a deadlock. The two threads indefinitely wait for
each other and neither progresses. Deadlocks can have disastrous consequences when
they happen in critical components of an application. An efficient way to avoid such a
situation is to ensure that a deadlock cannot happen under any imaginable circum‐
stances. Even when conditions are highly unlikely to be met, you can trust Murphy’s
Law to strike some day.

However, deadlocks can also happen in CSP architecture. We can do a little experi‐
ment to illustrate this. Instead of setting a capacity of 1 to the channel locationsPro
cessed in Example 9-4, let’s use a channel with no buffer (a rendezvous channel) and
run the performance test sample in Example 9-5. The result printed in the console is:

Received 4 shapes

For the record, we should have received 20 shapes. So, what’s going on?

Fair warning: the following explanation goes into every necessary
detail, and is quite long. We encourage you to take the time to read
it carefully until the end. It’s the ultimate challenge to test your
understanding of channels.
You might also skip it entirely and jump to “TL;DR” on page 229.

Let’s have a closer look at the internals of our ShapeCollector class and follow each
step as though we were a live debugger. Imagine that you’ve just started the perfor‐
mance test sample in Example 9-5, and the first Location instance is sent to the loca
tions channel. That location goes through the collectShapes method with its
select expression. At that moment, locationsProcessed has nothing to provide, so
the select expression goes through the second case: locations.onReceive{..}. If
you look at what’s done inside this second case, you can see that a location is sent to
the locationsToProcess channel—which is a receive channel for each worker. Con‐
sequently, the coroutine started by the collectShapes method (which we’ll refer to as
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4. While there’s no lock or mutex involved here, the situation is very similar to a deadlock involving threads.
This is why we use the same terminology.

the collectShapes coroutine) is suspended at the locationsToProcess.send(it)
invocation until a worker handshakes the locationsToProcess rendezvous channel.
This happens fairly quickly, since at that time all workers are idle.

When a worker receives the first Location instance, the collectShapes coroutine is
resumed and is able to receive other locations. As in our worker implementation,
we’ve added some delay to simulate a background processing, you can consider work‐
ers slow compared to other coroutines—which are the collectShapes coroutine and
the producer coroutine started with the sendLocations method in the test sample
(which we’ll refer to as the sendLocations coroutine). Therefore, another location is
received by the collectShapes coroutine while the worker that which took the first
location is still busy processing it. Similarly, a second worker quickly handles the sec‐
ond location, and a third location is received by the collectShapes coroutine, etc.

The execution continues until all four workers are busy, while a fifth location is
received by the collectShapes coroutine. Following the same logic as before, the
collectShapes coroutine is suspended until a worker is ready to take the Location
instance. Unfortunately, all workers are busy. So the collectShapes coroutine isn’t
able to take incoming locations anymore. Since the collectShapes and
sendLocations coroutines communicate through a rendezvous channel, the
sendLocations coroutine is in turn suspended until collectShapes is ready to take
more locations.

Time goes by until a worker makes itself available to receive the fifth location.
Eventually, a worker (probably the first worker) is done processing its Location
instance. Then it sends the result to the shapesOutput channel and it tries
to send back the processed location to the collectShapes coroutine, using the
locationsProcessed channel. Remember that this is our mechanism to notify
the collectShapes coroutine when a location has been processed. However, the
collectShapes coroutine is suspended at the locationsToProcess.send(it) invo‐
cation. So collectShapes can’t receive from the locationsProcessed channel.
There’s no issue to this situation: this is a deadlock,4 as shown in Figure 9-9.

Eventually, the first four locations processed by the workers are processed and four
Shape instances are sent to the shapesOutput channel. The delay in each worker is
only of 10 ms, so all workers have time to complete before the three-second timeout.
Hence the result:

Received 4 shapes
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5. Actually, our implementation, which uses a capacity of 1 for locationsProcessed, isn’t the only possible
implementation that works without deadlocks. There’s at least one solution that uses locationsProcessed as a
rendezvous channel. We leave this as an exercise for the reader.

Figure 9-9. Deadlock in CSP.

If the locationsProcessed channel had a capacity of at least 1, the first available
worker would have been able to send back its Location instance and then receive
from the locationsToProcess channel—releasing the collectShapes coroutine.
Subsequently, in the select expression of the collectShapes coroutine, the loca
tionsToProcess channel is always checked before the locations channel. This
ensures that when the collectShapes coroutine is eventually suspended at the loca
tionsToProcess.send(it) invocation, the buffer of the locationsProcessed chan‐
nel is guaranteed to be empty—so a worker can send a location without being
suspended. If you’re curious, try to revert the two cases locationsProcessed.onRe
ceive {..} and locations.onReceive {..} while having a capacity of 1 for the
locationsProcessed channel. The result will be: “Received 5 shapes.”

TL;DR
Not only is the capacity of 1 for the locationsProcessed channel extremely impor‐
tant, the order in which channels are read in the select expression of the
collectShapes coroutine also matters.5 What should you remember from this?
Deadlocks are possible in CSP. Even more important, understanding what caused the
deadlock is an excellent exercise to test your understanding of how channels work.

If we look back at the structure of the ShapeCollector, we can represent the structure
as a cyclic graph, as shown in Figure 9-10.
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Figure 9-10. Cyclic graph.

This new representation emphasizes an important property of the structure: it’s cyclic.
Location instances travel back and forth between the collectShapes coroutine and
workers.

Cycles in CSP are actually the cause of deadlocks. Without cycles, there’s no possibil‐
ity of deadlock. Sometimes, however, you’ll have no choice but to have those cycles.
In this case, we gave you the key ideas to reason about CSP, so you can find solutions
by yourself.

Limitations of Channels
Up until now, we’ve held off on discussing the limitations of channels, so we’ll
describe some of those limitations now. Using notions from this chapter, creating a
stream of Int values is typically done as shown in Example 9-6.

Example 9-6. Producing numbers

fun CoroutineScope.numbers(): ReceiveChannel<Int> = produce {
    send(1)
    send(2)
    // send other numbers
}

On the receiving side, you can consume those numbers like so:

fun main() = runBlocking {
    val channel = numbers()
    for (x in channel) {
        println(x)
    }
}
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Pretty straightforward. Now, what if you need to apply a transformation for each of
those numbers? Imagine that your transformation function was:

suspend fun transform(n: Int) = withContext(Dispatchers.Default) {
    delay(10) // simulate some heavy CPU computations
    n + 1
}

You could modify the numbers function like so:

fun CoroutineScope.numbers(): ReceiveChannel<Int> = produce {
    send(transform(1))
    send(transform(2))
}

It works, but it’s not elegant. A much nicer solution would look like this:

fun main() = runBlocking {
    /* Warning - this doesn't compile */
    val channel = numbers().map {
        transform(it)
    }
    for (x in channel) {
        println(x)
    }
}

Actually, as of Kotlin 1.4, this code doesn’t compile. In the early days of channels, we
had “channel operators” such as map. However, those operators have been deprecated
in Kotlin 1.3, and removed in Kotlin 1.4.

Why? Channels are communication primitives between coroutines. They are specifi‐
cally designed to distribute values so that every value is received by only one receiver.
It’s not possible to use channels to broadcast values to multiple receivers. The design‐
ers of coroutines have created Flows specifically for asynchronous data streams on
which we can use transformation operators; we’ll see how in the next chapter.

So, channels are not a convenient solution to implement pipelines of data
transformations.
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Channels Are Hot
Let’s have a look at the source code of the produce channel builder. Two lines are
interesting, as shown in the following:

public fun <E> CoroutineScope.produce(                           
    context: CoroutineContext = EmptyCoroutineContext,
    capacity: Int = 0,
    @BuilderInference block: suspend ProducerScope<E>.() -> Unit
): ReceiveChannel<E> {
    val channel = Channel<E>(capacity)
    val newContext = newCoroutineContext(context)
    val coroutine = ProducerCoroutine(newContext, channel)
    coroutine.start(CoroutineStart.DEFAULT, coroutine, block)    
    return coroutine
}

produce is an extension function on CoroutineScope. Remember the conven‐
tion? It indicates that this function starts a new coroutine.

We can confirm that with the coroutine.start() invocation. Don’t pay too
much attention to how this coroutine is started—it’s an internal implementation.

Consequently, when you invoke the produce channel builder, a new coroutine is
started and immediately starts producing elements and sending them to the returned
channel even if no coroutine is consuming those elements.

This is the reason why channels are said to be hot: a coroutine is actively running to
produce or consume data. If you know RxJava, this is the same concept as hot observ‐
ables: they emit values independently of individual subscriptions. Consider this sim‐
ple stream:

fun CoroutineScope.numbers(): ReceiveChannel<Int> = produce {
    use(openConnectionToDatabase()) {
        send(1)
        send(2)
    }
}

Also, imagine that no other coroutines are consuming this stream. As this function
returns a rendezvous channel, the started coroutine will suspend on the first send. So
you might say: “OK, we’re fine—no background processing is done until we provide a
consumer to this stream.” It’s true, but if you forget to consume the stream, the data‐
base connection will remain open—notice that we used the use function from the
standard library, which is the equivalent of the try-with-resources statement in Java.
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While it might not be harmful as is, this piece of logic could be part of a retry loop, in
which case a significant amount of resources would leak.

To sum up, channels are intercoroutine communication primitives. They work really
well in a CSP-like architecture. However, we don’t have handy operators such as map
or filter to transform them. We can’t broadcast values to multiple receivers. More‐
over, their hot nature can cause memory leaks in some situations.

Flows have been created to address those channels’ limitations. We’ll cover flows in
the next chapter.

Summary
• Channels are communication primitives that provide a way to transfer streams of

values between coroutines.
• While channels are conceptually close to Java’s BlockingQueue, the fundamental

difference is that send and receive methods of a channel are suspending func‐
tions, not blocking calls.

• Using channels and coroutines, you can share by communicating instead of the
traditional communicate by sharing. The goal is to avoid shared mutable-state and
thread-safety issues.

• You can implement complex logic using CSP style, leveraging back pressure. This
results in potentially excellent performance since the nonblocking nature of sus‐
pending functions reduces thread contention to its bare minimum.

• Beware that deadlock in CSP is possible, if your architecture has cycles (a corou‐
tine sends objects to another coroutine, while also receiving objects from the
same coroutine). You can fix those deadlocks by, for example, tweaking the order
in which the select expression treats each cases, or by adjusting the capacity of
some channels.

• Channels should be considered low-level primitives. Deadlocks in CSP are one
example of misuse of channels. The next chapter will introduce flows—higher-
level primitives that exchange streams of data between coroutines. It doesn’t
mean that you shouldn’t use channels—there are still situations where channels
are necessary (the ShapeCollector in this chapter is an example). However,
you’ll see that in many situations, flows are a better choice. In any case, it’s
important to know about channels because (as you’ll see) flows sometimes use
channels under the hood.
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1. We’ll refer to Flows as flows in the rest of this chapter.

CHAPTER 10

Flows

Up to now, we’ve covered coroutines, suspending functions, and how to deal with
streams using Channels. We’ve seen from the previous chapter that working with
Channels implies starting coroutines to send and/or receive from those Channels. The
aforementioned coroutines are then hot entities that are sometimes hard to debug, or
can leak resources if they aren’t cancelled when they should be.

Flows, like Channels, are meant to handle asynchronous streams of data, but at a
higher level of abstraction and with better library tooling. Conceptually, Flows are
similar to Sequences, except that each step of a Flow can be asynchronous. It is also
easy to integrate flows in structured concurrency, to avoid leaking resources.

However, Flows1 aren’t meant to replace Channels. Channels are building blocks for
flows. Channels are still appropriate in some architectures such as in CSP (see Chap‐
ter 9). Nevertheless, you’ll see that flows suit most needs in asynchronous data
processing.

In this chapter, we’ll introduce you to cold and hot flows. You’ll see how cold flows
can be a better choice when you want to make sure never to leak any resources. On
the other hand, hot flows serve a different purpose such as when you need a “publish-
subscribe” relationship between entities in your app. For example, you can implement
an event bus using hot flows.

The best way to understand flows is to see how they are used in real-life applications.
So this chapter will also go through a series of typical use cases.
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An Introduction to Flows
Lets reimplement Example 9-6, using a Flow:

fun numbers(): Flow<Int> = flow {
    emit(1)
    emit(2)
    // emit other values
}

Several aspects are important to notice:

1. Instead of returning a Channel instance, we’re returning a Flow instance.
2. Inside the flow, we use the emit suspending function instead of send.
3. The numbers function, which returns a Flow instance, isn’t a suspending function.

Invoking the numbers function doesn’t start anything by itself—it just immedi‐
ately returns a Flow instance.

To sum up, you define in the flow block the emission of values. When invoked, the
numbers function quickly returns a Flow instance without running anything in the
background.

On the consuming site:

fun main() = runBlocking {
    val flow = numbers()      
    flow.collect {            
        println(it)
    }
}

We get an instance of Flow, using the numbers function.

Once we get a flow, instead of looping over it (like we would with a channel), we
use the collect function which, in flows parlance, is called a terminal operator.
We’ll extend on flows operators and terminal operators in “Operators” on page
239. For now, we can summarize the purpose of the collect terminal operator: it
consumes the flow; foor example, iterate over the flow and execute the given
lambda on each element of the flow.

That’s it—you’ve seen the basic usage of a flow. As we mentioned earlier, we’ll now
take a more realistic example, so you’ll see the real interest of Flows.
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2. A token is generally encrypted registration data which the client application stores in memory so that further
database access doesn’t require explicit authentication.

A More Realistic Example
Imagine that you need to get tokens from a remote database,2 then query additional
data for each of those tokens. You need to do that only once in a while, so you decide
not to maintain an active connection to the database (which could be expensive). So
you create a connection only when fetching the data, and close it when you’re done.

Your implementation should first establish the connection to the database. Then you
get a token using a suspending function getToken. This getToken function performs
a request to the database and returns a token. Then you asynchronously get optional
data associated with this token. In our example, this is done by invoking the suspend‐
ing function getData, which takes a token as a parameter. Once you get the result of
getData, you wrap both the token and the result in one TokenData class instance,
defined as:

data class TokenData(val token: String, val opt: String? = null)

To sum up, you need to produce a stream of TokenData objects. This stream requires
first establishing a database connection, then performing asynchronous queries for
retrieving tokens and getting associated data. You choose how many tokens you need.
After you’ve processed all the tokens, you disconnect and release underlying database
connection resources. Figure 10-1 shows how to implement such a flow.

Figure 10-1. Data flow.
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You can find the corresponding source code in GitHub.

In this chapter, we sometimes use images instead of code blocks
because the screenshots from our IDE show suspension points (in
the margin) and type hints, which are really helpful.

Several aspects of this implementation are particularly important to notice:

• Creating a connection to the database and closing it on completion is completely
transparent to the client code that consumes the flow. Client code only sees a flow
of TokenData.

• All operations inside the flow are sequential. For example, once we get the first
token (say, “token1”), the flow invokes getData("token1") and suspends until it
gets the result (say, “data1”). Then the flow emits the first TokenData("token1,"
"data1"). Only after that does the execution proceed with “token2,” etc.

• Invoking the getDataFlow function does nothing on its own. It simply returns a
flow. The code inside the flow executes only when a coroutine collects the flow, as
shown in Example 10-1.

Example 10-1. Collecting a flow

fun main() = runBlocking<Unit> {
    val flow = getDataFlow(3) // Nothing runs at initialization

    // A coroutine collects the flow
    launch {
        flow.collect { data ->
            println(data)
        }
    }
}

• If the coroutine that collects the flow gets cancelled or reaches the end of the
flow, the code inside the onCompletion block executes. This guarantees that we
properly release the connection to the database.

