

Node.js Design Patterns
Third Edition

Design and implement production-grade Node.js
applications using proven patterns and techniques

Mario Casciaro

Luciano Mammino

BIRMINGHAM - MUMBAI

Node.js Design Patterns
Third Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Suresh Jain
Project Editor: Tom Jacob
Content Development Editors: Joanne Lovell, Bhavesh Amin
Copy Editor: Safis Editing
Technical Editor: Saby D'silva
Proofreader: Safis Editing
Indexer: Manju Arasan
Presentation Designer: Sandip Tadge

First published: December 2014

Second Edition: July 2016

Third Edition: July 2020

Production reference: 1240720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-411-0

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

http://packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com

Contributors

About the authors
Mario Casciaro is a software engineer and entrepreneur. Since he was a child he's
been in love with building things, from LEGO spaceships to programs written on
his Commodore 64, his first computer. When in college, he used to work more on
side projects than on assignments and he published his first open source project on
SourceForge back in 2006, it was around 30,000 lines of C++ code. After graduating
with a master's degree in software engineering, Mario worked at IBM for a number
of years, first in Rome, then in the Dublin Software Lab. He currently splits his time
between Var7 Technologies—his own software company—and his role as lead
engineer at D4H Technologies where he creates software for emergency response
teams. He is a big supporter of pragmatism and simplicity.

The story of this book starts with you all who are reading this book. You
make all our efforts worthwhile. Thanks also to the readers who contributed
to the success of the first two editions, providing invaluable feedback,
writing reviews, and spreading the word about the book.

Thanks to the Packt team, who worked hard to make this book a reality;
thanks to Tom Jacob, Jonathan Malysiak, Saby D'silva, Bhavesh Amin,
Tushar Gupta, Kishor Rit, Joanne Lovell.

For this book, I had the honor to work with a team of top-class technical
reviewers: Roberto Gambuzzi, Minwoo Jung, Kyriakos Markakis, Romina
Miraballes, Peter Poliwoda, Liran Tal, and Tomas Della Vedova. Thanks for
lending your expertise to make this book perfect.

Thanks to Hiroyuki Musha who translated the second edition of Node.js
Design Patterns to Japanese and improved it in the process.

However, the top of the podium goes to Luciano. It has been a tremendous
experience and also an honor coauthoring this book with him. Thank you
Luciano for being both a great professional and an all-around great person.
Hopefully, we'll have the chance to work again together in the future.

Thanks to my Dad, Mom, Alessandro, and Elena for being there for me even
if we are far away.

Finally, I'd like to say a heartfelt thank you to Miriam, the love of my life,
for inspiring and supporting me in all my endeavors. There are still many
more adventures awaiting us. And to Leonardo, thanks for filling our life
with joy. Your dad loves you very much.

Luciano Mammino was born in 1987, the same year Super Mario Bros. was
released in Europe, which, by chance, is his favorite game! He started coding at the
age of 12, hacking away with his father's old i386 armed only with MS-DOS and
the QBasic interpreter. Since then he has been a professional software developer
for more than 10 years. Luciano is currently wearing the hat of principal software
engineer at FabFitFun in Dublin where he builds microservices and scaling
applications for millions of users.

Luciano loves the cloud, full-stack web development, Node.js, and serverless.
Among other things, Luciano runs Fullstack Bulletin (fstack.link), a weekly
newsletter for ambitious full-stack developers and Serverlesslab.com, bespoke
training courses to foster serverless adoption.

The biggest thanks of all goes to Mario Casciaro for involving me in such an
amazing project. It has been a fantastic journey and I have definitely learned
and grown a ton while working together. I do hope there will be many other
chances to work together!

This book was possible, thanks to the hard work of the team at Packt,
especially Saby, Tushar, Tom, Joanne, Kishor, Jonathan, and Bhavesh.
Thanks for bearing with us for almost a year, and thanks to everyone else at
Packt for supporting 3 editions of this book!

A huge thanks go to our talented reviewers. Without their true-hearted
supervision and their invaluable recommendations, this book wouldn't be
something I could be proud about: thanks Romina, Kyriakos, Roberto, Peter,
Tomas, Liran and Minwoo. I will be forever grateful for your help.

A special thanks to Padraig O'Brien, Domagoj Katavic, Michael Twomey,
Eugen Serbanescu, Stefano Abalsamo, and Gianluca Arbezzano for
providing a great deal of support along the way, and for letting me borrow
their expertise when I needed some extra piece of feedback on the content of
this book.

My gratitude goes to my family, who raised me and supported me in every
possible way along my journey. Thanks, Mom, for being a constant source
of inspiration and strength in my life. Thanks, Dad, for all the lessons, the
encouragement, and the pieces of advice. I do miss them in my life. Thanks
to Davide and Alessia for being present in all the painful and the joyful
events of life.

Thanks to Franco, Silvana, and their family for supporting many of my
initiatives and for sharing their wisdom with me.

http://fstack.link
http://Serverlesslab.com

Kudos to all the readers of the second edition, especially, the ones that
went a step further and left reviews, reported issues, submitted patches,
or suggested new topics. Special praise goes to Vu Nhat Tan, Danilo
Carrabino, Aaron Hatchard, Angelo Gulina, Bassem Ghoniem, Vasyl
Boroviak, and Willie Maddox. Thanks also to Hiroyuki Musha for
translating this book to Japanese and for finding many opportunities to
improve the content of the book. You are my hero!

Thanks to my friends for promoting this book and supporting me: Andrea
Mangano, Ersel Aker, Joe Karlsson, Francesco Sciuti, Arthur Thevenet,
Anton Whalley, Duncan Healy, Heitor Lessa, Francesco Ciula, John Brett,
Alessio Biancalana, Tommaso Allevi, Chris Sevilleja, David Gonzalez,
Nicola del Gobbo, Davide De Guz, Aris Markogiannakis, and Simone
Gentili.

Last, but not least, thanks to my partner Francesca. Thanks for the
unconditioned love and for supporting me on every adventure, even the
craziest ones. I look forward to writing the next chapters of our book of life
together!

About the reviewers
Roberto Gambuzzi was born in 1978 and started coding at the age of 8 on a
Commodore 16. His first PC was an 8086 with 1 MB of RAM and a 20 MB hard drive.
He coded in BASIC, assembly, Pascal, C, C++, COBOL, Delphi, Java, PHP, Python,
Go, JavaScript, and other lesser-known languages. He worked with Amazon in
Dublin, then moved to the world of startups. He likes simple, effective code.

He was the reviewer of Magento Best Practices (https://leanpub.com/magebp).

Thanks to Luciano Mammino and Mario Casciaro for giving me the chance
to review their beautiful book.

Minwoo Jung is a Node.js core collaborator and works for NodeSource as a full-
time software engineer. He specializes in web technologies with more than 10 years
of experience and used to publish the weekly updates on the official Node.js website.
When he isn't glued to a computer screen, he spends time hiking with his friends.

Kyriakos Markakis has worked as a software engineer and application architect.
He acquired experience in developing web applications by working on a wide range
of projects in e-government, online voting, digital education, media monitoring,
digital advertising, travel, and banking industries for almost 10 years.

During that time, he had the opportunity to work with some leading technologies,
such as Java, asynchronous messaging, AJAX, REST APIs, PostgreSQL, Redis,
Docker, and others. He has dedicatedly worked on Node.js for the past 3 years.

He contributes his knowledge by mentoring new technologies to beginners through
e-learning programs and by reviewing books.

https://leanpub.com/magebp

Romina Miraballes is a software engineer from Uruguay, currently living in
Ireland. She started working as a firmware developer programming in C for a
company that creates medical devices. After that, she began working as a full-
stack developer, working on several projects for a wide range of startups, creating
cloud solutions in AWS with Node.js. Currently, she works at Vectra AI, which
is a cybersecurity company and mostly works with Node.js applications in AWS
and Azure.

I would like to thank, first of all, Luciano for giving me the opportunity
to be part of this project as a reviewer. Secondly, to my family and my
boyfriend Nicolás who are always supporting me.

Peter Poliwoda is a senior software engineer and a technical lead at the IBM
Technology Campus in Ireland. He has over a decade of software development
experience in a wide range of industry sectors from banking and financial systems to
healthcare and research. Peter graduated from University College Cork in business
information systems. He has a keen interest in artificial intelligence, cognitive
solutions, as well as IoT. He is an advocate of solving problems using technology.
Peter is an avid contributor to the tech community through open source and by
speaking at conferences, seminars, and workshops across Europe. He enjoys giving
back to the educational system by working together with schools and universities.

To Larissa—you inspire me to do great things.

Liran Tal is a developer advocate at Snyk and a member of the Node.js Security
working group. Among his security activities, Liran has also authored Essential
Node.js Security and coauthored O'Reilly's Serverless Security book, and is a core
contributor to the OWASP NodeGoat project. He is passionate about the open source
movement, web technologies, and testing and software philosophy.

Tomas Della Vedova is an enthusiastic software engineer, who spends most of
his time programming in JavaScript and Node.js. He works for Elastic as a senior
software engineer in the clients team, focusing on the JavaScript client. Tomas is also
the author of the Fastify web framework and part of its ecosystem. He constantly
advances the enrichment of his knowledge and the exploration of new technologies;
moreover, he is a strong open source supporter and he will always be passionate
about technology, design, and music.

[i]

Table of Contents
Preface xi
Chapter 1: The Node.js Platform 1

The Node.js philosophy 2
Small core 2
Small modules 2
Small surface area 3
Simplicity and pragmatism 4

How Node.js works 5
I/O is slow 5
Blocking I/O 5
Non-blocking I/O 6
Event demultiplexing 7
The reactor pattern 9
Libuv, the I/O engine of Node.js 11
The recipe for Node.js 12

JavaScript in Node.js 13
Run the latest JavaScript with confidence 13
The module system 14
Full access to operating system services 14
Running native code 15

Summary 16
Chapter 2: The Module System 17

The need for modules 18
Module systems in JavaScript and Node.js 19
The module system and its patterns 20

The revealing module pattern 20

Table of Contents

[ii]

CommonJS modules 22
A homemade module loader 22
Defining a module 24
module.exports versus exports 25
The require function is synchronous 26
The resolving algorithm 26
The module cache 28
Circular dependencies 29

Module definition patterns 33
Named exports 33
Exporting a function 34
Exporting a class 35
Exporting an instance 36
Modifying other modules or the global scope 37

ESM: ECMAScript modules 38
Using ESM in Node.js 39
Named exports and imports 39
Default exports and imports 42
Mixed exports 43
Module identifiers 45
Async imports 45
Module loading in depth 48

Loading phases 48
Read-only live bindings 49
Circular dependency resolution 50

Modifying other modules 56
ESM and CommonJS differences and interoperability 60

ESM runs in strict mode 60
Missing references in ESM 60
Interoperability 61

Summary 62
Chapter 3: Callbacks and Events 63

The Callback pattern 64
The continuation-passing style 64

Synchronous CPS 65
Asynchronous CPS 65
Non-CPS callbacks 67

Synchronous or asynchronous? 67
An unpredictable function 68
Unleashing Zalgo 68
Using synchronous APIs 70
Guaranteeing asynchronicity with deferred execution 72

Table of Contents

[iii]

Node.js callback conventions 73
The callback comes last 73
Any error always comes first 74
Propagating errors 74
Uncaught exceptions 75

The Observer pattern 77
The EventEmitter 78
Creating and using the EventEmitter 79
Propagating errors 80
Making any object observable 80
EventEmitter and memory leaks 82
Synchronous and asynchronous events 83
EventEmitter versus callbacks 85
Combining callbacks and events 86

Summary 88
Exercises 88

Chapter 4: Asynchronous Control Flow Patterns with Callbacks 89
The difficulties of asynchronous programming 90

Creating a simple web spider 90
Callback hell 93

Callback best practices and control flow patterns 94
Callback discipline 95
Applying the callback discipline 95
Sequential execution 98

Executing a known set of tasks in sequence 99
Sequential iteration 100

Parallel execution 104
Web spider version 3 106
The pattern 108
Fixing race conditions with concurrent tasks 108

Limited parallel execution 110
Limiting concurrency 112
Globally limiting concurrency 113

The async library 119
Summary 120
Exercises 121

Chapter 5: Asynchronous Control Flow Patterns
with Promises and Async/Await 123

Promises 124
What is a promise? 125
Promises/A+ and thenables 127
The promise API 128

Table of Contents

[iv]

Creating a promise 130
Promisification 131
Sequential execution and iteration 133
Parallel execution 136
Limited parallel execution 137

Implementing the TaskQueue class with promises 138
Updating the web spider 139

Async/await 141
Async functions and the await expression 141
Error handling with async/await 143

A unified try...catch experience 143
The "return" versus "return await" trap 144

Sequential execution and iteration 145
Antipattern – using async/await with Array.forEach for serial execution 147

Parallel execution 147
Limited parallel execution 149

The problem with infinite recursive promise resolution chains 152
Summary 156
Exercises 157

Chapter 6: Coding with Streams 159
Discovering the importance of streams 160

Buffering versus streaming 160
Spatial efficiency 161

Gzipping using a buffered API 162
Gzipping using streams 163

Time efficiency 163
Composability 167

Adding client-side encryption 167
Adding server-side decryption 169

Getting started with streams 170
Anatomy of streams 170
Readable streams 171

Reading from a stream 171
Implementing Readable streams 174

Writable streams 179
Writing to a stream 179
Backpressure 181
Implementing Writable streams 182

Duplex streams 185
Transform streams 185

Implementing Transform streams 186
Filtering and aggregating data with Transform streams 189

PassThrough streams 193
Observability 193

Table of Contents

[v]

Late piping 194
Lazy streams 197
Connecting streams using pipes 198

Pipes and error handling 200
Better error handling with pipeline() 201

Asynchronous control flow patterns with streams 203
Sequential execution 203
Unordered parallel execution 206

Implementing an unordered parallel stream 206
Implementing a URL status monitoring application 208

Unordered limited parallel execution 210
Ordered parallel execution 212

Piping patterns 214
Combining streams 214

Implementing a combined stream 217
Forking streams 219

Implementing a multiple checksum generator 220
Merging streams 221

Merging text files 221
Multiplexing and demultiplexing 223

Building a remote logger 224
Multiplexing and demultiplexing object streams 229

Summary 230
Exercises 230

Chapter 7: Creational Design Patterns 233
Factory 234

Decoupling object creation and implementation 235
A mechanism to enforce encapsulation 236
Building a simple code profiler 238
In the wild 241

Builder 241
Implementing a URL object builder 244
In the wild 248

Revealing Constructor 249
Building an immutable buffer 250
In the wild 253

Singleton 253
Wiring modules 257

Singleton dependencies 258
Dependency Injection 261

Summary 266
Exercises 267

Table of Contents

[vi]

Chapter 8: Structural Design Patterns 269
Proxy 269

Techniques for implementing proxies 271
Object composition 272
Object augmentation 275
The built-in Proxy object 277
A comparison of the different proxying techniques 280

Creating a logging Writable stream 281
Change observer with Proxy 282
In the wild 285

Decorator 285
Techniques for implementing decorators 286

Composition 286
Object augmentation 288
Decorating with the Proxy object 289

Decorating a LevelUP database 290
Introducing LevelUP and LevelDB 290
Implementing a LevelUP plugin 291

In the wild 293
The line between proxy and decorator 294
Adapter 294

Using LevelUP through the filesystem API 295
In the wild 298

Summary 299
Exercises 300

Chapter 9: Behavioral Design Patterns 301
Strategy 302

Multi-format configuration objects 304
In the wild 308

State 308
Implementing a basic failsafe socket 310

Template 315
A configuration manager template 316
In the wild 318

Iterator 319
The iterator protocol 319
The iterable protocol 322
Iterators and iterables as a native JavaScript interface 324
Generators 326

Generators in theory 327
A simple generator function 327
Controlling a generator iterator 328
How to use generators in place of iterators 330

Table of Contents

[vii]

Async iterators 331
Async generators 334
Async iterators and Node.js streams 335
In the wild 336

Middleware 337
Middleware in Express 337
Middleware as a pattern 338
Creating a middleware framework for ZeroMQ 340

The Middleware Manager 340
Implementing the middleware to process messages 342
Using the ZeroMQ middleware framework 344

In the wild 347
Command 347

The Task pattern 349
A more complex command 349

Summary 353
Exercises 354

Chapter 10: Universal JavaScript for Web Applications 357
Sharing code with the browser 358

JavaScript modules in a cross-platform context 359
Module bundlers 360
How a module bundler works 363
Using webpack 369

Fundamentals of cross-platform development 371
Runtime code branching 372

Challenges of runtime code branching 373
Build-time code branching 374
Module swapping 377
Design patterns for cross-platform development 378

A brief introduction to React 379
Hello React 381
Alternatives to react.createElement 383
Stateful components 385

Creating a Universal JavaScript app 391
Frontend-only app 392
Server-side rendering 399
Asynchronous data retrieval 405
Universal data retrieval 411

Two-pass rendering 412
Async pages 414
Implementing async pages 416

Summary 425
Exercises 426

Table of Contents

[viii]

Chapter 11: Advanced Recipes 427
Dealing with asynchronously initialized components 428

The issue with asynchronously initialized components 428
Local initialization check 429
Delayed startup 430

Pre-initialization queues 431
In the wild 435

Asynchronous request batching and caching 435
What's asynchronous request batching? 436
Optimal asynchronous request caching 437
An API server without caching or batching 439
Batching and caching with promises 441

Batching requests in the total sales web server 442
Caching requests in the total sales web server 443
Notes about implementing caching mechanisms 445

Canceling asynchronous operations 445
A basic recipe for creating cancelable functions 446
Wrapping asynchronous invocations 447
Cancelable async functions with generators 449

Running CPU-bound tasks 453
Solving the subset sum problem 453
Interleaving with setImmediate 457

Interleaving the steps of the subset sum algorithm 457
Considerations on the interleaving approach 459

Using external processes 460
Delegating the subset sum task to an external process 461
Considerations for the multi-process approach 467

Using worker threads 468
Running the subset sum task in a worker thread 469

Running CPU-bound tasks in production 472
Summary 473
Exercises 473

Chapter 12: Scalability and Architectural Patterns 475
An introduction to application scaling 476

Scaling Node.js applications 477
The three dimensions of scalability 477

Cloning and load balancing 479
The cluster module 480

Notes on the behavior of the cluster module 481
Building a simple HTTP server 482
Scaling with the cluster module 484
Resiliency and availability with the cluster module 486
Zero-downtime restart 488

Table of Contents

[ix]

Dealing with stateful communications 490
Sharing the state across multiple instances 491
Sticky load balancing 492

Scaling with a reverse proxy 494
Load balancing with Nginx 496

Dynamic horizontal scaling 501
Using a service registry 501
Implementing a dynamic load balancer with http-proxy and Consul 503

Peer-to-peer load balancing 510
Implementing an HTTP client that can balance requests across multiple servers 511

Scaling applications using containers 513
What is a container? 513
Creating and running a container with Docker 514
What is Kubernetes? 517
Deploying and scaling an application on Kubernetes 519

Decomposing complex applications 523
Monolithic architecture 524
The microservice architecture 526

An example of a microservice architecture 526
Microservices – advantages and disadvantages 528

Integration patterns in a microservice architecture 530
The API proxy 531
API orchestration 532
Integration with a message broker 536

Summary 538
Exercises 539

Chapter 13: Messaging and Integration Patterns 541
Fundamentals of a messaging system 542

One way versus request/reply patterns 542
Message types 544

Command Messages 544
Event Messages 545
Document Messages 545

Asynchronous messaging, queues, and streams 545
Peer-to-peer or broker-based messaging 547

Publish/Subscribe pattern 549
Building a minimalist real-time chat application 550

Implementing the server side 550
Implementing the client side 551
Running and scaling the chat application 553

Using Redis as a simple message broker 554
Peer-to-peer Publish/Subscribe with ZeroMQ 557

Introducing ZeroMQ 557
Designing a peer-to-peer architecture for the chat server 558
Using the ZeroMQ PUB/SUB sockets 559

Table of Contents

[x]

Reliable message delivery with queues 562
Introducing AMQP 564
Durable subscribers with AMQP and RabbitMQ 566

Reliable messaging with streams 571
Characteristics of a streaming platform 571
Streams versus message queues 573
Implementing the chat application using Redis Streams 573

Task distribution patterns 577
The ZeroMQ Fanout/Fanin pattern 579

PUSH/PULL sockets 580
Building a distributed hashsum cracker with ZeroMQ 580

Pipelines and competing consumers in AMQP 587
Point-to-point communications and competing consumers 588
Implementing the hashsum cracker using AMQP 588

Distributing tasks with Redis Streams 592
Redis consumer groups 593
Implementing the hashsum cracker using Redis Streams 594

Request/Reply patterns 598
Correlation Identifier 598

Implementing a request/reply abstraction using correlation identifiers 599
Return address 605

Implementing the Return Address pattern in AMQP 605
Summary 611
Exercises 612

Other Books You May Enjoy 615
Index 619

[xi]

Preface
Node.js is considered by many a game-changer—possibly the biggest innovation of
the decade in web development. It is loved not just for its technical capabilities, but
also for the paradigm shift that it introduced in web development and, in general,
in the software development ecosystem.

First, Node.js applications are written in JavaScript, the most adopted language
on the web and the only programming language supported natively by every web
browser. This aspect enables scenarios such as single-language application stacks
and the sharing of code between the server and the client. A single language also
helps to reduce the gap between frontend and backend engineers, making backend
programming extremely approachable and intuitive for frontend developers. Once
you are acquainted with Node.js and JavaScript, you can easily build software for a
wide variety of platforms and contexts.

Node.js itself is contributing to the rise and evolution of the JavaScript language.
People realize that using JavaScript on the server brings a lot of value, and they
are loving it for its pragmatism, for its flexibility, its event-driven approach, and for
its hybrid nature, halfway between object-oriented and functional programming.

The second revolutionizing factor is Node.js' single-threaded programming model
and its asynchronous architecture. Besides obvious advantages from a performance
and scalability point of view, this characteristic changed the way developers
approach concurrency and parallelism. Mutexes are replaced by queues, threads by
callbacks, and synchronization by causality. These abstractions are generally simpler
to adopt than their traditional counterparts, but they are still extremely powerful,
allowing developers to be very productive while solving day-to-day challenges.

Preface

[xii]

The last and most important aspect of Node.js lies in its ecosystem: the npm package
manager, its constantly growing database of modules, its enthusiastic and helpful
community, and most importantly, its very own culture based on simplicity,
pragmatism, and extreme modularity.

However, because of these peculiarities, Node.js development gives you a very
different feel compared to other server-side platforms, and any developer new to
this paradigm will often feel unsure about how to tackle even the most common
design and coding problems effectively. Common questions include: How do I
organize my code? What's the best way to design this? How can I make my application more
modular? How do I handle a set of asynchronous calls effectively? How can I make sure that
my application will not collapse while it grows? Or more simply, what's the right way
to implement this? Fortunately, Node.js has become a mature enough platform and
most of these questions can now be easily answered with a design pattern, a proven
coding technique, or a recommended practice. The aim of this book is to guide you
through this emerging world of patterns, techniques, and practices, showing you
what the proven solutions to the most common problems are and teaching you how
to use them as the starting point to building the solution to your particular problem.

By reading this book, you will learn the following:

• The "Node way":
How to use the right point of view when approaching Node.js development.
You will learn, for example, how different traditional design patterns look
in Node.js, or how to design modules that do only one thing.

• A set of patterns to solve common Node.js design and coding problems:
You will be presented with a "Swiss Army knife" of patterns, ready to use in
order to efficiently solve your everyday development and design problems.

• How to write scalable and efficient Node.js applications:
You will gain an understanding of the basic building blocks and principles
of writing large and well-organized Node.js applications that can scale. You
will be able to apply these principles to novel problems that don't fall within
the scope of existing patterns.

• Code in "modern JavaScript":
JavaScript has been around since 1995, but a lot has changed since its first
inception, especially in these last few years. This book will take advantage
of the most modern JavaScript features, like the class syntax, promises,
generator functions, and async/await, giving you a properly up-to-date
experience.

Preface

[xiii]

Throughout the book, you will be presented with real-life libraries and technologies,
such as LevelDB, Redis, RabbitMQ, ZeroMQ, Express, and many others. They will be
used to demonstrate a pattern or technique, and besides making the example more
useful, these will also give you great exposure to the Node.js ecosystem and its set
of solutions.

Whether you use or plan to use Node.js for your work, your side project, or for an
open source project, recognizing and using well-known patterns and techniques will
allow you to use a common language when sharing your code and design, and on
top of that, it will help you get a better understanding of the future of Node.js and
how to make your own contributions a part of it.

What you need for this book
To experiment with the code, you will need a working installation of Node.js version
14 (or greater) and npm version 6 (or greater). If some examples will require you to
use some extra tooling, these will be described accordingly in place. You will also
need to be familiar with the command line, know how to install an npm package,
and know how to run Node.js applications. Finally, you will need a text editor to
work with the code and a modern web browser.

Who this book is for
This book is for developers who have already had initial contact with Node.js and
now want to get the most out of it in terms of productivity, design quality, and
scalability. You are only required to have some prior exposure to the technology
through some basic examples and some degree of familiarity with the JavaScript
language, since this book will cover some basic concepts as well. Developers with
intermediate experience in Node.js will also find the techniques presented in this
book beneficial.

Some background in software design theory is also an advantage to understand
some of the concepts presented.

This book assumes that you have a working knowledge of web application
development, web services, databases, and data structures.

Preface

[xiv]

What this book covers
Chapter 1, The Node.js Platform, serves as an introduction to the world of Node.js
application design by showing the patterns at the core of the platform itself. It covers
the Node.js ecosystem and its philosophy, and provides a quick introduction to the
Node.js internals and the reactor pattern.

Chapter 2, The Module System, dives into the module systems available in Node.js,
underlining the differences between CommonJS and the more modern ES modules
from the ECMAScript 2015 specification.

Chapter 3, Callbacks and Events, introduces the first steps towards learning
asynchronous coding and its patterns, discussing and comparing callbacks and
the event emitter (observer pattern).

Chapter 4, Asynchronous Control Flow Patterns with Callbacks, introduces a set of
patterns and techniques for efficiently handling asynchronous control flow in
Node.js using callbacks. This chapter teaches you some traditional ways to mitigate
the "callback hell" problem using plain JavaScript.

Chapter 5, Asynchronous Control Flow Patterns with Promises and Async/Await,
progresses with the exploration of more sophisticated and modern asynchronous
control flow techniques.

Chapter 6, Coding with Streams, dives deep into one of the most important tools
in Node.js: streams. It shows you how to process data with transform streams
and how to combine them into different patterns.

Chapter 7, Creational Design Patterns, starts to explore the traditional design patterns
in Node.js. In this chapter, you will learn about some of the most popular creational
design patterns, namely the Factory pattern, the Revealing Constructor pattern, the
Builder pattern, and the Singleton pattern.

Chapter 8, Structural Design Patterns, continues the exploration of traditional design
patterns in Node.js, covering structural design patterns such as Proxy, Decorator,
and Adapter.

Chapter 9, Behavioral Design Patterns, concludes the conversation around traditional
design patterns in Node.js by introducing behavioral design patterns like Strategy,
State, Template, Middleware, Command, and Iterator.

Chapter 10, Universal JavaScript for Web Applications, explores one of the most
interesting capabilities of modern JavaScript web applications: being able to share
code between the frontend and the backend. Throughout this chapter, you will learn
the basic principles of Universal JavaScript by building a simple web application
using modern tools and libraries.

Preface

[xv]

Chapter 11, Advanced Recipes, takes a problem-solution approach to show you how
some common coding and design intricacies can be approached with ready-to-use
solutions.

Chapter 12, Scalability and Architectural Patterns, teaches you the basic techniques and
patterns for scaling a Node.js application.

Chapter 13, Messaging and Integration Patterns, presents the most important messaging
patterns, teaching you how to build and integrate complex distributed systems using
Node.js and its ecosystem.

To get the most out of this book
To get the most out of this book you can download the example code files and the
color images as per the instructions below.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for macOS
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nodejsdp.link/repo.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com/
http://www.packt.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
http://nodejsdp.link/repo
https://github.com/PacktPublishing/

Preface

[xvi]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839214110_ColorImages.pdf.

Conventions used
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation
of their meaning:

• Code words in text: server.listen(handle)
• Pathname: src/app.js
• Dummy URL: http://localhost:8080

A block of code is generally formatted using StandardJS conventions
(nodejsdp.link/standard) and it is set as follows:

import zmq from 'zeromq'

async function main () {
 const sink = new zmq.Pull()
 await sink.bind('tcp://*:5017')

 for await (const rawMessage of sink) {
 console.log('Message from worker: ', rawMessage.toString())
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are highlighted in bold:

const wss = new ws.Server({ server })
wss.on('connection', client => {
 console.log('Client connected')
 client.on('message', msg => {
 console.log(`Message: ${msg}`)
 redisPub.publish('chat_messages', msg)
 })
})

https://static.packt-cdn.com/downloads/9781839214110_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839214110_ColorImages.pdf
http://nodejsdp.link/standard

Preface

[xvii]

Any command-line input or output is written as follows:

node replier.js
node requestor.js

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To explain
the problem, we will create a little web spider, a command-line application that
takes in a web URL as the input and downloads its contents locally into a file."