As we already mentioned, collect is a terminal operator that consumes all elements
of the flow. In this example, collect invokes a function on each collected element of
the flow (e.g., println(data) is invoked three times). We’ll cover other terminal
operators in “Examples of Cold Flow Usage” on page 240.

238 | Chapter 10: Flows

https://oreil.ly/dU4uZ


Until now, you’ve seen examples of flows that don’t run any code
until a coroutine collects them. In flows parlance, they are cold
flows.

Operators
If you need to perform transformations on a flow, much like you would do on collec‐
tions, the coroutines library provides functions such as map, filter, debounce,
buffer, onCompletion, etc. Those functions are called flow operators or intermediate
operators, because they operate on a flow and return another flow. A regular operator
shouldn’t be confused with a terminal operator, as you’ll see later.

In the following, we have an example usage of the map operator:

fun main() = runBlocking<Unit> {
    val numbers: Flow<Int> = // implementation hidden for brevity

    val newFlow: Flow<String> = numbers().map {
        transform(it)
    }
}

suspend fun transform(i :Int): String = withContext(Dispatchers.Default) {
    delay(10) // simulate real work
    "${i + 1}"
}

The interesting bit here is that map turns a Flow<Int> into a Flow<String>. The type
of the resulting flow is determined by the return type of the lambda passed to the
operator.

The map flow operator is conceptually really close to the map exten‐
sion function on collections. There’s a noticeable difference,
though: the lambda passed to the map flow operator can be a sus‐
pending function.

We’ll cover most of the common operators in a series of use cases in the next section.

Terminal Operators
A terminal operator can be easily distinguished from other regular operators since it’s
a suspending function that starts the collection of the flow. You’ve previously seen
collect.

An Introduction to Flows | 239



Other terminal operators are available, like toList, collectLatest, first, etc. Here
is a brief description of those terminal operators:

• toList collects the given flow and returns a List containing all collected
elements.

• collectLatest collects the given flow with a provided action. The difference
from collect is that when the original flow emits a new value, the action block
for the previous value is cancelled.

• first returns the first element emitted by the flow and then cancels the flow’s
collection. It throws a NoSuchElementException if the flow was empty. There’s
also a variant, firstOrNull, which returns null if the flow was empty.

Examples of Cold Flow Usage
As it turns out, picking one single example making use of all possible operators isn’t
the best path to follow. Instead, we’ll provide different use cases, which will illustrate
the usage of several flow operators.

Use Case #1: Interface with a Callback-Based API
Suppose that you’re developing a chat application. Your users can send messages to
one another. A message has a date, a reference to the author of the message, and con‐
tent as plain text.

Here is a Message:

data class Message(
    val user: String,
    val date: LocalDateTime,
    val content: String
)

Unsurprisingly, we’ll represent the stream of messages as a flow of the Message
instance. Every time a user posts a message into the app, the flow will transmit that
message. For now, assume that you can invoke a function getMessageFlow, which
returns an instance of Flow<Message>. With the Kotlin Flows library, you are able to
create your own custom flows. However, it makes the most sense to start by exploring
how the flow API can be used in common use cases:

fun getMessageFlow(): Flow<Message> {
    // we'll implement it later
}
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Now, suppose that you want to translate all messages from a given user in a different
language, on the fly. Moreover, you’d like to perform the translation on a background
thread.

To do that, you start by getting the flow of messages, by invoking getMessageFlow().
Then you apply operators to the original flow, as shown in the following:

fun getMessagesFromUser(user: String, language: String): Flow<Message> {
    return getMessageFlow()
        .filter { it.user == user }           
        .map { it.translate(language) }       
        .flowOn(Dispatchers.Default)          
}

The first operator, filter, operates on the original flow and returns another flow
of messages which all originate from the same user passed as a parameter.

The second operator, map, operates on the flow returned by filter and returns a
flow of translated messages. From the filter operator standpoint, the original
flow (returned by getMessageFlow()) is the upstream flow, while the downstream
flow is represented by all operators happening after filter. The same reasoning
applies for all intermediate operators—they have their own relative upstream and
downstream flow, as illustrated in Figure 10-2.

Finally, the flowOn operator changes the context of the flow it is operating on.
It changes the coroutine context of the upstream flow, while not affecting the
downstream flow. Consequently, steps 1 and 2 are done using the dispatcher
Dispatchers.Default.

In other words, the upstream flow’s operators (which are filter and map) are now
encapsulated: their execution context will always be Dispatchers.Default. It doesn’t
matter in which context the resulting flow will be collected; the previously mentioned
operators will be executed using Dispatchers.Default.

This is a very important property of flows, called context preservation. Imagine that
you’re collecting the flow on the UI thread of your application—typically, you would
do that using the viewModelScope of a ViewModel. It would be embarrassing if the
context of execution of one of the flow’s operators leaked downstream and affected
the thread in which the flow was ultimately collected. Thankfully, this will never hap‐
pen. For example, if you collect a flow on the UI thread, all values are emitted by a
coroutine that uses Dispatchers.Main. All the necessary context switches are auto‐
matically managed for you.
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Figure 10-2. Upstream and downstream flows.

Under the hood, flowOn starts a new coroutine when it detects that the context is
about to change. This new coroutine interacts with the rest of the flow through a
channel that is internally managed.

In flow parlance, an intermediate operator like map operates on the
upstream flow and returns another flow. From the map operator
standpoint, the returned flow is the downstream flow.
The map operator accepts a suspending function as a transforma‐
tion block. So if you wanted to only perform message translation
using Dispatchers.Default (and not message filtering), you could
remove the flowOn operator and declare the translate function
like so:

private suspend fun Message.translate(
    language: String
): Message  = withContext(Dispatchers.Default) {
    // this is a dummy implementation
    copy(content = "translated content")
}

See how easy it is to offload parts of data transformation to other
threads, while still having a big picture of the data flow?
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As you can see, the Flow API allows for a declarative way to express data transforma‐
tion. When you invoke getMessagesFromUser("Amanda," "en-us"), nothing is
actually running. All those transformations involve intermediate operators, which
will be triggered when the flow will be collected.

On the consuming site, if you need to act on each received message, you can use the
collect function like so:

fun main() = runBlocking {
    getMessagesFromUser("Amanda", "en-us").collect {
        println("Received message from ${it.user}: ${it.content}")
    }
}

Now that we’ve shown how to transform the flow and consume it, we can provide an
implementation for the flow itself: the getMessageFlow function. The signature of
this function is to return a flow of Messages. In that particular situation, we can rea‐
sonably assume that the message machinery is actually a service that runs in its own
thread. We’ll name this service MessageFactory.

Like most services of that kind, the message factory has a publish/subscribe mecha‐
nism—we can register or unregister observers for new incoming messages, as shown
in the following:

abstract class MessageFactory : Thread() {
    /* The internal list of observers must be thread-safe */
    private val observers = Collections.synchronizedList(
        mutableListOf<MessageObserver>())
    private var isActive = true

    override fun run() = runBlocking {
        while(isActive) {
            val message = fetchMessage()
            for (observer in observers) {
                observer.onMessage(message)
            }
            delay(1000)
        }
    }

    abstract fun fetchMessage(): Message

    fun registerObserver(observer: MessageObserver) {
        observers.add(observer)
    }

    fun unregisterObserver(observer: MessageObserver) {
        observers.removeAll { it == observer }
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3. As opposed to cold, a hot entity lives on its own until explicitly stopped.

    }

    fun cancel() {
        isActive = false
        observers.forEach {
            it.onCancelled()
        }
        observers.clear()
    }

    interface MessageObserver {
        fun onMessage(msg: Message)
        fun onCancelled()
        fun onError(cause: Throwable)
    }
}

This implementation polls for new messages every second and notifies observers.
Now the question is: how do we turn a hot3 entity such as this MessageFactory into a
flow? MessageFactory is also said to be callback-based, because it holds references to
MessageObserver instances and calls methods on those instances when new messages
are retrieved. To bridge the flow world with the “callback” world, you can use the
callbackFlow flow builder. Example 10-2 shows how you can use it.

Example 10-2. Making a flow from a callback-based API

fun getMessageFlow(factory: MessageFactory) = callbackFlow<Message> {
    val observer = object : MessageFactory.MessageObserver {
        override fun onMessage(msg: Message) {
            trySend(msg)
        }

        override fun onCancelled() {
            channel.close()
        }

        override fun onError(cause: Throwable) {
            cancel(CancellationException("Message factory error", cause))
        }
    }

    factory.registerObserver(observer)
    awaitClose {
        factory.unregisterObserver(observer)
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    }
}

The callbackFlow builder creates a cold flow which doesn’t perform anything until
you invoke a terminal operator. Let’s break it down. First off, it’s a parameterized
function which returns a Flow of the given type. It’s always done in three steps:

callbackFlow {
    /*
    1. Instantiate the "callback." In this case, it's an observer.
    2. Register that callback using the available api.
    3. Listen for close event using `awaitClose`, and provide a
       relevant action to take in this case. Most probably,
       you'll have to unregister the callback.
    */
}

It’s worth having a look at the signature of callbackFlow:

public inline fun <T> callbackFlow(
    @BuilderInference noinline block: suspend ProducerScope<T>.() -> Unit
): Flow<T>

Don’t be impressed by this. One key piece of information is that callbackFlow takes a
suspending function with ProducerScope receiver as the argument. This means that
inside the curly braces of the block following callbackFlow, you have a Producer
Scope instance as an implicit this.

Here is the signature of ProducerScope:

public interface ProducerScope<in E> : CoroutineScope, SendChannel<E>

So a ProducerScope is a SendChannel. And that’s what you should remember: call
backFlow provides you with an instance of SendChannel, which you can use inside
your implementation. You send the object instances you get from your callback to
this channel. This is what we do in step 1 of Example 10-2.

Use Case #2: Concurrently Transform a Stream of Values
Sometimes you have to apply a transformation on a collection or stream of objects, to
get a new collection of transformed objects. When those transformations should be
done asynchronously, things start getting a bit complicated. Not with flows!
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Imagine that you have a list of Location instances. Each location can be resolved to a
Content instance, using the transform function:

suspend fun transform(loc: Location): Content = withContext(Dispatchers.IO) 
{
    // Actual implementation doesn't matter
}

So you are receiving Location instances, and you have to transform them on the fly
using the transform function. However, processing one Location instance might
take quite some time. So you don’t want that processing of a location to delay the
transformation of the next incoming locations. In other words, transformations
should be done in parallel, as shown in Figure 10-3.

Figure 10-3. Merge flows.

In the preceding schema, we’ve limited the concurrency to four; in other words, at
most, four locations can be transformed simultaneously at a given point in time.

Figure 10-4 shows how you would implement this behavior using flows.

Figure 10-4. Implementing merging flows.
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You can find the corresponding source code in GitHub.

To understand what’s going on here, you should realize that locations.map{..}
returns a flow of a flow (e.g., the type is Flow<Flow<Content>>). Indeed, inside the
map{..} operator, a new flow is created upon emission of a location by the upstream
flow (which is locationsFlow). Each of those created flows is of type Flow<Content>
and individually performs location transformation.

The last statement, flattenMerge, merges all those created flows inside a new result‐
ing Flow<Content> (which we assign to contentFlow). Also, flattenMerge has a
“concurrency” parameter. Indeed, it would probably be inappropriate to concurrently
create and collect a flow every time we receive a location. With a concurrency level of
4, we ensure that no more than four flows will be collected at a given point in time.
This is handy in the case of CPU-bound tasks, when you know that your CPU won’t
be able to transform more than four locations in parallel (assuming the CPU has four
cores). In other words, flattenMerge’s concurrency level refers to how many opera‐
tions/transformations will be done in parallel at most at a given point in time.

Thanks to the suspending nature of flows, you get back pressure for free. New loca‐
tions are collected from locationsFlow only when the machinery is available to pro‐
cess them. A similar mechanism could be implemented without flows or coroutines,
using a thread pool and a blocking queue. However, that would require considerably
more lines of code.

As of this writing, the flattenMerge operator is marked as @Flow
Preview in the source code, which means that this declaration is in
a preview state and can be changed in a backward-incompatible
manner with a best-effort migration.
We hope that by the time we finish writing this book, the flow-
merging API will be stabilized. Otherwise, a similar operator might
replace flattenMerge.

What Happens in Case of Error?
If one of the transform functions raises an exception, the entire flow will be cancel‐
led, and the exception will be propagated downstream. While this good default
behavior, you might want to handle some exceptions right inside the flow itself.

We’ll show how to do that in “Error Handling” on page 251.
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Final Thoughts
• Do you realize that we’ve just created a worker pool that concurrently transforms

an incoming stream of objects, using only five lines of code?
• You’re guaranteed that the flow machinery is thread-safe. No more headaches fig‐

uring out the proper synchronization strategy to pass object references from a
thread pool to a collecting thread.

• You can easily tweak the concurrency level, which, in this case, means the maxi‐
mum number of parallel transformations.

Use Case #3: Create a Custom Operator
Even if a lot of flow operators are available out of the box, sometimes you’ll have to
make your own. Thankfully, flows are composable, and it’s not that difficult to imple‐
ment custom reactive logic.

For example, by the time we write those lines, there’s no Flows operator equivalent of
the Project Reactor’s bufferTimeout.

So, what is bufferTimeout supposed to do? Imagine that you have an upstream flow
of elements, but you want to process those elements by batches and at a fixed maxi‐
mum rate. The flow returned by bufferTimeout should buffer elements and emit a
list (batch) of elements when either:

• The buffer is full.
• A predefined maximum amount of time has elapsed (timeout).

Before going through the implementation, let’s talk about the key idea. The flow
returned by bufferTimeout should internally consume the upstream flow and buffer
elements. When the buffer is full, or a timeout has elapsed, the flow should emit the
content of the buffer (a list). You can imagine that internally we’ll start a coroutine
that receives two types of events:

• “An element has just been received from the upstream flow. Should we just add it
to the buffer or also send the whole buffer?”

• “Timeout! Send the content of the buffer right now.”

In Chapter 9 (CSP section), we’ve discussed a similar situation. The select expres‐
sion is perfect for dealing with multiple events coming from several channels.
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Now we’re going to implement our bufferTimeout flow operator:

You can find the corresponding source code in GitHub.
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4. The coroutine started with coroutineScope{}.

Here is the explanation:

• First of all, the signature of the operator tells us a lot. It’s declared as an extension
function of Flow<T>, so you can use it like this: upstreamFlow.bufferTime
out(10, 100). As for the return type, it’s Flow<List<T>>. Remember that you
want to process elements by batches, so the flow returned by bufferTimeout
should return elements as List<T>.

• Line 17: we’re using a flow{} builder. As a reminder, the builder provides you an
instance of FlowCollector, and the block of code is an extension function with
FlowCollector as the receiver type. In other words, you can invoke emit from
inside the block of code.

• Line 21: we’re using coroutineScope{} because we’ll start new coroutines, which
is only possible within a CoroutineScope.

• Line 22: from our coroutine standpoint,4 received elements should come from a
ReceiveChannel. So another inner coroutine should be started to consume the
upstream flow and send them over a channel. This is exactly the purpose of the
produceIn flow operator.

• Line 23: we need to generate “timeout” events. A library function already exists
exactly for that purpose: ticker. It creates a channel that produces the first item
after the given initial delay, and subsequent items with the given delay between
them. As specified in the documentation, ticker starts a new coroutine eagerly,
and we’re fully responsible for cancelling it.

• Line 34: we’re using whileSelect, which really is just syntax sugar for looping in
a select expression while clauses return true. Inside the whileSelect{} block
you can see the logic of adding an element to the buffer only if it’s not full, and
emitting the whole buffer otherwise.

• Line  46:  when  the  upstream  flow  collection  completes,  the  coroutine  started
with produceIn will still attempt to read from that flow, and a
ClosedReceiveChannelException  will  be  raised.  So  we  catch  that  exception,
and we know that we should emit the content of the buffer.