Most URLs are linked through our own short URL system to make it easier for
readers coming through the print edition to access them. These links are in the form
nodejsdp.link/some-descriptive-id.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at customercare@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you could report this to us. Please visit www.packtpub.com/support/errata, select
your book, click on the Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you could provide us with the location address or
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://nodejsdp.link/some-descriptive-id
http://www.packtpub.com/support/errata
http://authors.packtpub.com

Preface

[xviii]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

[1]

1
The Node.js Platform

Some principles and design patterns literally define the developer experience
with the Node.js platform and its ecosystem. The most peculiar one is probably
its asynchronous nature, which makes heavy use of asynchronous constructs
such as callbacks and promises. In this introductory chapter, we will explore
where Node.js gets its asynchronous behavior from. This is not just good-to-
know theoretical information: knowing how Node.js works at its core will give
you a strong foundation for understanding the reasoning behind more complex
topics and patterns that we will cover later in the book.

Another important aspect that characterizes Node.js is its philosophy. Approaching
Node.js is, in fact, far more than simply learning a new technology: it's also
embracing a culture and a community. You will see how this greatly influences the
way we design our applications and components, and the way they interact with
those created by the community.

In this chapter, you will learn about the following:

• The Node.js philosophy or the "Node way"
• The reactor pattern—the mechanism at the heart of the Node.js asynchronous

event-driven architecture
• What it means to run JavaScript on the server compared to the browser

The Node.js Platform

[2]

The Node.js philosophy
Every programming platform has its own philosophy, a set of principles and
guidelines that are generally accepted by the community, or an ideology for doing
things that influence both the evolution of the platform and how applications are
developed and designed. Some of these principles arise from the technology itself,
some of them are enabled by its ecosystem, some are just trends in the community,
and others are evolutions of ideologies borrowed from other platforms. In Node.js,
some of these principles come directly from its creator—Ryan Dahl—while others
come from the people who contribute to the core or from charismatic figures in the
community, and, finally, some are inherited from the larger JavaScript movement.

None of these rules are imposed and they should always be applied with common
sense; however, they can prove to be tremendously useful when we are looking for
a source of inspiration while designing our software.

Small core
The Node.js core—understood as the Node.js runtime and built-in modules—has its
foundations built on a few principles. One of these is having the smallest possible
set of functionalities, while leaving the rest to the so-called userland (or userspace),
which is the ecosystem of modules living outside the core. This principle has an
enormous impact on the Node.js culture, as it gives freedom to the community to
experiment and iterate quickly on a broader set of solutions within the scope of the
userland modules, instead of having one slowly evolving solution that is built into
the more tightly controlled and stable core. Keeping the core set of functionalities
to the bare minimum, then, is not only convenient in terms of maintainability, but
also in terms of the positive cultural impact that it brings to the evolution of the
entire ecosystem.

Small modules
Node.js uses the concept of a module as the fundamental means for structuring the
code of a program. It is the building block for creating applications and reusable
libraries. In Node.js, one of the most evangelized principles is designing small
modules (and packages), not only in terms of raw code size, but, most importantly,
in terms of scope.

You can find an extensive list of software development
philosophies on Wikipedia at nodejsdp.link/dev-philosophies.

http://nodejsdp.link/dev-philosophies

Chapter 1

[3]

This principle has its roots in the Unix philosophy, and particularly in two of its
precepts, which are as follows:

• "Small is beautiful."
• "Make each program do one thing well."

Node.js has brought these concepts to a whole new level. Along with the help of
its module managers—with npm and yarn being the most popular—Node.js helps
to solve the dependency hell problem by making sure that two (or more) packages
depending on different versions of the same package will use their own installations
of such a package, thus avoiding conflicts. This aspect allows packages to depend
on a high number of small, well-focused dependencies without the risk of creating
conflicts. While this can be considered unpractical or even totally unfeasible in
other platforms, in Node.js, this practice is the norm. This enables extreme levels
of reusability; they are so extreme, in fact, that sometimes we can find packages
comprising of a single module containing just a couple of lines of code—for example,
a regular expression for matching emails such as nodejsdp.link/email-regex.

Besides the clear advantage in terms of reusability, a small module is also:

• Easier to understand and use
• Simpler to test and maintain
• Small in size and perfect for use in the browser

Having smaller and more focused modules empowers everyone to share or reuse
even the smallest piece of code; it's the Don't Repeat Yourself (DRY) principle
applied at a whole new level.

Small surface area
In addition to being small in size and scope, a desirable characteristic of Node.js
modules is exposing a minimal set of functionalities to the outside world. This has
the effect of producing an API that is clearer to use and less susceptible to erroneous
usage. In fact, most of the time the user of a component is only interested in a very
limited and focused set of features, without needing to extend its functionality or
tap into more advanced aspects.

In Node.js, a very common pattern for defining modules is to expose only one
functionality, such as a function or a class, for the simple fact that it provides a
single, unmistakably clear entry point.

http://nodejsdp.link/email-regex

The Node.js Platform

[4]

Another characteristic of many Node.js modules is the fact that they are created
to be used, rather than extended. Locking down the internals of a module by
forbidding any possibility of an extension might sound inflexible, but it actually
has the advantage of reducing use cases, simplifying implementation, facilitating
maintenance, and increasing usability. In practice, this means preferring to expose
functions instead of classes, and being careful not to expose any internals to the
outside world.

Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle? Richard
P. Gabriel, a prominent computer scientist, coined the term "worse is better" to
describe the model whereby less and simpler functionality is a good design choice
for software. In his essay The Rise of "Worse is Better" he says:

"The design must be simple, both in implementation and interface. It is more
important for the implementation to be simple than the interface. Simplicity is the
most important consideration in a design."

Designing simple, as opposed to perfect, fully featured software is a good practice
for several reasons: it takes less effort to implement, it allows shipping faster
with fewer resources, it's easier to adapt, and, finally, it's easier to maintain and
understand. The positive effects of these factors encourage community contributions
and allow the software itself to grow and improve.

In Node.js, the adoption of this principle is also facilitated by JavaScript, which is
a very pragmatic language. In fact, it's common to see simple classes, functions, and
closures replacing complex class hierarchies. Pure object-oriented designs often try to
replicate the real world using the mathematical terms of a computer system without
considering the imperfection and complexity of the real world itself. Instead, the
truth is that our software is always an approximation of reality, and we will probably
have more success by trying to get something working sooner and with reasonable
complexity, instead of trying to create near-perfect software with huge effort and
tons of code to maintain.

Throughout this book, you will see this principle in action many times. For example,
a considerable number of traditional design patterns, such as Singleton or Decorator,
can have a trivial, even if sometimes not bulletproof, implementation, and you will
see how an uncomplicated, practical approach is (most of the time) preferred to a
pure, flawless design.

Next, we will take a look inside the Node.js core to reveal its internal patterns and
event-driven architecture.

Chapter 1

[5]

How Node.js works
In this section, you will gain an understanding of how Node.js works internally and
be introduced to the reactor pattern, which is the heart of the asynchronous nature
of Node.js. We will go through the main concepts behind the pattern, such as the
single-threaded architecture and the non-blocking I/O, and you will see how this
creates the foundation for the entire Node.js platform.

I/O is slow
I/O (short for input/output) is definitely the slowest among the fundamental
operations of a computer. Accessing the RAM is in the order of nanoseconds
(10E-9 seconds), while accessing data on the disk or the network is in the order
of milliseconds (10E-3 seconds). The same applies to the bandwidth. RAM has a
transfer rate consistently in the order of GB/s, while the disk or network varies
from MB/s to optimistically GB/s. I/O is usually not expensive in terms of CPU,
but it adds a delay between the moment the request is sent to the device and the
moment the operation completes. On top of that, we have to consider the human
factor. In fact, in many circumstances, the input of an application comes from a real
person—a mouse click, for example—so the speed and frequency of I/O doesn't
only depend on technical aspects, and it can be many orders of magnitude slower
than the disk or network.

Blocking I/O
In traditional blocking I/O programming, the function call corresponding to
an I/O request will block the execution of the thread until the operation completes.
This can range from a few milliseconds, in the case of disk access, to minutes or
even more, in the case of data being generated from user actions, such as pressing
a key. The following pseudocode shows a typical blocking thread performed against
a socket:

// blocks the thread until the data is available
data = socket.read()
// data is available
print(data)

It is trivial to notice that a web server that is implemented using blocking I/O will
not be able to handle multiple connections in the same thread. This is because each
I/O operation on a socket will block the processing of any other connection. The
traditional approach to solving this problem is to use a separate thread (or process)
to handle each concurrent connection.

The Node.js Platform

[6]

This way, a thread blocked on an I/O operation will not impact the availability of the
other connections, because they are handled in separate threads.

The following illustrates this scenario:

Figure 1.1: Using multiple threads to process multiple connections

Figure 1.1 lays emphasis on the amount of time each thread is idle and waiting for
new data to be received from the associated connection. Now, if we also consider
that any type of I/O can possibly block a request—for example, while interacting
with databases or with the filesystem—we will soon realize how many times a
thread has to block in order to wait for the result of an I/O operation. Unfortunately,
a thread is not cheap in terms of system resources—it consumes memory and causes
context switches—so having a long-running thread for each connection and not
using it for most of the time means wasting precious memory and CPU cycles.

Non-blocking I/O
In addition to blocking I/O, most modern operating systems support another
mechanism to access resources, called non-blocking I/O. In this operating mode, the
system call always returns immediately without waiting for the data to be read or
written. If no results are available at the moment of the call, the function will simply
return a predefined constant, indicating that there is no data available to return at
that moment.

For example, in Unix operating systems, the fcntl() function is used to manipulate
an existing file descriptor (which in Unix represents the reference used to access a
local file or a network socket) to change its operating mode to non-blocking (with
the O_NONBLOCK flag). Once the resource is in non-blocking mode, any read operation
will fail with the return code EAGAIN if the resource doesn't have any data ready
to be read.

Chapter 1

[7]

The most basic pattern for dealing with this type of non-blocking I/O is to actively
poll the resource within a loop until some actual data is returned. This is called busy-
waiting. The following pseudocode shows you how it's possible to read from
multiple resources using non-blocking I/O and an active polling loop:

resources = [socketA, socketB, fileA]
while (!resources.isEmpty()) {
 for (resource of resources) {
 // try to read
 data = resource.read()
 if (data === NO_DATA_AVAILABLE) {
 // there is no data to read at the moment
 continue
 }
 if (data === RESOURCE_CLOSED) {
 // the resource was closed, remove it from the list
 resources.remove(i)
 } else {
 //some data was received, process it
 consumeData(data)
 }
 }
}

As you can see, with this simple technique, it is possible to handle different
resources in the same thread, but it's still not efficient. In fact, in the preceding
example, the loop will only consume precious CPU for iterating over resources that
are unavailable most of the time. Polling algorithms usually result in a huge amount
of wasted CPU time.

Event demultiplexing
Busy-waiting is definitely not an ideal technique for processing non-blocking
resources, but luckily, most modern operating systems provide a native mechanism
to handle concurrent non-blocking resources in an efficient way. We are talking
about the synchronous event demultiplexer (also known as the event notification
interface).

If you are unfamiliar with the term, in telecommunications, multiplexing refers to
the method by which multiple signals are combined into one so that they can be
easily transmitted over a medium with limited capacity.

The Node.js Platform

[8]

Demultiplexing refers to the opposite operation, whereby the signal is split again
into its original components. Both terms are used in other areas (for example, video
processing) to describe the general operation of combining different things into one
and vice versa.

The synchronous event demultiplexer that we were talking about watches multiple
resources and returns a new event (or set of events) when a read or write operation
executed over one of those resources completes. The advantage here is that the
synchronous event demultiplexer is, of course, synchronous, so it blocks until there
are new events to process. The following is the pseudocode of an algorithm that uses
a generic synchronous event demultiplexer to read from two different resources:

watchedList.add(socketA, FOR_READ) // (1)
watchedList.add(fileB, FOR_READ)
while (events = demultiplexer.watch(watchedList)) { // (2)
 // event loop
 for (event of events) { // (3)
 // This read will never block and will always return data
 data = event.resource.read()
 if (data === RESOURCE_CLOSED) {
 // the resource was closed, remove it from the watched list
 demultiplexer.unwatch(event.resource)
 } else {
 // some actual data was received, process it
 consumeData(data)
 }
 }
}

Let's see what happens in the preceding pseudocode:

1. The resources are added to a data structure, associating each one of them
with a specific operation (in our example, a read).

2. The demultiplexer is set up with the group of resources to be watched.
The call to demultiplexer.watch() is synchronous and blocks until
any of the watched resources are ready for read. When this occurs, the
event demultiplexer returns from the call and a new set of events is available
to be processed.

Chapter 1

[9]

3. Each event returned by the event demultiplexer is processed. At this point,
the resource associated with each event is guaranteed to be ready to read and
to not block during the operation. When all the events are processed, the flow
will block again on the event demultiplexer until new events are again
available to be processed. This is called the event loop.

It's interesting to see that, with this pattern, we can now handle several I/O
operations inside a single thread, without using the busy-waiting technique. It
should now be clearer why we are talking about demultiplexing; using just a single
thread, we can deal with multiple resources. Figure 1.2 will help you visualize what's
happening in a web server that uses a synchronous event demultiplexer and a single
thread to handle multiple concurrent connections:

Figure 1.2: Using a single thread to process multiple connections

As this shows, using only one thread does not impair our ability to run multiple I/O-
bound tasks concurrently. The tasks are spread over time, instead of being spread
across multiple threads. This has the clear advantage of minimizing the total idle
time of the thread, as is clearly shown in Figure 1.2.

But this is not the only reason for choosing this I/O model. In fact, having a single
thread also has a beneficial impact on the way programmers approach concurrency
in general. Throughout the book, you will see how the absence of in-process race
conditions and multiple threads to synchronize allows us to use much simpler
concurrency strategies.

The reactor pattern
We can now introduce the reactor pattern, which is a specialization of the algorithms
presented in the previous sections. The main idea behind the reactor pattern is
to have a handler associated with each I/O operation. A handler in Node.js is
represented by a callback (or cb for short) function.

The Node.js Platform

[10]

The handler will be invoked as soon as an event is produced and processed by the
event loop. The structure of the reactor pattern is shown in Figure 1.3:

Figure 1.3: The reactor pattern

This is what happens in an application using the reactor pattern:

1. The application generates a new I/O operation by submitting a request to
the Event Demultiplexer. The application also specifies a handler, which
will be invoked when the operation completes. Submitting a new request
to the Event Demultiplexer is a non-blocking call and it immediately returns
control to the application.

2. When a set of I/O operations completes, the Event Demultiplexer pushes
a set of corresponding events into the Event Queue.

3. At this point, the Event Loop iterates over the items of the Event Queue.
4. For each event, the associated handler is invoked.
5. The handler, which is part of the application code, gives back control

to the Event Loop when its execution completes (5a). While the handler
executes, it can request new asynchronous operations (5b), causing new
items to be added to the Event Demultiplexer (1).

Chapter 1

[11]

6. When all the items in the Event Queue are processed, the Event Loop blocks
again on the Event Demultiplexer, which then triggers another cycle when
a new event is available.

The asynchronous behavior has now become clear. The application expresses
interest in accessing a resource at one point in time (without blocking) and provides
a handler, which will then be invoked at another point in time when the operation
completes.

We can now define the pattern at the heart of Node.js:

Libuv, the I/O engine of Node.js
Each operating system has its own interface for the event demultiplexer: epoll on
Linux, kqueue on macOS, and the I/O completion port (IOCP) API on Windows. On
top of that, each I/O operation can behave quite differently depending on the type
of resource, even within the same operating system. In Unix operating systems, for
example, regular filesystem files do not support non-blocking operations, so in order
to simulate non-blocking behavior, it is necessary to use a separate thread outside the
event loop.

All these inconsistencies across and within the different operating systems required
a higher-level abstraction to be built for the event demultiplexer. This is exactly why
the Node.js core team created a native library called libuv, with the objective to make
Node.js compatible with all the major operating systems and normalize the non-
blocking behavior of the different types of resource. Libuv represents the low-level
I/O engine of Node.js and is probably the most important component that Node.js is
built on.

Other than abstracting the underlying system calls, libuv also implements the reactor
pattern, thus providing an API for creating event loops, managing the event queue,
running asynchronous I/O operations, and queuing other types of task.

A Node.js application will exit when there are no more pending
operations in the event demultiplexer, and no more events to be
processed inside the event queue.

The reactor pattern

Handles I/O by blocking until new events are available from a set
of observed resources, and then reacts by dispatching each event to
an associated handler.

The Node.js Platform

[12]

The recipe for Node.js
The reactor pattern and libuv are the basic building blocks of Node.js, but we need
three more components to build the full platform:

• A set of bindings responsible for wrapping and exposing libuv and other
low-level functionalities to JavaScript.

• V8, the JavaScript engine originally developed by Google for the Chrome
browser. This is one of the reasons why Node.js is so fast and efficient. V8 is
acclaimed for its revolutionary design, its speed, and for its efficient memory
management.

• A core JavaScript library that implements the high-level Node.js API.

This is the recipe for creating Node.js, and the following image represents its final
architecture:

Figure 1.4: The Node.js internal components

This concludes our journey through the internal mechanisms of Node.js. Next, we'll
take a look at some important aspects to take into consideration when working with
JavaScript in Node.js.

A great resource to learn more about libuv is the free online book
created by Nikhil Marathe, which is available at nodejsdp.link/
uvbook.

http://nodejsdp.link/uvbook
http://nodejsdp.link/uvbook

Chapter 1

[13]

JavaScript in Node.js
One important consequence of the architecture we have just analyzed is that the
JavaScript we use in Node.js is somewhat different from the JavaScript we use in
the browser.

The most obvious difference is that in Node.js we don't have a DOM and we
don't have a window or a document. On the other hand, Node.js has access to a set
of services offered by the underlying operating system that are not available in the
browser. In fact, the browser has to implement a set of safety measures to make sure
that the underlying system is not compromised by a rogue web application. The
browser provides a higher-level abstraction over the operating system resources,
which makes it easier to control and contain the code that runs in it, which will
also inevitably limit its capabilities. In turn, in Node.js we can virtually have access
to all the services exposed by the operating system.

In this overview, we'll take a look at some key facts to keep in mind when using
JavaScript in Node.js.

Run the latest JavaScript with confidence
One of the main pain points of using JavaScript in the browser is that our code will
likely run on a variety of devices and browsers. Dealing with different browsers
means dealing with JavaScript runtimes that may miss some of the newest features of
both the language or the web platform. Luckily, today this problem can be somewhat
mitigated by the use of transpilers and polyfills. Nonetheless, this brings its own set
of disadvantages and not everything can be polyfilled.

All these inconveniences don't apply when developing applications on Node.js. In
fact, our Node.js applications will most likely run on a system and a Node.js runtime
that are well known in advance. This makes a huge difference as it allows us to target
our code for a specific JavaScript and Node.js version, with the absolute guarantee
that we won't have any surprises when we run it on production.

This factor, in combination with the fact that Node.js ships with very recent versions
of V8, means that we can use with confidence most of the features of the latest
ECMAScript specification (ES for short; this is the standard on which the JavaScript
language is based) without the need for any extra transpilation step.

The Node.js Platform

[14]

Please bear in mind, though, that if we are developing a library meant to be used by
third parties, we still have to take into account that our code may run on different
versions of Node.js. The general pattern in this case is to target the oldest active long-
term support (LTS) release and specify the engines section in our package.json, so
that the package manager will warn the user if they are trying to install a package
that is not compatible with their version of Node.js.

The module system
From its inception, Node.js shipped with a module system, even when JavaScript
still had no official support for any form of it. The original Node.js module system
is called CommonJS and it uses the require keyword to import functions, variables,
and classes exported by built-in modules or other modules located on the device's
filesystem.

CommonJS was a revolution for the JavaScript world in general, as it started to
get popular even in the client-side world, where it is used in combination with a
module bundler (such as Webpack or Rollup) to produce code bundles that are easily
executable by the browser. CommonJS was a necessary component for Node.js to
allow developers to create large and better organized applications on a par with
other server-side platforms.

Today, JavaScript has the so-called ES modules syntax (the import keyword may
be more familiar) from which Node.js inherits just the syntax, as the underlying
implementation is somewhat different from that of the browser. In fact, while the
browser mainly deals with remote modules, Node.js, at least for now, can only
deal with modules located on the local filesystem.

We'll talk about modules in more detail in the next chapter.

Full access to operating system services
As we already mentioned, even if Node.js uses JavaScript, it doesn't run inside the
boundaries of a browser. This allows Node.js to have bindings for all the major
services offered by the underlying operating system.

You can find out more about the Node.js release cycles
at nodejsdp.link/node-releases. Also, you can find
the reference for the engines section of package.json at
nodejsdp.link/package-engines. Finally, you can get an
idea of what ES feature is supported by each Node.js version at
nodejsdp.link/node-green.

http://nodejsdp.link/node-releases
http://nodejsdp.link/package-engines
http://nodejsdp.link/node-green

Chapter 1

[15]

For example, we can access any file on the filesystem (subject to any operating
system-level permission) thanks to the fs module, or we can write applications
that use low-level TCP or UDP sockets thanks to the net and dgram modules. We
can create HTTP(S) servers (with the http and https modules) or use the standard
encryption and hashing algorithms of OpenSSL (with the crypto module). We can
also access some of the V8 internals (the v8 module) or run code in a different V8
context (with the vm module).

We can also run other processes (with the child_process module) or retrieve
our own application's process information using the process global variable. In
particular, from the process global variable, we can get a list of the environment
variables assigned to the process (with process.env) or the command-line arguments
passed to the application at the moment of its launch (with process.argv).

Throughout the book, you'll have the opportunity to use many of the modules
described here, but for a complete reference, you can check the official Node.js
documentation at nodejsdp.link/node-docs.

Running native code
One of the most powerful capabilities offered by Node.js is certainly the possibility
to create userland modules that can bind to native code. This gives to the platform
a tremendous advantage as it allows us to reuse existing or new components
written in C/C++. Node.js officially provides great support for implementing
native modules thanks to the N-API interface.

But what's the advantage? First of all, it allows us to reuse with little effort a vast
amount of existing open source libraries, and most importantly, it allows a company
to reuse its own C/C++ legacy code without the need to migrate it.

Another important consideration is that native code is still necessary to access
low-level features such as communicating with hardware drivers or with hardware
ports (for example, USB or serial). In fact, thanks to its ability to link to native
code, Node.js has become popular in the world of the Internet of things (IoT)
and homemade robotics.

Finally, even though V8 is very (very) fast at executing JavaScript, it still has a
performance penalty to pay compared to executing native code. In everyday
computing, this is rarely an issue, but for CPU-intensive applications, such as those
with a lot of data processing and manipulation, delegating the work to native code
can make tons of sense.

http://nodejsdp.link/node-docs

The Node.js Platform

[16]

We should also mention that, nowadays, most JavaScript virtual machines (VMs)
(and also Node.js) support WebAssembly (Wasm), a low-level instruction format
that allows us to compile languages other than JavaScript (such as C++ or Rust)
into a format that is "understandable" by JavaScript VMs. This brings many of
the advantages we have mentioned, without the need to directly interface with
native code.

Summary
In this chapter, you have seen how the Node.js platform is built upon a few
important principles that shape both its internal architecture and the code we write.
You have learned that Node.js has a minimal core, and that embracing the "Node
way" means writing modules that are smaller, simpler, and that expose only the
minimum functionality necessary.

Next, you discovered the reactor pattern, which is the pulsating heart of Node.js,
and dissected the internal architecture of the platform runtime to reveal its three
pillars: V8, libuv, and the core JavaScript library.

Finally, we analyzed some of the main characteristics of using JavaScript in Node.js
compared to the browser.

Besides the obvious technical advantages enabled by its internal architecture, Node.js
is attracting so much interest because of the principles you have just discovered and
the community orbiting around it. For many, grasping the essence of this world feels
like returning to the origins, to a more humane way of programming in both size and
complexity, and that's why developers end up falling in love with Node.js.

In the next chapter, we will go deep into one of the most fundamental and important
topics of Node.js, its module system.

You can learn more about Wasm on the official website of the
project at nodejsdp.link/webassembly.

http://nodejsdp.link/webassembly

[17]

2
The Module System

In Chapter 1, The Node.js Platform, we briefly introduced the importance of modules
in Node.js. We discussed how modules play a fundamental role in defining some of
the pillars of the Node.js philosophy and its programming experience. But what do
we actually mean when we talk about modules and why are they so important?

In generic terms, modules are the bricks for structuring non-trivial applications.
Modules allow you to divide the codebase into small units that can be developed
and tested independently. Modules are also the main mechanism to enforce
information hiding by keeping private all the functions and variables that are
not explicitly marked to be exported.

If you come from other languages, you have probably seen similar concepts being
referred to with different names: package (Java, Go, PHP, Rust, or Dart), assembly
(.NET), library (Ruby), or unit (Pascal dialects). The terminology is not perfectly
interchangeable because every language or ecosystem comes with its own unique
characteristics, but there is a significant overlap between these concepts.

Interestingly enough, Node.js currently comes with two different module systems:
CommonJS (CJS) and ECMAScript modules (ESM or ES modules). In this chapter,
we will discuss why there are two alternatives, we will learn about their pros and
cons, and, finally, we will analyze several common patterns that are relevant when
using or writing Node.js modules. By the end of this chapter, you should be able
to make pragmatic choices about how to use modules effectively and how to write
your own custom modules.

Getting a good grasp of Node.js' module systems and module patterns is very
important as we will rely on this knowledge in all the other chapters of this book.

The Module System

[18]

In short, these are the main topics we will be discussing throughout this chapter:

• Why modules are necessary and the different module systems available
in Node.js

• CommonJS internals and module patterns
• ES modules (ESM) in Node.js
• Differences and interoperability between CommonJS and ESM

Let's begin with why we need modules.

The need for modules
A good module system should help with addressing some fundamental needs
of software engineering:

• Having a way to split the codebase into multiple files. This helps with keeping
the code more organized, making it easier to understand but also helps with
developing and testing various pieces of functionality independently from
each other.

• Allowing code reuse across different projects. A module can, in fact, implement
a generic feature that can be useful for different projects. Organizing such
functionality within a module can make it easier to bring it into the different
projects that may want to use it.

• Encapsulation (or information hiding). It is generally a good idea to hide
implementation complexity and only expose simple interfaces with clear
responsibilities. Most module systems allow to selectively keep the private
part of the code hidden, while exposing a public interface, such as functions,
classes, or objects that are meant to be used by the consumers of the module.

• Managing dependencies. A good module system should make it easy for
module developers to build on top of existing modules, including third-party
ones. A module system should also make it easy for module users to import
the chain of dependencies that are necessary for a given module to run
(transient dependencies).

It is important to clarify the distinction between a module and a module system. We
can define a module as the actual unit of software, while a module system is the
syntax and the tooling that allows us to define modules and to use them within
our projects.

Chapter 2

[19]

Module systems in JavaScript and
Node.js
Not all programming languages come with a built-in module system, and JavaScript
had been lacking this feature for a long time.

In the browser landscape, it is possible to split the codebase into multiple files and
then import them by using different <script> tags. For many years, this approach
was good enough to build simple interactive websites, and JavaScript developers
managed to get things done without having a fully-fledged module system.

Only when JavaScript browser applications became more complicated and
frameworks like jQuery, Backbone, and AngularJS took over the ecosystem, the
JavaScript community came up with several initiatives aimed at defining a module
system that could be effectively adopted within JavaScript projects. The most
successful ones were asynchronous module definition (AMD), popularized by
RequireJS (nodejsdp.link/requirejs), and later Universal Module Definition
(UMD – nodejsdp.link/umd).

When Node.js was created, it was conceived as a server runtime for JavaScript with
direct access to the underlying filesystem so there was a unique opportunity to
introduce a different way to manage modules. The idea was not to rely on HTML
<script> tags and resources accessible through URLs. Instead, the choice was to rely
purely on JavaScript files available on the local filesystem. For its module system,
Node.js came up with an implementation of the CommonJS specification (sometimes
also referred to as CJS, nodejsdp.link/commonjs), which was designed to provide
a module system for JavaScript in browserless environments.

CommonJS has been the dominant module system in Node.js since its inception
and it has become very prominent also in the browser landscape thanks to module
bundlers like Browserify (nodejsdp.link/browserify) and webpack (nodejsdp.link/
webpack).

In 2015, with the release of ECMAScript 6 (also called ECMAScript 2015
or ES2015), there was finally an official proposal for a standard module system:
ESM or ECMAScript modules. ESM brings a lot of innovation in the JavaScript
ecosystem and, among other things, it tries to bridge the gap between how
modules are managed on browsers and servers.

ECMAScript 6 defined only the formal specification for ESM in terms of syntax
and semantics, but it didn't provide any implementation details. It took different
browser companies and the Node.js community several years to come up with solid
implementations of the specification. Node.js ships with stable support for ESM
starting from version 13.2.

http://nodejsdp.link/requirejs
http://nodejsdp.link/umd
http://nodejsdp.link/commonjs
http://nodejsdp.link/browserify
http://nodejsdp.link/webpack
http://nodejsdp.link/webpack

The Module System

[20]

At the time of writing, the general feeling is that ESM is going to become the de facto
way to manage JavaScript modules in both the browser and the server landscape.
The reality today, though, is that the majority of projects are still heavily relying on
CommonJS and it will take some time for ESM to catch up and eventually become
the dominant standard.