• Lines 48 and 49: channels are hot entities—they should be cancelled when they’re
not supposed to be used anymore. As for the ticker, it should be cancelled too.
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Usage
Figure 10-5 shows an example of how bufferTimeout can be used.

Figure 10-5. bufferTimeout usage.

You can find the corresponding source code in GitHub.

The output is:

139 ms: [1, 2, 3, 4]
172 ms: [5, 6, 7, 8]
223 ms: [9, 10, 11, 12, 13]
272 ms: [14, 15, 16, 17]
322 ms: [18, 19, 20, 21, 22]
...
1022 ms: [86, 87, 88, 89, 90]
1072 ms: [91, 92, 93, 94, 95]
1117 ms: [96, 97, 98, 99, 100]

As you can see, the upstream flow is emitting numbers from 1 to 100, with a delay of
10 ms between each emission. We set a timeout of 50 ms, and each emitted list can
contain at most five numbers.

Error Handling
Error handling is fundamental in reactive programming. If you’re familiar with
RxJava, you probably handle exceptions using the onError callback of the subscribe
method:

// RxJava sample
someObservable().subscribe(
    { value -> /* Do something useful */ },
    { error -> println("Error: $error") }
)
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Using flows, you can handle errors using a combination of techniques, involving:

• The classic try/catch block.
• The catch operator—we’ll cover this new operator right after we discuss the try/
catch block.

The try/catch Block
If we define a dummy upstream flow made of only three Ints, and purposely throw
an exception inside the collect{} block, we can catch the exception by wrapping the
whole chain in a try/catch block:

You can find the corresponding source code in GitHub.

The output is:

Received 1
Received 2
Caught java.lang.RuntimeException

It is important to note that try/catch also works when the exception is raised from
inside the upstream flow. For example, we get the exact same result if we change the
definition of the upstream flow to:
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You can find the corresponding source code in GitHub.

However, if you try to intercept an exception in the flow itself, you’re likely to get
unexpected results. Here is an example:

// Warning: DON'T DO THIS, this flow swallows downstream exceptions
val upstream: Flow<Int> = flow {
    for (i in 1..3) {
        try {
            emit(i)
        } catch (e: Throwable) {
            println("Intercept downstream exception $e")
        }
    }
}

fun main() = runBlocking {
    try {
        upstream.collect { value ->
            println("Received $value")
            check(value <= 2) {
                "Collected $value while we expect values below 2"
            }
        }
    } catch (e: Throwable) {
        println("Caught $e")
    }
}
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In this example, we’re using the flow builder to define upstream, and we wrapped the
emit invocation inside a try/catch statement. Even if it seems useless because emit
isn’t throwing exceptions, it could make sense with nontrivial emission logic never‐
theless. At the consuming site, in the main function, we collect that flow and we check
that we don’t get values strictly greater than 2. Otherwise, the catch block should
print Caught java.lang.IllegalStateException Collected x while we expect
values below 2.

We expect the following output:

Received 1
Received 2
Caught java.lang.IllegalStateException: Collected 3 while we expect values 
below 2

However, this is what we actually get:

Received 1
Received 2
Received 3
Intercept downstream exception java.lang.IllegalStateException: Collected 3 
while we expect values below 2

Despite the exception raised by check(value <= 2) {..}, that exception gets caught
not by the try/catch statement of the main function, but by the try/catch statement
of the flow.

A try/catch statement inside a flow builder might catch down‐
stream exceptions—which includes exceptions raised during the
collection of the flow.

Separation of Concern Is Important
A flow implementation shouldn’t have a side effect on the code that collects that flow.
Likewise, the code that collects a flow shouldn’t be aware of the implementation
details of the upstream flow. A flow should always be transparent to exceptions: it
should propagate exceptions coming from a collector. In other words, a flow should
never swallow downstream exceptions.

Throughout this book, we’ll refer to exception transparency to designate a flow that is
transparent to exceptions.
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Exception Transparency Violation
The previous example was an example of exception transparency violation. Trying to
emit values from inside a try/catch block is another violation. Here is an example
(again, don’t do this!):

val violatesExceptionTransparency: Flow<Int> = flow {
    for (i in 1..3) {
        try {
            emit(i)
        } catch (e: Throwable) {
            emit(-1)
        }
    }
}

fun main() = runBlocking {
    try {
        violatesExceptionTransparency.collect { value ->
            check(value <= 2) { "Collected $value" }
        }
    } catch (e: Throwable) {
        println("Caught $e")
    }
}

The output is:

Caught java.lang.IllegalStateException: Flow exception transparency is
violated:
Previous 'emit' call has thrown exception java.lang.IllegalStateException: 
Collected 3, but then emission attempt of value '-1' has been detected.
Emissions from 'catch' blocks are prohibited in order to avoid unspecified 
behaviour, 'Flow.catch' operator can be used instead.
For a more detailed explanation, please refer to Flow documentation.

The  try/catch  block  should  only  be  used  to  surround  the  collector,  to  handle
exceptions raised from the collector itself, or (possibly, although it’s not ideal) to han‐
dle exceptions raised from the flow.

To handle exceptions inside the flow, you should use the catch operator.
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The catch Operator
The catch operator allows for a declarative style of catching exceptions, as shown in
Figure 10-6. It catches all upstream exceptions. By all exceptions, we mean that it
even catches Throwables. Since it only catches upstream exceptions, the catch opera‐
tor doesn’t have the exception issue of the try/catch block.

Figure 10-6. Declarative style.

You can find the corresponding source code in GitHub.

The output is:

Received 1
Received 2
Caught java.lang.RuntimeException

The flow raises a RuntimeException if it’s passed a value greater than 2. Right after, in
the catch operator, we print in the console. However, the collector never get the value
3. So the catch operator automatically cancels the flow.

Exception transparency
From inside this operator, you can only catch upstream exceptions. When we say
upstream, we mean relative to the catch operator. To show what we mean, we’ll pick
an example where the collector throws an exception before the flow internally throws
another exception. The collector should be able to catch the raised exception (the
exception shouldn’t be caught by the flow):
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You can find the corresponding source code in GitHub.

In this example, the collector throws a RuntimeException if it collects a value greater
than 2. The collection logic is wrapped in a try/catch statement because we don’t
want our program to crash and log the exception. The flow internally raises a Number
formatException if the value is negative. The catch operator acts as a safeguard (logs
the exception and cancels the flow).

The output is:

Received 0
Collector stopped collecting the flow

Note that the flow didn’t intercept the exception raised inside the collector, because it
was caught in the catch clause of the try/catch. The flow never got to raise a
NumberformatException, because the collector prematurely cancelled the collection.

Another example
In “Use Case #2: Concurrently Transform a Stream of Values” on page 245, we held
off on talking about error handling. Suppose the transform function might raise
exceptions, among which is NumberFormatException. You can selectively handle Num
berFormatException using the catch operator:
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fun main() = runBlocking {
    // Defining the Flow of Content - nothing is executing yet
    val contentFlow = locationsFlow.map { loc ->
        flow {
            emit(transform(loc))
        }.catch { cause: Throwable ->
            if (cause is NumberFormatException) {   
                println("Handling $cause")
            } else {
                throw cause                         
            }
        }
    }.flattenMerge(4)

    // We now collect the entire flow using the toList terminal operator
    val contents = contentFlow.toList()
}

As the catch operator catches Throwables, we need to check the type of the error.
If the error is a NumberFormatException, then we handle it inside the if state‐
ment. You can add other checks there for different error types.

Otherwise, you don’t know the error’s type. In most cases, it’s preferable not to
swallow the error and rethrow.

You can use emit from inside catch
Sometimes it will make sense to emit a particular value when you catch an exception
from inside the flow:
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5. Materialize comes from the Rx operator of the same name. See the Rx documentation for more insight.

You can find the corresponding source code in GitHub.

The output is:

Received 1
Received 3
Received 0

Emitting values from inside catch is especially useful to materialize exceptions.

Materialize Your Exceptions
Materializing exceptions5 is the process of catching exceptions and emitting special
values or objects that represent those exceptions. The goal is to avoid throwing excep‐
tions from inside the flow, because code execution then goes to whatever place that
collects that flow. It doesn’t matter whether collection code handles exceptions
thrown by the flow or not. If the flow throws exceptions, the collection code needs to
be aware of those exceptions and catch them in order to avoid undefined behavior.
Consequently, the flow has a side effect on the collection code, and this is a violation of
the exception transparency principle.

The collection code shouldn’t be aware of implementation details of
the flow. For example, if the flow is a Flow<Number>, you should
only expect to get Number values (or subtypes)—not exceptions.

Let’s take another example. Imagine you’re fetching images, given their URLs. You
have an incoming flow of URLs:

// We don't use realistic URLs, for brevity
val urlFlow = flowOf("url-1", "url-2", "url-retry")

You also have this function already available:

suspend fun fetchImage(url: String): Image {
    // Simulate some remote call
    delay(10)

    // Simulate an exception thrown by the server or API
    if (url.contains("retry")) {
        throw IOException("Server returned HTTP response code 503")
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6. These subclasses are an algebraic data type.

    }

    return Image(url)
}

data class Image(val url: String)

This fetchImage function may throw IOExceptions. In order to craft a “flow of
images” using the urlFlow and the fetchImage function, you should materialize
IOExceptions. Regarding the fetchImage function, it either succeeds or fails—you
either get an Image instance, or an exception is thrown. You can represent these out‐
comes by a Result type, with Success and Error subclasses:6

sealed class Result
data class Success(val image: Image) : Result()
data class Error(val url: String) : Result()

In the case of a success, we wrap the actual result—the Image instance. In the case of
failure, we felt it was appropriate to wrap the URL for which image retrieval failed.
However, you’re free to wrap all data that might be useful for the collection code, such
as the exception itself.

Now you can encapsulate fetchImage usage, by creating a fetchResult function
which returns Result instances:

suspend fun fetchResult(url: String): Result {
    println("Fetching $url..")
    return try {
        val image = fetchImage(url)
        Success(image)
    } catch (e: IOException) {
        Error(url)
    }
}

Finally, you can implement a resultFlow and collect it safely:

fun main() = runBlocking {
    val urlFlow = flowOf("url-1", "url-2", "url-retry")

    val resultFlow = urlFlow
        .map { url -> fetchResult(url) }
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    val results = resultFlow.toList()
    println("Results: $results")
}

The output is:

Fetching url-1..
Fetching url-2..
Fetching url-retry..
Results: [Success(image=Image(url=url-1)), Success(image=Image(url=url-2)), 
Error(url=url-retry)]

A bonus
Imagine that you’d like to automatically retry fetching an image in the event of an
error. You can implement a custom flow operator that retries an action while the
predicate returns true:

fun <T, R : Any> Flow<T>.mapWithRetry(
    action: suspend (T) -> R,
    predicate: suspend (R, attempt: Int) -> Boolean
) = map { data ->
    var attempt = 0L
    var shallRetry: Boolean
    var lastValue: R? = null
    do {
        val tr = action(data)
        shallRetry = predicate(tr, ++attempt)
        if (!shallRetry) lastValue = tr
    } while (shallRetry)
    return@map lastValue
}

If you’d like to retry, three times (at most) before returning an error, you can use this
operator like so:

fun main() = runBlocking {
    val urlFlow = flowOf("url-1", "url-2", "url-retry")

    val resultFlowWithRetry = urlFlow
        .mapWithRetry(
            { url -> fetchResult(url) },
            { value, attempt -> value is Error && attempt < 3L }
        )

    val results = resultFlowWithRetry.toList()
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    println("Results: $results")
}

The output is:

Fetching url-1..
Fetching url-2..
Fetching url-retry..
Fetching url-retry..
Fetching url-retry..
Results: [Success(image=Image(url=url-1)), Success(image=Image(url=url-2)), 
Error(url=url-retry)]

Hot Flows with SharedFlow
Previous implementations of flow were cold: nothing runs until you start collecting
the flow. This is made possible because for each emitted value, only one collector
would get the value. Therefore, there’s no need to run anything until the collector is
ready to collect the values.

However, what if you need to share emitted values among several collectors? For
example, say an event like a file download completes in your app. You might want to
directly notify various components, such as some view-models, repositories, or even
some views. Your file downloader might not have to be aware of the existence of other
parts of your app. A good separation of concerns starts with a loose coupling of
classes, and the event bus is one architecture pattern that helps in this situation.

The principle is simple: the downloader emits an event (an instance of a class, option‐
ally holding some state) by giving it to the event bus, and all subscribers subsequently
receive that event. A SharedFlow can act just like that, as shown in Figure 10-7.

Figure 10-7. SharedFlow.
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A SharedFlow broadcasts events to all its subscribers. Actually, SharedFlow really is a
toolbox that can be used in many situations—not just to implement an event bus.
Before giving examples of usage, we’ll show how to create a SharedFlow and how you
can tune it.

Create a SharedFlow
In its simplest usage, you invoke MutableSharedFlow() with no parameter. As its
name suggests, you can mutate its state, by sending values to it. A common pattern
when creating a SharedFlow is to create a private mutable version and a public non‐
mutable one using asSharedFlow(), as shown in the following:

private val _sharedFlow = MutableSharedFlow<Data>()
val sharedFlow: SharedFlow<Data> = _sharedFlow.asSharedFlow()

This pattern is useful when you ensure that subscribers will only be able to read the
flow (e.g., not send values). You might be surprised to find that MutableSharedFlow
is not a class. It’s actually a function that accepts parameters, which we’ll cover later
in this chapter. For now, we’re only showing the default no-arg version of
MutableSharedFlow.

Register a Subscriber
A subscriber registers when it starts collecting the SharedFlow—preferably the public
nonmutable version:

scope.launch {
   sharedFlow.collect { data ->
      println(data)
   }
}

A subscriber can only live in a scope, because the collect terminal operator is a sus‐
pending function. This is good for structured concurrency: if the scope is cancelled,
so is the subscriber.
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Send Values to the SharedFlow
A MutableSharedFlow exposes two methods to emit values—emit and tryEmit:

emit

This suspends under some conditions (discussed shortly).

tryEmit

This never suspends. It tries to emit the value immediately.

Why are there two methods to emit values? This is because, by default, when a
MutableSharedFlow emits a value using emit, it suspends until all subscribers start
processing the value. We will give an example of emit usage in the next section.

However, sometimes this isn’t what you want to do. You’ll find situations where you
have to emit values from nonsuspending code (see “Using SharedFlow as an Event
Bus” on page 270). So here comes tryEmit, which tries to emit a value immediately
and returns true if it succeeded, and false otherwise. We’ll provide more details on
the nuances of emit and tryEmit in upcoming sections.

Using SharedFlow to Stream Data
Suppose you are developing a news app. One of the features of your app is that it
fetches news from an API or a local database and displays this news (or newsfeed).
Ideally, you should rely on a local database to avoid using the API when possible. In
this example, we’ll use the API as the only source of news, although you can easily
extend on our example to add local persistence.

The architecture
In our architecture, a view-model relies on a repository to get the newsfeed. When
the view-model receives news, it notifies the view. The repository is responsible for
querying the remote API at regular intervals, and provides a means for view-models
to get the newsfeed (see Figure 10-8).

Figure 10-8. App architecture.
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The implementation

To keep it simple, the following News data class represents news:

data class News(val content: String)

The repository reaches the API through a NewsDao. In our example, the data access
object (DAO) is manually constructor-injected. In a real application, we recommend
that you use a dependency injection (DI) framework such as Hilt or Dagger:

interface NewsDao {
    suspend fun fetchNewsFromApi(): List<News>
}

We now have enough material to implement the repository:

class NewsRepository(private val dao: NewsDao) {
    private val _newsFeed = MutableSharedFlow<News>()    
    val newsFeed = _newsFeed.asSharedFlow()              

    private val scope = CoroutineScope(Job() + Dispatchers.IO)

    init {
        scope.launch {                                   
            while (true) {
                val news = dao.fetchNewsFromApi()
                news.forEach { _newsFeed.emit(it) }      

                delay(3000)
            }
        }
    }

    fun stop() = scope.cancel()
}

We create our private mutable shared flow. It will only be used inside the reposi‐
tory.