To provide a comprehensive overview of module-related patterns in Node.js, in the
first part of this chapter, we will discuss them in the context of CommonJS, and then,
in the second part of the chapter, we will revisit our learnings using ESM.

The goal of this chapter is to make you comfortable with both module systems, but in
the rest of the book, we will only be using ESM for our code examples. The idea is to
encourage you to leverage ESM as much as possible so that your code will be more
future-proof.

If you are reading this chapter a few years after its publication, you are probably
not too worried about CommonJS, and you might want to jump straight into the
ESM part. This is probably fine, but we still encourage you to go through the entire
chapter, because understanding CommonJS and its characteristics will certainly be
beneficial in helping you to understand ESM and its strengths in much more depth.

The module system and its patterns
As we said, modules are the bricks for structuring non-trivial applications and the
main mechanism to enforce information hiding by keeping private all the functions
and variables that are not explicitly marked to be exported.

Before getting into the specifics of CommonJS, let's discuss a generic pattern that
helps with information hiding and that we will be using for building a simple
module system, which is the revealing module pattern.

The revealing module pattern
One of the bigger problems with JavaScript in the browser is the lack of
namespacing. Every script runs in the global scope; therefore, internal application
code or third-party dependencies can pollute the scope while exposing their own
pieces of functionality. This can be extremely harmful. Imagine, for instance, that a
third-party library instantiates a global variable called utils. If any other library, or
the application code itself, accidentally overrides or alters utils, the code that relies
on it will likely crash in some unpredictable way. Unpredictable side effects can also
happen if other libraries or the application code accidentally invoke a function of
another library meant for internal use only.

Chapter 2

[21]

In short, relying on the global scope is a very risky business, especially as
your application grows and you have to rely more and more on functionality
implemented by other individuals.

A popular technique to solve this class of problems is called the revealing module
pattern, and it looks like this:

const myModule = (() => {
 const privateFoo = () => {}
 const privateBar = []

 const exported = {
 publicFoo: () => {},
 publicBar: () => {}
 }

 return exported
})() // once the parenthesis here are parsed, the function
 // will be invoked

console.log(myModule)
console.log(myModule.privateFoo, myModule.privateBar)

This pattern leverages a self-invoking function. This type of function is sometimes
also referred to as Immediately Invoked Function Expression (IIFE) and it is used
to create a private scope, exporting only the parts that are meant to be public.

In JavaScript, variables created inside a function are not accessible from the outer
scope (outside the function). Functions can use the return statement to selectively
propagate information to the outer scope.

This pattern is essentially exploiting these properties to keep the private information
hidden and export only a public-facing API.

In the preceding code, the myModule variable contains only the exported API, while
the rest of the module content is practically inaccessible from outside.

The log statement is going to print something like this:

{ publicFoo: [Function: publicFoo],
 publicBar: [Function: publicBar] }
undefined undefined

The Module System

[22]

This demonstrates that only the exported properties are directly accessible from
myModule.

As we will see in a moment, the idea behind this pattern is used as a base for the
CommonJS module system.

CommonJS modules
CommonJS is the first module system originally built into Node.js. Node.js'
CommonJS implementation respects the CommonJS specification, with the addition
of some custom extensions.

Let's summarize two of the main concepts of the CommonJS specification:

• require is a function that allows you to import a module from the local
filesystem

• exports and module.exports are special variables that can be used to export
public functionality from the current module

This information is sufficient for now; we will learn more details and some of the
nuances of the CommonJS specification in the next few sections.

A homemade module loader
To understand how CommonJS works in Node.js, let's build a similar system
from scratch. The code that follows creates a function that mimics a subset of the
functionality of the original require() function of Node.js.

Let's start by creating a function that loads the content of a module, wraps it into
a private scope, and evaluates it:

function loadModule (filename, module, require) {
 const wrappedSrc =
 `(function (module, exports, require) {
 ${fs.readFileSync(filename, 'utf8')}
 })(module, module.exports, require)`
 eval(wrappedSrc)
}

The source code of a module is essentially wrapped into a function, as it was for
the revealing module pattern. The difference here is that we pass a list of variables
to the module, in particular, module, exports, and require. Make a note of how
the exports argument of the wrapping function is initialized with the content
of module.exports, as we will talk about this later.

Chapter 2

[23]

Another important detail to mention is that we are using readFileSync to read the
module's content. While it is generally not recommended to use the synchronous
version of the filesystem APIs, here it makes sense to do so. The reason for that is
that loading modules in CommonJS are deliberately synchronous operations. This
approach makes sure that, if we are importing multiple modules, they (and their
dependencies) are loaded in the right order. We will talk more about this aspect
later in the chapter.

Let's now implement the require() function:

function require (moduleName) {
 console.log(`Require invoked for module: ${moduleName}`)
 const id = require.resolve(moduleName) // (1)
 if (require.cache[id]) { // (2)
 return require.cache[id].exports
 }

 // module metadata
 const module = { // (3)
 exports: {},
 id
 }
 // Update the cache
 require.cache[id] = module // (4)

 // load the module
 loadModule(id, module, require) // (5)

 // return exported variables
 return module.exports // (6)
}
require.cache = {}
require.resolve = (moduleName) => {
 /* resolve a full module id from the moduleName */
}

Bear in mind that this is only an example, and you will rarely need
to evaluate some source code in a real application. Features such
as eval() or the functions of the vm module (nodejsdp.link/vm)
can be easily used in the wrong way or with the wrong input, thus
opening a system to code injection attacks. They should always be
used with extreme care or avoided altogether.

http://nodejsdp.link/vm

The Module System

[24]

The previous function simulates the behavior of the original require() function
of Node.js, which is used to load a module. Of course, this is just for educational
purposes and does not accurately or completely reflect the internal behavior of the
real require() function, but it's great to understand the internals of the Node.js
module system, including how a module is defined and loaded.

What our homemade module system does is explained as follows:

1. A module name is accepted as input, and the very first thing that we do
is resolve the full path of the module, which we call id. This task is delegated
to require.resolve(), which implements a specific resolving algorithm
(we will talk about it later).

2. If the module has already been loaded in the past, it should be available
in the cache. If this is the case, we just return it immediately.

3. If the module has never been loaded before, we set up the environment
for the first load. In particular, we create a module object that contains
an exports property initialized with an empty object literal. This object
will be populated by the code of the module to export its public API.

4. After the first load, the module object is cached.
5. The module source code is read from its file and the code is evaluated, as

we saw before. We provide the module with the module object that we just
created, and a reference to the require() function. The module exports its
public API by manipulating or replacing the module.exports object.

6. Finally, the content of module.exports, which represents the public API
of the module, is returned to the caller.

As we can see, there is nothing magical behind the workings of the Node.js module
system. The trick is all in the wrapper we create around a module's source code and
the artificial environment in which we run it.

Defining a module
By looking at how our custom require() function works, we should now be able
to understand how to define a module. The following code gives us an example:

// load another dependency
const dependency = require('./anotherModule')

// a private function
function log() {
 console.log(`Well done ${dependency.username}`)

Chapter 2

[25]

}

// the API to be exported for public use
module.exports.run = () => {
 log()
}

The essential concept to remember is that everything inside a module is private
unless it's assigned to the module.exports variable. The content of this variable is
then cached and returned when the module is loaded using require().

module.exports versus exports
For many developers who are not yet familiar with Node.js, a common source of
confusion is the difference between using exports and module.exports to expose a
public API. The code of our custom require() function should again clear any doubt.
The exports variable is just a reference to the initial value of module.exports. We
have seen that such a value is essentially a simple object literal created before the
module is loaded.

This means that we can only attach new properties to the object referenced by
the exports variable, as shown in the following code:

exports.hello = () => {
 console.log('Hello')
}

Reassigning the exports variable doesn't have any effect, because it doesn't change
the content of module.exports. It will only reassign the variable itself. The following
code is therefore wrong:

exports = () => {
 console.log('Hello')
}

If we want to export something other than an object literal, such as a function,
an instance, or even a string, we have to reassign module.exports as follows:

module.exports = () => {
 console.log('Hello')
}

The Module System

[26]

The require function is synchronous
A very important detail that we should take into account is that our
homemade require() function is synchronous. In fact, it returns the module contents
using a simple direct style, and no callback is required. This is true for the original
Node.js require() function too. As a consequence, any assignment to module.
exports must be synchronous as well. For example, the following code is incorrect
and it will cause trouble:

setTimeout(() => {
 module.exports = function() {...}
}, 100)

The synchronous nature of require() has important repercussions on the way
we define modules, as it limits us to mostly using synchronous code during
the definition of a module. This is one of the most important reasons why the
core Node.js libraries offer synchronous APIs as an alternative to most of the
asynchronous ones.

If we need some asynchronous initialization steps for a module, we can always
define and export an uninitialized module that is initialized asynchronously at
a later time. The problem with this approach, though, is that loading such a module
using require() does not guarantee that it's ready to be used. In Chapter 11,
Advanced Recipes, we will analyze this problem in detail and present some patterns
to solve this issue elegantly.

For the sake of curiosity, you might want to know that in its early days, Node.js
used to have an asynchronous version of require(), but it was soon removed
because it was overcomplicating a functionality that was actually only meant to be
used at initialization time and where asynchronous I/O brings more complexities
than advantages.

The resolving algorithm
The term dependency hell describes a situation whereby two or more dependencies
of a program in turn depend on a shared dependency, but require different
incompatible versions. Node.js solves this problem elegantly by loading a different
version of a module depending on where the module is loaded from. All the
merits of this feature go to the way Node.js package managers (such as npm or
yarn) organize the dependencies of the application, and also to the resolving
algorithm used in the require() function.

Chapter 2

[27]

Let's now give a quick overview of this algorithm. As we saw, the resolve() function
takes a module name (which we will call moduleName) as input and it returns the full
path of the module. This path is then used to load its code and also to identify the
module uniquely. The resolving algorithm can be divided into the following three
major branches:

• File modules: If moduleName starts with /, it is already considered an
absolute path to the module and it's returned as it is. If it starts with ./,
then moduleName is considered a relative path, which is calculated starting
from the directory of the requiring module.

• Core modules: If moduleName is not prefixed with / or ./, the algorithm will
first try to search within the core Node.js modules.

• Package modules: If no core module is found matching moduleName, then
the search continues by looking for a matching module in the first node_
modules directory that is found navigating up in the directory structure
starting from the requiring module. The algorithm continues to search for
a match by looking into the next node_modules directory up in the directory
tree, until it reaches the root of the filesystem.

For file and package modules, both files and directories can match moduleName. In
particular, the algorithm will try to match the following:

• <moduleName>.js

• <moduleName>/index.js

• The directory/file specified in the main property of <moduleName>/package.json

The node_modules directory is actually where the package managers install the
dependencies of each package. This means that, based on the algorithm we just
described, each package can have its own private dependencies. For example,
consider the following directory structure:

myApp
├── foo.js
└── node_modules
 ├── depA
 │ └── index.js

The complete, formal documentation of the resolving
algorithm can be found at nodejsdp.link/resolve.

http://nodejsdp.link/resolve

The Module System

[28]

 ├── depB
 │ ├── bar.js
 │ └── node_modules
 │ └── depA
 │ └── index.js
 └── depC
 ├── foobar.js
 └── node_modules
 └── depA
 └── index.js

In the previous example, myApp, depB, and depC all depend on depA. However, they
all have their own private version of the dependency! Following the rules of the
resolving algorithm, using require('depA') will load a different file depending
on the module that requires it, for example:

• Calling require('depA') from /myApp/foo.js will load
/myApp/node_modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depB/bar.js will load
/myApp/node_modules/depB/node_modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depC/foobar.js will
load /myApp/node_modules/depC/node_modules/depA/index.js

The resolving algorithm is the core part behind the robustness of the Node.js
dependency management, and it makes it possible to have hundreds or even
thousands of packages in an application without having collisions or problems
of version compatibility.

The module cache
Each module is only loaded and evaluated the first time it is required, since any
subsequent call of require() will simply return the cached version. This should be
clear by looking at the code of our homemade require() function. Caching is crucial
for performance, but it also has some important functional implications:

• It makes it possible to have cycles within module dependencies
• It guarantees, to some extent, that the same instance is always returned when

requiring the same module from within a given package

The resolving algorithm is applied transparently for us when we
invoke require(). However, if needed, it can still be used directly
by any module by simply invoking require.resolve().

Chapter 2

[29]

The module cache is exposed via the require.cache variable, so it is possible to
directly access it if needed. A common use case is to invalidate any cached module
by deleting the relative key in the require.cache variable, a practice that can be
useful during testing but very dangerous if applied in normal circumstances.

Circular dependencies
Many consider circular dependencies an intrinsic design issue, but it is something
that might actually happen in a real project, so it's useful for us to know at least how
this works with CommonJS. If we look again at our homemade require() function,
we immediately get a glimpse of how this might work and what its caveats are.

But let's walk together through an example to see how CommonJS behaves when
dealing with circular dependencies. Let's suppose we have the scenario represented
in Figure 2.1:

Figure 2.1: An example of circular dependency

A module called main.js requires a.js and b.js. In turn, a.js requires b.js. But
b.js relies on a.js as well! It's obvious that we have a circular dependency here as
module a.js requires module b.js and module b.js requires module a.js. Let's
have a look at the code of these two modules:

• Module a.js:
exports.loaded = false
const b = require('./b')
module.exports = {
 b,
 loaded: true // overrides the previous export
}

• Module b.js:
exports.loaded = false
const a = require('./a')
module.exports = {

The Module System

[30]

 a,
 loaded: true
}

Now, let's see how these modules are required by main.js:

const a = require('./a')
const b = require('./b')
console.log('a ->', JSON.stringify(a, null, 2))
console.log('b ->', JSON.stringify(b, null, 2))

If we run main.js, we will see the following output:

a -> {
 "b": {
 "a": {
 "loaded": false
 },
 "loaded": true
 },
 "loaded": true
}

b -> {
 "a": {
 "loaded": false
 },
 "loaded": true
}

This result reveals the caveats of circular dependencies with CommonJS, that is,
different parts of our application will have a different view of what is exported by
module a.js and module b.js, depending on the order in which those dependencies
are loaded. While both the modules are completely initialized as soon as they are
required from the module main.js, the a.js module will be incomplete when it is
loaded from b.js. In particular, its state will be the one that it reached the moment
b.js was required.

In order to understand in more detail what happens behind the scenes, let's analyze
step by step how the different modules are interpreted and how their local scope
changes along the way:

Chapter 2

[31]

Figure 2.2: A visual representation of how a dependency loop is managed in Node.js

The Module System

[32]

The steps are as follows:

1. The processing starts in main.js, which immediately requires a.js
2. The first thing that module a.js does is set an exported value called loaded

to false
3. At this point, module a.js requires module b.js
4. Like a.js, the first thing that module b.js does is set an exported value

called loaded to false
5. Now, b.js requires a.js (cycle)
6. Since a.js has already been traversed, its currently exported value

is immediately copied into the scope of module b.js
7. Module b.js finally changes the loaded value to true
8. Now that b.js has been fully executed, the control returns to a.js, which

now holds a copy of the current state of module b.js in its own scope
9. The last step of module a.js is to set its loaded value to true
10. Module a.js is now completely executed and the control returns to main.js,

which now has a copy of the current state of module a.js in its internal scope
11. main.js requires b.js, which is immediately loaded from cache
12. The current state of module b.js is copied into the scope of module main.js

where we can finally see the complete picture of what the state of every
module is

As we said, the issue here is that module b.js has a partial view of module a.js,
and this partial view gets propagated over when b.js is required in main.js. This
behavior should spark an intuition which can be confirmed if we swap the order in
which the two modules are required in main.js. If you actually try this, you will see
that this time it will be the a.js module that will receive an incomplete version of
b.js.

We understand now that this can become quite a fuzzy business if we lose control
of which module is loaded first, which can happen quite easily if the project is big
enough.

Later in this chapter, we will see how ESM can deal with circular dependencies in
a more effective way. Meanwhile, if you are using CommonJS, be very careful about
this behavior and the way it can affect your application.

In the next section, we will discuss some patterns to define modules in Node.js.

Chapter 2

[33]

Module definition patterns
The module system, besides being a mechanism for loading dependencies, is also
a tool for defining APIs. Like any other problem related to API design, the main
factor to consider is the balance between private and public functionality. The aim
is to maximize information hiding and API usability, while balancing these with
other software qualities, such as extensibility and code reuse.

In this section, we will analyze some of the most popular patterns for defining
modules in Node.js, such as named exports, exporting functions, classes and
instances, and monkey patching. Each one has its own balance of information
hiding, extensibility, and code reuse.

Named exports
The most basic method for exposing a public API is using named exports, which
involves assigning the values we want to make public to properties of the object
referenced by exports (or module.exports). In this way, the resulting exported
object becomes a container or namespace for a set of related functionalities.

The following code shows a module implementing this pattern:

// file logger.js
exports.info = (message) => {
 console.log(`info: ${message}`)
}

exports.verbose = (message) => {
 console.log(`verbose: ${message}`)
}

The exported functions are then available as properties of the loaded module, as
shown in the following code:

// file main.js
const logger = require('./logger')
logger.info('This is an informational message')
logger.verbose('This is a verbose message')

The Module System

[34]

Most of the Node.js core modules use this pattern. However, the CommonJS
specification only allows the use of the exports variable to expose public members.
Therefore, the named exports pattern is the only one that is really compatible with
the CommonJS specification. The use of module.exports is an extension provided
by Node.js to support a broader range of module definition patterns, which we are
going to see next.

Exporting a function
One of the most popular module definition patterns consists of reassigning the
whole module.exports variable to a function. The main strength of this pattern is
the fact that it allows you to expose only a single functionality, which provides a
clear entry point for the module, making it simpler to understand and use; it also
honors the principle of small surface area very well. This way of defining modules is
also known in the community as the substack pattern, after one of its most prolific
adopters, James Halliday (nickname substack – https://github.com/substack).
Have a look at this pattern in the following example:

// file logger.js
module.exports = (message) => {
 console.log(`info: ${message}`)
}

A possible extension of this pattern is using the exported function as a namespace
for other public APIs. This is a very powerful combination because it still gives the
module the clarity of a single entry point (the main exported function) and at the
same time it allows us to expose other functionalities that have secondary or more
advanced use cases. The following code shows us how to extend the module we
defined previously by using the exported function as a namespace:

module.exports.verbose = (message) => {
 console.log(`verbose: ${message}`)
}

This code demonstrates how to use the module that we just defined:

// file main.js
const logger = require('./logger')
logger('This is an informational message')
logger.verbose('This is a verbose message')

https://github.com/substack

Chapter 2

[35]

Even though exporting just a function might seem like a limitation, in reality, it's
a perfect way to put the emphasis on a single functionality, the most important
one for the module, while giving less visibility to secondary or internal aspects,
which are instead exposed as properties of the exported function itself. The
modularity of Node.js heavily encourages the adoption of the single-responsibility
principle (SRP): every module should have responsibility over a single functionality
and that responsibility should be entirely encapsulated by the module.

Exporting a class
A module that exports a class is a specialization of a module that exports a function.
The difference is that with this new pattern we allow the user to create new instances
using the constructor, but we also give them the ability to extend its prototype and
forge new classes. The following is an example of this pattern:

class Logger {
 constructor (name) {
 this.name = name
 }

 log (message) {
 console.log(`[${this.name}] ${message}`)
 }

 info (message) {
 this.log(`info: ${message}`)
 }

 verbose (message) {
 this.log(`verbose: ${message}`)
 }
}

module.exports = Logger

And, we can use the preceding module as follows:

// file main.js
const Logger = require('./logger')
const dbLogger = new Logger('DB')
dbLogger.info('This is an informational message')
const accessLogger = new Logger('ACCESS')
accessLogger.verbose('This is a verbose message')

The Module System

[36]

Exporting a class still provides a single entry point for the module, but compared
to the substack pattern, it exposes a lot more of the module internals. On the other
hand, it allows much more power when it comes to extending its functionality.

Exporting an instance
We can leverage the caching mechanism of require() to easily define
stateful instances created from a constructor or a factory, which can be shared
across different modules. The following code shows an example of this pattern:

// file logger.js
class Logger {
 constructor (name) {
 this.count = 0
 this.name = name
 }
 log (message) {
 this.count++
 console.log('[' + this.name + '] ' + message)
 }
}
module.exports = new Logger('DEFAULT')

This newly defined module can then be used as follows:

// main.js
const logger = require('./logger')
logger.log('This is an informational message')

Because the module is cached, every module that requires the logger module will
actually always retrieve the same instance of the object, thus sharing its state. This
pattern is very much like creating a singleton. However, it does not guarantee
the uniqueness of the instance across the entire application, as it happens in the
traditional singleton pattern. When analyzing the resolving algorithm, we have seen
that a module might be installed multiple times inside the dependency tree of an
application. This results in multiple instances of the same logical module, all running
in the context of the same Node.js application. We will analyze the Singleton pattern
and its caveats in more detail in Chapter 7, Creational Design Patterns.

One interesting detail of this pattern is that it does not preclude the opportunity to
create new instances, even if we are not explicitly exporting the class. In fact, we can
rely on the constructor property of the exported instance to construct a new instance
of the same type:

const customLogger = new logger.constructor('CUSTOM')
customLogger.log('This is an informational message')

Chapter 2

[37]

As you can see, by using logger.constructor(), we can instantiate new Logger
objects. Note that this technique must be used with caution or avoided altogether.
Consider that, if the module author decided not to export the class explicitly, they
probably wanted to keep this class private.

Modifying other modules or the global scope
A module can even export nothing. This can seem a bit out of place; however,
we should not forget that a module can modify the global scope and any object
in it, including other modules in the cache. Please note that these are in general
considered bad practices, but since this pattern can be useful and safe under some
circumstances (for example, for testing) and it's sometimes used in real-life projects,
it's worth knowing.

We said that a module can modify other modules or objects in the global scope;
well, this is called monkey patching. It generally refers to the practice of modifying
the existing objects at runtime to change or extend their behavior or to apply
temporary fixes.

The following example shows us how we can add a new function to another module:

// file patcher.js

// ./logger is another module
require('./logger').customMessage = function () {
 console.log('This is a new functionality')
}

Using our new patcher module is as easy as writing the following code:

// file main.js

require('./patcher')
const logger = require('./logger')
logger.customMessage()

The technique described here can be very dangerous to use. The main concern is
that having a module that modifies the global namespace or other modules is an
operation with side effects. In other words, it affects the state of entities outside their
scope, which can have consequences that aren't easily predictable, especially when
multiple modules interact with the same entities. Imagine having two different
modules trying to set the same global variable, or modifying the same property of
the same module. The effects can be unpredictable (which module wins?), but most
importantly it would have repercussions on the entire application.

The Module System

[38]

So, again use this technique with care and make sure you understand all the possible
side effects while doing so.

At this point, we should have a quite complete understanding of CommonJS and
some of the patterns that are generally used with it. In the next section, we will
explore ECMAScript modules, also known as ESM.

ESM: ECMAScript modules
ECMAScript modules (also known as ES modules or ESM) were introduced as part
of the ECMAScript 2015 specification with the goal to give JavaScript an official
module system suitable for different execution environments. The ESM specification
tries to retain some good ideas from previous existing module systems like
CommonJS and AMD. The syntax is very simple and compact. There is support for
cyclic dependencies and the possibility to load modules asynchronously.

The most important differentiator between ESM and CommonJS is that ES modules
are static, which means that imports are described at the top level of every module
and outside any control flow statement. Also, the name of the imported modules
cannot be dynamically generated at runtime using expressions, only constant strings
are allowed.

For instance, the following code wouldn't be valid when using ES modules:

if (condition) {
 import module1 from 'module1'
} else {
 import module2 from 'module2'
}

While in CommonJS, it is perfectly fine to write something like this:

let module = null
if (condition) {

If you want a real-life example of how this can be useful, have
a look at nock (nodejsdp.link/nock), a module that allows you
to mock HTTP responses in your tests. The way nock works is
by monkey patching the Node.js http module and by changing
its behavior so that it will provide the mocked response rather
than issuing a real HTTP request. This allows our unit test to run
without hitting the actual production HTTP endpoints, something
that's very convenient when writing tests for code that relies on
third-party APIs.

http://nodejsdp.link/nock

Chapter 2

[39]

 module = require('module1')
} else {
 module = require('module2')
}

At a first glance, this characteristic of ESM might seem an unnecessary limitation,
but in reality, having static imports opens up a number of interesting scenarios that
are not practical with the dynamic nature of CommonJS. For instance, static imports
allow the static analysis of the dependency tree, which allows optimizations such as
dead code elimination (tree shaking) and more.

Using ESM in Node.js
Node.js will consider every .js file to be written using the CommonJS syntax by
default; therefore, if we use the ESM syntax inside a .js file, the interpreter will
simply throw an error.

There are several ways to tell the Node.js interpreter to consider a given module as
an ES module rather than a CommonJS module:

• Give the module file the extension .mjs
• Add to the nearest parent package.json a field called "type" with a value of

"module"

Let's now have a look at the ESM syntax.

Named exports and imports
ESM allows us to export functionality from a module through the export keyword.

Throughout the rest of this book and in the code examples
provided, we will keep using the .js extension to keep the code
more easily accessible to most text editors, so if you are copying
and pasting examples straight from the book, make sure that you
also create a package.json file with the "type":"module" entry.

Note that ESM uses the singular word export as opposed to the
plural (exports and module.exports) used by CommonJS.

The Module System

[40]

In an ES module, everything is private by default and only exported entities are
publicly accessible from other modules.

The export keyword can be used in front of the entities that we want to make
available to the module users. Let's see an example:

// logger.js

// exports a function as `log`
export function log (message) {
 console.log(message)
}

// exports a constant as `DEFAULT_LEVEL`
export const DEFAULT_LEVEL = 'info'

// exports an object as `LEVELS`
export const LEVELS = {
 error: 0,
 debug: 1,
 warn: 2,
 data: 3,
 info: 4,
 verbose: 5
}

// exports a class as `Logger`
export class Logger {
 constructor (name) {
 this.name = name
 }

 log (message) {
 console.log(`[${this.name}] ${message}`)
 }
}

If we want to import entities from a module we can use the import keyword. The
syntax is quite flexible, and it allows us to import one or more entities and even to
rename imports. Let's see some examples:

import * as loggerModule from './logger.js'
console.log(loggerModule)

Chapter 2

[41]

In this example, we are using the * syntax (also called namespace import) to import
all the members of the module and assign them to the local loggerModule variable.
This example will output something like this:

[Module] {
 DEFAULT_LEVEL: 'info',
 LEVELS: { error: 0, debug: 1, warn: 2, data: 3, info: 4,
 verbose: 5 },
 Logger: [Function: Logger],
 log: [Function: log]
}

As we can see, all the entities exported in our module are now accessible in the
loggerModule namespace. For instance, we could refer to the log() function through
loggerModule.log.

If we are using a large module, most often we don't want to import all of its
functionality, but only one or few entities from it:

import { log } from './logger.js'
log('Hello World')

If we want to import more than one entity, this is how we would do that:

import { log, Logger } from './logger.js'
log('Hello World')
const logger = new Logger('DEFAULT')
logger.log('Hello world')

When we use this type of import statement, the entities are imported into the
current scope, so there is a risk of a name clash. The following code, for example,
would not work:

import { log } from './logger.js'
const log = console.log

It's very important to note that, as opposed to CommonJS, with
ESM we have to specify the file extension of the imported modules.
With CommonJS we can use either ./logger or ./logger.js,
with ESM we are forced to use ./logger.js.

The Module System

[42]

If we try to execute the preceding snippet, the interpreter fails with the following
error:

SyntaxError: Identifier 'log' has already been declared

In situations like this one, we can resolve the clash by renaming the imported entity
with the as keyword:

import { log as log2 } from './logger.js'
const log = console.log

log('message from log')
log2('message from log2')

This approach can be particularly useful when the clash is generated by importing
two entities with the same name from different modules, and therefore changing
the original names is outside the consumer's control.

Default exports and imports
One widely used feature of CommonJS is the ability to export a single unnamed
entity through the assignment of module.exports. We saw that this is very
convenient as it encourages module developers to follow the single-responsibility
principle and expose only one clear interface. With ESM, we can do something
similar through what's called a default export. A default export makes use of the
export default keywords and it looks like this:

// logger.js
export default class Logger {
 constructor (name) {
 this.name = name
 }

 log (message) {
 console.log(`[${this.name}] ${message}`)
 }
}

In this case, the name Logger is ignored, and the entity exported is registered under
the name default. This exported name is handled in a special way, and it can be
imported as follows:

// main.js

Chapter 2

[43]

import MyLogger from './logger.js'
const logger = new MyLogger('info')
logger.log('Hello World')

The difference with named ESM imports is that here, since the default export is
considered unnamed, we can import it and at the same time assign it a local name of
our choice. In this example, we can replace MyLogger with anything else that makes
sense in our context. This is very similar to what we do with CommonJS modules.
Note also that we don't have to wrap the import name around brackets or use the
as keyword when renaming.

Internally, a default export is equivalent to a named export with default as the
name. We can easily verify this statement by running the following snippet of code:

// showDefault.js
import * as loggerModule from './logger.js'
console.log(loggerModule)

When executed, the previous code will print something like this:

[Module] { default: [Function: Logger] }

One thing that we cannot do, though, is import the default entity explicitly. In fact,
something like the following will fail:

import { default } from './logger.js'

The execution will fail with a SyntaxError: Unexpected reserved word error. This
happens because the default keyword cannot be used as a variable name. It is valid
as an object attribute, so in the previous example, it is okay to use loggerModule.
default, but we can't have a variable named default directly in the scope.

Mixed exports
It is possible to mix named exports and a default export within an ES module. Let's
have a look at an example:

// logger.js
export default function log (message) {
 console.log(message)
}

export function info (message) {
 log(`info: ${message}`)
}

The Module System

[44]

The preceding code is exporting the log() function as a default export and a named
export for a function called info(). Note that info() can reference log() internally.
It would not be possible to replace the call to log() with default() to do that, as it
would be a syntax error (Unexpected token default).

If we want to import both the default export and one or more named exports, we
can do it using the following format:

import mylog, { info } from './logger.js'

In the preceding example, we are importing the default export from logger.js as
mylog and also the named export info.

Let's now discuss some key details and differences between the default export and
named exports:

• Named exports are explicit. Having predetermined names allows IDEs to
support the developer with automatic imports, autocomplete, and refactoring
tools. For instance, if we type writeFileSync, the editor might automatically
add import { writeFileSync } from 'fs' at the beginning of the current
file. Default exports, on the contrary, make all these things more complicated
as a given functionality could have different names in different files, so
it's harder to make inferences on which module might provide a given
functionality based only on a given name.

• The default export is a convenient mechanism to communicate what is the
single most important functionality for a module. Also, from the perspective
of the user, it can be easier to import the obvious piece of functionality
without having to know the exact name of the binding.

• In some circumstances, default exports might make it harder to apply dead
code elimination (tree shaking). For example, a module could provide only
a default export, which is an object where all the functionality is exposed
as properties of such an object. When we import this default object, most
module bundlers will consider the entire object being used and they won't
be able to eliminate any unused code from the exported functionality.

For these reasons, it is generally considered good practice to stick with named
exports, especially when you want to expose more than one functionality, and
only use default exports if it's one clear functionality you want to export.

This is not a hard rule and there are notable exceptions to this suggestion.
For instance, all Node.js core modules have both a default export and a number
of named exports. Also, React (nodejsdp.link/react) uses mixed exports.

http://nodejsdp.link/react

Chapter 2

[45]

Consider carefully what the best approach for your specific module is and what
you want the developer experience to be for the users of your module.

Module identifiers
Module identifiers (also called module specifiers) are the different types of values that
we can use in our import statements to specify the location of the module we want
to load.

So far, we have seen only relative paths, but there are several other possibilities and
some nuances to keep in mind. Let's list all the possibilities:

• Relative specifiers like ./logger.js or ../logger.js. They are used to refer
to a path relative to the location of the importing file.

• Absolute specifiers like file:///opt/nodejs/config.js. They refer directly
and explicitly to a full path. Note that this is the only way with ESM to refer
to an absolute path for a module, using a / or a // prefix won't work. This is
a significant difference with CommonJS.

• Bare specifiers are identifiers like fastify or http, and they represent modules
available in the node_modules folder and generally installed through a
package manager (such as npm) or available as core Node.js modules.

• Deep import specifiers like fastify/lib/logger.js, which refer to a path
within a package in node_modules (fastify, in this case).

In browser environments, it is possible to import modules directly by specifying the
module URL, for instance, https://unpkg.com/lodash. This feature is not supported
by Node.js.

Async imports
As we have seen in the previous section, the import statement is static and therefore
subject to two important limitations:

• A module identifier cannot be constructed at runtime
• Module imports are declared at the top level of every file and they cannot be

nested within control flow statements

There are some use cases when these limitations can become a little bit too restrictive.
Imagine, for instance, if we have to import a specific translation module for the
current user language, or a variation of a module that depends on the user's
operating system.

https://unpkg.com/lodash

The Module System

[46]

Also, what if we want to load a given module, which might be particularly heavy,
only if the user is accessing the piece of functionality that requires that module?

To allow us to overcome these limitations ES modules provides async imports (also
called dynamic imports).

Async imports can be performed at runtime using the special import() operator.

The import() operator is syntactically equivalent to a function that takes a module
identifier as an argument and it returns a promise that resolves to a module object.

The module identifier can be any module identifier supported by static imports as
discussed in the previous section. Now, let's see how to use dynamic imports with
a simple example.

We want to build a command line application that can print "Hello World" in
different languages. In the future, we will probably want to support many more
phrases and languages, so it makes sense to have one file with the translations of
all the user-facing strings for each supported language.

Let's create some example modules for some of the languages we want to support:

// strings-el.js
export const HELLO = 'Γεια σου κόσμε'

// strings-en.js
export const HELLO = 'Hello World'

// strings-es.js
export const HELLO = 'Hola mundo'

// strings-it.js
export const HELLO = 'Ciao mondo'

// strings-pl.js
export const HELLO = 'Witaj świecie'

We will learn more about promises in Chapter 5, Asynchronous
Control Flow Patterns with Promises and Async/Await, so don't worry
too much about understanding all the nuances of the specific
promise syntax for now.

Chapter 2

[47]

Now let's create the main script that takes a language code from the command line
and prints "Hello World" in the selected language:

// main.js
const SUPPORTED_LANGUAGES = ['el', 'en', 'es', 'it', 'pl'] // (1)
const selectedLanguage = process.argv[2] // (2)

if (!SUPPORTED_LANGUAGES.includes(selectedLanguage)) { // (3)
 console.error('The specified language is not supported')
 process.exit(1)
}

const translationModule = `./strings-${selectedLanguage}.js` // (4)
import(translationModule) // (5)
 .then((strings) => { // (6)
 console.log(strings.HELLO)
 })

The first part of the script is quite simple. What we do there is:

1. Define a list of supported languages.
2. Read the selected language from the first argument passed in the command

line.
3. Finally, we handle the case where the selected language is not supported.

The second part of the code is where we actually use dynamic imports:

4. First of all, we dynamically build the name of the module we want to import
based on the selected language. Note that the module name needs to be
a relative path to the module file, that's why we are prepending ./ to the
filename.

5. We use the import() operator to trigger the dynamic import of the module.
6. The dynamic import happens asynchronously, so we can use the .then()

hook on the returned promise to get notified when the module is ready to
be used. The function passed to then() will be executed when the module
is fully loaded and strings will be the module namespace imported
dynamically. After that, we can access strings.HELLO and print its value to
the console.

The Module System

[48]

Now we can execute this script like this:

node main.js it

And we should see Ciao mondo being printed to our console.

Module loading in depth
To understand how ESM actually works and how it can deal effectively with circular
dependencies, we have to deep dive a little bit more into how JavaScript code is
parsed and evaluated when using ES modules.

In this section, we will learn how ECMAScript modules are loaded, we will present
the idea of read-only live bindings, and, finally, we will discuss an example with
circular dependencies.

Loading phases
The goal of the interpreter is to build a graph of all the necessary modules
(a dependency graph).

Essentially, the dependency graph is needed by the interpreter to figure out how
modules depend on each other and in what order the code needs to be executed.
When the node interpreter is launched, it gets passed some code to execute, generally
in the form of a JavaScript file. This file is the starting point for the dependency
resolution, and it is called the entry point. From the entry point, the interpreter
will find and follow all the import statements recursively in a depth-first fashion,
until all the necessary code is explored and then evaluated.

More specifically, this process happens in three separate phases:

• Phase 1 - Construction (or parsing): Find all the imports and recursively
load the content of every module from the respective file.

In generic terms, a dependency graph can be defined as a directed
graph (nodejsdp.link/directed-graph) representing the
dependencies of a group of objects. In the context of this section,
when we refer to a dependency graph, we want to indicate the
dependency relationship between ECMAScript modules. As we
will see, using a dependency graph allows us to determine the
order in which all the necessary modules should be loaded in a
given project.

http://nodejsdp.link/directed-graph

Chapter 2

[49]

• Phase 2 - Instantiation: For every exported entity, keep a named reference in
memory, but don't assign any value just yet. Also, references are created for
all the import and export statements tracking the dependency relationship
between them (linking). No JavaScript code has been executed at this stage.

• Phase 3 - Evaluation: Node.js finally executes the code so that all the
previously instantiated entities can get an actual value. Now running the
code from the entry point is possible because all the blanks have been filled.

In simple terms, we could say that Phase 1 is about finding all the dots, Phase 2
connects those creating paths, and, finally, Phase 3 walks through the paths in the
right order.

At first glance, this approach doesn't seem very different from what CommonJS
does, but there's a fundamental difference. Due to its dynamic nature, CommonJS
will execute all the files while the dependency graph is explored. We have seen that
every time a new require statement is found, all the previous code has already been
executed. This is why you can use require even within if statements or loops, and
construct module identifiers from variables.

In ESM, these three phases are totally separate from each other, no code can be
executed until the dependency graph has been fully built, and therefore module
imports and exports have to be static.

Read-only live bindings
Another fundamental characteristic of ES modules, which helps with cyclic
dependencies, is the idea that imported modules are effectively read-only live
bindings to their exported values.

Let's clarify what this means with a simple example:

// counter.js
export let count = 0
export function increment () {
 count++
}

This module exports two values: a simple integer counter called count and an
increment function that increases the counter by one.

Let's now write some code that uses this module:

// main.js
import { count, increment } from './counter.js'

The Module System

[50]

console.log(count) // prints 0
increment()
console.log(count) // prints 1
count++ // TypeError: Assignment to constant variable!

What we can see in this code is that we can read the value of count at any time and
change it using the increment() function, but as soon as we try to mutate the count
variable directly, we get an error as if we were trying to mutate a const binding.

This proves that when an entity is imported in the scope, the binding to its original
value cannot be changed (read-only binding) unless the bound value changes within
the scope of the original module itself (live binding), which is outside the direct
control of the consumer code.

This approach is fundamentally different from CommonJS. In fact, in CommonJS, the
entire exports object is copied (shallow copy) when required from a module. This
means that, if the value of primitive variables like numbers or string is changed at a
later time, the requiring module won't be able to see those changes.

Circular dependency resolution
Now to close the circle, let's reimplement the circular dependency example we saw
in the CommonJS modules section using the ESM syntax:

Figure 2.3: An example scenario with circular dependencies

Let's have a look at the modules a.js and b.js first:

// a.js
import * as bModule from './b.js'
export let loaded = false
export const b = bModule

Chapter 2

[51]

loaded = true

// b.js
import * as aModule from './a.js'
export let loaded = false
export const a = aModule
loaded = true

And now let's see how to import those two modules in our main.js file (the entry
point):

// main.js
import * as a from './a.js'
import * as b from './b.js'
console.log('a ->', a)
console.log('b ->', b)

Note that this time we are not using JSON.stringify because that will fail with a
TypeError: Converting circular structure to JSON, since there's an actual circular
reference between a.js and b.js.

When we run main.js, we will see the following output:

a -> <ref *1> [Module] {
 b: [Module] { a: [Circular *1], loaded: true },
 loaded: true
}
b -> <ref *1> [Module] {
 a: [Module] { b: [Circular *1], loaded: true },
 loaded: true
}

The interesting bit here is that the modules a.js and b.js have a complete picture of
each other, unlike what would happen with CommonJS, where they would only hold
partial information of each other. We can see that because all the loaded values are
set to true. Also, b within a is an actual reference to the same b instance available in
the current scope, and the same goes for a within b. That's the reason why we cannot
use JSON.stringify() to serialize these modules. Finally, if we swap the order of the
imports for the modules a.js and b.js, the final outcome does not change, which is
another important difference in comparison with how CommonJS works

It's worth spending some more time observing what happens in the three phases
of the module resolution (parsing, instantiation, and evaluation) for this specific
example.

The Module System

[52]

Phase 1: Parsing
During the parsing phase, the code is explored starting from the entry point
(main.js). The interpreter looks only for import statements to find all the necessary
modules and to load the source code from the module files. The dependency graph
is explored in a depth-first fashion, and every module is visited only once. This way
the interpreter builds a view of the dependencies that looks like a tree structure, as
shown in Figure 2.4:

Figure 2.4: Parsing of cyclic dependencies with ESM

Given the example in Figure 2.4, let's discuss the various steps of the parsing phase:

1. From main.js, the first import found leads us straight into a.js.
2. In a.js we find an import pointing to b.js.
3. In b.js, we also have an import back to a.js (our cycle), but since a.js has

already been visited, this path is not explored again.
4. At this point, the exploration starts to wind back: b.js doesn't have other

imports, so we go back to a.js; a.js doesn't have other import statements
so we go back to main.js. Here we find another import pointing to b.js, but
again this module has been explored already, so this path is ignored.

At this point, our depth-first visit of the dependency graph has been completed and
we have a linear view of the modules, as shown in Figure 2.5:

Chapter 2

[53]

Figure 2.5: A linear view of the module graph where cycles have been removed

This particular view is quite simple. In more realistic scenarios with a lot more
modules, the view will look more like a tree structure.

Phase 2: Instantiation
In the instantiation phase, the interpreter walks the tree view obtained from the
previous phase from the bottom to the top. For every module, the interpreter will
look for all the exported properties first and build out a map of the exported names
in memory:

Figure 2.6: A visual representation of the instantiation phase

The Module System

[54]

Figure 2.6 describes the order in which every module is instantiated:

1. The interpreter starts from b.js and discovers that the module exports
loaded and a.

2. Then, the interpreter moves to a.js, which exports loaded and b.
3. Finally, it moves to main.js, which does not export any functionality.
4. Note that, in this phase, the exports map keeps track of the exported names

only; their associated values are considered uninitialized for now.

After this sequence of steps, the interpreter will do another pass to link the exported
names to the modules importing them, as shown in Figure 2.7:

Figure 2.7: Linking exports with imports across modules

We can describe what we see in Figure 2.7 through the following steps:

1. Module b.js will link the exports from a.js, referring to them as aModule.
2. In turn, a.js will link to all the exports from b.js, referring to them as bModule.
3. Finally, main.js will import all the exports in b.js, referring to them as b;

similarly, it will import everything from a.js, referring to them as a.
4. Again, it's important to note that all the values are still uninitialized. In this

phase, we are only linking references to values that will be available at the
end of the next phase.

Phase 3: Evaluation
The last step is the evaluation phase. In this phase, all the code in every file is finally
executed. The execution order is again bottom-up respecting the post-order depth-
first visit of our original dependency graph. With this approach, main.js is the last
file to be executed. This way, we can be sure that all the exported values have been
initialized before we start executing our main business logic:

Chapter 2

[55]

Figure 2.8: A visual representation of the evaluation phase

Following along from the diagram in Figure 2.8, this is what happens:

1. The execution starts from b.js and the first line to be evaluated initializes the
loaded export to false for the module.

2. Similarly, here the exported property a gets evaluated. This time, it will be
evaluated to a reference to the module object representing module a.js.

3. The value of the loaded property gets changed to true. At this point, we have
fully evaluated the state of the exports for module b.js.

4. Now the execution moves to a.js. Again, we start by setting loaded to false.
5. At this point, the b export is evaluated to a reference to module b.js.
6. Finally, the loaded property is changed to true. Now we have finally

evaluated all the exports for a.js as well.

The Module System

[56]

After all these steps, the code in main.js can be executed, and at this point, all the
exported properties are fully evaluated. Since imported modules are tracked as
references, we can be sure every module has an up-to-date picture of the other
modules, even in the presence of circular dependencies.

Modifying other modules
We saw that entities imported through ES modules are read-only live bindings, and
therefore we cannot reassign them from an external module.

There's a caveat, though. It is true that we can't change the bindings of the default
export or named exports of an existing module from another module, but, if one of
these bindings is an object, we can still mutate the object itself by reassigning some
of the object properties.

This caveat can give us enough freedom to alter the behavior of other modules. To
demonstrate this idea, let's write a module that can alter the behavior of the core
fs module so that it prevents the module from accessing the filesystem and returns
mocked data instead. This kind of module is something that could be useful while
writing tests for a component that relies on the filesystem:

// mock-read-file.js
import fs from 'fs' // (1)

const originalReadFile = fs.readFile // (2)
let mockedResponse = null

function mockedReadFile (path, cb) { // (3)
 setImmediate(() => {
 cb(null, mockedResponse)
 })
}

export function mockEnable (respondWith) { // (4)
 mockedResponse = respondWith
 fs.readFile = mockedReadFile
}

export function mockDisable () { // (5)
 fs.readFile = originalReadFile
}

Chapter 2

[57]

Let's review the preceding code:

1. The first thing we do is import the default export of the fs module. We will
get back to this in a second, for now, just keep in mind that the default export
of the fs module is an object that contains a collection of functions that
allows us to interact with the filesystem.

2. We want to replace the readFile() function with a mock implementation.
Before doing that, we save a reference to the original implementation. We
also declare a mockedResponse value that we will be using later.

3. The function mockedReadFile() is the actual mocked implementation that
we want to use to replace the original implementation. This function invokes
the callback with the current value of mockedResponse. Note that this is a
simplified implementation; the real function accepts an optional options
argument before the callback argument and is able to handle different types
of encoding.

4. The exported mockEnable() function can be used to activate the mocked
functionality. The original implementation will be swapped with the mocked
one. The mocked implementation will return the same value passed here
through the respondWith argument.

5. Finally, the exported mockDisable() function can be used to restore the
original implementation of the fs.readFile() function.

Now let's see a simple example that uses this module:

// main.js
import fs from 'fs' // (1)
import { mockEnable, mockDisable } from './mock-read-file.js'

mockEnable(Buffer.from('Hello World')) // (2)

fs.readFile('fake-path', (err, data) => { // (3)
 if (err) {
 console.error(err)
 process.exit(1)
 }
 console.log(data.toString()) // 'Hello World'
})

mockDisable()

The Module System

[58]

Let's discuss step by step what happens in this example:

1. The first thing that we do is import the default export of the fs module.
Again, note that we are importing specifically the default export exactly
as we did in our mock-read-file.js module, but more on this later.

2. Here we enable the mock functionality. We want, for every file read,
to simulate that the file contains the string "Hello World."

3. Finally, we read a file using a fake path. This code will print "Hello World"
as it will be using the mocked version of the readFile() function. Note that,
after calling this function, we restore the original implementation by calling
mockDisable().

This approach works, but it is very fragile. In fact, there are a number of ways in
which this may not work.

On the mock-read-file.js side, we could have tried the two following imports for
the fs module:

import * as fs from 'fs' // then use fs.readFile

or

import { readFile } from 'fs'

Both of them are valid imports because the fs module exports all the filesystem
functions as named exports (other than a default export which is an object with
the same collection of functions as attributes).

There are certain issues with the preceding two import statements:

• We would get a read-only live binding into the readFile() function,
and therefore, we would be unable to mutate it from an external module.
If we try these approaches, we will get an error when trying to reassign
readFile().

• Another issue is on the consumer side within our main.js, where we could
use these two alternative import styles as well. In this case, we won't end up
using the mocked functionality, and therefore the code will trigger an error
while trying to read a nonexistent file.

The reason why using one of the two import statements mentioned above would
not work is because our mocking utility is altering only the copy of the readFile()
function that is registered inside the object exported as the default export, but not the
one available as a named export at the top level of the module.

Chapter 2

[59]

This particular example shows us how monkey patching could be much
more complicated and unreliable in the context of ESM. For this reason, testing
frameworks such as Jest (nodejsdp.link/jest) provide special functionalities
to be able to mock ES modules more reliably (nodejsdp.link/jest-mock).

We could also use the syncBuiltinESMExports() function from the module package.
When this function is invoked, the value of the properties in the default exports
object gets mapped again into the equivalent named exports, effectively allowing us
to propagate any external change applied to the module functionality even to named
exports:

import fs, { readFileSync } from 'fs'
import { syncBuiltinESMExports } from 'module'

fs.readFileSync = () => Buffer.from('Hello, ESM')
syncBuiltinESMExports()

console.log(fs.readFileSync === readFileSync) // true

We could use this to make our small filesystem mocking utility a little bit more
flexible by invoking the syncBuiltinESMExports() function after we enable the mock
or after we restore the original functionality.

This concludes our exploration of ESM. At this point, we should be able to appreciate
how ESM works, how it loads modules, and how it deals with cyclic dependencies.
To close this chapter, we are now ready to discuss some key differences and some
interesting interoperability techniques between CommonJS and ECMAScript
modules.

Another approach that can be used to mock modules is to rely
on the hooks available in a special Node.js core module called
module (nodejsdp.link/module-doc). One simple library that
takes advantage of this module is mocku (nodejsdp.link/mocku).
Check out its source code if you are curious.

Note that syncBuiltinESMExports() works only for built-in
Node.js modules like the fs module in our example.

http://nodejsdp.link/jest
http://nodejsdp.link/jest-mock
http://nodejsdp.link/module-doc
http://nodejsdp.link/mocku

The Module System

[60]

ESM and CommonJS differences and
interoperability
We already mentioned several important differences between ESM and CommonJS,
such as having to explicitly specify file extensions in imports with ESM, while file
extensions are totally optional with the CommonJS require function.

Let's close this chapter by discussing some other important differences between
ESM and CommonJS and how the two module systems can work together when
necessary.

ESM runs in strict mode
ES modules run implicitly in strict mode. This means that we don't have to explicitly
add the "use strict" statements at the beginning of every file. Strict mode cannot
be disabled; therefore, we cannot use undeclared variables or the with statement or
have other features that are only available in non-strict mode, but this is definitely a
good thing, as strict mode is a safer execution mode.

Missing references in ESM
In ESM, some important CommonJS references are not defined. These include
require, exports, module.exports, __filename, and __dirname. If we try to use
any of them within an ES module, since it also runs in strict mode, we will get a
ReferenceError:

console.log(exports) // ReferenceError: exports is not defined
console.log(module) // ReferenceError: module is not defined
console.log(__filename) // ReferenceError: __filename is not defined
console.log(__dirname) // ReferenceError: __dirname is not defined

We already discussed at length the meaning of exports and module in CommonJS;
__filename and __dirname represent the absolute path to the current module file
and the absolute path to its parent folder. Those special variables can be very useful
when we need to build a path relative to the current file.

If you are curious to find out more about the differences between
the two modes, you can check out a very detailed article on MDN
Web Docs (https://nodejsdp.link/strict-mode).

https://nodejsdp.link/strict-mode

Chapter 2

[61]

In ESM, it is possible to get a reference to the current file URL by using the special
object import.meta. Specifically, import.meta.url is a reference to the current module
file in a format similar to file:///path/to/current_module.js. This value can be
used to reconstruct __filename and __dirname in the form of absolute paths:

import { fileURLToPath } from 'url'
import { dirname } from 'path'
const __filename = fileURLToPath(import.meta.url)
const __dirname = dirname(__filename)

It is also possible to recreate the require() function as follows:

import { createRequire } from 'module'
const require = createRequire(import.meta.url)

Now we can use require() to import functionality coming from CommonJS modules
in the context of ES modules.

Another interesting difference is the behavior of the this keyword.

In the global scope of an ES module, this is undefined, while in CommonJS, this is
a reference to exports:

// this.js - ESM
console.log(this) // undefined

// this.cjs – CommonJS
console.log(this === exports) // true

Interoperability
We discussed in the previous section how to import CommonJS modules in ESM by
using the module.createRequire function. It is also possible to import CommonJS
modules from ESM by using the standard import syntax. This is only limited to
default exports, though:

import packageMain from 'commonjs-package' // Works
import { method } from 'commonjs-package' // Errors

Unfortunately, it is not possible to import ES modules from CommonJS modules.

The Module System

[62]

Also, ESM cannot import JSON files directly as modules, a feature that is used quite
frequently with CommonJS. The following import statement will fail:

import data from './data.json'

It will produce a TypeError (Unknown file extension: .json).

To overcome this limitation, we can use again the module.createRequire utility:

import { createRequire } from 'module'
const require = createRequire(import.meta.url)
const data = require('./data.json')
console.log(data)

There is ongoing work to support JSON modules natively even in ESM, so we may
not need to rely on createRequire() in the near future for this functionality.

Summary
In this chapter, we explored in depth what modules are, why they are useful, and
why we need a module system. We also learned about the history of modules in
JavaScript and about the two module systems available today in Node.js, namely
CommonJS and ESM. We also explored some common patterns that are useful
when creating modules or when using third-party modules.

You should now be comfortable with understanding and writing code that takes
advantage of the features of both CommonJS and ESM.

In the rest of the book, we will rely mostly on ES modules, but you should now
be equipped to be flexible with your choices and be able to deal with CommonJS
effectively if necessary.

In the next chapter, we will start to explore the idea of asynchronous programming
with JavaScript, and we will examine callbacks, events, and their patterns in depth.

[63]

3
Callbacks and Events

In synchronous programming, we conceptualize code as a series of consecutive
computing steps that solve a specific problem. Every operation is blocking, which
means that only when an operation is completed, it is possible to execute the next
one. This approach makes the code very easy to read, understand, and debug.

On the other side, in asynchronous programming, some operations, such as reading
from a file or performing a network request, are launched and then executed "in
the background." When we invoke an asynchronous operation, the instruction
that follows is executed immediately, even if the previous asynchronous operation
has not finished yet. In this scenario, we need a way to get notified when an
asynchronous operation completes, and then continue the execution flow using
the results from the operation. The most basic mechanism to get notified about
the completion of an asynchronous operation in Node.js is the callback, which
is nothing more than a function invoked by the runtime with the result of an
asynchronous operation.

The callback is the most basic building block on which all other asynchronous
mechanisms are based. In fact, without callbacks, we wouldn't have promises,
and therefore not even async/await; we also wouldn't have streams or events.
This is why it's important to know how callbacks work.

In this chapter, you will learn more about the Node.js Callback pattern and
understand what it means, in practice, to write asynchronous code. We will make
our way through conventions, patterns, and pitfalls, and by the end of this chapter,
you will have mastered the basics of the Callback pattern.

Callbacks and Events

[64]

You will also learn about the Observer pattern, which can be considered a
close relative of the Callback pattern. The Observer pattern—embodied by the
EventEmitter—uses callbacks to deal with multiple heterogeneous events and is
one of the most extensively used components in Node.js programming.

To summarize, this is what you will learn in this chapter:

• The Callback pattern, how it works, what conventions are used in Node.js,
and how to deal with its most common pitfalls

• The Observer pattern and how to implement it in Node.js using the
EventEmitter class

The Callback pattern
Callbacks are the materialization of the handlers of the Reactor pattern (introduced
in the previous chapter). They are one of those imprints that give Node.js its
distinctive programming style.

Callbacks are functions that are invoked to propagate the result of an operation, and
this is exactly what we need when dealing with asynchronous operations. In the
asynchronous world, they replace the use of the return instruction, which, in turn,
always executes synchronously. JavaScript is the ideal language for callbacks because
functions are first-class objects and can be easily assigned to variables, passed as
arguments, returned from another function invocation, or stored in data structures.
Another ideal construct for implementing callbacks is closures. With closures, we
can reference the environment in which a function was created; this way, we can
always maintain the context in which the asynchronous operation was requested,
no matter when or where its callback is invoked.

In this section, we will analyze this particular style of programming, which
uses callbacks instead of return instructions.

The continuation-passing style
In JavaScript, a callback is a function that is passed as an argument to another
function and is invoked with the result when the operation completes. In functional
programming, this way of propagating the result is called continuation-passing
style (CPS).

If you need to refresh your knowledge about closures,
you can refer to the article on MDN Web Docs at
nodejsdp.link/mdn-closures.

http://nodejsdp.link/mdn-closures

Chapter 3

[65]

It is a general concept, and it is not always associated with asynchronous operations.
In fact, it simply indicates that a result is propagated by passing it to another
function (the callback), instead of directly returning it to the caller.

Synchronous CPS
To clarify this concept, let's take a look at a simple synchronous function:

function add (a, b) {
 return a + b
}

If you are wondering, there is nothing special going on here. The result is passed
back to the caller using the return instruction. This is also called direct style, and it
represents the most common way of returning a result in synchronous programming.

The equivalent CPS of the preceding function would be as follows:

function addCps (a, b, callback) {
 callback(a + b)
}

The addCps() function is a synchronous CPS function. It's synchronous because it
will complete its execution only when the callback completes its execution too. The
following code demonstrates this statement:

console.log('before')
addCps(1, 2, result => console.log(`Result: ${result}`))
console.log('after')

Since addCps() is synchronous, the previous code will trivially print the following:

before
Result: 3
after

Now, let's see how asynchronous CPS works.

Asynchronous CPS
Let's consider a case where the addCps() function is asynchronous:

function additionAsync (a, b, callback) {
 setTimeout(() => callback(a + b), 100)
}

Callbacks and Events

[66]

In the previous code, we used setTimeout() to simulate an asynchronous invocation
of the callback. setTimeout() adds a task to the event queue that is executed after the
given number of milliseconds. This is clearly an asynchronous operation. Now, let's
try to use additionAsync() and see how the order of the operations changes:

console.log('before')
additionAsync(1, 2, result => console.log(`Result: ${result}`))
console.log('after')

The preceding code will print the following:

before
after
Result: 3

Since setTimeout() triggers an asynchronous operation, it doesn't wait for the
callback to be executed; instead, it returns immediately, giving the control back
to additionAsync(), and then back again to its caller. This property in Node.js is
crucial, as it gives control back to the event loop as soon as an asynchronous request
is sent, thus allowing a new event from the queue to be processed.

Figure 3.1 shows how this works:

Figure 3.1: Control flow of an asynchronous function's invocation

Chapter 3

[67]

When the asynchronous operation completes, the execution is then resumed,
starting from the callback provided to the asynchronous function that caused the
unwinding. The execution starts from the event loop, so it has a fresh stack. This is
where JavaScript comes in really handy. Thanks to closures, it is trivial to maintain
the context of the caller of the asynchronous function, even if the callback is invoked
at a different point in time and from a different location.