We create the public nonmutable version of the shared flow.

As soon as the repository instance is created, we start fetching news from the
API.

Every time we get a list of News instances, we emit those values using our Mutable
SharedFlow.
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All that’s left is to implement a view-model that will subscribe to the repository’s
shared flow:

class NewsViewsModel(private val repository: NewsRepository) : ViewModel() {
    private val newsList = mutableListOf<News>()

    private val _newsLiveData = MutableLiveData<List<News>>(newsList)
    val newsLiveData: LiveData<List<News>> = _newsLiveData

    init {
        viewModelScope.launch {
            repository.newsFeed.collect {
                println("NewsViewsModel receives $it")
                newsList.add(it)
                _newsLiveData.value = newsList
            }
        }
    }
}

By invoking repository.newsFeed.collect { .. }, the view-model subscribes to
the shared flow. Every time the repository emits a News instance to the shared flow,
the view-model receives the news and adds it to its LiveData to update the view.

Notice how the flow collection happens inside a coroutine started with viewModel
Scope.launch. This implies that if the view-model reaches its end-of-life, the flow
collection will automatically be cancelled, and that’s a good thing.

In our example, we manually constructor-inject an object (in this
case, the repository). A DI framework would definitely help to
avoid boilerplate code. As demonstrating DI frameworks isn’t the
primary focus of this chapter, we chose to go for a manual reposi‐
tory injection into the view-model.

Test of our implementation

In order to test the previous code, we need to mock the NewsDao. Our DAO will just
send two dummy News instances and increment a counter:

val dao = object : NewsDao {
    private var index = 0

    override suspend fun fetchNewsFromApi(): List<News> {
        delay(100)  // simulate network delay
        return listOf(
            News("news content ${++index}"),
            News("news content ${++index}")
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        )
    }
}

When we run our code using the preceding DAO, this is what we see in the console:

NewsViewsModel receives News(content=news content 1)
NewsViewsModel receives News(content=news content 2)
NewsViewsModel receives News(content=news content 3)
...

There is nothing surprising here: our view-model simply receives the news sent by
the repository. Things become interesting when there’s not one but several view-
models that  subscribe  to  the  shared  flow.  We’ve  gone  ahead  and  created  another
view-model which also logs in the console. We created the other view-model 250 ms
after the launch of the program. This is the output we get:

NewsViewsModel receives News(content=news content 1)
NewsViewsModel receives News(content=news content 2)
NewsViewsModel receives News(content=news content 3)
AnotherViewModel receives News(content=news content 3)
NewsViewsModel receives News(content=news content 4)
AnotherViewModel receives News(content=news content 4)
NewsViewsModel receives News(content=news content 5)
AnotherViewModel receives News(content=news content 5)
NewsViewsModel receives News(content=news content 6)
AnotherViewModel receives News(content=news content 6)
...

You can see that the other view-model missed the first two news entries. This is
because, at the time the shared flow emits the first two news entries, the first view-
model is the only subscriber. The second view-model comes after and only receives
subsequent news.

Replay values
What if you need the second view-model to get previous news? A shared flow can
optionally cache values so that new subscribers receive the last n cached values. In our
case, if we want the shared flow to replay the last two news entries, all we have to do is
to update the line in the repository:

private val _newsFeed = MutableSharedFlow<News>(replay = 2)
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With that change, the two view-models receive all news. Replaying data is actually
useful in other common situations. Imagine the user leaves the fragment that displays
the list of news. Potentially, the associated view-model might also get destroyed, if its
lifecycle is bound to the fragment (that wouldn’t be the case if you chose to bound the
view-model to the activity). Later on, the user comes back to the news fragment.
What happens then? The view-model is re-created and immediately gets the last two
news entries while waiting for fresh news. Replaying only two news entries might
then be insufficient. Therefore, you might want to increase the replay count to,
say, 15.

Let’s recap. A SharedFlow can optionally replay values for new subscribers. The num‐
ber of values to replay is configurable, using the replay parameter of the Mutable
SharedFlow function.

Suspend or not?
There’s one last thing about this replay feature that you should be aware of. A shared
flow with replay > 0 internally uses a cache that works similarly to a Channel. For
example, if you create a shared flow with replay = 3, the first three emit calls won’t
suspend. In this case, emit and tryEmit do exactly the same thing: they add a new
value to the cache, as shown in Figure 10-9.

Figure 10-9. Replay cache not full.

When you submit a fourth value to the shared flow, then it depends on whether you
use emit or tryEmit, as shown in Figure 10-10. By default, when the replay cache is
full, emit suspends until all subscribers start processing the oldest value in the cache.
As for tryEmit, it returns false since it can’t add the value to the cache. If you don’t
keep track of that fourth value yourself, this value is lost.
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Figure 10-10. Replay cache full.

That behavior (when the replay cache is full) can be changed. You can also opt to dis‐
card either the oldest value in the cache or the value that is being added to the cache.
In both cases, emit does not suspend and tryEmit returns true. Therefore, there are
three possible behaviors on buffer overflow: suspend, drop oldest, and drop latest.

You apply the desired behavior while creating the shared flow, by using the
onBufferOverflow parameter, as shown in the following:

MutableSharedFlow(replay = 3, onBufferOverflow = BufferOverflow.DROP_OLDEST)

BufferOverflow is an enum with three possible values: SUSPEND, DROP_OLDEST, and
DROP_LATEST. If you don’t specify a value for onBufferOverflow, SUSPEND is the
default strategy.

Buffer values
In addition to being able to replay values, a shared flow can buffer values without
replaying them, allowing slow subscribers to lag behind other, faster subscribers. The
size of the buffer is customizable, as shown in the following:

MutableSharedFlow(extraBufferCapacity = 2)

By default, extraBufferCapacity equals zero. When you set a strictly positive value,
emit doesn’t suspend while there is buffer space remaining—unless you explicitly
change the buffer overflow strategy.

You might be wondering in what situations extraBufferCapacity can be useful.
One immediate consequence of creating a shared flow with, for example,
extraBufferCapacity = 1 and onBufferOverflow = BufferOverflow.DROP_OLDEST,
is that you’re guaranteed that tryEmit will always successfully insert a value into the
shared flow. It’s sometimes really convenient to insert values in a shared flow from
nonsuspending code. A good example of such a use case is when using a shared flow
as an event bus.
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Using SharedFlow as an Event Bus
You need an event bus when all the following conditions are met:

• You need to broadcast an event across one or several subscribers.
• The event should be processed only once.
• If a component isn’t registered as a subscriber at the time you emit the event, the

event is lost for that component.

Notice the difference with LiveData, which keeps in memory the last emitted value
and replays it every time the fragment is re-created. With an event bus, the fragment
would only receive the event once. For example, if the fragment is re-created (the user
rotates the device), the event won’t be processed again.

An event bus is particularly useful when you want, for example, to display a message
as a Toast or Snackbar. It makes sense to display the message only once. To achieve
this, a repository can expose a shared flow as shown in the following code. In order to
make the exposed flow accessible for view-models, or even fragments, you can use a
DI framework such as Hilt or Dagger:

class MessageRepository {
    private val _messageFlow = MutableSharedFlow<String>(
        extraBufferCapacity = 1,
        onBufferOverflow = BufferOverflow.DROP_OLDEST
    )
    val messageEventBus = _messageFlow.asSharedFlow()

    private fun someTask() {
        // Notify subscribers to display a message
        _messageFlow.tryEmit("This is important")
    }
}

We’ve set extraBufferCapacity to 1 and onBufferOverflow to DROP_OLDEST so that
_messageFlow.tryEmit always emits successfully. Why do we care about tryEmit? In
our example, we use _messageFlow from a nonsuspending function. Therefore, we
can’t use emit inside someTask.

If you use _messageFlow from inside a coroutine, you can use emit. The behavior
would be exactly the same, since emit wouldn’t suspend because of the presence of
the buffer and the buffer overflow policy.

An event bus is appropriate for dispatching one-time events that some components
might miss if they’re not ready to receive those events. For example, say you fire a
“recording-stopped” event while the user hasn’t navigated to the fragment displaying
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7. Actually, StateFlow is a SharedFlow under the hood.

recordings yet. The result is that the event is lost. However, your application can be
designed to update the state of the fragment anytime the fragment resumes. Conse‐
quently, receiving “recording-stopped” is only useful when the fragment is in the
resumed state, as this should trigger a state update. This is just an example of when
losing events is totally acceptable and part of your application’s design.

Sometimes, however, this isn’t what you want to achieve. Take, for example, a service
that can perform downloads. If the service fires a “download-finished” event, you
don’t want your UI to miss that. When the user navigates to the view displaying the
status of the download, the view should render the updated state of the download.

You will face situations where sharing a state is required. This situation is so common
that a type of shared flow was specifically created for it: StateFlow.

StateFlow: A Specialized SharedFlow
When sharing a state, a state flow:

• Shares only one value: the current state.
• Replays the state. Indeed, subscribers should get the last state even if they sub‐

scribe afterward.
• Emits an initial value—much like LiveData has an initial value.
• Emits new values only when the state changes.

As you’ve learned previously, this behavior can be achieved using a shared flow:

val shared = MutableSharedFlow(
    replay = 1,
    onBufferOverflow = BufferOverflow.DROP_OLDEST
)
shared.tryEmit(initialValue) // emit the initial value
val state = shared.distinctUntilChanged() // get StateFlow-like behavior

StateFlow7 is a shorthand for the preceding code. In practice, all you have to write is:

val state = MutableStateFlow(initialValue)
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An Example of StateFlow Usage
Imagine that you have a download service that can emit three possible download
states: download started, downloading, and download finished, as shown in
Figure 10-11.

Figure 10-11. Download state.

Exposing a flow from an Android service can be done in several ways. If you need
high decoupling for, say, testability purposes, a DI-injected “repository” object can
expose the flow. The repository is then injected in all components that need to sub‐
scribe. Or the service can statically expose the flow in a companion object. This
induces tight coupling between all components that use the flow. However, it might
be acceptable in a small app or for demo purpose, such as in the following example:

class DownloadService : Service() {
    companion object {
        private val _downloadState =
            MutableStateFlow<ServiceStatus>(Stopped)
        val downloadState = _downloadState.asStateFlow()
    }
    // Rest of the code hidden for brevity
}

sealed class ServiceStatus
object Started : ServiceStatus()
data class Downloading(val progress: Int) : ServiceStatus()
object Stopped : ServiceStatus()

Internally, the service can update its state by using, for example,
_downloadState.tryEmit(Stopped). When declared inside a companion object, the
state flow can be easily accessed from a view-model, and exposed as a LiveData using
asLiveData():
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class DownloadViewModel : ViewModel() {
    val downloadServiceStatus = DownloadService.downloadState.asLiveData()
}

Subsequently, a view can subscribe to the LiveData:

class DownloadFragment : Fragment() {
    private val viewModel: DownloadViewModel by viewModels()

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        viewModel.downloadServiceStatus.observe(this) {   
            it?.also {
                onDownloadServiceStatus(it)
            }
        }
    }

    private fun onDownloadServiceStatus(
        status: ServiceStatus
    ): Nothing = when (status) {                          
        Started -> TODO("Show download is about to start")
        Stopped -> TODO("Show download stopped")
        is Downloading -> TODO("Show progress")
    }
}

We subscribe to the LiveData. If we receive a nonnull value, then we invoke
onDownloadServiceStatus method.

We are purposely using when as an expression so that the Kotlin compiler guaran‐
tees that all possible types of ServiceStatus are taken into account.

You might be wondering why we used a state flow, and why we haven’t used a Live
Data in the first place—eliminating the need of asLiveData() in the view-model.

The reason is simple. LiveData is Android-specific. It’s a lifecycle-aware component
which is meaningful when used within Android views. You might design your appli‐
cation with Kotlin multiplatform code in mind. When targeting Android and iOS,
only multiplatform code can be shared as common code. The coroutine library is
multiplatform. LiveData isn’t.

However, even when not considering Kotlin multiplatform, the Flows API makes
more sense since it provides greater flexibility with all its flows operators.
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Summary
• The Flows API allows for asynchronous data stream transformation. A lot of oper‐

ators are already available out of the box and cover most use cases.
• Thanks to the composable nature of flow operators, you can fairly easily design

your own, if you need to.
• Some parts of the flow can be offloaded to a background thread or thread pool,

and yet keep a high-level view of data transformation.
• A shared flow broadcasts values to all its subscribers. You can enable buffering

and/or replay of values. Shared flows really are a toolbox. You can use them as an
event bus for one-time events, or in more complex interactions between
components.

• When a component shares its state, a special kind of shared flow is appropriate
for use: state flow. It replays the last state for new subscribers and only notifies
subscribers when the state changes.
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CHAPTER 11

Performance Considerations with
Android Profiling Tools

Using proficient concurrency in Android leads to better performance in your applica‐
tion. This is why we have made Kotlin concurrency in Android the primary focus of
this book. In order to provide a solution for performance bottlenecks, you have to be
able to spot them in the first place. Have no worry: this chapter looks at popular
Android tooling commonly used to check for potential problems in performance.

Out in the wild, Android faces real-life challenges that affect performance and battery
life. For example, not everyone has unlimited data in their mobile plans, or reliable
connectivity. The reality is that Android apps must compete with one another for
limited resources. Performance should be a serious consideration for any Android
application. Android development doesn’t stop at creating an app. Effective develop‐
ment also ensures a smooth and seamless user experience. Even if you have a deep
understanding of Android development, your application may have issues such as:

• Decrease in performance
• Slow startup/slow response to user interactions
• Battery drain
• Wasteful use of resources, and clogged memory
• UI bugs that don’t force a crash or generate an exception, but nevertheless affect

user experience

This list of sudden, strange behaviors in an app is by no means exhaustive. As previ‐
ous chapters showed, managing multithreading can become complex when there are
also interacting Android components to keep track of. Even if you have a solid under‐
standing of multithreading, it’s hard to say how an application really works until we
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analyze performance with profiling tools. To answer these kinds of ambiguities, there
are several useful tools for profiling various aspects of Android. Four of them can be
retrieved and used right in Android Studio, as diagrammed in Figure 11-1.

Figure 11-1. Android Studio profilers and LeakCanary are useful for identifying perfor‐
mance bottlenecks.

In this chapter, we look at profiling tools in Android Studio’s Android Profiler and a
popular open source library called LeakCanary. We explore each one by profiling a
real-life application for potential performance bottlenecks. Remember the hiking
application described in previous chapters? Surprise! It was inspired by TrekMe.
TrekMe is an Android trail-trekking app, an open source Android project where
users download interactive topographical hiking routes to use offline later while on
hikes. TrekMe started as a Java project, but its codebase is currently 80%+ Kotlin.
Here are some important features of TrekMe that users of the application can enjoy:

• Download topographical maps for offline use.
• Get the device’s live position even when there’s no network, while the app tries its

best to preserve battery life.
• Track hikes in great detail without draining the device’s battery when you need it

most.
• Access other useful information without needing an internet connection (save for

creating the map).

We encourage you to explore TrekMe so you can follow along with this chapter. You
can retrieve the source code from GitHub. Once you’ve cloned the project, open it
with Android Studio. Finally, run an instance of an emulator from the Android Vir‐
tual Device (AVD) Manager that you intend to run TrekMe on.