To sum this up, a synchronous function blocks until it completes its operations.
An asynchronous function returns immediately, and its result is passed to a handler
(in our case, a callback) at a later cycle of the event loop.

Non-CPS callbacks
There are several circumstances in which the presence of a callback argument might
make us think that a function is asynchronous or is using a CPS. That's not always
true. Let's take, for example, the map() method of an Array object:

const result = [1, 5, 7].map(element => element - 1)
console.log(result) // [0, 4, 6]

Clearly, the callback is used just to iterate over the elements of the array, and not to
pass the result of the operation. In fact, the result is returned synchronously using a
direct style. There's no syntactic difference between non-CPS callbacks and CPS ones.
Therefore, the intent of a callback should be clearly stated in the documentation of
the API.

In the next section, we are going to discuss one of the most important pitfalls of
callbacks that every Node.js developer should be aware of.

Synchronous or asynchronous?
You have seen how the execution order of the instructions changes radically
depending on the nature of a function—synchronous or asynchronous. This
has strong repercussions on the flow of the entire application, both in terms of
correctness and efficiency. The following is an analysis of these two paradigms
and their pitfalls. In general, what must be avoided is creating inconsistency and
confusion around the nature of an API, as doing so can lead to a set of problems that
might be very hard to detect and reproduce. To drive our analysis, we will take, as
an example, the case of an inconsistently asynchronous function.

Callbacks and Events

[68]

An unpredictable function
One of the most dangerous situations is to have an API that behaves synchronously
under certain conditions and asynchronously under others. Let's take the following
code as an example:

import { readFile } from 'fs'

const cache = new Map()

function inconsistentRead (filename, cb) {
 if (cache.has(filename)) {
 // invoked synchronously
 cb(cache.get(filename))
 } else {
 // asynchronous function
 readFile(filename, 'utf8', (err, data) => {
 cache.set(filename, data)
 cb(data)
 })
 }
}

The preceding function uses the cache map to store the results of different file
read operations. Bear in mind that this is just an example; it does not have error
management, and the caching logic itself is suboptimal (in Chapter 11, Advanced
Recipes, you'll learn how to handle asynchronous caching properly). But besides all
this, the preceding function is dangerous because it behaves asynchronously until
the file is read for the first time and the cache is set, but it is synchronous for all the
subsequent requests once the file's content is already in the cache.

Unleashing Zalgo
Now, let's discuss how the use of an unpredictable function, such as the one that we
just defined, can easily break an application. Consider the following code:

function createFileReader (filename) {
 const listeners = []
 inconsistentRead(filename, value => {
 listeners.forEach(listener => listener(value))
 })

 return {

Chapter 3

[69]

 onDataReady: listener => listeners.push(listener)
 }
}

When the preceding function is invoked, it creates a new object that acts as a notifier,
allowing us to set multiple listeners for a file read operation. All the listeners will
be invoked at once when the read operation completes and the data is available.
The preceding function uses our inconsistentRead() function to implement this
functionality. Let's see how to use the createFileReader() function:

const reader1 = createFileReader('data.txt')
reader1.onDataReady(data => {
 console.log(`First call data: ${data}`)

 // ...sometime later we try to read again from
 // the same file
 const reader2 = createFileReader('data.txt')
 reader2.onDataReady(data => {
 console.log(`Second call data: ${data}`)
 })
})

The preceding code will print the following:

First call data: some data

As you can see, the callback of the second reader is never invoked. Let's see why:

• During the creation of reader1, our inconsistentRead() function behaves
asynchronously because there is no cached result available. This means that
any onDataReady listener will be invoked later in another cycle of the event
loop, so we have all the time we need to register our listener.

• Then, reader2 is created in a cycle of the event loop in which the
cache for the requested file already exists. In this case, the inner call
to inconsistentRead() will be synchronous. So, its callback will be invoked
immediately, which means that all the listeners of reader2 will be invoked
synchronously as well. However, we are registering the listener after the
creation of reader2, so it will never be invoked.

The callback behavior of our inconsistentRead() function is really unpredictable
as it depends on many factors, such as the frequency of its invocation, the filename
passed as an argument, and the amount of time taken to load the file.

Callbacks and Events

[70]

The bug that you've just seen can be extremely complicated to identify and
reproduce in a real application. Imagine using a similar function in a web server,
where there can be multiple concurrent requests. Imagine seeing some of those
requests hanging, without any apparent reason and without any error being logged.
This can definitely be considered a nasty defect.

Isaac Z. Schlueter, the creator of npm and former Node.js project lead, in one of his
blog posts, compared the use of this type of unpredictable function to unleashing
Zalgo.

Zalgo is an internet legend about an ominous entity believed to cause insanity, death,
and the destruction of the world. If you're not familiar with Zalgo, you are invited to
find out what it is.

Using synchronous APIs
The lesson to learn from the unleashing Zalgo example is that it is imperative for
an API to clearly define its nature: either synchronous or asynchronous.

One possible fix for our inconsistentRead() function is to make it completely
synchronous. This is possible because Node.js provides a set of synchronous
direct style APIs for most basic I/O operations. For example, we can use the
fs.readFileSync() function in place of its asynchronous counterpart. The code
would become as follows:

import { readFileSync } from 'fs'

const cache = new Map()

function consistentReadSync (filename) {
 if (cache.has(filename)) {
 return cache.get(filename)
 } else {
 const data = readFileSync(filename, 'utf8')
 cache.set(filename, data)
 return data
 }
}

You can find Isaac Z. Schlueter's original post at nodejsdp.link/
unleashing-zalgo.

http://nodejsdp.link/unleashing-zalgo
http://nodejsdp.link/unleashing-zalgo

Chapter 3

[71]

You can see that the entire function was also converted into direct style. There is
no reason for a function to have a CPS if it is synchronous. In fact, it is always best
practice to implement a synchronous API using a direct style. This will eliminate
any confusion around its nature and will also be more efficient from a performance
perspective.

Bear in mind that changing an API from CPS to a direct style, or from asynchronous
to synchronous or vice versa, might also require a change to the style of all the code
using it. For example, in our case, we will have to totally change the interface of
our createFileReader() API and adapt it so that it always works synchronously.

Also, using a synchronous API instead of an asynchronous one has some caveats:

• A synchronous API for a specific functionality might not always be available.
• A synchronous API will block the event loop and put any concurrent

requests on hold. This will break the Node.js concurrency model, slowing
down the whole application. You will see later in this book what this really
means for our applications.

In our consistentReadSync() function, the risk of blocking the event loop is partially
mitigated because the synchronous I/O API is invoked only once per filename, while
the cached value will be used for all the subsequent invocations. If we have a limited
number of static files, then using consistentReadSync() won't have a big effect on
our event loop. Things can change quickly if we have to read many files and only
once.

Using synchronous I/O in Node.js is strongly discouraged in many circumstances,
but in some situations, this might be the easiest and most efficient solution. Always
evaluate your specific use case in order to choose the right alternative. As an example,
it makes perfect sense to use a synchronous blocking API to load a configuration file
while bootstrapping an application.

Pattern

Always choose a direct style for purely synchronous functions.

Pattern

Use blocking APIs sparingly and only when they don't affect
the ability of the application to handle concurrent asynchronous
operations.

Callbacks and Events

[72]

Guaranteeing asynchronicity with
deferred execution
Another alternative for fixing our inconsistentRead() function is to make it
purely asynchronous. The trick here is to schedule the synchronous callback
invocation to be executed "in the future" instead of it being run immediately in the
same event loop cycle. In Node.js, this is possible with process.nextTick(), which
defers the execution of a function after the currently running operation completes. Its
functionality is very simple: it takes a callback as an argument and pushes it to the
top of the event queue, in front of any pending I/O event, and returns immediately.
The callback will then be invoked as soon as the currently running operation yields
control back to the event loop.

Let's apply this technique to fix our inconsistentRead() function, as follows:

import { readFile } from 'fs'

const cache = new Map()

function consistentReadAsync (filename, callback) {
 if (cache.has(filename)) {
 // deferred callback invocation
 process.nextTick(() => callback(cache.get(filename)))
 } else {
 // asynchronous function
 readFile(filename, 'utf8', (err, data) => {
 cache.set(filename, data)
 callback(data)
 })
 }
}

Now, thanks to process.nextTick(), our function is guaranteed to invoke its
callback asynchronously, under any circumstances. Try to use it instead of the
inconsistentRead() function and verify that, indeed, Zalgo has been eradicated.

Pattern

You can guarantee that a callback is invoked asynchronously by
deferring its execution using process.nextTick().

Chapter 3

[73]

Another API for deferring the execution of code is setImmediate(). While its
purpose is very similar to that of process.nextTick(), its semantics are quite
different. Callbacks deferred with process.nextTick() are called microtasks
and they are executed just after the current operation completes, even before any
other I/O event is fired. With setImmediate(), on the other hand, the execution is
queued in an event loop phase that comes after all I/O events have been processed.
Since process.nextTick() runs before any already scheduled I/O, it will be executed
faster, but under certain circumstances, it might also delay the running of any I/O
callback indefinitely (also known as I/O starvation), such as in the presence of a
recursive invocation. This can never happen with setImmediate().

Using setTimeout(callback, 0) has a behavior comparable to that of
setImmediate(), but in typical circumstances, callbacks scheduled with
setImmediate() are executed faster than those scheduled with setTimeout(callback,
0). To see why, we have to consider that the event loop executes all the callbacks
in different phases; for the type of events we are considering, we have timers
(setTimeout()) that are executed before I/O callbacks, which are, in turn,
executed before setImmediate() callbacks. This means that if we queue a task with
setImmediate() in a setTimeout() callback, in an I/O callback, or in a microtask
queued after these two phases, then the callback will be executed in a phase that
comes right after the phase we are currently in. setTimeout() callbacks have to wait
for the next cycle of the event loop.

You will better appreciate the difference between these APIs when we analyze
the use of deferred invocation for running synchronous CPU-bound tasks later
in this book.

Next, we are going to explore the conventions used to define callbacks in Node.js.

Node.js callback conventions
In Node.js, CPS APIs and callbacks follow a set of specific conventions. These
conventions apply to the Node.js core API, but they are also followed by the vast
majority of the userland modules and applications. So, it's very important that you
understand them and make sure that you comply whenever you need to design an
asynchronous API that makes use of callbacks.

The callback comes last
In all core Node.js functions, the standard convention is that when a function accepts
a callback as input, this has to be passed as the last argument.

Callbacks and Events

[74]

Let's take the following Node.js core API as an example:

readFile(filename, [options], callback)

As you can see from the signature of the preceding function, the callback is always
put in the last position, even in the presence of optional arguments. The reason
for this convention is that the function call is more readable in case the callback is
defined in place.

Any error always comes first
In CPS, errors are propagated like any other type of result, which means using
callbacks. In Node.js, any error produced by a CPS function is always passed as
the first argument of the callback, and any actual result is passed starting from the
second argument. If the operation succeeds without errors, the first argument will
be null or undefined. The following code shows you how to define a callback that
complies with this convention:

readFile('foo.txt', 'utf8', (err, data) => {
 if(err) {
 handleError(err)
 } else {
 processData(data)
 }
})

It is best practice to always check for the presence of an error, as not doing so will
make it harder for you to debug your code and discover the possible points of
failure. Another important convention to take into account is that the error must
always be of type Error. This means that simple strings or numbers should never
be passed as error objects.

Propagating errors
Propagating errors in synchronous, direct style functions is done with the well-
known throw statement, which causes the error to jump up in the call stack until it is
caught.

In asynchronous CPS, however, proper error propagation is done by simply passing
the error to the next callback in the chain. The typical pattern looks as follows:

import { readFile } from 'fs'

function readJSON (filename, callback) {

Chapter 3

[75]

 readFile(filename, 'utf8', (err, data) => {
 let parsed
 if (err) {
 // propagate the error and exit the current function
 return callback(err)
 }

 try {
 // parse the file contents
 parsed = JSON.parse(data)
 } catch (err) {
 // catch parsing errors
 return callback(err)
 }
 // no errors, propagate just the data
 callback(null, parsed)
 })
}

Notice how we propagate the error received by the readFile() operation. We do not
throw it or return it; instead, we just use the callback as if it were any other result.
Also, notice how we use the try...catch statement to catch any error thrown by
JSON.parse(), which is a synchronous function and therefore uses the traditional
throw instruction to propagate errors to the caller. Lastly, if everything went well,
callback is invoked with null as the first argument to indicate that there are
no errors.

It's also interesting to note how we refrained from invoking callback from within
the try block. This is because doing so would catch any error thrown from the
execution of the callback itself, which is usually not what we want.

Uncaught exceptions
Sometimes, it can happen that an error is thrown and not caught within the callback
of an asynchronous function. This could happen if, for example, we had forgotten to
surround JSON.parse() with a try...catch statement in the readJSON() function we
defined previously. Throwing an error inside an asynchronous callback would cause
the error to jump up to the event loop, so it would never be propagated to the next
callback. In Node.js, this is an unrecoverable state and the application would simply
exit with a non-zero exit code, printing the stack trace to the stderr interface.

Callbacks and Events

[76]

To demonstrate this, let's try to remove the try...catch block surrounding JSON.
parse() from the readJSON() function we defined previously:

function readJSONThrows (filename, callback) {
 readFile(filename, 'utf8', (err, data) => {
 if (err) {
 return callback(err)
 }
 callback(null, JSON.parse(data))
 })
}

Now, in the function we just defined, there is no way of catching an eventual
exception coming from JSON.parse(). If we try to parse an invalid JSON file with
the following code:

readJSONThrows('invalid_json.json', (err) => console.error(err))

This will result in the application being abruptly terminated, with a stack trace
similar to the following being printed on the console:

SyntaxError: Unexpected token h in JSON at position 1
 at JSON.parse (<anonymous>)
 at file:///.../03-callbacks-and-events/08-uncaught-errors/index.
js:8:25
 at FSReqCallback.readFileAfterClose [as oncomplete] (internal/fs/
read_file_context.js:61:3)

Now, if you look at the preceding stack trace, you will see that it starts from within
the built-in fs module, and exactly from the point in which the native API has
completed reading and returned its result back to the fs.readFile() function, via
the event loop. This clearly shows that the exception traveled from our callback, up
the call stack, and then straight into the event loop, where it was finally caught and
thrown to the console.

This also means that wrapping the invocation of readJSONThrows() with a try...
catch block will not work, because the stack in which the block operates is different
from the one in which our callback is invoked. The following code shows the anti-
pattern that was just described:

try {
 readJSONThrows('invalid_json.json', (err) => console.error(err))
} catch (err) {
 console.log('This will NOT catch the JSON parsing exception')
}

Chapter 3

[77]

The preceding catch statement will never receive the JSON parsing error, as it will
travel up the call stack in which the error was thrown, that is, in the event loop and
not in the function that triggered the asynchronous operation.

As mentioned previously, the application will abort the moment an exception
reaches the event loop. However, we still have the chance to perform some cleanup
or logging before the application terminates. In fact, when this happens, Node.js will
emit a special event called uncaughtException, just before exiting the process. The
following code shows a sample use case:

process.on('uncaughtException', (err) => {
 console.error(`This will catch at last the JSON parsing exception:
${err.message}`)
 // Terminates the application with 1 (error) as exit code.
 // Without the following line, the application would continue
 process.exit(1)
})

It's important to understand that an uncaught exception leaves the application
in a state that is not guaranteed to be consistent, which can lead to unforeseeable
problems. For example, there might still be incomplete I/O requests running or
closures might have become inconsistent. That's why it is always advised, especially
in production, to never leave the application running after an uncaught exception is
received. Instead, the process should exit immediately, optionally after having run
some necessary cleanup tasks, and ideally, a supervising process should restart the
application. This is also known as the fail-fast approach and it's the recommended
practice in Node.js.

This concludes our gentle introduction to the Callback pattern. Now, it's time to
meet the Observer pattern, which is another critical component of an event-driven
platform such as Node.js.

The Observer pattern
Another important and fundamental pattern used in Node.js is the Observer pattern.
Together with the Reactor pattern and callbacks, the Observer pattern is an absolute
requirement for mastering the asynchronous world of Node.js.

We'll discuss supervisors in more detail in Chapter 12, Scalability
and Architectural Patterns.

Callbacks and Events

[78]

The Observer pattern is the ideal solution for modeling the reactive nature of Node.js
and a perfect complement for callbacks. Let's give a formal definition, as follows:

The main difference from the Callback pattern is that the subject can actually notify
multiple observers, while a traditional CPS callback will usually propagate its result
to only one listener, the callback.

The EventEmitter
In traditional object-oriented programming, the Observer pattern requires
interfaces, concrete classes, and a hierarchy. In Node.js, all this becomes much
simpler. The Observer pattern is already built into the core and is available through
the EventEmitter class. The EventEmitter class allows us to register one or more
functions as listeners, which will be invoked when a particular event type is fired.
Figure 3.2 visually explains this concept:

Figure 3.2: Listeners receiving events from an EventEmitter

The EventEmitter is exported from the events core module. The following code
shows how we can obtain a reference to it:

import { EventEmitter } from 'events'
const emitter = new EventEmitter()

The essential methods of the EventEmitter are as follows:

• on(event, listener): This method allows us to register a new listener (a
function) for the given event type (a string).

The Observer pattern defines an object (called subject) that can notify
a set of observers (or listeners) when a change in its state occurs.

Chapter 3

[79]

• once(event, listener): This method registers a new listener, which is then
removed after the event is emitted for the first time.

• emit(event, [arg1], [...]): This method produces a new event and
provides additional arguments to be passed to the listeners.

• removeListener(event, listener): This method removes a listener for the
specified event type.

All the preceding methods will return the EventEmitter instance to allow chaining.
The listener function has the signature function([arg1], [...]), so it simply
accepts the arguments provided at the moment the event is emitted.

You can already see that there is a big difference between a listener and a traditional
Node.js callback. In fact, the first argument is not an error, but it can be any data
passed to emit() at the moment of its invocation.

Creating and using the EventEmitter
Let's now see how we can use an EventEmitter in practice. The simplest way is
to create a new instance and use it immediately. The following code shows us a
function that uses an EventEmitter to notify its subscribers in real time when a
particular regular expression is matched in a list of files:

import { EventEmitter } from 'events'
import { readFile } from 'fs'

function findRegex (files, regex) {
 const emitter = new EventEmitter()
 for (const file of files) {
 readFile(file, 'utf8', (err, content) => {
 if (err) {
 return emitter.emit('error', err)
 }

 emitter.emit('fileread', file)
 const match = content.match(regex)
 if (match) {
 match.forEach(elem => emitter.emit('found', file, elem))
 }
 })
 }
 return emitter
}

Callbacks and Events

[80]

The function we just defined returns an EventEmitter instance that will produce
three events:

• fileread, when a file is being read
• found, when a match has been found
• error, when an error occurs during reading the file

Let's now see how our findRegex() function can be used:

findRegex(
 ['fileA.txt', 'fileB.json'],
 /hello \w+/g
)
 .on('fileread', file => console.log(`${file} was read`))
 .on('found', (file, match) => console.log(`Matched "${match}" in
${file}`))
 .on('error', err => console.error(`Error emitted ${err.message}`))

In the code we just defined, we register a listener for each of the three event types
produced by the EventEmitter that was created by our findRegex() function.

Propagating errors
As with callbacks, the EventEmitter can't just throw an exception when
an error condition occurs. Instead, the convention is to emit a special event,
called error, and pass an Error object as an argument. That's exactly what we were
doing in the findRegex() function that we defined earlier.

Making any object observable
In the Node.js world, the EventEmitter is rarely used on its own, as you saw in the
previous example. Instead, it is more common to see it extended by other classes. In
practice, this enables any class to inherit the capabilities of the EventEmitter, hence
becoming an observable object.

The EventEmitter treats the error event in a special way. It will
automatically throw an exception and exit from the application if
such an event is emitted and no associated listener is found. For
this reason, it is recommended to always register a listener for
the error event.

Chapter 3

[81]

To demonstrate this pattern, let's try to implement the functionality of
the findRegex() function in a class, as follows:

import { EventEmitter } from 'events'
import { readFile } from 'fs'

class FindRegex extends EventEmitter {
 constructor (regex) {
 super()
 this.regex = regex
 this.files = []
 }

 addFile (file) {
 this.files.push(file)
 return this
 }

 find () {
 for (const file of this.files) {
 readFile(file, 'utf8', (err, content) => {
 if (err) {
 return this.emit('error', err)
 }

 this.emit('fileread', file)

 const match = content.match(this.regex)
 if (match) {
 match.forEach(elem => this.emit('found', file, elem))
 }
 })
 }
 return this
 }
}

The FindRegex class that we just defined extends EventEmitter to become a fully
fledged observable class. Always remember to use super() in the constructor to
initialize the EventEmitter internals.

Callbacks and Events

[82]

The following is an example of how to use the FindRegex class we just defined:

const findRegexInstance = new FindRegex(/hello \w+/)
findRegexInstance
 .addFile('fileA.txt')
 .addFile('fileB.json')
 .find()
 .on('found', (file, match) => console.log(`Matched "${match}" in file
${file}`))
 .on('error', err => console.error(`Error emitted ${err.message}`))

You will now notice how the FindRegex object also provides the on() method, which
is inherited from the EventEmitter. This is a pretty common pattern in the Node.js
ecosystem. For example, the Server object of the core HTTP module inherits from
the EventEmitter function, thus allowing it to produce events such as request (when
a new request is received), connection (when a new connection is established),
or closed (when the server socket is closed).

Other notable examples of objects extending the EventEmitter are Node.js streams.
We will analyze streams in more detail in Chapter 6, Coding with Streams.

EventEmitter and memory leaks
When subscribing to observables with a long life span, it is extremely important
that we unsubscribe our listeners once they are no longer needed. This allows us
to release the memory used by the objects in a listener's scope and prevent memory
leaks. Unreleased EventEmitter listeners are the main source of memory leaks in
Node.js (and JavaScript in general).

A memory leak is a software defect whereby memory that is no longer needed is
not released, causing the memory usage of an application to grow indefinitely. For
example, consider the following code:

const thisTakesMemory = 'A big string....'
const listener = () => {
 console.log(thisTakesMemory)
}
emitter.on('an_event', listener)

The variable thisTakesMemory is referenced in the listener and therefore its memory
is retained until the listener is released from emitter, or until the emitter itself is
garbage collected, which can only happen when there are no more active references
to it, making it unreachable.

Chapter 3

[83]

This means that if an EventEmitter remains reachable for the entire duration of the
application, all its listeners do too, and with them all the memory they reference. If,
for example, we register a listener to a "permanent" EventEmitter at every incoming
HTTP request and never release it, then we are causing a memory leak. The memory
used by the application will grow indefinitely, sometimes slowly, sometimes faster,
but eventually it will crash the application. To prevent such a situation, we can
release the listener with the removeListener() method of the EventEmitter:

emitter.removeListener('an_event', listener)

An EventEmitter has a very simple built-in mechanism for warning the developer
about possible memory leaks. When the count of listeners registered to an event
exceeds a specific amount (by default, 10), the EventEmitter will produce a warning.
Sometimes, registering more than 10 listeners is completely fine, so we can adjust
this limit by using the setMaxListeners() method of the EventEmitter.

Synchronous and asynchronous events
As with callbacks, events can also be emitted synchronously or asynchronously
with respect to the moment the tasks that produce them are triggered. It is
crucial that we never mix the two approaches in the same EventEmitter, but
even more importantly, we should never emit the same event type using a
mix of synchronous and asynchronous code, to avoid producing the same
problems described in the Unleashing Zalgo section. The main difference between
emitting synchronous and asynchronous events lies in the way listeners can be
registered.

When events are emitted asynchronously, we can register new listeners, even after
the task that produces the events is triggered, up until the current stack yields to the
event loop. This is because the events are guaranteed not to be fired until the next
cycle of the event loop, so we can be sure that we won't miss any events.

You can find a good explanation about garbage collection in
JavaScript and the concept of reachability at nodejsdp.link/
garbage-collection.

We can use the convenience method once(event, listener)
in place of on(event, listener) to automatically unregister
a listener after the event is received for the first time. However,
be advised that if the event we specify is never emitted, then the
listener is never released, causing a memory leak.

http://nodejsdp.link/garbage-collection
http://nodejsdp.link/garbage-collection

Callbacks and Events

[84]

The FindRegex() class we defined previously emits its events asynchronously after
the find() method is invoked. This is why we can register the listeners after the
find() method is invoked, without losing any events, as shown in the following code:

findRegexInstance
 .addFile(...)
 .find()
 .on('found', ...)

On the other hand, if we emit our events synchronously after the task is launched,
we have to register all the listeners before we launch the task, or we will miss all
the events. To see how this works, let's modify the FindRegex class we defined
previously and make the find() method synchronous:

find () {
 for (const file of this.files) {
 let content
 try {
 content = readFileSync(file, 'utf8')
 } catch (err) {
 this.emit('error', err)
 }

 this.emit('fileread', file)
 const match = content.match(this.regex)
 if (match) {
 match.forEach(elem => this.emit('found', file, elem))
 }
 }
 return this
}

Now, let's try to register a listener before we launch the find() task, and then a
second listener after that to see what happens:

const findRegexSyncInstance = new FindRegexSync(/hello \w+/)
findRegexSyncInstance
 .addFile('fileA.txt')
 .addFile('fileB.json')
 // this listener is invoked
 .on('found', (file, match) => console.log(`[Before] Matched
"${match}"`))
 .find()

Chapter 3

[85]

 // this listener is never invoked
 .on('found', (file, match) => console.log(`[After] Matched
"${match}"`))

As expected, the listener that was registered after the invocation of the find() task is
never called; in fact, the preceding code will print:

[Before] Matched "hello world"
[Before] Matched "hello NodeJS"

There are some (rare) situations in which emitting an event in a synchronous fashion
makes sense, but the very nature of the EventEmitter lies in its ability to deal with
asynchronous events. Most of the time, emitting events synchronously is a telltale
sign that we either don't need the EventEmitter at all or that, somewhere else, the
same observable is emitting another event asynchronously, potentially causing
a Zalgo type of situation.

EventEmitter versus callbacks
A common dilemma when defining an asynchronous API is deciding whether
to use an EventEmitter or simply accept a callback. The general differentiating
rule is semantic: callbacks should be used when a result must be returned in
an asynchronous way, while events should be used when there is a need to
communicate that something has happened.

But besides this simple principle, a lot of confusion is generated from the fact that
the two paradigms are, most of the time, equivalent and allow us to achieve the same
results. Consider the following code as an example:

import { EventEmitter } from 'events'

function helloEvents () {
 const eventEmitter = new EventEmitter()
 setTimeout(() => eventEmitter.emit('complete', 'hello world'), 100)
 return eventEmitter
}

The emission of synchronous events can be deferred with
process.nextTick() to guarantee that they are emitted
asynchronously.

Callbacks and Events

[86]

function helloCallback (cb) {
 setTimeout(() => cb(null, 'hello world'), 100)
}

helloEvents().on('complete', message => console.log(message))
helloCallback((err, message) => console.log(message))

The two functions helloEvents() and helloCallback() can be considered equivalent
in terms of functionality. The first communicates the completion of the timeout using
an event, while the second uses a callback. But what really differentiates them is the
readability, the semantics, and the amount of code that is required for them to be
implemented or used.

While a deterministic set of rules for you to choose between one style or the other
can't be given, here are some hints to help you make a decision on which method
to use:

• Callbacks have some limitations when it comes to supporting different
types of events. In fact, we can still differentiate between multiple events
by passing the type as an argument of the callback, or by accepting several
callbacks, one for each supported event. However, this can't exactly be
considered an elegant API. In this situation, the EventEmitter can give a
better interface and leaner code.

• The EventEmitter should be used when the same event can occur multiple
times, or may not occur at all. A callback, in fact, is expected to be invoked
exactly once, whether the operation is successful or not. Having a possibly
repeating circumstance should make us think again about the semantic
nature of the occurrence, which is more similar to an event that has to be
communicated, rather than a result to be returned.

• An API that uses callbacks can notify only one particular callback, while
using an EventEmitter allows us to register multiple listeners for the
same event.

Combining callbacks and events
There are some particular circumstances where the EventEmitter can be used in
conjunction with a callback. This pattern is extremely powerful as it allows us to pass
a result asynchronously using a traditional callback, and at the same time return an
EventEmitter, which can be used to provide a more detailed account on the status of
an asynchronous process.

Chapter 3

[87]

One example of this pattern is offered by the glob package (nodejsdp.link/npm-
glob), a library that performs glob-style file searches. The main entry point of the
module is the function it exports, which has the following signature:

const eventEmitter = glob(pattern, [options], callback)

The function takes a pattern as the first argument, a set of options, and a callback
that is invoked with the list of all the files matching the provided pattern. At the
same time, the function returns an EventEmitter, which provides a more fine-grained
report about the state of the search process. For example, it is possible to be notified
in real time when a match occurs by listening to the match event, to obtain the list
of all the matched files with the end event, or to know whether the process was
manually aborted by listening to the abort event. The following code shows what
this looks like in practice:

import glob from 'glob'

glob('data/*.txt',
 (err, files) => {
 if (err) {
 return console.error(err)
 }
 console.log(`All files found: ${JSON.stringify(files)}`)
 })
 .on('match', match => console.log(`Match found: ${match}`))

Combining an EventEmitter with traditional callbacks is an elegant way to offer two
different approaches to the same API. One approach is usually meant to be simpler
and more immediate to use, while the other is targeted at more advanced scenarios.

The EventEmitter can also be combined with other asynchronous
mechanisms such as promises (which we will look at in Chapter
5, Asynchronous Control Flow Patterns with Promises and Async/
Await). In this case, just return an object (or array) containing
both the promise and the EventEmitter. This object can then be
destructured by the caller, like this: {promise, events} = foo().

http://nodejsdp.link/npm-glob
http://nodejsdp.link/npm-glob

Callbacks and Events

[88]

Summary
In this chapter, we made our first contact with the practical aspects of writing
asynchronous code. You discovered the two pillars of the entire Node.js
asynchronous infrastructure—the callback and the EventEmitter—and we explored
in detail their use cases, conventions, and patterns. We also explored some of the
pitfalls of dealing with asynchronous code and you learned about the ways to avoid
them. Mastering the content of this chapter paves the way toward learning the more
advanced asynchronous techniques that will be presented throughout the rest of
this book.

In the next chapter, you will learn how to deal with complex asynchronous control
flows using callbacks.

Exercises
• 3.1 A simple event: Modify the asynchronous FindRegex class so that it

emits an event when the find process starts, passing the input files list as
an argument. Hint: beware of Zalgo!

• 3.2 Ticker: Write a function that accepts a number and a callback as the
arguments. The function will return an EventEmitter that emits an event
called tick every 50 milliseconds until the number of milliseconds is passed
from the invocation of the function. The function will also call the callback
when the number of milliseconds has passed, providing, as the result, the total
count of tick events emitted. Hint: you can use setTimeout() to schedule
another setTimeout() recursively.

• 3.3 A simple modification: Modify the function created in exercise 3.2 so that
it emits a tick event immediately after the function is invoked.

• 3.4 Playing with errors: Modify the function created in exercise 3.3 so that
it produces an error if the timestamp at the moment of a tick (including the
initial one that we added as part of exercise 3.3) is divisible by 5. Propagate
the error using both the callback and the event emitter. Hint: use Date.now()
to get the timestamp and the remainder (%) operator to check whether the
timestamp is divisible by 5.

[89]

4
Asynchronous Control Flow

Patterns with Callbacks
Moving from a synchronous programming style to a platform such as Node.js,
where continuation-passing style (CPS) and asynchronous APIs are the norm,
can be frustrating. Asynchronous code can make it hard to predict the order in
which statements are executed. Simple problems such as iterating over a set of files,
executing tasks in sequence, or waiting for a set of operations to complete require the
developer to take on new approaches and techniques just to avoid ending up writing
inefficient and unreadable code. When using callbacks to deal with asynchronous
control flow, the most common mistake is to fall into the trap of callback hell and see
the code growing horizontally, rather than vertically, with a nesting that makes even
simple routines hard to read and maintain.

In this chapter, you will see how it's actually possible to tame callbacks and write
clean, manageable asynchronous code by using some discipline and with the aid
of some patterns. Knowing how to properly deal with callbacks will pave the way
for adopting modern approaches such as promises and async/await.

In short, in this chapter, you will learn about:

• The challenges of asynchronous programming.
• Avoiding callback hell and other callback best practices.
• Common asynchronous patterns such as sequential execution, sequential

iteration, parallel execution, and limited parallel execution.

Asynchronous Control Flow Patterns with Callbacks

[90]

The difficulties of asynchronous
programming
Losing control of asynchronous code in JavaScript is undoubtedly easy. Closures
and in-place definitions of anonymous functions allow for a smooth programming
experience that doesn't require the developer to jump to other points in the codebase.
This is perfectly in line with the KISS principle (Keep It Simple, Stupid); it's
simple, it keeps the code flowing, and we get it working in less time. Unfortunately,
sacrificing qualities such as modularity, reusability, and maintainability will, sooner
or later, lead to the uncontrolled proliferation of callback nesting, functions growing
in size, and poor code organization. Most of the time, creating callbacks as in-place
functions is not strictly required, so it's more a matter of discipline than a problem
related to asynchronous programming. Recognizing that our code is becoming
unwieldy or, even better, knowing in advance that it might become unwieldy and
then acting accordingly with the most adequate solution, is what differentiates a
novice from an expert.

Creating a simple web spider
To explain this problem, we will create a little web spider, a command-line
application that takes in a web URL as input and downloads its contents locally into
a file. In the code presented in this chapter, we are going to use a couple of npm
dependencies:

• superagent: A library to streamline HTTP calls (nodejsdp.link/superagent)
• mkdirp: A small utility to create directories recursively (nodejsdp.link/

mkdirp)

Also, we will often refer to a local module named ./utils.js, which contains some
helpers that we will be using in our application. We will omit the contents of this file
for brevity, but you can find the full implementation, along with a package.json file
containing the full list of dependencies, in the official repository at nodejsdp.link/
repo.

The core functionality of our application is contained inside a module
named spider.js. Let's see how it looks. To start with, let's load all the dependencies
that we are going to use:

http://nodejsdp.link/superagent
http://nodejsdp.link/mkdirp
http://nodejsdp.link/mkdirp
http://nodejsdp.link/repo
http://nodejsdp.link/repo

Chapter 4

[91]

import fs from 'fs'
import path from 'path'
import superagent from 'superagent'
import mkdirp from 'mkdirp'
import { urlToFilename } from './utils.js'

Next, let's create a new function named spider(), which takes in the URL to
download and a callback function that will be invoked when the download process
completes:

export function spider (url, cb) {
 const filename = urlToFilename(url)
 fs.access(filename, err => { // (1)
 if (err && err.code === 'ENOENT') {
 console.log(`Downloading ${url} into ${filename}`)
 superagent.get(url).end((err, res) => { // (2)
 if (err) {
 cb(err)
 } else {
 mkdirp(path.dirname(filename), err => { // (3)
 if (err) {
 cb(err)
 } else {
 fs.writeFile(filename, res.text, err => { // (4)
 if (err) {
 cb(err)
 } else {
 cb(null, filename, true)
 }
 })
 }
 })
 }
 })
 } else {
 cb(null, filename, false)
 }
 })
}

Asynchronous Control Flow Patterns with Callbacks

[92]

There is a lot going on here, so let's discuss in more detail what happens in
every step:

1. The code checks whether the URL was already downloaded by verifying that
the corresponding file was not already created. If err is defined and has type
ENOENT, then the file does not exist and it's safe to create it:

fs.access(filename, err => ...

2. If the file is not found, the URL is downloaded using the following line of
code:

superagent.get(url).end((err, res) => ...

3. Then, we make sure that the directory that will contain the file exists:
mkdirp(path.dirname(filename), err => ...

4. Finally, we write the body of the HTTP response to the filesystem:
fs.writeFile(filename, res.text, err => ...

To complete our web spider application, we just need to invoke
the spider() function by providing a URL as an input (in our case, we read it from
the command-line arguments). The spider() function is exported from the file we
defined previously. Let's now create a new file called spider-cli.js that can be
directly invoked from the command line:

import { spider } from './spider.js'

spider(process.argv[2], (err, filename, downloaded) => {
 if (err) {
 console.error(err)
 } else if (downloaded) {
 console.log(`Completed the download of "${filename}"`)
 } else {
 console.log(`"${filename}" was already downloaded`)
 }
})

Now, we are ready to try our web spider application, but first, make sure you
have the utils.js module and the package.json file containing the full list of
dependencies in your project directory. Then, install all the dependencies by
running the following command:

npm install

Chapter 4

[93]

Now, let's execute the spider-cli.js module to download the contents of a web
page with a command like this:

node spider-cli.js http://www.example.com

In the next section, you will learn how to improve the readability of this code and,
in general, how to keep callback-based code as clean and readable as possible.

Callback hell
Looking at the spider() function we defined earlier, you will likely notice that even
though the algorithm we implemented is really straightforward, the resulting code
has several levels of indentation and is very hard to read. Implementing a similar
function with a direct style blocking API would be straightforward, and most
likely, the code would be much more readable. However, using asynchronous CPS
is another story, and making bad use of in-place callback definitions can lead to
incredibly bad code.

The situation where the abundance of closures and in-place callback definitions
transforms the code into an unreadable and unmanageable blob is known as callback
hell. It's one of the most widely recognized and severe anti-patterns in Node.js and
JavaScript in general. The typical structure of code affected by this problem looks
as follows:

asyncFoo(err => {
 asyncBar(err => {
 asyncFooBar(err => {
 //...
 })
 })
})

You can see how code written in this way assumes the shape of a pyramid due to
deep nesting, and that's why it is also colloquially known as the pyramid of doom.

The most evident problem with code such as the preceding snippet is its poor
readability. Due to the nesting being so deep, it's almost impossible to keep track of
where a function ends and where another one begins.

Our web spider application requires that we always include the
protocol (for example, http://) in the URL we provide. Also, do
not expect HTML links to be rewritten or resources such as images
to be downloaded, as this is just a simple example to demonstrate
how asynchronous programming works.

Asynchronous Control Flow Patterns with Callbacks

[94]

Another issue is caused by the overlapping of the variable names used in each
scope. Often, we have to use similar or even identical names to describe the content
of a variable. The best example is the error argument received by each callback.
Some people often try to use variations of the same name to differentiate the object
in each scope, for example, err, error, err1, err2, and so on. Others prefer to just
shadow the variable defined in the upper scope by always using the same name,
for example, err. Both alternatives are far from perfect, and cause confusion and
increase the probability of introducing defects.

Also, we have to keep in mind that closures come at a small price in terms of
performance and memory consumption. In addition, they can create memory
leaks that are not very easy to identify. In fact, we shouldn't forget that any context
referenced by an active closure is retained from garbage collection.

If you look at our spider() function, you will notice that it clearly represents
a callback hell situation and has all the problems just described. That's exactly what
we are going to fix with the patterns and techniques that are covered in the following
sections of this chapter.

Callback best practices and control flow
patterns
Now that you have met your first example of callback hell, you know what
you should definitely avoid; however, that's not the only concern when writing
asynchronous code. In fact, there are several situations where controlling the flow
of a set of asynchronous tasks requires the use of specific patterns and techniques,
especially if we are only using plain JavaScript without the aid of any external
library. For example, iterating over a collection by applying an asynchronous
operation in sequence is not as easy as invoking forEach() over an array; it actually
requires a technique similar to recursion.

In this section, you will learn not only about how to avoid callback hell, but also how
to implement some of the most common control flow patterns, using only simple and
plain JavaScript.

For a great introduction to how closures work in V8, you
can refer to the following blog post by Vyacheslav Egorov, a
software engineer at Google working on V8, which you can read
at nodejsdp.link/v8-closures.

http://nodejsdp.link/v8-closures

Chapter 4

[95]

Callback discipline
When writing asynchronous code, the first rule to keep in mind is to not abuse
in-place function definitions when defining callbacks. It can be tempting to do
so, because it does not require any additional thinking for problems such as
modularization and reusability; however, you have seen how this can have more
disadvantages than advantages. Most of the time, fixing the callback hell problem
does not require any libraries, fancy techniques, or changes of paradigm; you just
need some common sense.

These are some basic principles that can help us keep the nesting level low and
improve the organization of our code in general:

• Exit as soon as possible. Use return, continue, or break, depending on
the context, to immediately exit the current statement instead of writing
(and nesting) complete if...else statements. This will help to keep our
code shallow.

• Create named functions for callbacks, keeping them out of closures and
passing intermediate results as arguments. Naming our functions will also
make them look better in stack traces.

• Modularize the code. Split the code into smaller, reusable functions
whenever possible.

Now, let's put these principles into practice.

Applying the callback discipline
To demonstrate the power of the ideas mentioned in the previous section, let's apply
them to fix the callback hell in our web spider application.

For the first step, we can refactor our error-checking pattern by removing
the else statement. This is made possible by returning from the function
immediately after we receive an error. So, instead of having code such as the
following:

if (err) {
 cb(err)
} else {
 // code to execute when there are no errors
}

Asynchronous Control Flow Patterns with Callbacks

[96]

We can improve the organization of our code by writing the following instead:

if (err) {
 return cb(err)
}
// code to execute when there are no errors

This is often referred to as the early return principle. With this simple trick, we
immediately have a reduction in the nesting level of our functions. It is easy and
doesn't require any complex refactoring.

As a second optimization for our spider() function, we can try to identify reusable
pieces of code. For example, the functionality that writes a given string to a file can
be easily factored out into a separate function, as follows:

function saveFile (filename, contents, cb) {
 mkdirp(path.dirname(filename), err => {
 if (err) {

A common mistake when executing the optimization just described
is forgetting to terminate the function after the callback is invoked.
For an error-handling scenario, the following code is a typical
source of defects:

if (err) {
 callback(err)
}
// code to execute when there are no errors.

We should never forget that the execution of our function will
continue even after we invoke the callback. It is then important
to insert a return instruction to block the execution of the rest of
the function. Also, note that it doesn't really matter what value
is returned by the function; the real result (or error) is produced
asynchronously and passed to the callback. The return value of the
asynchronous function is usually ignored. This property allows us
to write shortcuts such as the following:

return callback(...)

Otherwise, we'd have to write slightly more verbose code, such as
the following:

callback(...)
return

Chapter 4

[97]

 return cb(err)
 }
 fs.writeFile(filename, contents, cb)
 })
}

Following the same principle, we can create a generic function
named download() that takes a URL and a filename as input, and downloads the
URL into the given file. Internally, we can use the saveFile() function we created
earlier:

function download (url, filename, cb) {
 console.log(`Downloading ${url}`)
 superagent.get(url).end((err, res) => {
 if (err) {
 return cb(err)
 }
 saveFile(filename, res.text, err => {
 if (err) {
 return cb(err)
 }
 console.log(`Downloaded and saved: ${url}`)
 cb(null, res.text)
 })
 })
}

For the last step, we modify the spider() function, which, thanks to our changes,
will now look like the following:

export function spider (url, cb) {
 const filename = urlToFilename(url)
 fs.access(filename, err => {
 if (!err || err.code !== 'ENOENT') { // (1)
 return cb(null, filename, false)
 }
 download(url, filename, err => {
 if (err) {
 return cb(err)
 }
 cb(null, filename, true)
 })
 })
}

Asynchronous Control Flow Patterns with Callbacks

[98]

The functionality and the interface of the spider() function remained exactly the
same; what changed was the way the code was organized. One important detail to
notice (1) is that we inverted the check for the file's existence so that we could apply
the early return principle discussed previously.

By applying the early return principle and the other callback discipline principles,
we were able to drastically reduce the nesting of our code and, at the same time,
increase its reusability and testability. In fact, we could think about exporting
both saveFile() and download() so that we could reuse them in other modules.
This would also allow us to test their functionality as independent units.

The refactoring we carried out in this section clearly demonstrates that most of the
time, all we need is some discipline to make sure we do not abuse closures and
anonymous functions. It works brilliantly, requires minimal effort, and it doesn't
require external libraries.

Now that you know how to write clean asynchronous code using callbacks, we
are ready to explore some of the most common asynchronous patterns, such as
sequential and parallel execution.

Sequential execution
In this section, we will look at asynchronous control flow patterns and start by
analyzing the sequential execution flow.

Executing a set of tasks in sequence means running them one at a time, one after the
other. The order of execution matters and must be preserved, because the result of a
task in the list may affect the execution of the next. Figure 4.1 illustrates this concept:

Figure 4.1: An example of sequential execution flow with three tasks

There are different variations of this flow:

• Executing a set of known tasks in sequence, without propagating data across
them.

• Using the output of a task as the input for the next (also known
as chain, pipeline, or waterfall).

• Iterating over a collection while running an asynchronous task on each
element, one after the other.

Chapter 4

[99]

Sequential execution, despite being trivial when implemented using a direct style
blocking API, is usually the main cause of the callback hell problem when using
asynchronous CPS.

Executing a known set of tasks in sequence
We already looked at a sequential execution flow while implementing
the spider() function in the previous section. By applying some simple rules, we
were able to organize a set of known tasks in a sequential execution flow. Taking that
code as a guideline, we can now generalize the solution with the following pattern:

function task1 (cb) {
 asyncOperation(() => {
 task2(cb)
 })
}

function task2 (cb) {
 asyncOperation(() => {
 task3(cb)
 })
}

function task3 (cb) {
 asyncOperation(() => {
 cb() // finally executes the callback
 })
}

task1(() => {
 // executed when task1, task2 and task3 are completed
 console.log('tasks 1, 2 and 3 executed')
})

The preceding pattern shows how each task invokes the next upon completion
of a generic asynchronous operation. The pattern puts the emphasis on the
modularization of tasks, showing how closures are not always necessary to handle
asynchronous code.

Asynchronous Control Flow Patterns with Callbacks

[100]

Sequential iteration
The pattern described in the previous section works perfectly if we know in advance
what and how many tasks are to be executed. This allows us to hardcode the
invocation of the next task in the sequence, but what happens if we want to execute
an asynchronous operation for each item in a collection? In cases such as this, we
can't hardcode the task sequence anymore; instead, we have to build it dynamically.

Web spider version 2
To show an example of sequential iteration, let's introduce a new feature to the web
spider application. We now want to download all the links contained in a web page
recursively. To do that, we are going to extract all the links from the page and then
trigger our web spider on each recursively and in sequence.

The first step is modifying our spider() function so that it triggers a recursive
download of all the links of a page by using a function named spiderLinks(), which
we are going to create shortly.

Also, instead of checking whether the file already exists, we will try to read it and
start spidering its links. This way, we will be able to resume interrupted downloads.
As a final change, we need to make sure we propagate a new parameter, nesting,
which will help us to limit the recursion depth. The code is as follows:

export function spider (url, nesting, cb) {
 const filename = urlToFilename(url)
 fs.readFile(filename, 'utf8', (err, fileContent) => {
 if (err) {
 if (err.code !== 'ENOENT') {
 return cb(err)
 }

 // The file doesn't exist, so let's download it
 return download(url, filename, (err, requestContent) => {
 if (err) {
 return cb(err)
 }

 spiderLinks(url, requestContent, nesting, cb)
 })
 }

 // The file already exists, let's process the links
 spiderLinks(url, fileContent, nesting, cb)

Chapter 4

[101]

 })
}

In the next section, we will explore how the spiderLinks() function can be
implemented.

Sequential crawling of links
Now, we can create the core of this new version of our web spider application,
the spiderLinks() function, which downloads all the links of an HTML page using a
sequential asynchronous iteration algorithm. Pay attention to the way we are going
to define that in the following code block:

function spiderLinks (currentUrl, body, nesting, cb) {
 if (nesting === 0) {
 // Remember Zalgo from chapter 3?
 return process.nextTick(cb)
 }

 const links = getPageLinks(currentUrl, body) // (1)
 if (links.length === 0) {
 return process.nextTick(cb)
 }

 function iterate (index) { // (2)
 if (index === links.length) {
 return cb()
 }

 spider(links[index], nesting - 1, function (err) { // (3)
 if (err) {
 return cb(err)
 }
 iterate(index + 1)
 })
 }

 iterate(0) // (4)
}

Asynchronous Control Flow Patterns with Callbacks

[102]

The important steps to understand from this new function are as follows:

1. We obtain the list of all the links contained in the page using
the getPageLinks() function. This function returns only the links pointing
to an internal destination (the same hostname).

2. We iterate over the links using a local function called iterate(), which
takes the index of the next link to analyze. In this function, the first thing we
do is check whether the index is equal to the length of the links array, in
which case we immediately invoke the cb() function, as it means we have
processed all the items.

3. At this point, everything should be ready for processing the link. We invoke
the spider() function by decreasing the nesting level and invoking the next
step of the iteration when the operation completes.

4. As the last step in the spiderLinks() function, we bootstrap the iteration by
invoking iterate(0).

The algorithm that was just presented allows us to iterate over an array by executing
an asynchronous operation in sequence, which in our case is the spider() function.

Finally, we can change our spider-cli.js a bit so that we can specify the nesting
level as an additional command-line interface (CLI) argument:

import { spider } from './spider.js'

const url = process.argv[2]
const nesting = Number.parseInt(process.argv[3], 10) || 1

spider(url, nesting, err => {
 if (err) {
 console.error(err)
 process.exit(1)
 }

 console.log('Download complete')
})

We can now try this new version of the spider application and watch it download
all the links of a web page recursively, one after the other. To interrupt the process,
which can take a while if there are many links, remember that we can always
use Ctrl + C. If we then decide to resume it, we can do so by launching the spider
application and providing the same URL we used for the first run.

Chapter 4

[103]

The pattern
The code of the spiderLinks() function from the previous section is a clear example
of how it's possible to iterate over a collection while applying an asynchronous
operation. You may also notice that it's a pattern that can be adapted to any other
situation where we need to iterate asynchronously over the elements of a collection
or, in general, over a list of tasks. This pattern can be generalized as follows:

function iterate (index) {
 if (index === tasks.length) {
 return finish()
 }
 const task = tasks[index]
 task(() => iterate(index + 1))
}

function finish () {
 // iteration completed
}

iterate(0)

The pattern that was just presented is very powerful and can be extended or adapted
to address several common needs. Just to mention some examples:

• We can map the values of an array asynchronously.
• We can pass the results of an operation to the next one in the iteration to

implement an asynchronous version of the reduce algorithm.

Now that our web spider application can potentially trigger the
download of an entire website, please consider using it carefully.
For example, do not set a high nesting level or leave the spider
running for more than a few seconds. It is not polite to overload
a server with thousands of requests. In some circumstances, this
can also be considered illegal. Spider responsibly!

It's important to notice that these types of algorithms become really
recursive if task() is a synchronous operation. In such a case, the
stack will not unwind at every cycle and there might be a risk of
hitting the maximum call stack size limit.

Asynchronous Control Flow Patterns with Callbacks

[104]

• We can quit the loop prematurely if a particular condition is met
(asynchronous implementation of the Array.some() helper).

• We can even iterate over an infinite number of elements.

We could also choose to generalize the solution even further by wrapping it in
a function with a signature such as the following:

iterateSeries(collection, iteratorCallback, finalCallback)

Here, collection is the actual dataset you want to iterate over, iteratorCallback is
the function to execute over every item, and finalCallback is the function that gets
executed when all the items are processed or in case of an error. The implementation
of this helper function is left to you as an exercise.

In the next section, we will explore the parallel execution pattern, which is more
convenient when the order of the various tasks is not important.

Parallel execution
There are some situations where the order of execution of a set of asynchronous
tasks is not important, and all we want is to be notified when all those running tasks
are completed. Such situations are better handled using a parallel execution flow, as
shown in Figure 4.2:

Figure 4.2: An example of parallel execution with three tasks

The Sequential Iterator pattern

Execute a list of tasks in sequence by creating a function
named iterator, which invokes the next available task in the
collection and makes sure to invoke the next step of the iteration
when the current task completes.

Chapter 4

[105]

This may sound strange if you consider that Node.js is single-threaded, but if you
remember what we discussed in Chapter 1, The Node.js Platform, you'll realize that
even though we have just one thread, we can still achieve concurrency, thanks to
the non-blocking nature of Node.js. In fact, the word parallel is used improperly in
this case, as it does not mean that the tasks run simultaneously, but rather that their
execution is carried out by an underlying, non-blocking API and interleaved by the
event loop.

As you know, a task gives control back to the event loop when it requests a new
asynchronous operation, allowing the event loop to execute another task. The proper
word to use for this kind of flow is concurrency, but we will still use parallel for
simplicity.

The following diagram shows how two asynchronous tasks can run in parallel in a
Node.js program:

Figure 4.3: An example of how asynchronous tasks run in parallel

In Figure 4.3, we have a Main function that executes two asynchronous tasks:

1. The Main function triggers the execution of Task 1 and Task 2. As they
trigger an asynchronous operation, they immediately return control back to
the Main function, which then returns it to the event loop.

Asynchronous Control Flow Patterns with Callbacks

[106]

2. When the asynchronous operation of Task 1 is completed, the event
loop gives control to it. When Task 1 completes its internal synchronous
processing as well, it notifies the Main function.

3. When the asynchronous operation triggered by Task 2 is complete, the event
loop invokes its callback, giving control back to Task 2. At the end of Task
2, the Main function is notified once more. At this point, the Main function
knows that both Task 1 and Task 2 are complete, so it can continue its
execution or return the results of the operations to another callback.

In short, this means that in Node.js, we can only execute asynchronous operations
in parallel, because their concurrency is handled internally by the non-blocking
APIs. In Node.js, synchronous (blocking) operations can't run concurrently
unless their execution is interleaved with an asynchronous operation, or
interleaved with setTimeout() or setImmediate(). You will see this in more
detail in Chapter 11, Advanced Recipes.

Web spider version 3
Our web spider application seems like a perfect candidate to apply the concept of
parallel execution. So far, our application is executing the recursive download of the
linked pages in a sequential fashion. We can easily improve the performance of this
process by downloading all the linked pages in parallel.

To do that, we just need to modify the spiderLinks() function to make sure we
spawn all the spider() tasks at once, and then invoke the final callback only when all
of them have completed their execution. So, let's modify our spiderLinks() function
as follows:

function spiderLinks (currentUrl, body, nesting, cb) {
 if (nesting === 0) {
 return process.nextTick(cb)
 }

 const links = getPageLinks(currentUrl, body)
 if (links.length === 0) {
 return process.nextTick(cb)
 }

 let completed = 0
 let hasErrors = false

 function done (err) {
 if (err) {

Chapter 4

[107]

 hasErrors = true
 return cb(err)
 }
 if (++completed === links.length && !hasErrors) {
 return cb()
 }
 }

 links.forEach(link => spider(link, nesting - 1, done))
}

Let's discuss what we changed. As mentioned earlier, the spider() tasks are now
started all at once. This is possible by simply iterating over the links array and
starting each task without waiting for the previous one to finish:

links.forEach(link => spider(link, nesting - 1, done))

Then, the trick to make our application wait for all the tasks to complete is to
provide the spider() function with a special callback, which we call done().
The done() function increases a counter when a spider task completes. When
the number of completed downloads reaches the size of the links array, the final
callback is invoked:

function done (err) {
 if (err) {
 hasErrors = true
 return cb(err)
 }
 if (++completed === links.length && !hasErrors) {
 return cb()
 }
}

With these changes in place, if we now try to run our spider against a web page,
we will notice a huge improvement in the speed of the overall process, as every
download will be carried out in parallel, without waiting for the previous link
to be processed.

The hasErrors variable is necessary because if one parallel task
fails, we want to immediately call the callback with the given error.
Also, we need to make sure that other parallel tasks that might still
be running won't invoke the callback again.

Asynchronous Control Flow Patterns with Callbacks

[108]

The pattern
Finally, we can extract our nice little pattern for the parallel execution flow. Let's
represent a generic version of the pattern with the following code:

const tasks = [/* ... */]

let completed = 0
tasks.forEach(task => {
 task(() => {
 if (++completed === tasks.length) {
 finish()
 }
 })
})

function finish () {
 // all the tasks completed
}

With small modifications, we can adapt the pattern to accumulate the results of
each task into a collection, to filter or map the elements of an array, or to invoke
the finish() callback as soon as one or a given number of tasks complete (this last
situation in particular is called competitive race).

When we have multiple tasks running in parallel, we might have race conditions,
that is, contention to access external resources (for example, files or records in a
database). In the next section, we will talk about race conditions in Node.js and
explore some techniques to identify and address them.

Fixing race conditions with concurrent tasks
Running a set of tasks in parallel can cause issues when using blocking I/O in
combination with multiple threads. However, you have just seen that, in Node.js,
this is a totally different story. Running multiple asynchronous tasks in parallel is,
in fact, straightforward and cheap in terms of resources.

The Unlimited Parallel Execution pattern

Run a set of asynchronous tasks in parallel by launching them all
at once, and then wait for all of them to complete by counting the
number of times their callbacks are invoked.

Chapter 4

[109]

This is one of the most important strengths of Node.js, because it makes
parallelization a common practice rather than a complex technique to only
use when strictly necessary.

Another important characteristic of the concurrency model of Node.js is the way we
deal with task synchronization and race conditions. In multithreaded programming,
this is usually done using constructs such as locks, mutexes, semaphores, and
monitors, and it can be one of the most complex aspects of parallelization, and has
a considerable impact on performance. In Node.js, we usually don't need a fancy
synchronization mechanism, as everything runs on a single thread. However,
this doesn't mean that we can't have race conditions; on the contrary, they can be
quite common. The root of the problem is the delay between the invocation of an
asynchronous operation and the notification of its result.

To see a concrete example, we will refer again to our web spider application, and
in particular, the last version we created, which actually contains a race condition
(can you spot it?). The problem we are talking about lies in the spider() function,
where we check whether a file already exists before we start to download the
corresponding URL:

export function spider (url, nesting, cb) {
 const filename = urlToFilename(url)
 fs.readFile(filename, 'utf8', (err, fileContent) => {
 if (err) {
 if (err.code !== 'ENOENT') {
 return cb(err)
 }
 return download(url, filename, (err, requestContent) => {
 // ...

The problem is that two spider tasks operating on the same URL might invoke fs.
readFile() on the same file before one of the two tasks completes the download
and creates a file, causing both tasks to start a download. Figure 4.4 explains
this situation:

Figure 4.4: An example of a race condition in our spider() function

Asynchronous Control Flow Patterns with Callbacks

[110]

Figure 4.4 shows how Task 1 and Task 2 are interleaved in the single thread of
Node.js, as well as how an asynchronous operation can actually introduce a race
condition. In our case, the two spider tasks end up downloading the same file.