Performance considerations are crucial. It;s not uncommon to find performance lag
in any application, but such a “fishing expedition” must be approached with care. It’s
up to the developer to decide on the most relevant tooling, and which optimizations
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outweigh in benefits the cost of their creation. Profiling your app allows you to inves‐
tigate application performance objectively. To give some examples of the kinds of sur‐
prises you might encounter, we’ll look at TrekMe with Android Profiler.

Android Profiler
Android Profiler analyzes an application’s session to generate real-time feeds for CPU
usage and memory usage, as well as network and energy profiling. Figure 11-2 shows
Android Studio with the TrekMe application runtime showing in the bottom half of
the console.

Figure 11-2. A profiling session records profiling data. The active session attaches to the
running app in the emulator (not pictured).

Android profiling can be instantiated in three ways:

1. If your application is not running, click the Profile app icon in the upper-right
corner to instantiate the app and the profiler at once. This action builds and com‐
piles a new running instance of the application. Android Studio will then open a
new session giving you a stream of your data in real time.

2. If your application is already running, click the + icon and select the running
emulator.

3. You can also import a previously saved profiling session with the + icon. From
there, you can load the previously saved .hprof file.
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You can record and store data in each session. In Figure 11-3, we show a screenshot
of saved profiling sessions with different kinds of data that can be recorded with
Android Profiler.

Figure 11-3. Save heap dumps, or different kinds of CPU traces.

Both method traces and heap dumps can be saved as separate entries within a running
session. Method traces show a stacktrace of methods and functions that can be recor‐
ded in CPU profiling. Meanwhile, a heap dump refers to the data collected from
garbage collection, allowing us to analyze what objects are taking up unnecessary
space in memory.

Android Profiler records one application session at a time. However, you can save
multiple recordings and switch between them to compare the data. A bright dot
indicates the recording of an active session. In Figure 11-3, there are three recorded
sessions. The last recorded session has a saved heap dump, which refers to a log of
stored memory in the JVM at the time of the snapshot. We’ll cover this in more detail
in “Memory Profiler” on page 299. The first recorded session saved different kinds of
CPU recordings. This will be discussed in “CPU Profiler” on page 286.
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Android Studio caches sessions only for the lifetime of the Android
Studio instance. If Android Studio is restarted, the recorded ses‐
sions will not save.

The following sections show in more detail how Android Profiler evaluates device
resources in the virtual machine at runtime. There are four profilers we’ll use: Net‐
work Profiler, CPU Profiler, Energy Profiler, and Memory Profiler. All of these profilers
record streams of data during an application’s runtime, which can be accessed in
greater detail in their own special views.

By design, TrekMe encourages users to download detailed topographical maps
directly to their devices while they’re at home and can do so easily. Creating new
topographical maps in TrekMe is the feature that consumes the most resources in this
process. The maps can then be rendered when the user is hiking, even if mobile cov‐
erage is unreliable. TrekMe’s map creation feature allows you to select an official map
generator like the Instituto Geografico Nacional (IGN) or U.S. Geological Survey
(USGS) or some other map provider, as shown in Figure 11-4. TrekMe will then load
the selected service’s map in square tiles, one by one.

Figure 11-4. TrekMe allows you to create and download a map from different services.
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For the remainder of this chapter, we’ll profile TrekMe while creating a map via IGN
to study the time it takes to load a map, and to ensure that it is optimal. With
Android profiling, we can explore questions like:

• Are we making fast network calls?
• Is the data we get in our response returned in the most efficient format?
• What parts of the application are the most CPU-intensive?
• Which Android actions drain the most battery?
• What objects are eating up the most memory in heap?
• What consumes the most memory?

In the next section, we answer the first two questions with Network Profiler. We
explore the remainder of these questions in later sections.

Network Profiler
When a network call is made, the radio in the Android device powers up to allow for
network communication. This radio then stays powered on for a short time to ensure
there are no additional requests to listen for. On some phones, using the network
every two minutes keeps the device at full power forever. Too many network calls can
be expensive for Android resources, so it is important to analyze and optimize net‐
work use in an application.

Network Profiler generates connection breakdowns used by HttpURLConnection or
OkHttp libraries. It can give you information like network request/response time,
headers, cookies, data formats, the call stack, and more. When you record a session,
Network Profiler generates interactive visual data while you continue to interact with
the application.

When we create a map using IGN, TrekMe renders the map on the screen in square
tiles, one by one. Sometimes, though, the tile rendering seems to take a long time.
Figure 11-5 shows the profiler capturing incoming/outgoing network requests, and
shows the connections that are available while creating a map on TrekMe via IGN:

You can highlight a selected range of the timeline to drill into these connections fur‐
ther, which will expand a new view of the Network Profiler workspace, allowing you
to access the Connection View and Thread View tabs to analyze these network calls
further.
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Figure 11-5. Network Profiler timeline records IGN Spain map creation on TrekMe. In
the upper-left corner of the chat, the long line under the label MainActivity represents
an active Activity session while the short, thick line above the MainActivity label with
a dot at the left represents user touch events.

Viewing network calls with Connection View and Thread View
Connection View shows the data that was sent/received. You can see this in
Figure 11-6 in the highlighted portion of the timeline. Perhaps what is most notable is
Connection View’s ability to sort resource files by size, status, and time. Clicking the
header of each section will organize the ordering of the desired filter. The timeline
section represents the timing of the request/response bars split into two colors. The
lighter portion represents the duration of the request, while the darker portion repre‐
sents the duration of the response.
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Figure 11-6. Connection View shows a list of individual network calls.

Connection View looks similar to the timeline in Thread View, but they’re not quite
the same. Thread View shows the network calls being made within the designated ini‐
tiating threads, which can show multiple network calls running in parallel time. The
screenshot shown in Figure 11-7 is the complement of the previous image, using the
same data set.

Figure 11-7. Thread View shows a list of network calls made within each thread.

Seeing how worker threads divide labor in real time can help to reveal areas for
improvement. TrekMe’s pooled threads are responsible for automatically breaking up,
as needed, the work of downloading all these images.

Both images show roughly 23 seconds of network calls, with response times showing
a similar trend. Compared to the requests, responses appear to take up a dispropor‐
tionate amount of the time it takes to complete an entire network call. There could be
several reasons for this: for example, the server connection might be weaker if a
device attempts to pull this data from a distant country. Perhaps there are inefficien‐
cies with the query call in the backend. Regardless of the reason, we can say that our
network calls may not be fastest. However, the presence of fast request times and slow
response times indicates external factors that are out of the device’s control.
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We now turn to our second question: are we using the most efficient data format?
Let’s look at the connection type in the Connection View tab as pictured in
Figure 11-6. If you don’t need transparency in your images, avoid using PNG files
since the file format doesn’t compress as well as JPEG or WebP. In our case, the net‐
work calls return a JPEG-formatted payload. We want files that provide consistent
and good image quality to enable users to zoom in to the details of those images as
much as they need to. Using a JPEG file also takes up less memory than a PNG file
would.

We can get more granular detail on each network call and its payload by selecting any
item: this opens a new view within Network Profiler on the right side, showing tabs
for Overview, Response, Request, and Callstack. In the next section, we’ll be able to
look into the specifics of a single network call and locate where the network call is
made in the code.

Network call, expanded: Overview | Response | Request | Callstack
Android developers are used to working with other platforms in order to achieve fea‐
ture parity and more. Suppose a network call starts returning the wrong kind of
information for a network request. The API team is in need of specifics for the net‐
work request and response you’re getting on the client side. How can you send them
over the necessary request parameters and content headers they need to investigate
on their side?

Network Profiler gives us the ability to inspect network responses and requests on the
right-side panel in Connection View or Thread View, as shown in Figure 11-8.

The Overview tab details notable highlights captured in the request and response:

Request
The path and potential query parameters

Status
The HTTP status code returned within the resulting response

Method
The type of method used

Content type
The media type of the resource

Size
The size of the resource returned in the resulting response
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Figure 11-8. Network Profiler allows you to inspect response and request information.

The Request and Response tabs show a breakdown of headers, parameters, body data,
etc. In Figure 11-9, we show the exact network call as in the previous image, except
with the Response tab selected.

As you can see in the network response, TrekMe uses a basic HTTP API. Other types
of API data formats return HTML, JSON, and other resources. When applicable, the
Request and Response tabs offer body data as a formatted or raw representation. In
our case, the resource media returns JPEGs.
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Figure 11-9. Network Profiler captures network calls to render map.

Finally, the Call Stack tab, shows the stacktrace for the relevant calls made to execute
a network connection, as pictured in Figure 11-10. The calls that are not faded repre‐
sent the method calls within the call stack coming from your own code. You can
right-click the calls indicated to be able to jump to the source code with ease.

Network Profiler is useful for more than just analytics. As you can see for yourself,
you’re able to process a lot of information quickly. From caching repetitive calls to
confirming API contracts, Network Profiler is a tool worth keeping in your toolbox.
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Figure 11-10. Call Stack tab.

Poor networking is not the only culprit when it comes to slow rendering times. The
task of creating a brand new topographical map is heavy in itself, but as we have
determined from a networking stance, no further action is required to improve
loading times or data format. However, we would be remiss to chalk up slow loading
times to slow response time alone. After TrekMe receives the network data, it must
then process the data to render the UI. For this reason, we should check for potential
inefficiencies in drawing the map out after the network calls. CPU Profiler is able to
provide insight for this. In the next section, we will examine, using CPU Profiler, the
processing consumption of the rendering of the IGN Spain map.

CPU Profiler
While Network Profiler is able to give information about network calls, it is not able
to paint a full picture about where the time goes. We have a call stack for our network
calls, but we don’t know how long certain methods actually run. This is where CPU
Profiler comes in. CPU Profiler helps identify greedy consumption of resources by
analyzing how much time has passed on function execution and tracks which thread
a call executes on. Why does this matter? If TrekMe consumes too much processing,
the application slow downs, impacting the user experience. The more CPU power
that is used, the more quickly the battery drains.

CPU Profiler allows you to examine CPU recordings and livestream data by examin‐
ing the call stack by the thread, as shown in Figure 11-11.

In the following sections, we break down the CPU timeline, Thread activity timeline,
and Analysis panels. Because TrekMe seems to spend a lot of time offloading work to
background threads, we will select one to look into more closely.
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Figure 11-11. CPU Profiler shows the call stack and recorded times for methods
executed.

CPU timeline
The CPU timeline organizes regional call stacks into recorded threads in the Threads
pane. The graph in Figure 11-12 shows spikes of CPU usage, where the number is a
percentage of available CPU. If you have made a trace recording, you should be able
to highlight the CPU timeline to see more information.

Figure 11-12. CPU timeline.

Android Studio allows you to drag-and-click over a recorded sample from the CPU
timeline to show the Call Chart. Clicking on Record brings you to a separate trace
CPU recording screen (covered in greater detail in Record Traces). To create the more
granular call charts we explore in the next section, it helps to highlight smaller por‐
tions of the recorded CPU trace.

Thread activity timeline
The Thread activity timeline accompanies the CPU timeline showing every running
thread in the app. If a section was trace-recorded, you should be able to select a
thread to view the call stack captured within the selected time range. In Figure 11-13,
31 threads have been created and used within the application. These threads have
been created either by your code, the Android OS, or a third-party library.
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Figure 11-13. Thread activity timeline.

The lightest-colored blocks represent a running or active thread. There’s not a lot to
see on the Main thread, but remember, this image captures a CPU trace of the net‐
work request downloading the map images. In this case, we expect background
threads to do the necessary work to download the network data. It seems we have the
main thread waiting on one of the DefaultDispatcher threads for half the time.
Double-clicking on an individual thread expands the call stack.

Below the Thread activity timeline is the Call Chart (see Figure 11-14).

Figure 11-14. The Call Chart shows a top-down representation of captured methods.
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The Call Chart shows a call stack of the segmented range of time for CPU usage. The
top boxes represent the encapsulating parent method, while the methods below are
child methods that were called. The parent method waits on the child methods to
finish executing, so this is a good place to see which of TrekMe’s methods could be
executing for a long time, like the method TileStreamProviderHttp.

If you’re reading the printed book, be aware that the bars are color coded. Android
OS methods are orange, methods you’ve written are green, and third-party libraries
are blue. Within this coroutine, the longest amount of execution time is with
TileStreamProviderHttp.getTileStream(...). This is expected, given that this call
makes individual network requests per tile.

Analysis panel
The Analysis panel presents a layered tab view. The top of the pane highlights the
active set of thread(s). Beneath the tabbed menu sits a search bar above the stack‐
trace. You can use the search bar to filter trace data related to a particular call. Below
that is a set of tabs intended to render visual data from method tracing in three views:
Top Down, Bottom Up, and Flame Chart.

Top Down renders a graphical representation of method traces from the top to the
bottom of the chart. Any call made within a method renders as a child underneath
the original method. Shown in Figure 11-15, the method getTileStream used in
TrekMe waits for a series of calls for internet connection and reading from a data
stream.

The Top Down view shows how CPU time breaks down in three ways:

Self
The method execution time itself

Children
The time it takes to execute callee methods

Total
Combined time of self and children
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Figure 11-15. Top Down view.

In the case of getTileStream, the majority of the time is spent on the network calls
themselves: in particular, the connection request and getInputStream to receive
incoming data from the network. For the IGN Spain server, these times can vary
when accessed in another country and at different times of the day. Because it is the
client consuming server data, TrekMe has no control over how the server performs.

Contrary to Top Down, Bottom Up (shown in Figure 11-16) shows an inverse repre‐
sentation of leaf elements of the call stack. In comparison, such a view renders a sub‐
stantial number of methods, which can be useful in identifying methods that are
consuming the most CPU time.

The final tab provides a Flame Chart view. A Flame Chart provides an aggregated vis‐
ual of operations from the bottom up. It provides an inverted call chart to better see
which functions/methods are consuming more CPU time.
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Figure 11-16. Bottom Up view.

To summarize, CPU profiling can render three different kinds of views, depending on
the kind of deep dive you wish to pursue:

• Top Down graphical representation shows each method call’s CPU time along
with the time of its callees.

• Bottom Up inverts the Top Down representation and is most useful to sort meth‐
ods consuming the most or the least amount of time.

• The Flame Chart inverts and aggregates the call stack horizontally with other
callees of the same level to show which ones consume the most CPU time first.

Not only are there three different ways to render data, but there are different kinds of
call stacks you can record. In the upcoming sections, we cover different kinds of
method tracing in CPU Profiler. As you’re starting to get the picture of what kind of
information CPU Profiler tries to capture, we’ll turn to method tracing with CPU Pro‐
filer and record a segment of TrekMe creating a new map.

Method tracing
CPU Profiler allows you to record a trace to analyze and render its status, duration,
type, and more. Tracing relates to recording device activity over a short period of
time. Method tracing doesn’t occur until the recording button is clicked twice: once
to start the recording, and another time to end the recording. There are four configu‐
rations for samples and traces, as shown in Figure 11-17.
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Figure 11-17. Configurations are available for Android developers for samples and
traces.

Sample Java Methods captures the application call stack, or a Call Chart (also seen in
previous sections). The Call Chart renders under the Thread activity timeline, which
shows which threads are active at a particular time. These traces store individual ses‐
sions to the right pane for comparison with others’ saved sessions.

By choosing the Sample Java Methods configuration, you can examine TrekMe’s call
stack by hovering the mouse pointer over particular methods, as shown in
Figure 11-18.

Figure 11-18. Sample Java Methods.

Don’t let your recording run too long. Once a recording reaches its
size limit, the trace stops collecting data even if the current session
continues to record.
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Unlike Sample Java Methods, Trace Java Methods strings together a series of time‐
stamps recorded for the start and end of a method call. Should you wish, you can
monitor Sample C/C+ Functions to gain insight into how the app is interacting with
the Android OS. Recording sample traces for native threads is available for Android
API 26 and up.