How can we fix that? The answer is much simpler than you might think. In fact, all
we need is a variable to mutually exclude multiple spider() tasks running on the
same URL. This can be achieved with some code, such as the following:

const spidering = new Set()
function spider (url, nesting, cb) {
 if (spidering.has(url)) {
 return process.nextTick(cb)
 }
 spidering.add(url)

// ...

The fix does not require many comments. We simply exit the function immediately
if the given url is already present in the spidering set; otherwise, we add the url
to the set and continue with the download. In our case, we don't need to release the
lock, as we are not interested in downloading a URL twice, even if the spider tasks
are executed at two completely different points in time. If you are building a spider
that might have to download hundreds of thousands of web pages, removing the
downloaded url from the set once a file is downloaded will help you to keep the set
cardinality, and therefore the memory consumption, from growing indefinitely.

Race conditions can cause many problems, even if we are in a single-threaded
environment. In some circumstances, they can lead to data corruption and are
usually very hard to debug because of their ephemeral nature. So, it's always good
practice to double-check for these types of situations when running tasks in parallel.

Also, running an arbitrary number of parallel tasks can be a dangerous practice.
In the next section, you will discover why it can be a problem and how to keep the
number of parallel tasks under control.

Limited parallel execution
Spawning parallel tasks without control can often lead to excessive load. Imagine
having thousands of files to read, URLs to access, or database queries to run in
parallel. A common problem in such situations is running out of resources. The
most common example is when an application tries to open too many files at once,
utilizing all the file descriptors available to the process.

Chapter 4

[111]

A server that spawns unbounded parallel tasks to handle a user request could be
exploited with a denial-of-service (DoS) attack. That is when a malicious actor can
forge one or more requests to push the server to consume all the available resources
and become unresponsive. Limiting the number of parallel tasks is, in general, a
good practice that helps with building resilient applications.

Version 3 of our web spider does not limit the number of parallel tasks and therefore,
it is susceptible to crashing in a number of cases. For instance, if we try to run it
against a significantly big website, we might see it running for a few seconds and
then failing with the error code ECONNREFUSED. When we are downloading too many
pages concurrently from a web server, the server might decide to start rejecting new
connections from the same IP. In this case, our spider would just crash and we would
be forced to relaunch the process if we wanted to continue crawling the website. We
could just handle ECONNREFUSED to stop the process from crashing, but we would still
be risking allocating too many parallel tasks and might run into other issues.

In this section, you will see how we can make our spider more resilient by keeping
the concurrency limited.

The following diagram shows a situation where we have five tasks that run in
parallel with a concurrency limit of two:

Figure 4.5: An example of how concurrency can be limited to a maximum of two parallel tasks

From Figure 4.5, it should be clear how our algorithm works:

1. Initially, we spawn as many tasks as we can without exceeding the
concurrency limit.

2. Then, every time a task is completed, we spawn one or more tasks until we
reach the limit again.

In the next section, we will explore a possible implementation of the limited parallel
execution pattern.

Asynchronous Control Flow Patterns with Callbacks

[112]

Limiting concurrency
We will now look at a pattern that will execute a set of given tasks in parallel with
limited concurrency:

const tasks = [
 // ...
]

const concurrency = 2
let running = 0
let completed = 0
let index = 0

function next () { // (1)
 while (running < concurrency && index < tasks.length) {
 const task = tasks[index++]
 task(() => { // (2)
 if (++completed === tasks.length) {
 return finish()
 }
 running--
 next()
 })
 running++
 }
}
next()

function finish() {
 // all tasks finished
}

This algorithm can be considered a mixture of sequential execution and parallel
execution. In fact, you might notice similarities with both patterns:

1. We have an iterator function, which we call next(), and then an inner loop
that spawns as many tasks as possible in parallel while staying within the
concurrency limit.

2. The next important part is the callback we pass to each task, which checks
whether we completed all the tasks in the list. If there are still tasks to run,
it invokes next() to spawn another set of tasks.

Pretty simple, isn't it?

Chapter 4

[113]

Globally limiting concurrency
Our web spider application is perfect for applying what we just learned about
limiting the concurrency of a set of tasks. In fact, to avoid the situation in which we
have thousands of links being crawled at the same time, we can enforce a limit on the
concurrency of this process by adding some predictability regarding the number of
concurrent downloads.

We could apply this implementation of the limited concurrency pattern to
our spiderLinks() function, but by doing that, we would only be limiting the
concurrency of tasks spawned from the links found within a given page. If we chose,
for example, a concurrency of two, we would have, at most, two links downloaded
in parallel for each page. However, as we can download multiple links at once,
each page would then spawn another two downloads, causing the grand total of
download operations to grow exponentially anyway.

In general, this implementation of the limited concurrency pattern works very well
when we have a predetermined set of tasks to execute, or when the set of tasks grows
linearly over time. When, instead, a task can spawn two or more tasks directly, as
happens with our web spider, this implementation is not suitable for limiting the
global concurrency.

Queues to the rescue
What we really want, then, is to limit the global number of download operations
we can have running in parallel. We could slightly modify the pattern shown in the
previous section, but this is left as an exercise for you. Instead, let's discuss another
mechanism that makes use of queues to limit the concurrency of multiple tasks. Let's
see how this works.

We are now going to implement a simple class named TaskQueue, which will
combine a queue with the algorithm that was presented while discussing limited
concurrency. Let's create a new module named taskQueue.js:

export class TaskQueue {
 constructor (concurrency) {
 this.concurrency = concurrency
 this.running = 0
 this.queue = []
 }

 pushTask (task) {
 this.queue.push(task)
 process.nextTick(this.next.bind(this))

Asynchronous Control Flow Patterns with Callbacks

[114]

 return this
 }

 next () {
 while (this.running < this.concurrency && this.queue.length) {
 const task = this.queue.shift()
 task(() => {
 this.running--
 process.nextTick(this.next.bind(this))
 })
 this.running++
 }
 }
}

The constructor of this class takes, as input, only the concurrency limit, but besides
that, it initializes the instance variables running and queue. The former variable is a
counter used to keep track of all the running tasks, while the latter is the array that
will be used as a queue to store the pending tasks.

The pushTask() method simply adds a new task to the queue and then bootstraps the
execution of the worker by asynchronously invoking this.next(). Note that we have
to use bind because otherwise, the next function will lose its context when invoked
by process.nextTick.

The next() method spawns a set of tasks from the queue, ensuring that it does not
exceed the concurrency limit.

You may notice that this method has some similarities with the pattern presented
at the beginning of the Limiting concurrency section. It essentially starts as many
tasks from the queue as possible, without exceeding the concurrency limit. When
each task is complete, it updates the count of running tasks and then starts another
round of tasks by asynchronously invoking next() again. The interesting property
of the TaskQueue class is that it allows us to dynamically add new items to the
queue. The other advantage is that, now, we have a central entity responsible for
the limitation of the concurrency of our tasks, which can be shared across all the
instances of a function's execution. In our case, it's the spider() function, as you
will see in a moment.

Chapter 4

[115]

Refining the TaskQueue
The previous implementation of TaskQueue is sufficient to demonstrate the queue
pattern, but in order to be used in real-life projects, it needs a couple of extra
features. For instance, how can we tell when one of the tasks has failed? How
do we know whether all the work in the queue has been completed?

Let's bring back some of the concepts we discussed in Chapter 3, Callbacks and Events,
and let's turn the TaskQueue into an EventEmitter so that we can emit events to
propagate task failures and to inform any observer when the queue is empty.

The first change we have to make is to import the EventEmitter class and let our
TaskQueue extend it:

import { EventEmitter } from 'events'

export class TaskQueue extends EventEmitter {
 constructor (concurrency) {
 super()
 // ...
 }
 // ...
}

At this point, we can use this.emit to fire events from within the TaskQueue next()
method:

next () {
 if (this.running === 0 && this.queue.length === 0) { // (1)
 return this.emit('empty')
 }

 while (this.running < this.concurrency && this.queue.length) {
 const task = this.queue.shift()
 task((err) => { // (2)
 if (err) {
 this.emit('error', err)
 }
 this.running--
 process.nextTick(this.next.bind(this))
 })
 this.running++
 }
}

Asynchronous Control Flow Patterns with Callbacks

[116]

Comparing this implementation with the previous one, there are two additions here:

• Every time the next() function is called, we check that no task is running and
whether the queue is empty. In such a case, it means that the queue has been
drained and we can fire the empty event.

• The completion callback of every task can now be invoked by passing an
error. We check whether an error is actually passed, indicating that the task
has failed, and in that case, we propagate such an error with an error event.

Notice that in case of an error, we are deliberately keeping the queue running. We
are not stopping other tasks in progress, nor removing any pending tasks. This is
quite common with queue-based systems. Errors are expected to happen and rather
than letting the system crash on these occasions, it is generally better to identify
errors and to think about retry or recovery strategies. We will discuss these concepts
a bit more in Chapter 13, Messaging and Integration Patterns.

Web spider version 4
Now that we have our generic queue to execute tasks in a limited parallel flow, let's
use it straightaway to refactor our web spider application.

We are going to use an instance of TaskQueue as a work backlog; every URL that we
want to crawl needs to be appended to the queue as a task. The starting URL will be
added as the first task, then every other URL discovered during the crawling process
will be added as well. The queue will manage all the scheduling for us, making sure
that the number of tasks in progress (that is, the number of pages being downloaded
or read from the filesystem) at any given time is never greater than the concurrency
limit configured for the given TaskQueue instance.

We have already defined the logic to crawl a given URL inside our spider()
function. We can consider this to be our generic crawling task. For more clarity, it's
best to rename this function spiderTask:

function spiderTask (url, nesting, queue, cb) { // (1)
 const filename = urlToFilename(url)
 fs.readFile(filename, 'utf8', (err, fileContent) => {
 if (err) {
 if (err.code !== 'ENOENT') {
 return cb(err)
 }

 return download(url, filename, (err, requestContent) => {
 if (err) {
 return cb(err)

Chapter 4

[117]

 }

 spiderLinks(url, requestContent, nesting, queue) // (2)
 return cb()
 })
 }

 spiderLinks(url, fileContent, nesting, queue) // (3)
 return cb()
 })
}

Other than renaming the function, you might have noticed that we applied some
other small changes:

• The function signature now accepts a new parameter called queue. This is an
instance of TaskQueue that we need to carry over to be able to append new
tasks when necessary.

• The function responsible for adding new links to crawl is spiderLinks, so we
need to make sure that we pass the queue instance when we call this function
after downloading a new page.

• We also need to pass the queue instance to spiderLinks when we are
invoking that from an already downloaded file.

Let's revisit the spiderLinks() function. This function can now be greatly simplified
as it doesn't have to keep track of task completion anymore, as this work has been
delegated to the queue. Its job becomes effectively synchronous now; it just needs to
invoke the new spider() function (which we will define shortly) to push a new task
to the queue, one for each discovered link:

function spiderLinks (currentUrl, body, nesting, queue) {
 if (nesting === 0) {
 return
 }

 const links = getPageLinks(currentUrl, body)
 if (links.length === 0) {
 return
 }

 links.forEach(link => spider(link, nesting - 1, queue))
}

Asynchronous Control Flow Patterns with Callbacks

[118]

Let's now revisit the spider() function, which needs to act as the entry point for the
first URL; it will also be used to add every new discovered URL to the queue:

const spidering = new Set() // (1)
export function spider (url, nesting, queue) {
 if (spidering.has(url)) {
 return
 }

 spidering.add(url)
 queue.pushTask((done) => { // (2)
 spiderTask(url, nesting, queue, done)
 })
}

As you can see, this function now has two main responsibilities:

1. It manages the bookkeeping of the URLs already visited or in progress by
using the spidering set.

2. It pushes a new task to the queue. Once executed, this task will invoke the
spiderTask() function, effectively starting the crawling of the given URL.

Finally, we can update the spider-cli.js script, which allows us to invoke our
spider from the command line:

import { spider } from './spider.js'
import { TaskQueue } from './TaskQueue.js'

const url = process.argv[2] // (1)
const nesting = Number.parseInt(process.argv[3], 10) || 1
const concurrency = Number.parseInt(process.argv[4], 10) || 2

const spiderQueue = new TaskQueue(concurrency) // (2)
spiderQueue.on('error', console.error)
spiderQueue.on('empty', () => console.log('Download complete'))

spider(url, nesting, spiderQueue) // (3)

This script is now composed of three main parts:

1. CLI arguments parsing. Note that the script now accepts a third additional
parameter that can be used to customize the concurrency level.

Chapter 4

[119]

2. A TaskQueue object is created and listeners are attached to the error and
empty events. When an error occurs, we simply want to print it. When the
queue is empty, that means that we've finished crawling the website.

3. Finally, we start the crawling process by invoking the spider function.

After we have applied these changes, we can try to run the spider module again.
When we run the following command:

node spider-cli.js https://loige.co 1 4

We should notice that no more than four downloads will be active at the same time.

With this final example, we've concluded our exploration of callback-based patterns.
In the next section, we will close this chapter by looking at a famous library that
provides a production-ready implementation of these patterns and many other
asynchronous utilities.

The async library
If you take a look for a moment at every control flow pattern we have analyzed so
far, you will see that they can be used as a base to build reusable and more generic
solutions. For example, we could wrap the unlimited parallel execution algorithm
into a function that accepts a list of tasks, runs them in parallel, and invokes the
given callback when all of them are complete. This way of wrapping control flow
algorithms into reusable functions can lead to a more declarative and expressive way
of defining asynchronous control flows, and that's exactly what async (nodejsdp.
link/async) does.

The async library (not to be confused with the async/await keywords, which we will
discuss later in this book) is a very popular solution, in Node.js and JavaScript in
general, for dealing with asynchronous code. It offers a set of functions that greatly
simplify the execution of tasks in different configurations, and it also provides useful
helpers for dealing with collections asynchronously. Even though there are several
other libraries with a similar goal, async is the de facto standard in Node.js due to its
historic popularity, especially when using callbacks to define asynchronous tasks.

Just to give you an idea of some of the most important capabilities of the async
module, here is a sample of the functionalities it exposes:

• Execute asynchronous functions over a collection of elements (in series or in
parallel with limited concurrency).

• Execute a chain of asynchronous functions (waterfall) where the output of
every function becomes the input of the next one.

http://nodejsdp.link/async
http://nodejsdp.link/async

Asynchronous Control Flow Patterns with Callbacks

[120]

• Offers a queue abstraction functionally equivalent to the one we
implemented with our TaskQueue utility.

• Provides other interesting asynchronous patterns such as race (executes
multiple asynchronous functions in parallel and stops when the first one
completes).

Check out the async documentation (nodejsdp.link/async) to find out more about
the module and to see some examples.

Once you've understood the fundamentals of the asynchronous patterns described
in this chapter, you shouldn't rely on the simplified implementations presented here
for your everyday control flow needs. Instead, it's better to adopt a broadly used and
battle-tested library like async for your production applications, unless your use case
is so advanced that you require a custom algorithm.

Summary
At the beginning of this chapter, it was stated that Node.js programming can be
tough because of its asynchronous nature, especially for people used to developing
on other platforms. However, throughout this chapter, you saw how asynchronous
APIs can be bent to your will. You discovered that the tools at your disposal are
indeed versatile and provide good solutions to most of your problems, in addition to
offering a programming style for every taste.

In this chapter, we also kept refactoring and improving our web crawler example.
When dealing with asynchronous code, it can sometimes be challenging to figure out
the right ergonomics that can keep your code simple and effective, so allow yourself
some time to digest the concepts explored in this chapter and to experiment with
them.

Our journey with asynchronous Node.js programming has just started. In the next
few chapters, you will be introduced to other broadly adopted techniques that
leverage promises, and async/await. After you've learned all these techniques, you
will be able to choose the best solution for your needs or use many of them together
in the same project.

http://nodejsdp.link/async

Chapter 4

[121]

Exercises
• 4.1 File concatenation: Write the implementation of concatFiles(), a

callback-style function that takes two or more paths to text files in the
filesystem and a destination file:

function concatFiles (srcFile1, srcFile2, srcFile3, ... ,
 dest, cb) {
 // ...
}

This function must copy the contents of every source file into the destination
file, respecting the order of the files, as provided by the arguments list.
For instance, given two files, if the first file contains foo and the second
file contains bar, the function should write foobar (and not barfoo) in the
destination file. Note that the preceding example signature is not valid
JavaScript syntax: you need to find a different way to handle an arbitrary
number of arguments. For instance, you could use the rest parameters syntax
(nodejsdp.link/rest-parameters).

• 4.2 List files recursively: Write listNestedFiles(), a callback-style function
that takes, as the input, the path to a directory in the local filesystem and that
asynchronously iterates over all the subdirectories to eventually return a list
of all the files discovered. Here is what the signature of the function should
look like:

function listNestedFiles (dir, cb) { /* ... */ }

Bonus points if you manage to avoid callback hell. Feel free to create
additional helper functions if needed.

• 4.3 Recursive find: Write recursiveFind(), a callback-style function that
takes a path to a directory in the local filesystem and a keyword, as per the
following signature:

function recursiveFind(dir, keyword, cb) { /* ... */ }

http://nodejsdp.link/rest-parameters

Asynchronous Control Flow Patterns with Callbacks

[122]

The function must find all the text files within the given directory that
contain the given keyword in the file contents. The list of matching files
should be returned using the callback when the search is completed. If no
matching file is found, the callback must be invoked with an empty array.
As an example test case, if you have the files foo.txt, bar.txt, and baz.txt
in myDir and the keyword 'batman' is contained in the files foo.txt and baz.
txt, you should be able to run the following code:

recursiveFind('myDir', 'batman', console.log)
// should print ['foo.txt', 'baz.txt']

Bonus points if you make the search recursive (it looks for text files in any
subdirectory as well). Extra bonus points if you manage to perform the
search within different files and subdirectories in parallel, but be careful to
keep the number of parallel tasks under control!

[123]

5
Asynchronous Control Flow
Patterns with Promises and

Async/Await
Callbacks are the low-level building blocks of asynchronous programming in
Node.js, but they are far from being developer-friendly. In fact, in the last chapter,
we learned techniques to implement different control flow constructs using callbacks,
and we can say that they are quite complex and verbose compared to the (low) level
of complexity of the tasks they try to accomplish. In particular, serial execution
flow, which is the predominant control flow structure in most of the code we write,
can easily lead an untrained developer to write code affected by the callback hell
problem. On top of that, even if properly implemented, a serial execution flow seems
needlessly complicated and error-prone. Let's also remember how fragile error
management with callbacks is; if we forget to forward an error, then it just gets lost,
and if we forget to catch any exception thrown by some synchronous code, then the
program crashes. And all of this without considering that Zalgo is always breathing
down our necks.

Node.js and JavaScript have been criticized for many years for the lack of a native
solution to a problem so common and ubiquitous. Luckily, over the years, the
community has worked on new solutions to the problem and finally, after many
iterations, discussions, and years of waiting, today we have a proper solution to
the "callback issue."

Asynchronous Control Flow Patterns with Promises and Async/Await

[124]

The first step toward a better asynchronous code experience is the promise, an object
that "carries" the status and the eventual result of an asynchronous operation. A
promise can be easily chained to implement serial execution flows and can be moved
around like any other object. Promises simplify asynchronous code a lot; however,
there was still room for improvement. So, in an attempt to make the ubiquitous serial
execution flow as simple as possible, a new construct was introduced, called async/
await, which can finally make asynchronous code look like synchronous code.

In today's modern Node.js programming, async/await is the preferred construct to
use when dealing with asynchronous code. However, async/await is built on top of
promises, as much as promises are built on top of callbacks. So, it's important that
we know and master all of them in order to tackle our asynchronous programming
problems with the right approach.

In this chapter, you will learn the following:

• How promises work and how to use them effectively to implement the main
control flow constructs we already know about.

• The async/await syntax, which will become our main tool for dealing with
asynchronous code in Node.js.

By the end of the chapter, you will have learned about the two most important
components that we have in JavaScript for taming asynchronous code. So, let's get
started by discovering promises.

Promises
Promises are part of the ECMAScript 2015 standard (or ES6, which is why they are
also called ES6 promises) and have been natively available in Node.js since version 4.
But the history of promises goes back a few years earlier, when there were dozens of
implementations around, initially with different features and behavior. Eventually,
the majority of those implementations settled on a standard called Promises/A+.

Promises represent a big step ahead toward providing a robust alternative to
continuation-passing style callbacks for propagating an asynchronous result. As
we will see, the use of promises will make all the major asynchronous control flow
constructs easier to read, less verbose, and more robust compared to their callback-
based alternatives.

Chapter 5

[125]

What is a promise?
A Promise is an object that embodies the eventual result (or error) of an
asynchronous operation. In promises jargon, we say that a Promise is pending when
the asynchronous operation is not yet complete, it's fulfilled when the operation
successfully completes, and rejected when the operation terminates with an error.
Once a Promise is either fulfilled or rejected, it's considered settled.

To receive the fulfillment value or the error (reason) associated with the rejection,
we can use the then() method of a Promise instance. The following is its signature:

promise.then(onFulfilled, onRejected)

In the preceding signature, onFulfilled is a callback that will eventually receive the
fulfillment value of the Promise, and onRejected is another callback that will receive
the reason for the rejection (if any). Both are optional.

To have an idea of how promises can transform our code, let's consider the following
callback-based code:

asyncOperation(arg, (err, result) => {
 if(err) {
 // handle the error
 }
 // do stuff with the result
})

Promises allow us to transform this typical continuation-passing style code into a
better structured and more elegant code, such as the following:

asyncOperationPromise(arg)
 .then(result => {
 // do stuff with result
 }, err => {
 // handle the error
 })

In the code above, asyncOperationPromise() is returning a Promise, which we can
then use to receive the fulfillment value or the rejection reason of the eventual result
of the function. So far, it seems that there is nothing major going on, but one crucial
property of the then() method is that it synchronously returns another Promise.

Asynchronous Control Flow Patterns with Promises and Async/Await

[126]

Moreover, if any of the onFulfilled or onRejected functions return a value x, the
Promise returned by the then() method will:

• Fulfill with x if x is a value
• Fulfill with the fulfillment value of x if x is a Promise
• Reject with the eventual rejection reason of x if x is a Promise

This behavior allows us to build chains of promises, allowing easy aggregation and
arrangement of asynchronous operations into several configurations. Moreover, if we
don't specify an onFulfilled or onRejected handler, the fulfillment value or rejection
reason is automatically forwarded to the next promise in the chain. This allows us,
for example, to automatically propagate errors across the whole chain until they are
caught by an onRejected handler. With a Promise chain, the sequential execution of
tasks suddenly becomes a trivial operation:

asyncOperationPromise(arg)
 .then(result1 => {
 // returns another promise
 return asyncOperationPromise(arg2)
 })
 .then(result2 => {
 // returns a value
 return 'done'
 })
 .then(undefined, err => {
 // any error in the chain is caught here
 })

The following diagram provides another perspective on how a Promise chain works:

Figure 5.1: Promise chain execution flow

Chapter 5

[127]

Figure 5.1 shows how our program flows when we use a chain of promises. When
we invoke then() on Promise A we synchronously receive Promise B as a result
and when we invoke then() on Promise B we synchronously receive Promise C
as a result. Eventually, when Promise A settles, it will either fulfill or reject, which
results in the invocation of either the onFulfilled() or the onRejected() callback
respectively. The result of the execution of such a callback will then fulfill or reject
Promise B and such a result is, in turn, propagated to the onFulfilled() or the
onRejected() callback passed to the then() invocation on Promise B. The execution
continues similarly for Promise C and any other promise that follows in the chain.

An important property of promises is that the onFulfilled() and onRejected()
callbacks are guaranteed to be invoked asynchronously and at most once,
even if we resolve the Promise synchronously with a value. Not only that,
the onFulfilled() and onRejected() callbacks will be invoked asynchronously even
if the Promise object is already settled at the moment in which then() is called. This
behavior shields our code against all those situations where we could unintentionally
release Zalgo (see Chapter 3, Callbacks and Events), making our asynchronous code
more consistent and robust without any extra effort.

Now comes the best part. If an exception is thrown (using the throw statement)
in the onFulfilled() or onRejected() handler, the Promise returned by
the then() method will automatically reject, with the exception that was thrown
provided as the rejection reason. This is a tremendous advantage over CPS, as it
means that with promises, exceptions will propagate automatically across the chain,
and the throw statement becomes finally usable.

Promises/A+ and thenables
Historically, there have been many different implementations of promises, and
most of them were not compatible with each other, meaning that it was not possible
to create chains between Promise objects coming from libraries that were using
different Promise implementations.

The JavaScript community worked very hard to address this limitation and those
efforts led to the creation of the Promises/A+ specification. This specification details
the behavior of the then() method, providing an interoperable base, which makes
Promise objects from different libraries able to work with each other out of the box.
Today, the majority of Promise implementations use this standard, including the
native Promise object of JavaScript and Node.js.

Asynchronous Control Flow Patterns with Promises and Async/Await

[128]

As a result of the adoption of the Promises/A+ standard, many Promise
implementations, including the native JavaScript Promise API, will consider any
object with a then() method a Promise-like object, also called thenable. This behavior
allows different Promise implementations to interact with each other seamlessly.

The promise API
Let's now take a quick look at the API of the native JavaScript Promise. This is just
an overview to give you an idea of what we can do with promises, so don't worry if
things are not so clear at this point yet; we will have the chance to use most of these
APIs throughout the book.

The Promise constructor (new Promise((resolve, reject) => {})) creates
a new Promise instance that fulfills or rejects based on the behavior of the function
provided as an argument. The function provided to the constructor will receive
two arguments:

• resolve(obj): This is a function that, when invoked, will fulfill the Promise
with the provided fulfillment value, which will be obj if obj is a value. It
will be the fulfillment value of obj if obj is a Promise or a thenable.

• reject(err): This rejects the Promise with the reason err. It is a convention
for err to be an instance of Error.

Now, let's take a look at the most important static methods of the Promise object:

• Promise.resolve(obj): This method creates a new Promise from another
Promise, a thenable, or a value. If a Promise is passed, then that Promise is
returned as it is. If a thenable is provided, then it's converted to the Promise
implementation in use. If a value is provided, then the Promise will be
fulfilled with that value.

For a detailed overview of the Promises/A+ specification, you can
refer to the official website at nodejsdp.link/promises-aplus.

The technique of recognizing (or typing) objects based on their
external behavior, rather than their actual type, is called duck
typing and is widely used in JavaScript.

http://nodejsdp.link/promises-aplus

Chapter 5

[129]

• Promise.reject(err): This method creates a Promise that rejects with err as
the reason.

• Promise.all(iterable): This method creates a Promise that fulfills with
an array of fulfillment values when every item in the input iterable (such
as an Array) object fulfills. If any Promise in the iterable object rejects, then
the Promise returned by Promise.all() will reject with the first rejection
reason. Each item in the iterable object can be a Promise, a generic thenable,
or a value.

• Promise.allSettled(iterable): This method waits for all the input
promises to fulfill or reject and then returns an array of objects containing
the fulfillment value or the rejection reason for each input Promise. Each
output object has a status property, which can be equal to 'fulfilled'
or 'rejected', and a value property containing the fulfillment value,
or a reason property containing the rejection reason. The difference with
Promise.all() is that Promise.allSettled() will always wait for each
Promise to either fulfill or reject, instead of immediately rejecting when
one of the promises rejects.

• Promise.race(iterable): This method returns a Promise that is equivalent
to the first Promise in iterable that settles.

Finally, the following are the main methods available on a Promise instance:

• promise.then(onFulfilled, onRejected): This is the essential method of
a Promise. Its behavior is compatible with the Promises/A+ standard that
we mentioned before.

• promise.catch(onRejected): This method is just syntactic sugar (nodejsdp.
link/syntactic-sugar) for promise.then(undefined, onRejected).

• promise.finally(onFinally): This method allows us to set up an onFinally
callback, which is invoked when the Promise is settled (either fulfilled or
rejected). Unlike onFulfilled and onRejected, the onFinally callback will
not receive any argument as input and any value returned from it will
be ignored. The Promise returned by finally will settle with the same
fulfillment value or rejection reason of the current Promise instance. There
is only once exception to all this, which is the case in which we throw inside
the onFinally callback or return a rejected Promise. In this case, the returned
Promise will reject with the error that is thrown or the rejection reason of the
rejected Promise returned.

Let's now see an example of how we can create a Promise from scratch using
its constructor.

http://nodejsdp.link/syntactic-sugar
http://nodejsdp.link/syntactic-sugar

Asynchronous Control Flow Patterns with Promises and Async/Await

[130]

Creating a promise
Let's now see how we can create a Promise using its constructor. Creating a Promise
from scratch is a low-level operation and it's usually required when we need to
convert an API that uses another asynchronous style (such as a callback-based style).
Most of the time we—as developers—are consumers of promises produced by other
libraries and most of the promises we create will come from the then() method.
Nonetheless, in some advanced scenarios, we need to manually create a Promise
using its constructor.

To demonstrate how to use the Promise constructor, let's create a function that
returns a Promise that fulfills with the current date after a specified number of
milliseconds. Let's take a look at it:

function delay (milliseconds) {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(new Date())
 }, milliseconds)
 })
}

As you probably already guessed, we used setTimeout() to invoke the resolve()
function of the Promise constructor. We can notice how the entire body of the
function is wrapped by the Promise constructor; this is a frequent code pattern you
will see when creating a Promise from scratch.