The terms “method” and “function” tend to be used in everyday conversation inter‐
changeably when talking about method-tracing analysis. At this point, you might be
wondering why Java methods and C/C++ functions differentiate enough to matter in
CPU profiling.

In the CPU-recording configurations, Android Profiler uses “method” to refer to
Java-based code, while “function” references threads. The difference between the two
is the order of method execution preserved via a call stack while threads are created
and scheduled by the Android OS itself.

Finally, there is Trace System Calls in the configurations shown in Figure 11-17. Sys‐
tem Trace is a powerful CPU-recording configuration made available for Android
developers. It gives back graphical information on frame-rendering data.

Trace System Calls records analytics on CPU Cores to see how scheduling occurs
across the board. This configuration becomes more meaningful for detecting CPU
bottlenecks across the CPU Cores. These kinds of bottlenecks can jump out in places
where the RenderThread chokes, especially for red-colored frames. Unlike other con‐
figurations, Trace System Calls shows thread states and the CPU core it currently
runs on, as shown in Figure 11-19.

One of the key features in a system trace is having access to the RenderThread. Ren‐
derThread can show where performance bottlenecks might be occurring when ren‐
dering the UI. In the case of Figure 11-19, we can see that much of the idle time
occurs around the actual drawing of the tiles themselves.

The Android system tries to redraw the screen depending on the refresh rate on the
screen (between 8 ms and 16 ms). Work packets taking longer than the frame rate can
cause dropped frames, indicated by red slots in Frames. Frames drop when some task
does not return before the screen redraws itself. In the case of this system trace
recording, it appears that we indeed have some dropped frames indicated by the
numbers labeling boxes inside the Frame subsection under the Display section.

TrekMe saves each frame into a JPEG file and loads the image into a bitmap for
decoding. However, in Figure 11-19, we see that in the RenderThread, the length of
DrawFrame doesn’t quite match up with the draw rate intervals. A bit farther below
that, some of that idle time is tied to various long-running decodeBitmap methods in
the pooled threads.
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Figure 11-19. System Trace reveals dropped frames where times are labeled within
Frames.

From here, there are some options that could potentially be considered for faster
drawing; that is, caching network responses for images, or even prefetching. For users
in need of a few megabytes of data, prefetching is a nice-to-have in the case a device
has access to at least a 3G network. The problem with that is that it may not be the
best option to render those bitmaps before we know what must be rendered. Another
option is potentially encoding the data into a more compressed format for easier
decoding. Whatever the decision, it’s up to the developer to evaluate the trade-offs
and the effort of implementing certain optimizations.
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The concept of prefetching refers to predicting what kind of data
would come in a future request, and grabbing that data preemp‐
tively while there’s an active radio connection. Each radio request
has overhead in terms of the time it takes to wake up the radio and
the battery drainage that occurs to keep the radio awake, so
Android developers can take advantage of making additional calls
while the radio is already awake.

Recording a sample method trace
Now that you are more familiar with what the recording configurations offer, we turn
to Sample Method Trace on TrekMe. CPU recordings are separated from the CPU
Profiler timeline. To begin, click the Record button at the top of the screen to analyze
CPU activity while interacting with TrekMe.

Ending the recording renders a tabbed right pane of execution times for sample or
trace calls. You can also highlight multiple threads at once for analysis. The average
Android developer may not use all these tabs all the time; still, it’s good to be cogni‐
zant of what tools are at your disposal.

In TrekMe, there’s a predefined set of iterable tiles to download. A number of corou‐
tines concurrently read the iterable and perform a network request per tile. Each
coroutine decodes a bitmap right after the network request succeeded. These corou‐
tines are sent to some dispatcher such as Dispatchers.IO, and the rendering happens
when the result is sent back to the UI thread. The UI thread is never blocked waiting
for bitmap decoding, or waiting for a network request.

The shrunken CPU timeline in Figure 11-20, at first glance, appears to be nothing
more than a reference to the previous screen view. However, you can interact with
this data to drill down further by highlighting a chunk of time via the range selector,
as shown in Figure 11-21.

Figure 11-20. CPU Profiler separates the recorded trace.
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Figure 11-21. The range selector helps to manage sections of highlighted ranges.

In Figure 11-22, we look at one of the longer-running methods, getTileStream.
Below the timeline, the left panel allows you to organize threads and interactions via
drag-and-drop functionality. Being able to group threads together also means you
can highlight groups of stacktraces. You can expand a thread in a recorded trace by
double-clicking the thread twice to show a drop-down visual of a call stack.

Selecting an item also opens an additional pane to the right. This is the Analysis
Panel, which allows you to examine stacktrace and execution time in more granular
detail. Tracking CPU usage is important, but perhaps you’d like to be able to analyze
how an application interacts with Android hardware components. In the next section,
we look into Android Studio’s Energy Profiler.

Figure 11-22. You can search for a specific method via the search function.

Excessive networking calls on Android devices are also power-hungry. The longer the
device radio stays awake for network communication, the more CPU consumption
and battery drainage there is. By this logic, it would be fair to assume that networking
accounts for most energy consumption. We can confirm this by using Energy
Profiler.
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Energy Profiler
Energy Profiler is best used for determining heavy energy consumption. When an
application makes a network request, the application turns on the mobile radio hard‐
ware component. CPU consumption accelerates as the Android device communicates
with the network, draining battery at a faster rate.

TrekMe prescales bitmaps to ensure consistent memory and energy usage when the
user is zooming in and out. When the user is creating and downloading a map, the
details of the map are, by default, downloaded with the highest-resolution detail. The
event pane shows higher levels of consumption when downloading large chunks of
data.

A drag-and-click can select a range of the timeline to show details for events for the
Android OS. In Figure 11-23, we can see a pop-up rendering of a breakdown of the
energy graph. The first half of the pop-up legend contains the categories CPU, Net‐
work, and Location, which relay to each category provided in the stacked graph. It is a
good sign to see that CPU and networking usage is light despite the relatively heavy
job of making a network call to request large pieces of data and draw them on the
screen.

Figure 11-23. System event pane.

The second half of the pop-up legend describes the kinds of system events captured
from the device. Energy Profiler works to capture certain kinds of system events and
their energy consumption on a device:

• Alarms and Jobs are system events designed to wake up a device at a specified
time. As a best practice, Android now recommends using WorkManager or Job‐
Scheduler whenever possible, especially for background tasks.

• Location requests use Android GPS Sensor, which can consume a large amount
of battery. It’s a good practice to make sure accuracy and frequency are gauged
correctly.
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Although Figure 11-23 shows only one location request, there are other types of sys‐
tem events that contain their own unique set of states. A request event may possess
the state of Active, as pictured in Figure 11-23, Requested, or Request Removed. Like‐
wise, if Energy Profiler captures a Wake Lock type of system event, the timeline would
be able to show state(s) for the duration of the wake lock event such as Acquired,
Held, Released, and so on.

Selecting a particular system event opens a right pane in Energy Profiler to see more
details. From here, you can jump directly to the source code for that particular loca‐
tion request. In TrekMe, GoogleLocationProvider is a class that polls for user loca‐
tion every second. This isn’t necessarily an issue—the polling is intended to enable
the device to constantly update your location. This proves the power of this profiling
tool: you can get precise information without looking at the source code. Requests are
made one at a time, removing existing requests in order to make a new one when a
new image block has been downloaded.

In comparison to location polling, we can expect decreased energy consumption
when a user is zooming in on a rendered map. There are no requests made for down‐
loading large chunks of data. We do expect some energy consumption for keeping
track of the user’s location, which also uses GoogleLocationProvider.

In Figure 11-24, we can see the excessive and rapid touch events indicated by the cir‐
cular dots above the stacked overlay graph. Because TrekMe has downloaded all the
information it needed, no network calls are made at this time. However, we do notice
how CPU usage spikes back up to high levels. To avoid overwhelming the system, it is
a good practice to limit touch events to avoid spinning off duplicate zoom-drawing
functions.

Figure 11-24. TrekMe opens and zooms in on an existing map.
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So far, we’ve covered evaluating performance by looking at processing power. But
examining battery/CPU usage does not always diagnose performance problems.
Sometimes, slow behavior can be attributed to clogged memory. In the next section,
we explore the relationship between CPU and memory and use Memory Profiler on
TrekMe’s GPX recording feature.

Memory Profiler
In TrekMe, you can navigate to GPX Record in the pullout drawer. GPX stands for
GPS Exchange Format and is a set of data used with XML schema for GPS formatting
in software applications. Hikers can click the play icon under Control. The app then
tracks and records the movements of the hikers and their devices, which can be saved
as a GPX file to be rendered as a line drawing later on to indicate the path traveled.
Figure 11-25 shows TrekMe’s GPX recording feature.

Figure 11-25. TrekMe’s GPX recording feature uses GpxRecordingService to track the
GPS coordinates of a user on a hike.
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We know that using location in the system can be heavy for CPU processing. But
sometimes, slowdowns can be attributed to memory problems. CPU processing uses 
RAM as its capacity for workspace, so when RAM fills up, the Android system must
execute a heap dump. When memory usage is severely restricted, the ability to exe‐
cute many tasks at once becomes limited. The more time it takes to execute fewer
application operations, the slower Android gets. RAM is shared across all applica‐
tions: if too many applications are consuming too much memory, it can slow the per‐
formance of the device or, worse, cause OutOfMemoryException crashes.

Memory Profiler allows you to see how much memory is consumed out of the mem‐
ory allocated for your application to run. With Memory Profiler, you can manually
trigger a heap dump in a running session to generate analysis to determine which
objects are held in the heap and how many there are.

As shown in Figure 11-26, Memory Profiler offers powerful features:

• Triggering garbage collection
• Capturing a Java heap dump
• Allocation tracking
• An interactive timeline of the fragments and activities available in the Android

application
• User-input events
• Memory count to divide memory into categories

Figure 11-26. Allocation Tracking offers a Full Italicized Text configuration, which cap‐
tures all object allocations in memory, while a Sampled configuration records objects at
regular intervals.
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Like recording samples and traces in CPU Profiler, capturing Java
heap dumps saves the results within the session panel in Android
Profiler for comparison for the life of your Android Studio
instance.

Initiating too much garbage collection (GC) can affect performance: for example,
executing a ton of GC can slow the device down, depending on how frequent and
how large generational object allocation is in memory. At a minimum, Android
developers should try to run memory profiling of every application to ensure that
nothing is being held in the heap past its use, otherwise known as “memory leaks.”
Detecting memory leaks can be life-saving, especially for Android users depending
on longer battery life. What you are about to see is a variation of a common memory
management mistake developers often make while working with services: leaving a
service accidentally running.

TrekMe uses a foreground service to gain stats of the user’s hike, which is a natural
choice for tracking the user’s location. Services, like other Android components, run
in the UI thread of the application. However, persisting services tend to drain battery
and system resources. Hence, it is important to limit the use of foreground services so
as not to impair overall device performance and to kill them off as soon as possible if
the app must use one.

We can run a couple of GPX recordings against Memory Profiler and trigger the heap
dump to see which objects held in heap consume the most memory, as shown in
Figure 11-27.

Figure 11-27. You can use the CTRL + F function to search for “GpxRecordingService” to
narrow your results.
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A heap dump shows you a list of classes, which can be organized by heap allocations,
native size, shallow size, or retained size. Shallow size is a reference to the total Java
memory used. Native size is a reference to the total memory used in native memory.
Retained size is made of both shallow size and retained size (in bytes).

Within a recorded heap dump, you can organize your allocation record by app heap,
image heap, or zygote heap. The zygote heap refers to the memory that is allocated for
a zygote process, which might include common framework code and resources. The
image heap stores memory allocation from the OS itself and contains references to
classes used in an image containing our application for a system boot. For our use
case, we’re more concerned with the app heap, which is the primary heap the app
allocates memory to.

In Memory Profiler, triggering a heap dump will render a list of objects still held in
memory after GC. This list can give you:

• Every object instance of a selected object displayed in the Instance View pane,
with the option to “Jump to Source” in the code

• The ability to examine instance data by right-clicking an object in References and
selecting Go to Instance

Remember, a memory leak occurs when caching holds references to objects that are
no longer needed. In Figure 11-28, we search for “Location” with the same heap
dump to locate our service and be able to view total memory allocation. LocationSer
vice appears to have separate allocations when it should only have one running at a
time.

Figure 11-28. A suspicious number of LocationService instances appears to be held in
memory.
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It appears that every time we press Record, a new LocationService in TrekMe is
instantiated and then held in memory even after the service dies. You can start-and-
stop a service, but if you are holding a reference to that service in a background
thread, even if it is dead, the instance continues to be held in the heap even after GC
occurs.

Let’s just run a couple more recordings in TrekMe to confirm the behavior we sus‐
pect. We can right-click one of these instances to “Jump to Source” and see. In
RecordingViewModel.kt, we see the following code:

fun startRecording() {
    val intent = Intent(app, LocationServices::class.java)
    app.startService(intent)
}

We want to check whether these services are indeed stopping before starting a new
one. A started service stays alive as long as possible: until a stopService call is made
outside the service or stopSelf is called within the service. This makes the use of per‐
sistent services expensive, as Android considers running services always in use,
meaning that the memory a service uses up in RAM will never be made available.

When a GPX recording stops, LocationService propagates a series of events, ping‐
ing the GPS location, which is then recorded and saved as a set of data. When a GPX
file has just been written, the service subscribes to the main thread to send a status.
Because LocationService extends Android Service, we can call Service::stopSelf
to stop the service:

@Subscribe(threadMode = ThreadMode.MAIN)
fun onGpxFileWriteEvent(
   event: GpxFileWriteEvent
) {
    mStarted = false
    sendStatus()
    stopSelf()    // <--- fix will stop the service and release the refer
ence at GC
}

We can use Memory Profiler and check the heap dump to ensure we hold reference to
only one service in memory. Actually, since GPX recordings are done through Loca
tionService, it makes sense to stop the service when the user stops recording. This
way, the service can be deallocated from memory on GC: otherwise, the heap contin‐
ues to hold an instance of LocationService past its life.
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Memory Profiler can help you detect possible memory leaks through the process of
sifting through the heap dump. You can also filter a heap dump by checking the
Activities/Fragments Leaks box in the heap dump configurations in Memory Profiler.
Hunting for memory leaks can be…a manual process, and even then, hunting for
memory leaks yourself is only one way of catching them. Luckily, we have
LeakCanary, a popular memory leak detection library that can attach to your app in
debug mode and idly watch for memory leaks to occur.

Detecting Memory Leaks with LeakCanary
LeakCanary automatically detects at runtime explicit and implicit memory leaks that
might be hard to detect manually. This is a great benefit, since Memory Profiler
requires manually triggering a heap dump and checking for retained memory. When
crash analytics are unable to detect crashes coming from an OutOfMemoryException,
LeakCanary serves as a viable alternative to keep an eye on issues detected at runtime,
and offers better coverage in discovering memory leaks.

Memory leaks commonly come from bugs related to the lifecycle of objects being
held past their use. LeakCanary is able to detect various mistakes such as:

• Creating a new Fragment instance without destroying the existing version first
• Injecting an Android Activity or Context reference implicitly or explicitly into a

non-Android component
• Registering a listener, broadcast receiver, or RxJava subscription and not remem‐

bering to dispose of the listener/subscriber at the end of the parent lifecycle

For this example, we have installed LeakCanary in TrekMe. LeakCanary is used
organically in development until a heap dump with potential leaks has been retained.
You can install LeakCanary by adding the following dependency to Gradle:

debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.*'

Once installed in your application, LeakCanary automatically detects leaks when an
Activity or Fragment has been destroyed, clears the ViewModel, and more. It does
this by detecting retained objects passed through some ObjectWatcher. LeakCanary
then dumps the heap, analyzes the heap, and categorizes those leaks for easy con‐
sumption. After installing LeakCanary, you can use the application like normal.
Should LeakCanary detect retained instances in a heap dump that occurs, it sends a
notification to the system tray.
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In the case of TrekMe, it appears LeakCanary has detected a memory leak within a
RecyclerView instance of MapImportFragment, as shown in Figure 11-29.

Figure 11-29. LeakCanary shows a RecyclerView leaking in its stacktrace.

The error message is telling us that a RecyclerView instance is “leaking.” LeakCanary
indicates that this view instance holds a reference on a Context instance which wraps
the activity. Something prevents the RecyclerView instance from being garbage-
collected—either an implicit or explicit reference to the RecyclerView instance
passed to the component outliving the activity.

We’re not sure what we’re dealing with quite yet, so we start by looking at the MapIm‐
portFragment.kt class holding the RecyclerView mentioned in Figure 11-29. Tracing
back to the UI element recyclerViewMapImport referenced from the layout file, we
bring your attention to something curious:

class MapImportFragment: Fragment() {

    private val viewModel: MapImportViewModel by viewModels()

    /* removed for brevity */
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    override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
        /* removed for brevity */
        recyclerViewMapImport.addOnItemTouchListener(
            RecyclerItemClickListener(
                this.context,                            
                recyclerViewMapImport,
                object: RecyclerItemClickListener.onItemClickListener {
                    override fun onItemClick(view: View, position: Int) {
                        binding.fab.activate()
                        single.fab(position)
                    }
            })
        )
    }

    /* removed for brevity */

    private fun FloatingActionButton.activate() {
        /* removed for brevity */
        fab.setOnClickListener {
            itemSelected?.let { item ->
                val inputStream = context.contentResolver.
                    openInputStream(item.url)
                inputStream?.let {
                    viewModel.unarchiveAsync(it, item)   
                }
            }
        }
    }
}

In the MapImportFragment, we attach a custom click listener to every ViewHolder
in the RecyclerView.

The Context then is used to get a ContentResolver and create an InputStream
to feed as an argument for MapImportViewModel::unarchiveAsync.

When a user clicks on a particular item in the RecyclerView, the Kotlin extension
function FloatingActionButton::activate is called. Remember, a common cause
for a memory leak is when we accidentally inject an Activity or a Context into a
non-Android component.

If you look closely at the FloatingActionButton::activate implementation, you
can see that we create an implicit reference to the enclosing class, which is the MapIm
portFragment instance.

How is an implicit reference created? We add a click listener to a button. The listener
holds a reference to the parent Context (returned by the getContext() method of the
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1. The @ViewModelInject annotation is special to Hilt, which is a dependency injection framework. However,
constructor parameter injection can also be achieved with manual DI or with DI frameworks like Dagger and
Koin.

fragment). To be able to access the Context from inside the listener, the Kotlin com‐
piler creates an implicit reference to the enclosing class.

Following the code to the MapImportViewModel method, we see the InputStream
passed down to be able to call another private method in the ViewModel:

class MapImportViewModel @ViewModelInject constructor(
    private val settings: Settings
) : ViewModel() {
    /* removed for brevity */

    fun unarchiveAsync(inputStream: InputStream, item: ItemData) {
        viewModelScope.launch {
            val rootFolder = settings.getAppDir() ?: return@launch
            val outputFolder = File(rootFolder, "imported")
            /* removed for brevity */
        }
    }
}

A ViewModel object has a lifecycle of its own and is intended to outlive the lifecycle of
the view it is tied to until the Fragment is detached. Rather than using an Input
Stream as an argument, it is better to use an application context, which is available
throughout the life of the application and which can be injected via constructor
parameter injection in MapImportViewModel.1 We can then create the InputStream
right in MapImportViewModel::unarchiveAsync:

class MapImportViewModel @ViewModelInject constructor(
    private val settings: Settings,
    private val app: Application
): ViewModel() {
    /* removed for brevity */

    fun unarchiveAsync(item: ItemData) {
        viewModelScope.launch {
            val inputStream = app.contentResolve.
                openInputStream(item.uri) ?: return@launch
            val rootFolder = settings.getAppDir() ?: return@launch
            val outputFolder = File(rootFolder, "imported")
            /* removed for brevity */
        }
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    }
}

Of course, turning on LeakCanary can be disrupting for development if an existing
application has many memory leaks. In this case, the temptation might be to turn off
LeakCanary to prevent disruption to current work. Should you choose to put Leak‐
Canary on your application, it is best to do it only when you and your team have the
capacity to “face the music.”

Summary
There is no doubt that Android benchmarking and profiling tools are powerful. To
ensure that your application is getting the most out of analytics, it’s best to choose one
or two tools as appropriate. It can be easy to get lost in the world of optimizations,
but it’s important to remember that the largest wins come from making optimizations
with the least effort and the largest impact. Likewise, it’s important to take current
priorities and team workload into consideration.

Approach Android optimizations like a nutritionist, encouraging incremental, habit‐
ual changes instead of “crash dieting.” Android profiling is intended to show you
what’s really happening under the hood, but it’s important to remember that the aver‐
age Android developer must prioritize which issues must be addressed in a world
where their time and manpower may be limited.

The hope is that you feel more equipped to handle any potential bugs that may come
your way, and that this chapter gives you confidence to start exploring some of these
tools on your own applications to see how things are working under the hood:

• Android Profiler is a powerful way to analyze application performance, from net‐
working and CPU to memory and energy analytics. Android Studio caches
recorded sessions along with heap dumps and method traces for the lifespan of
an Android Studio instance so that you can compare them with other saved ses‐
sions.

• Network Profiler can help solve Android problems specific to API debugging. It
can provide information useful to both the client device and the server where the
data comes from, and can help us ensure optimal data formatting within a net‐
work call.

• CPU Profiler can give insight as to where most of the time is being spent execut‐
ing methods, and is particularly useful for finding bottlenecks in performance.
You can record different kinds of CPU traces to be able to drill down into specific
threads and call stacks.

• Energy Profiler looks at whether CPU processes, networking calls, or GPS loca‐
tions in an application could be draining a device’s battery.
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• Memory Profiler looks at how much memory is allocated in the heap. This can
help give insight about areas of code that could use improvements in memory.

• LeakCanary is a popular open source library created by Square. It can be helpful
to use LeakCanary to detect memory leaks that are harder to detect at runtime.
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CHAPTER 12

Trimming Down Resource Consumption
with Performance Optimizations

In the previous chapter, you became familiar with ways to examine what’s going on
“under the hood” using popular Android profiling tools. This final chapter highlights
a medley of performance optimization considerations. There’s no one-size-fits-all
approach, so it is helpful to become aware of potential performance pitfalls (and solu‐
tions). However, performance issues can sometimes be the result of many compound‐
ing problems that individually may not seem noteworthy.

Performance considerations allow you to examine concerns that may impact your
application’s ability to scale. If you can use any of these strategies as “low-hanging
fruit” in your code base, it’s well worth going for the biggest win with the smallest
amount of effort. Not every section of this chapter will be suitable for every project
you work on, but they are still useful considerations to be aware of when writing any
Android application. These topics range from view system performance optimiza‐
tions to network data format, caching, and more.

We are aware that the View system is to be replaced by Jetpack Compose: however,
the View system is not going anywhere for years, even with Jetpack. The first half of
this chapter is dedicated to view topics every project could benefit from: potential
optimizations for the Android View system. The way you set up view hierarchies can
end up having a substantial impact on performance if you are not careful. For this
reason, we look at two easy ways to optimize view performance: reducing view hier‐
archy complexity with ConstraintLayout, and creating drawable resources for ani‐
mation/customized backgrounds.
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Achieving Flatter View Hierarchy with ConstraintLayout
As a general rule, you want to keep your view hierarchies in Android as flat as possi‐
ble. Deeply nested hierarchies affect performance, both when a view first inflates and
when the user interacts with the screen. When view hierarchies are deeply nested, it
can take longer to send instructions back up to the root ViewGroup containing all
your elements and traverse back down to make changes to particular views.

In addition to the profiling tools mentioned in Chapter 11, Android Studio offers
Layout Inspector, which analyzes your application at runtime and creates a 3D render‐
ing of the view elements stacked on the screen. You can open Layout Inspector by
clicking the bottom corner tab of Android Studio, as shown in Figure 12-1.

Figure 12-1. Layout Inspector allows you to rotate the 3D rendering for devices running
API 29+.

When child components are drawn, they are drawn on top of the parent View, stack‐
ing one on top of the other. Layout Inspector does provide a Component Tree pane to
the left so that you are able to drill down the elements and inspect their properties. To
better understand what happens when users interact with Android UI widgets,
Figure 12-2 shows a bird’s-eye view of the very same layout hierarchy provided in the
Component Tree.

Even for a relatively simple layout, a view hierarchy can grow in complexity pretty
quickly. Managing many nested layouts can come with additional costs such as
increased difficulty managing touch events, slower GPU rendering, and difficulty
guaranteeing the same spacing/size of views across different-sized screens.
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Figure 12-2. The elements of a running activity stretched out in their entirety.
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On top of the visual changes your app might call for, the Android OS could also be
affecting view properties on its own. Changes on view properties, called by either you
or the OS, could trigger a re-layout of your view hierarchy. Whether this happens or
not depends on how views are implemented (by yourself or by an external depend‐
ency), how often layout components trigger dimension resizing, and where they are
located in the view hierarchy.

Not only must we worry about hierarchy complexity, but we also must be mindful of
avoiding certain types of views that could end up costing our application twice the
number of traversals necessary to send instructions to the Android OS. Some older
layout types in Android are prone to “double taxation” when relative positioning is
enabled:

RelativeLayout

Without fail, this always traverses its child elements at least twice: once for layout
calculations for each position and size and once to finalize positioning.

LinearLayout

This sets its orientation to horizontal or sets android:setMeasureWithLargest
ChildEnabled="true" while in vertical orientation; both cases make two passes
for each child element.

GridLayout

This can end up making double traversals if the layout uses weight distribution
or sets android:layout_gravity to any valid value.

The cost of double taxation can become far more severe when any one of these cases
is located closer to the root of the tree, and can even cause exponential traversals. The
deeper the view hierarchy is, the longer it takes for input events to be processed and
for views to be updated accordingly.

As a good practice, it’s best to lower the negative impact of view re-layout on app
responsiveness. To keep hierarchies flatter and more robust, Android advocates using
ConstraintLayout. ConstraintLayout helps create a responsive UI for complex lay‐
outs with a flat-view hierarchy.

There are a few rules of ConstraintLayout to remember:

• Every view must have at least one horizontal and one vertical constraint.
• The Start/End of a view may only chain itself to the Start/End of other views.
• The Top/Bottom of a view may only chain itself to the Top/Bottom of other

views.

Android Studio’s design preview shows how the parent ties the view to the designated
end of the screen, as shown in Figure 12-3.
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Figure 12-3. In this particular ConstraintLayout, the spinner button constrains all par‐
ent sides to the center of the screen. The text elements in the upper-left corner are only
constrained to the top and left sides of the parent.

When highlighted, the zigzagged lines appear on a view to indicate where a side is
constrained to. A zigzag indicates a constraint one way to a view while a squiggly line
indicates that the two views constrain to each other.

This book does not cover additional useful features of ConstraintLayout, like barri‐
ers, guidelines, groups, and creating constraints. The best way to get to know Con
straintLayout is to experiment with the elements yourself in Split View within the
design panel, as shown in Figure 12-4.
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Figure 12-4. The Split View of the design panel shows half code and half design for layout
files.

Using ConstraintLayout, especially when ViewGroup elements might be deeply
nested or inefficient, is an easy way to address potential performance bottlenecks at
runtime for any Android application. In the next section, we shift focus on perfor‐
mance optimizations from views themselves to view animations.

Reducing Programmatic Draws with Drawables
Another potential performance issue for any Android project is programmatic draws
at runtime. Once in a while, Android developers run into a view element which does
not have access to certain properties in a layout file. Suppose you wanted to render a
view with rounded corners only on the top two corners. One way to approach this is
with a programmatic draw via a Kotlin extension function:

fun View.roundCorners(resources: Resources, outline: OutLine?) {
    val adjusted = TypedValue.applyDimension(
        TypedValue.COMPLEX_UNIT_SP,
        25,
        resources?.displayMetrics
    )
    val newHeight =
        view.height.plus(cornerRadiusAdjusted).toInt()
    this.run { outline?.setRoundRect(0, 0, width, newHeight, adjusted)}
}

This is fine and valid; however, too many programmatic draws can end up choking
the RenderThread and subsequently block the UI thread from being able to process
further events until runtime drawings complete. Furthermore, the cost of altering
views programmatically becomes higher if a particular view needs to resize to meet
constraints. Resizing a view element at runtime means you won’t be able to use the
LayoutInflater to adjust how the elements fit with the new dimensions of the origi‐
nal altered view.

You can offload overhead that would otherwise occur by using drawables, which are
stored in the /drawables folder in your resource assets. The following code shows how
a Drawable XML file achieves the same goal of rounding the top two corners of a
view element:
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<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
    android:shape = "rectangle">
    <corners android:topLeftRadius="25dp" android:topRightRadius="25dp"/>
    <stroke android:width="1dp" android:color="#FFF"/>
    <solid android:color="#FFF"/>
</shape>

You can then add the name of the file as a Drawable type to the background attribute
in the View’s layout file the name of the Drawable file:

android:background="@drawable/rounded_top_corners_background"

In the previous section, we briefly touched on the initial stages of how user interac‐
tion sends instructions to the Android OS. To understand where animations come in,
we will now dive a little further into the full process of how Android renders the UI.
Let’s consider the case where a user in TrekMe presses the “Create a Map” button.

The stages we cover in the remainder of this section show how the OS processes user
events with a screen and how it is able to execute draw instructions from software to
hardware. We explain all the phases the Android OS performs in a draw up to where
animations occur in the Sync stage, as shown in Figure 12-5.

Figure 12-5. Animation occurs at the Sync stage, after traversal is performed.

VSync represents the time given between frame draws on the screen. In an app, when
a user touches a view element on the screen, input handling occurs. In the Input stage,
the Android OS makes a call to invalidate all the parent view element nodes up the
tree by copying a set of instructions to keep track of dirtied state. Invalidation does
not redraw the view itself, but rather, indicates to the system later on which marked
view must be redrawn later. This is done by propagating the copied information up
the view hierarchy so that it can all be executed on the way back down at a later stage.
Figure 12-6 shows what invalidation looks like after user input occurs when someone
touches a button: traversing up the node, then copying a set of DisplayList instruc‐
tions up each parent view. Even though the arrow points down the elements, indicat‐
ing child elements, the traversal and the copying of getDisplayList() actually goes
up to the root before going back down.
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Figure 12-6. The DisplayList object is a set of compact instructions used to instruct
which views need to be redrawn on the Canvas. These instructions are copied up every
parent view element to the root hierarchy during invalidation and then executed during
traversal.
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1. Chet Haase and Romain Guy. “Drawn Out: How Android Renders.” Google I/O ’18, 2017.

The Android UI system then schedules the next stage, known as traversal, which con‐
tains its own subset of rendering stages:

Measure
This calculates MeasureSpecs and passes it to the child element for measuring. It
does this recursively, all the way down to the leaf nodes.

Layout
This sets the view position and sizing of a child layout.

Draw
This renders the views using a set of instructions given by a set of DisplayList
instructions.

In the next stage, Sync, the Android OS syncs the DisplayList info between the CPU
and GPU. When the CPU starts talking to the GPU in Android, the JNI takes its set
of instructions in the Java Native layer within the UI thread and sends a synthetic
copy, along with some other information, to the GPU from the RenderThread. The
RenderThread is responsible for animations and offloading work from the UI thread
(instead of having to send the work to the GPU). From there, the CPU and GPU
communicate with each other to determine what instructions ought to be executed
and then combined visually to render on the screen. Finally, we reach the Execute
stage, where the OS finally executes DisplayList operations in optimized fashion
(like drawing similar operations together at once). “Drawn Out: How Android Ren‐
ders” is an excellent talk that provides more detail on Android rendering at the sys‐
tem level.1

As of Android Oreo, animations, such as circular reveals, ripples, and vector drawa‐
ble animations, live only in the RenderThread, meaning that these kinds of anima‐
tions are nonblocking for the UI thread. You can create these animations with custom
drawables. Consider the case where we wish to animate a shadowed ripple in the
View background whenever a user presses some kind of ViewGroup. You can combine
a set of drawables to make this happen, starting with RippleDrawable type Drawable
to create the ripple animation itself:

<?xml version="1.0" encoding="utf-8"?>
<ripple xmlns:android="http://schemas.android.com/apk/res/android"
        android:color="@color/primary">
    <item android:id="@android:id/mask">
        <shape android:shape="rectangle">
            <solid android:color="@color/ripple_mask" />
        </shape>
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    </item>
</ripple>

RippleDrawable, whose equivalent on XML is ripple, requires a color attribute for
ripple effects. To apply this animation to a background, we can use another drawable
file:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
        android:shape="rectangle">
    <solid android:color="@color/background_pressed" />
</shape>

We can use DrawableStates, a set of framework-provided states that can be specified
on a Drawable. In this case, we use DrawableStates on a selector to determine the ani‐
mation as well as whether the animation occurs on press or not. Finally, we create a
Drawable used to render different states. Each state is represented by a child drawa‐
ble. In this case, we apply the ripple drawable animation only when the view has been
pressed:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android"
    android:enterFadeDuration="@android:integer/config_shortAnimTime"
    android:exitFadeDuration="@android:integer/config_shortAnimTime">
    <item
        android:state_pressed="true" android:state_enabled="true"
        android:drawable="@drawable/background_pressed_ripple"/>
    <item
        android:state_pressed="false"
        android:drawable="@android:color/transparent"/>
</selector>

As mentioned in the beginning of the chapter, the view system build around Jetpack Com‐
pose is completely different from the view system in Android, with its own sets of UI man‐
agement, graphics, runtime/compile time behavior, and more. If Jetpack Compose is done
with programmatic draws, would that mean using Jetpack Compose is not efficient for draw‐
ing? While XML currently renders faster than Compose rendering itself, optimizations are
underway for closing the gap on render time. However, you should keep in mind the major
advantage Compose holds is the ability to update, or recompose, Composable views quickly
and far more efficiently than the current Android view framework.
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2. The instance of Bitmap that you supply must be a mutable bitmap.

We’re done talking about view performance optimizations, and we’ll move on to
more performance optimization tips around various parts of an Android application
for the remainder of the chapter.

Minimizing Asset Payload in Network Calls
In Android, it’s important to use minimal payload to avoid slower loads, battery
drainage, and using too much data. In the previous chapter, we started looking at net‐
work payload data formats. Both images and serialized data formats are the usual sus‐
pects for causing the most bloat, so it’s important to check your payload’s data format.

If you don’t need transparency for the images you work with in your Android project,
it’s better to work with JPG/JPEG since this format intrinsically doesn’t support trans‐
parency and compresses better than PNG. When it comes to blowing up bitmaps for
thumbnails, it probably makes sense to render the image in much lower resolution.

In the industry, JSON is commonly used as the data payload in networking. Unfortu‐
nately, JSON and XML payloads are horrible for compression since the data format
accounts for spaces, quotes, returns, acmes, and more. Binary serialization formats
like protocol buffers, an accessible data format in Android which might serve as a
cheaper alternative. You can define the data structs, which Protobuf is able to com‐
press much smaller than XML and JSON data. Check out Google Developers for
more on protocol buffers.

Bitmap Pooling and Caching
TrekMe uses Bitmap pooling to avoid allocating too many Bitmap objects. Bitmap
pooling reuses an existing instance, when possible. Where does this “existing
instance” come from? After a Bitmap is no longer visible, instead of making it avail‐
able for garbage collection (by just not keeping a reference on it), you can put the no-
longer-used Bitmap into a “bitmap pool.” Such a pool is just a container for available
bitmaps for later use. For example, TrekMe uses a simple in-memory dequeue as a
bitmap pool. To load an image into an existing bitmap, you have to specify which
bitmap instance you want to use. You can do that using the inBitmap parameter2 of
BitMapFactory.Options:

// we get an instance of bitmap from the pool
 BitmapFactory.Options().inBitmap = pool.get()
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3. LRU stands for Least Recently Used. As you can’t cache objects indefinitely, caching is always related to an
eviction strategy to maintain the cache at a target or acceptable size. In an LRU cache, the “oldest” objects are
evicted first.

It’s worth noting that image-loading libraries like Glide can save you from having to
handle bitmap craziness yourself. Using these libraries results in bitmap caching for
free in your applications. In cases where network calls are slow, fetching a fresh
instance of a Bitmap could be costly. This is when fetching from a bitmap cache can
save a lot of time and resources. If a user revisits a screen, the screen is able to load
almost immediately instead of having to make another network request. We can dis‐
tinguish two kinds of caches: in-memory and filesystem caches. In-memory caches
provide the fastest object retrieval, at the cost of using more memory. Filesystem
caches are typically slower, but they do have a low memory footprint. Some applica‐
tions rely on in-memory LRU cache,3 while others use filesystem-based cache or a
mix of the two approaches.

As an example, if you perform HTTP requests in your application, you can use
OkHttp to expose a nice API to use a filesystem cache. OkHttp (which is also included
as a transitive dependency of the popular library, Retrofit) is a popular client library
widely used in Android for networking. Adding caching is relatively easy:

val cacheSize = 10 * 1024 * 1024
val cache = Cache(rootDir, cacheSize)

val client = OkHttpClient.Builder()
                .cache(cache)
                .build()

With OkHttp client building, it is easy to create configurations with custom intercep‐
tors to better suit the use case of an application. For example, interceptors can force
the cache to refresh at a designated interval. Caching is a great tool for a device work‐
ing with limited resources in its environment. For this reason, Android developers
ought to use cache to keep track of calculated computations.

A nice open source library that supports both in-memory and file‐
system cache is Dropbox Store.
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Reducing Unnecessary Work
For your application to consume resources frugally, you want to avoid leaving in code
that is doing unnecessary work. Even senior developers commonly make these kinds
of mistakes, causing extra work and memory to be allocated unnecessarily. For
example, custom views in Android require particular attention. Let’s consider a cus‐
tom view with a circular shape. For a custom view implementation, you can subclass
any kind of View and override the onDraw method. Here is one possible implementa‐
tion of CircleView:

// Warning: this is an example of what NOT to do!
class CircleView @JvmOverloads constructor(
    context: Context,
) : View(context) {

    override fun onDraw(canvas: Canvas) {
       super.onDraw(canvas)
       canvas.save()
       // Never initialize object allocation here!
       val paint: Paint = Paint().apply {
           color = Color.parseColor("#55448AFF")
           isAntiAlias = true
       }
       canvas.drawCircle(100f, 100f, 50f, paint)
       canvas.restore()
   }
}

The onDraw method is invoked every time the view needs to be redrawn. That can
happen quite frequently, especially if the view is animated or moved. Therefore, you
should never instantiate new objects in onDraw. Such mistakes result in unnecessarily
allocating a lot of objects, which puts high pressure on the garbage collector. In the
previous example, a new Paint instance is created every time the rendering layer
draws CircleView. You should never do that.

Instead, it is better to instantiate the Paint object once as a class attribute:

class CircleView @JvmOverloads constructor(
    context: Context,
) : View(context) {

    private var paint: Paint = Paint().apply {
        color = Color.parseColor("#55448AFF")
        isAntiAlias = true
    }
        set(value) {
            field = value
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            invalidate()
        }

    override fun onDraw(canvas: Canvas) {
       super.onDraw(canvas)
       canvas.save()
       canvas.drawCircle(100f, 100f, 50f, paint)
       canvas.restore()
   }
}

Now the paint object is allocated only once. For the purposes of this existing class,
sometimes the paint value would be set to different colors. However, if the assign‐
ment is not dynamic, you can take it a step further by evaluating the paint value
lazily.

You want to keep your inject balanced and your dependencies light whenever possi‐
ble. For repositories, services, and other singleton dependencies (dependencies that
are single objects in memory, like object), it makes sense to make use of lazy delega‐
tion so that there is a singleton instance rather than copies of the same object sitting
in the heap.

Consider the code we examined earlier in “Detecting Memory Leaks with LeakCa‐
nary” on page 304:

class MapImportViewModel @ViewModelInject constructor(
    private val settings: Settings,
    private val app: Application
): ViewModel() {
    /* removed for brevity */

    fun unarchiveAsync(item: ItemData) {
        viewModelScope.launch {
            val inputStream = app.contentResolve.
                openInputStream(item.uri) ?: return@launch
            val rootFolder = settings.getAppDir() ?: return@launch
            val outputFolder = File(rootFolder, "imported")
            /* removed for brevity */
        }
    }
}

In this class, the settings dependency is injected using Hilt—you can tell that by the 
@ViewModelInject. At the time we wrote this example, we were using Hilt 2.30.1-
alpha and only dependencies available in the activity scope could be injected into the
ViewModel. In other words, a newly created MapImportViewModel is always injected
into the same Settings instance, as long as the activity isn’t re-created. So the bottom
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Android Jetpack

line is: a dependency injection framework such as Hilt can assist you in scoping the
lifecycle of your dependencies. In TrekMe, Settings is scoped in the application.
Therefore, Settings is technically a singleton.

Hilt is a dependency injection (DI) framework that provides a standard way to use DI in your
application. The framework also has the benefit of managing lifecycles automatically, and has
extensions available for use with Jetpack components like ViewModels and WorkManager.

The avoidance of unnecessary work expands into every scope of Android develop‐
ment. When drawing objects to render on the UI, it makes sense to recycle already-
drawn pixels. Likewise, since we know that making network calls in Android drains
the battery, it’s good to examine how many calls are made and how frequently they’re
called. Perhaps you have a shopping cart in your application. It may make good busi‐
ness sense to make updates to the remote server so that a user can access their cart
cross-platform. On the other hand, it may also be worth exploring updating a user’s
cart in local storage (save for a periodic network update). Of course, these kinds of
business decisions exist outside the scope of this book, but technical consideration
can always help to make for more thoughtful features.

Using Static Functions
When a method or a property isn’t tied to any class instance (e.g., doesn’t alter an
object state), it sometimes makes sense to use static functions/properties. We’ll show
different scenarios where using static functions is more appropriate than using
inheritance.

Kotlin makes it very easy to use static functions. A companion object within a class
declaration holds static constants, properties, and functions that can be referenced
anywhere in the project. For example, an Android service can expose a static property
isStarted, which can only be modified by the service itself, as shown in
Example 12-1.

Example 12-1. GpxRecordingService.isStarted

class GpxRecordingService {

    /* Removed for brevity */

    companion object {
        var isStarted: Boolean = false
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            private set(value) {
                EventBus.getDefault().post(GpxRecordServiceStatus(value))
                field = value
            }
    }
}

In Example 12-1, GpxRecordingService can internally change the value of
isStarted. While doing so, an event is sent through the event bus, notifying all regis‐
tered components. Moreover, the status of the GpxRecordingService is accessible
from anywhere in the app as a read-only GpxRecordingService.isStarted property.
But remember to avoid accidentally saving an Activity, Fragment, View, or Context
to a static member: that could end in a hefty memory leak!

Minification and Obfuscation with R8 and ProGuard
It is a common practice to minify, or shrink, release builds for production so that
unused code and resources can be removed. Minifying your code allows you to ship
smaller APKs to Google PlayStore more securely. Minification shrinks your code by
removing unused methods. Minifying your code also gives you the power of obfusca‐
tion as an additional security feature. Obfuscation garbles the names of classes/fields/
methods and removes debugging attributes in order to discourage reverse
engineering.

For Android users, R8 is now the default minification tool provided by the Android
Gradle plug-in 5.4.1+. ProGuard, R8’s stricter and more powerful predecessor, had a
heavier focus on optimizing heavy reflection like the ones found in Gson. In compar‐
ison, the newer minification tool R8 does not support this feature. However, R8 is
successful in achieving smaller compression and optimization for Kotlin.

Configurations can be done through proguardFile (you will see an example at the
end of the section). R8 reads the rules provided for the proguardFile and executes
shrinking and obfuscation accordingly. You can then assign a proguardFile to a cer‐
tain flavor and build type in build.gradle:

buildTypes {
    release {
        minifyEnabled true
        shrinkResources true
        proguardFile getDefaultProguardFile('proguard-android-
optimize.txt'), 'proguard-rules.pro'
    }
}
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It’s common practice to shrink your APK to upload to the PlayStore. However, it’s
important to be watchful and prevent unintentionally shrinking/obfuscating code
that might need to be used by a third-party library at runtime. Kotlin uses metadata
in Java classes for Kotlin constructs. However, when R8 shrinks Kotlin classes, it is
unable to keep state with the Kotlin metadata. In a best-case scenario, shrinking/
obfuscating such classes might cause wonky behavior; in a worst-case scenario, it
might cause inexplicable crashes.

To demonstrate a scenario where ProGuard accidentally obfuscates too much appli‐
cation code, we observe some wonky behavior on the popular open source library,
Retrofit. Perhaps your application works perfectly fine in debugging mode, but in
release mode, a networking call inexplicably returns a NullPointerException.
Unfortunately, Kotlin Gson models go blank even while annotating properties/fields
with Retrofit’s @SerializedName, thanks to Kotlin reflection. As a result, you must
add a rule in your proguard file to prevent the Kotlin model class from obfuscating.
Oftentimes, you may end up having to include your model classes by adding them
directly in your proguardFile. Here is an example of adding model domain classes to
a proguardFile so that release builds don’t accidentally obfuscate the aforementioned
classes:

# Retrofit 2.X
-dontwarn retrofit2.**
-keep class retrofit2.** { *; }
# Kotlin source code whitelisted here
-keep class com.some.kotlin.network.model.** { *; }
-keepattributes Signature
-keepattributes Exceptions
-keepclasseswithmembers class * {
    @retrofit2.http.* <methods>;
}

A good piece of advice is: always test the release build!

Summary
This chapter covered the following important performance optimization tips:

• In the Android view framework, deeply nested view hierarchies take longer to
draw and traverse than flatter hierarchies. Consider using ConstraintLayout,
where you can flatten nested views.

• In the Android view framework, it is better to move programmatic draws and
animations to drawable resources to offload the work on the RenderThread at
runtime.
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• Using JSON and XML formats for network data payload is horrible for compres‐
sion. Use protocol buffers for much smaller data compression.

• Avoid unnecessary work whenever possible: make sure you’re not ringing off
unnecessary network calls for constant updates, and try to recycle drawn objects.

• Optimizations in performance and memory can come from taking an honest
look at the code you write. Are you unintentionally creating objects within a loop
that could be created once outside a loop? What expensive operations could be
reduced to less-intensive operations?

• You can use a ProGuard file to make your application as small as possible and
add custom rules for shrinking, obfuscating, and optimizing your app.

Let’s face it: Android can be a challenge to keep up with. It’s OK to take information
in stride as it becomes relevant for you. Such a strategy guarantees learning opportu‐
nities that stay with you for a long time. No matter where you’re at in your journey,
one of your best resources for both Kotlin and Android (besides this book) is the
open source community. Both Android and Kotlin are living, breathing communities
from which you can ascertain the newest and most relevant information. To keep
yourself current, you can turn to additional resources like Twitter, Slack, and KEEP.
You may well also find that you can return to this book to revisit popular, evergreen
problems that show up in Android from time to time. We hope you enjoyed this
book.
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