The delay() function we just created can then be used with some code like the
following:

console.log(`Delaying...${new Date().getSeconds()}s`)
delay(1000)
 .then(newDate => {
 console.log(`Done ${newDate.getSeconds()}s`)
 })

The console.log() within the then() handler will be executed approximately after 1
second from the invocation of delay().

Chapter 5

[131]

Promisification
When some characteristics of a callback-based function are known in advance,
it's possible to create a function that transforms such a callback-based function
into an equivalent function returning a Promise. This transformation is called
promisification.

For example, let's consider the conventions used in Node.js-style callback-based
functions:

• The callback is the last argument of the function
• The error (if any) is always the first argument passed to the callback
• Any return value is passed after the error to the callback

Based on these rules, we can easily create a generic function that promisifies a
Node.js-style callback-based function. Let's see what this function looks like:

function promisify (callbackBasedApi) {
 return function promisified (...args) {
 return new Promise((resolve, reject) => { // (1)
 const newArgs = [
 ...args,
 function (err, result) { // (2)
 if (err) {
 return reject(err)
 }

 resolve(result)
 }
]
 callbackBasedApi(...newArgs) // (3)
 })
 }
}

The Promises/A+ specification states that the onFulfilled and
onRejected callbacks of the then() method have to be invoked
only once and exclusively (only one or the other is invoked).
A compliant promises implementation makes sure that even if
we call resolve or reject multiple times, the Promise is either
fulfilled or rejected only once.

Asynchronous Control Flow Patterns with Promises and Async/Await

[132]

The preceding function returns another function called promisified(), which
represents the promisified version of the callbackBasedApi given as the input.
This is how it works:

1. The promisified() function creates a new Promise using
the Promise constructor and immediately returns it to the caller.

2. In the function passed to the Promise constructor, we make sure to pass
to callbackBasedApi a special callback. Since we know that the callback
always comes last, we simply append it to the arguments list (args) provided
to the promisified() function. In the special callback, if we receive an error,
we immediately reject the Promise; otherwise, we resolve it with the given
result.

3. Finally, we simply invoke callbackBasedApi with the list of arguments we
have built.

Now, let's promisify a Node.js function using our newly created promisify()
function. We can use the randomBytes() function of the core crypto module,
which produces a buffer containing the specified number of random bytes. The
randomBytes() function accepts a callback as the last argument and it follows the
conventions we already know very well. Let's see what this looks like:

import { randomBytes } from 'crypto'

const randomBytesP = promisify(randomBytes)
randomBytesP(32)
 .then(buffer => {
 console.log(`Random bytes: ${buffer.toString()}`)
 })

The previous code should print some gibberish to the console; that's because not all
generated bytes have a corresponding printable character.

The promisification function we created here is just for educational
purposes and it's missing a few features, such as the ability to
deal with callbacks returning more than one result. In real life, we
would use the promisify() function of the util core module to
promisify our Node.js-style callback-based functions. You can take
a look at its documentation at nodejsdp.link/promisify.

http://nodejsdp.link/promisify

Chapter 5

[133]

Sequential execution and iteration
We now know enough to convert the web spider application that we created
in the previous chapter to use promises. Let's start directly from version 2, the
one downloading the links of a webpage in sequence.

In the spider.js module, the very first step required is to import our dependencies
and promisify any callback-based function that we are going to use:

import { promises as fsPromises } from 'fs' // (1)
import { dirname } from 'path'
import superagent from 'superagent'
import mkdirp from 'mkdirp'
import { urlToFilename, getPageLinks } from './utils.js'
import { promisify } from 'util'

const mkdirpPromises = promisify(mkdirp) // (2)

There are two main differences here compared to the spider.js module of the
previous chapter:

1. We import the promises object of the fs module to get access to all the fs
functions already promisified.

2. We manually promisify the mkdirp() function.

Now, we can start converting the download() function:

function download (url, filename) {
 console.log(`Downloading ${url}`)
 let content
 return superagent.get(url) // (1)
 .then((res) => {
 content = res.text // (2)
 return mkdirpPromises(dirname(filename))
 })
 .then(() => fsPromises.writeFile(filename, content))
 .then(() => {
 console.log(`Downloaded and saved: ${url}`)

We can access an already promisified version of the core
fs API through the promises object of the fs module.
For example: import { promises } from 'fs'.

Asynchronous Control Flow Patterns with Promises and Async/Await

[134]

 return content // (3)
 })
}

We can straightaway appreciate the elegance of implementing sequential
asynchronous operations with promises. We simply have a clean and very intuitive
chain of then() invocations.

Compared to the previous version of the function, this time we are leveraging the
out-of-the-box support for promises of the superagent package. Instead of invoking
end() on the request object returned by superagent.get(), we simply invoke then()
to send the request (1) and receive a Promise that fulfills/rejects with the result of the
request.

The final return value of the download() function is the Promise returned by the last
then() call in the chain, which fulfills with the content of the webpage (3), which we
initialized in the onFulfilled handler of the first then() call (2). This makes sure that
the caller receives a Promise that fulfills with content only after all operations (get,
mkdirp, and writeFile) have completed.

In the download() function that we've just seen, we have executed a known set of
asynchronous operations in sequence. However, in the spiderLinks() function, we
will have to deal with a sequential iteration over a dynamic set of asynchronous
tasks. Let's see how we can achieve that:

function spiderLinks (currentUrl, content, nesting) {
 let promise = Promise.resolve() // (1)
 if (nesting === 0) {
 return promise
 }
 const links = getPageLinks(currentUrl, content)
 for (const link of links) {
 promise = promise.then(() => spider(link, nesting - 1)) // (2)
 }

 return promise
}

To iterate over all the links of a webpage asynchronously, we had to dynamically
build a chain of promises as follows:

1. First, we defined an "empty" Promise, which resolves to undefined. This
Promise is used just as the starting point for our chain.

Chapter 5

[135]

2. Then, in a loop, we update the promise variable with a new Promise obtained
by invoking then() on the previous promise in the chain. This is actually our
asynchronous iteration pattern using promises.

At the end of the for loop, the promise variable will contain the promise of the
last then() invocation, so it will resolve only when all the promises in the chain have
been resolved.

Now, we can finally convert the spider() function:

export function spider (url, nesting) {
 const filename = urlToFilename(url)
 return fsPromises.readFile(filename, 'utf8')
 .catch((err) => {
 if (err.code !== 'ENOENT') {
 throw err
 }

 // The file doesn't exist, so let's download it
 return download(url, filename)
 })
 .then(content => spiderLinks(url, content, nesting))
}

In this new spider() function, we are using catch() to handle any error produced by
readFile(). In particular, if the error has code 'ENOENT', it means that the file doesn't
exist yet and therefore we need to download the corresponding URL. The Promise
returned from download(), if fulfilled, will return the content at the URL. On the
other hand, if the Promise produced by readFile() fulfills, it will skip the catch()
handler and go straight to the next then(). In both cases, the onFulfilled handler
of the last then() call will always receive the content of the webpage, either coming
from the local file or from a fresh download.

Now that we have converted our spider() function as well, we can finally modify
the spider-cli.js module:

spider(url, nesting)
 .then(() => console.log('Download complete'))
 .catch(err => console.error(err))

Pattern (sequential iteration with promises)

Dynamically build a chain of promises using a loop.

Asynchronous Control Flow Patterns with Promises and Async/Await

[136]

The catch() handler here will intercept any error originating from the
entire spider() process.

If we look again at all the code we have written so far, we will be pleasantly
surprised by the fact that we haven't included any error propagation logic (as we
would be forced to do when using callbacks). This is clearly an enormous advantage,
as it greatly reduces the boilerplate in our code and the chances of missing any
asynchronous errors.

This completes the implementation of version 2 of our web spider application
with promises.

Parallel execution
Another execution flow that becomes trivial with promises is the parallel
execution flow. In fact, all that we need to do is use the built-in Promise.all()
method. This helper function creates another Promise that fulfills only when all the
promises received as input are fulfilled. If there is no causal relationship between
those promises (for example, they are not part of the same chain of promises), then
they will be executed in parallel.

To demonstrate this, let's consider version 3 of our web spider application, which
downloads all the links of a page in parallel. Let's just update the spiderLinks()
function again to implement a parallel execution flow using promises:

function spiderLinks (currentUrl, content, nesting) {
 if (nesting === 0) {
 return Promise.resolve()
 }

An alternative of the sequential iteration pattern with promises
makes use of the reduce() function, for an even more compact
implementation:

const promise = tasks.reduce((prev, task) => {
 return prev.then(() => {
 return task()
 })
}, Promise.resolve())

Chapter 5

[137]

 const links = getPageLinks(currentUrl, content)
 const promises = links.map(link => spider(link, nesting - 1))

 return Promise.all(promises)
}

The pattern here consists in starting the spider() tasks all at once in the links.map()
loop. At the same time, each Promise returned by invoking spider() is collected
in the final promises array. The critical difference in this loop—as compared to the
sequential iteration loop—is that we are not waiting for the previous spider() task
in the list to complete before starting a new one. All the spider() tasks are started in
the loop at once, in the same event loop cycle.

Once we have all the promises, we pass them to the Promise.all() method, which
returns a new Promise that will be fulfilled when all the promises in the array are
fulfilled. In other words, it fulfills when all the download tasks have completed.
In addition to that, the Promise returned by Promise.all() will reject immediately
if any of the promises in the input array reject. This is exactly what we wanted for
this version of our web spider.

Limited parallel execution
So far, promises have not disappointed our expectations. We were able to greatly
improve our code for both serial and parallel execution. Now, with limited parallel
execution, things should not be that different, considering that this flow is just a
combination of serial and parallel execution.

In this section, we will go straight to implementing a solution that allows us to
globally limit the concurrency of our web spider tasks. In other words, we are going
to implement our solution in a class that we can use to instantiate objects that we can
pass around to different functions of the same application. If you are just interested
in a simple solution to locally limit the parallel execution of a set of tasks, you can
still apply the same principles that we will see in this section to implement a special
asynchronous version of Array.map(). We leave this to you as an exercise; you can
find more details and hints at the end of this chapter.

For a ready-to-use, production-ready implementation of a
map() function supporting promises and limited concurrency,
you can rely on the p-map package. Find out more at
nodejsdp.link/p-map.

http://nodejsdp.link/p-map

Asynchronous Control Flow Patterns with Promises and Async/Await

[138]

Implementing the TaskQueue class with promises
To globally limit the concurrency of our spider download tasks, we are going to
reuse the TaskQueue class we implemented in the previous chapter. Let's start with
the next() method, where we trigger the execution of a set of tasks until we reach
the concurrency limit:

next () {
 while (this.running < this.concurrency && this.queue.length) {
 const task = this.queue.shift()
 task().finally(() => {
 this.running--
 this.next()
 })
 this.running++
 }
}

The core change in the next() method is where we invoke task(). In fact, now we
expect that task() returns a Promise, so all we have to do is invoke finally() on
that Promise so we can reset the count of running tasks if it either fulfills or rejects.

Now, we implement a new method called runTask(). This method is responsible
for queueing a special wrapper function and also for returning a newly built Promise.
Such a Promise will essentially forward the result (fulfillment or rejection) of the
Promise eventually returned by task(). Let's see what this method looks like:

runTask (task) {
 return new Promise((resolve, reject) => { // (1)
 this.queue.push(() => { // (2)
 return task().then(resolve, reject) // (4)
 })
 process.nextTick(this.next.bind(this)) // (3)
 })
}

In the method we have just seen:

1. We create a new Promise using its constructor.
2. We add a special wrapper function to the tasks queue. This function

is going to be executed at a later next() run, when there are enough
concurrency slots left.

Chapter 5

[139]

3. We invoke next() to trigger a new set of tasks to be run. We defer this to a
subsequent run of the event loop to guarantee that task is always invoked
asynchronously with respect to when runTask() is invoked. This prevents the
problems we described in Chapter 3, Callbacks and Events (for example, Zalgo).
In fact, we can notice that in the next() method there is another invocation of
next() itself, in the finally() handler, that is always asynchronous.

4. When the wrapper function we queued is finally run, we execute the task we
have received as the input, and we forward its results—fulfilment value or
rejection reason—to the outer Promise, the one we return from the runTask()
method.

With this, we have completed the implementation of our new TaskQueue class using
promises. Next, we'll use this new version of the TaskQueue class to implement
version 4 of our web spider.

Updating the web spider
Now it's time to adapt our web spider to implement a limited parallel execution flow
using the TaskQueue class we have just created.

First, we need to split the spider() function into two functions, one simply
initializing a new TaskQueue object and another actually executing the spidering
task, which we will call spiderTask(). Then, we need to update the spiderLinks()
function to invoke the newly created spiderTask() function and forward the task
queue instance received as an input. Let's see what all this looks like:

function spiderLinks (currentUrl, content, nesting, queue) {
 if (nesting === 0) {
 return Promise.resolve()
 }

 const links = getPageLinks(currentUrl, content)
 const promises = links
 .map(link => spiderTask(link, nesting - 1, queue))

 return Promise.all(promises) // (2)
}

const spidering = new Set()
function spiderTask (url, nesting, queue) {
 if (spidering.has(url)) {
 return Promise.resolve()
 }

Asynchronous Control Flow Patterns with Promises and Async/Await

[140]

 spidering.add(url)

 const filename = urlToFilename(url)

 return queue
 .runTask(() => { // (1)
 return fsPromises.readFile(filename, 'utf8')
 .catch((err) => {
 if (err.code !== 'ENOENT') {
 throw err
 }

 // The file doesn't exists, so let's download it
 return download(url, filename)
 })
 })
 .then(content => spiderLinks(url, content, nesting, queue))
}

export function spider (url, nesting, concurrency) {
 const queue = new TaskQueue(concurrency)
 return spiderTask(url, nesting, queue)
}

The crucial instruction in the code we have just seen is where we invoke queue.
runTask() (1). Here, the task that we are queuing (and therefore limiting) comprises
just the retrieval of the contents of the URL from either the local filesystem or
the remote URL location. Only after this task has been run by the queue can
we continue to spider the links of the webpage. Note that we are intentionally
keeping spiderLinks() outside of the task that we want to limit. This is because
spiderLinks() can trigger more spiderTasks() and that would create a deadlock if
the depth of the spidering process is higher than the concurrency limit of the queue.

We can also notice how in spiderLinks() we simply continue to use Promise.
all() (2) to download all the links of a webpage in parallel. This is because it's the
responsibility of our queue to limit the concurrency of the tasks.

In production code, you can use the package p-limit (available
at nodejsdp.link/p-limit) to limit the concurrency of a set of
tasks. The package essentially implements the pattern we have just
shown but wrapped in a slightly different API.

http://nodejsdp.link/p-limit

Chapter 5

[141]

This concludes our exploration of JavaScript promises. Next, we are going to learn
about the async/await pair, which will completely revolutionize the way we deal
with asynchronous code.

Async/await
As we have just seen, promises are a quantum leap ahead of callbacks. They allow
us to write clean and readable asynchronous code and provide a set of safeguards
that can only be achieved with boilerplate code when working with callback-based
asynchronous code. However, promises are still suboptimal when it comes to writing
sequential asynchronous code. The Promise chain is indeed much better than having
callback hell, but still, we have to invoke a then() and create a new function for each
task in the chain. This is still too much for a control flow that is definitely the most
commonly used in everyday programming. JavaScript needed a proper way to deal
with the ubiquitous asynchronous sequential execution flow, and the answer arrived
with the introduction in the ECMAScript standard of async functions and the await
expression (async/await for short).

The async/await dichotomy allows us to write functions that appear to block at
each asynchronous operation, waiting for the results before continuing with the
following statement. As we will see, any asynchronous code using async/await has
a readability comparable to traditional synchronous code.

Today, async/await is the recommended construct for dealing with asynchronous
code in both Node.js and JavaScript. However, async/await does not replace all that
we have learned so far about asynchronous control flow patterns; on the contrary, as
we will see, async/await piggybacks heavily onto promises.

Async functions and the await expression
An async function is a special type of function in which it's possible to use the
await expression to "pause" the execution on a given Promise until it resolves.
Let's consider a simple example and use the delay() function we implemented in
the Creating a promise subsection. The Promise returned by delay() resolves with
the current date as the value after the given number of milliseconds. Let's use this
function with the async/await pair:

async function playingWithDelays () {
 console.log('Delaying...', new Date())

 const dateAfterOneSecond = await delay(1000)
 console.log(dateAfterOneSecond)

Asynchronous Control Flow Patterns with Promises and Async/Await

[142]

 const dateAfterThreeSeconds = await delay(3000)
 console.log(dateAfterThreeSeconds)

 return 'done'
}

As we can see from the previous function, async/await seems to work like magic.
The code doesn't even look like it contains any asynchronous operation. However,
don't be mistaken; this function does not run synchronously (they are called async
functions for a reason!). At each await expression, the execution of the function
is put on hold, its state saved, and the control returned to the event loop. Once
the Promise that has been awaited resolves, the control is given back to the async
function, returning the fulfilment value of the Promise.

Let's now see how we can invoke our new async function:

playingWithDelays()
 .then(result => {
 console.log(`After 4 seconds: ${result}`)
 })

From the preceding code, it's clear that async functions can be invoked just like
any other function. However, the most observant of you may have already spotted
another important property of async functions: they always return a Promise. It's
like if the return value of an async function was passed to Promise.resolve() and
then returned to the caller.

From this first encounter with async/await, we can see how dominant promises
still are in our discussion. In fact, we can consider async/await just a syntactic
sugar for a simpler consumption of promises. As we will see, all the asynchronous
control flow patterns with async/await use promises and their API for most of the
heavy-lifting operations.

The await expression works with any value, not just promises. If a
value other than a Promise is provided, then its behavior is similar
to awaiting a value that it first passed to Promise.resolve().

Invoking an async function is instantaneous, like any other
asynchronous operation. In other words, async functions return
a Promise synchronously. That Promise will then eventually
settle based on the result or error produced by the function.

Chapter 5

[143]

Error handling with async/await
Async/await doesn't just improve the readability of asynchronous code under
standard conditions, but it also helps when handling errors. In fact, one of the
biggest gains of async/await is the ability to normalize the behavior of the try...
catch block, to make it work seamlessly with both synchronous throws and
asynchronous Promise rejections. Let's demonstrate that with an example.

A unified try...catch experience
Let's define a function that returns a Promise that rejects with an error after a given
number of milliseconds. This is very similar to the delay() function that we already
know very well:

function delayError (milliseconds) {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 reject(new Error(`Error after ${milliseconds}ms`))
 }, milliseconds)
 })
}

Next, let's implement an async function that can throw an error synchronously
or await a Promise that will reject. This function demonstrates how both the
synchronous throw and the Promise rejection are caught by the same catch block:

async function playingWithErrors (throwSyncError) {
 try {
 if (throwSyncError) {
 throw new Error('This is a synchronous error')
 }
 await delayError(1000)
 } catch (err) {
 console.error(`We have an error: ${err.message}`)
 } finally {
 console.log('Done')
 }
}

Now, invoking the function like this:

playingWithErrors(true)

Asynchronous Control Flow Patterns with Promises and Async/Await

[144]

Will print to the console the following:

We have an error: This is a synchronous error
Done

While invoking the function with false as the input, like this:

playingWithErrors(false)

Will produce the following output:

We have an error: Error after 1000ms
Done

If we remember how we had to deal with errors in Chapter 4, Asynchronous Control
Flow Patterns with Callbacks, we will surely appreciate the giant improvements
introduced by both promises and async/await. Now, error handling is just as it
should be: simple, readable, and most importantly, supporting both synchronous
and asynchronous errors.

The "return" versus "return await" trap
One common antipattern when dealing with errors with async/await is returning
a Promise that rejects to the caller and expecting the error to be caught by the local
try...catch block of the function that is returning the Promise.

For example, consider the following code:

async function errorNotCaught () {
 try {
 return delayError(1000)
 } catch (err) {
 console.error('Error caught by the async function: ' +
 err.message)
 }
}

errorNotCaught()
 .catch(err => console.error('Error caught by the caller: ' +
 err.message))

Chapter 5

[145]

The Promise returned by delayError() is not awaited locally, which means that it's
returned as it is to the caller. As a consequence, the local catch block will never be
invoked. In fact, the previous code will output:

Error caught by the caller: Error after 1000ms

If our intention is catching locally any error generated by the asynchronous
operation that produces the value that we want to return to the caller, then we have
to use the await expression on that Promise before we return the value to the caller.
The following code demonstrates this:

async function errorCaught () {
 try {
 return await delayError(1000)
 } catch (err) {
 console.error('Error caught by the async function: ' +
 err.message) }
}

errorCaught()
 .catch(err => console.error('Error caught by the caller: ' +
 err.message))

All we did was add an await after the return keyword. This is enough to cause
the async function to "deal" with the Promise locally and therefore also catch any
rejection locally. As a confirmation, when we run the previous code, we should see
the following output:

Error caught by the async function: Error after 1000ms

Sequential execution and iteration
Our exploration of control flow patterns with async/await starts with sequential
execution and iteration. We already mentioned a few times that the core strength of
async/await lies in its ability to make asynchronous serial execution easy to write
and straightforward to read. This was already apparent in all the code samples we
have written so far; however, it will become even more obvious now that we will
start converting our web spider version 2. Async/await is so simple to use and
understand that there are really no patterns here to study. We will get straight to
the code, without any preamble.

Asynchronous Control Flow Patterns with Promises and Async/Await

[146]

So, let's start with the download() function of our web spider; this is how it looks
with async/await:

async function download (url, filename) {
 console.log(`Downloading ${url}`)
 const { text: content } = await superagent.get(url)
 await mkdirpPromises(dirname(filename))
 await fsPromises.writeFile(filename, content)
 console.log(`Downloaded and saved: ${url}`)
 return content
}

Let's appreciate for a moment how simple and compact the download() function
has become. Let's just consider that the same functionality was implemented with
callbacks in two different functions using a total of 19 lines of code. Now we just
have seven. Plus, the code is now completely flat, with no nesting at all. This tells us
a lot about the enormous positive impact that async/await has on our code.

Now, let's see how we can iterate asynchronously over an array using async/await.
This is exemplified in the spiderLinks() function:

async function spiderLinks (currentUrl, content, nesting) {
 if (nesting === 0) {
 return
 }
 const links = getPageLinks(currentUrl, content)
 for (const link of links) {
 await spider(link, nesting - 1)
 }
}

Even here there is no pattern to learn. We just have a simple iteration over a list of
links and for each item, we await on the Promise returned by spider().

The next code fragment shows the spider() function implemented using async/
await. The aspect to notice here is how errors are easily dealt with using just a try...
catch statement, making everything easier to read:

export async function spider (url, nesting) {
 const filename = urlToFilename(url)
 let content
 try {
 content = await fsPromises.readFile(filename, 'utf8')
 } catch (err) {

Chapter 5

[147]

 if (err.code !== 'ENOENT') {
 throw err
 }

 content = await download(url, filename)
 }

 return spiderLinks(url, content, nesting)
}

And with the spider() function, we have completed the conversion of our web
spider application to async/await. As you can see, it has been quite a smooth process
but the results are quite impressive.

Antipattern – using async/await with Array.forEach
for serial execution
It's worth mentioning that there is a common antipattern whereby developers will
try to use Array.forEach() or Array.map() to implement a sequential asynchronous
iteration with async/await, which, of course, won't work as expected.

To see why, let's take a look at the following alternate implementation (which is
wrong!) of the asynchronous iteration in the spiderLinks() function:

links.forEach(async function iteration(link) {
 await spider(link, nesting - 1)
})

In the previous code, the iteration function is invoked once for each element of
the links array. Then, in the iteration function, we use the await expression on
the Promise returned by spider(). However, the Promise returned by the iteration
function is just ignored by forEach(). The result is that all the spider() functions
are invoked in the same round of the event loop, which means they are started in
parallel, and the execution continues immediately after invoking forEach(), without
waiting for all the spider() operations to complete.

Parallel execution
There are mainly two ways to run a set of tasks in parallel using async/await; one
purely uses the await expression and the other relies on Promise.all(). They are
both very simple to implement; however, be advised that the method relying on
Promise.all() is the recommended (and optimal) one to use.

Asynchronous Control Flow Patterns with Promises and Async/Await

[148]

Let's see an example of both. Let's consider the spiderLinks() function of our web
spider. If we wanted to purely use the await expression to implement an unlimited
parallel asynchronous execution flow, we would do it with some code like the
following:

async function spiderLinks (currentUrl, content, nesting) {
 if (nesting === 0) {
 return
 }
 const links = getPageLinks(currentUrl, content)
 const promises = links.map(link => spider(link, nesting - 1))
 for (const promise of promises) {
 await promise
 }
}

That's it—very simple. In the previous code, we first start all the spider() tasks in
parallel, collecting their promises with a map(). Then, we loop, and we await on each
one of those promises.

At first, it seems neat and functional; however, it has a small undesired effect. If a
Promise in the array rejects, we have to wait for all the preceding promises in the
array to resolve before the Promise returned by spiderLinks() will also reject. This is
not optimal in most situations, as we usually want to know if an operation has failed
as soon as possible. Luckily, we already have a built-in function that behaves exactly
the way we want, and that's Promise.all(). In fact, Promise.all() will reject as soon
as any of the promises provided in the input array reject. Therefore, we can simply
rely on this method even for all our async/await code. And, since Promise.all()
returns just another Promise, we can simply invoke an await on it to get the results
from multiple asynchronous operations. The following code shows an example:

const results = await Promise.all(promises)

So, to wrap up, our recommended implementation of the spiderLinks() function
with parallel execution and async/await will look almost identical to that using
promises. The only visible difference is the fact that we are now using an async
function, which always returns a Promise:

async function spiderLinks (currentUrl, content, nesting) {
 if (nesting === 0) {
 return
 }

 const links = getPageLinks(currentUrl, content)

Chapter 5

[149]

 const promises = links.map(link => spider(link, nesting - 1))

 return Promise.all(promises)
}

What we just learned about parallel execution and async/await simply reiterates the
fact that async/await is inseparable from promises. Most of the utilities that work
with promises will also seamlessly work with async/await and we should never
hesitate to take advantage of them in our async functions.

Limited parallel execution
To implement a limited parallel execution pattern with async/await, we can simply
reuse the TaskQueue class that we created in the Limited parallel execution subsection
within the Promises section. We can either use it as it is or convert its internals to
async/await. Converting the TaskQueue class to async/await is a trivial operation
and we'll leave this to you as an exercise. Either way, the TaskQueue external interface
shouldn't change; both implementations will have a runTask() method that returns a
Promise that settles when the task has been run by the queue.

Starting from this assumption, converting the web spider v4 from promises to
async/await is also a trivial task and we won't show all the steps here as we
wouldn't be learning anything new. Instead, what we'll do in this section is examine
a third variation of the TaskQueue class that uses async/await and a producer-
consumer approach.

The general idea to apply this approach to our problem goes as follows:

• On one side, we have an unknown set of producers adding tasks into a queue.
• On the other side, we have a predefined set of consumers, responsible for

extracting and executing the tasks from the queue, one at a time.

The following diagram should help us understand the setup:

Figure 5.2: Using the Producer-Consumer pattern to implement limited parallel execution

Asynchronous Control Flow Patterns with Promises and Async/Await

[150]

The number of consumers will determine the concurrency with which the tasks will
be executed. The challenge here is to put the consumers to "sleep" when the queue
is empty and "wake them up" again when there are new tasks to run. But we are
lucky, since Node.js is single-threaded, so putting a task to "sleep" just means giving
back control to the event loop, while "resuming" a task is equivalent to invoking
a callback.

With this in mind, let's then take a look at some code. We will create a new class
called TaskQueuePC with a public interface similar to one of the TaskQueue classes we
implemented previously in this chapter. Taking a top-down approach, let's see how
we can implement the constructor:

export class TaskQueuePC {
 constructor (concurrency) {
 this.taskQueue = []
 this.consumerQueue = []

 // spawn consumers
 for (let i = 0; i < concurrency; i++) {
 this.consumer()
 }
 }

 // ...

First of all, we can notice that we now have two queues, one to hold our tasks
(taskQueue) and the other to store our sleeping consumers (consumerQueue). It
will be clearer in a while how these queues will be used. In the second part of our
constructor, we spawn as many consumers as the concurrency we want to attain.
Let's see what a consumer looks like:

async consumer () {
 while (true) { // (1)
 try {
 const task = await this.getNextTask() // (2)
 await task() // (3)
 } catch (err) {
 console.error(err) // (4)
 }
 }
}

Chapter 5

[151]

Our consumer is an infinite while loop (1). At each iteration, we try to retrieve a
new task from the queue using getNextTask() (2). As we will see, this will cause
the current consumer to sleep if the queue is empty. When a new task is eventually
available, we just execute it (3). Any error thrown from the above operation should
not cause the consumer to stop, so we simply log it (4) and continue with the next
iteration.

With the next code fragment, we should start to get an idea of what's going on. Let's
take a look at the implementation of getNextTask():

async getNextTask () {
 return new Promise((resolve) => {
 if (this.taskQueue.length !== 0) {
 return resolve(this.taskQueue.shift()) // (1)
 }

 this.consumerQueue.push(resolve) // (2)
 })
}

The getNextTask() method returns a new Promise that resolves with the first task
in the queue if the queue is not empty. The first task is removed from taskQueue
and used as an argument to invoke resolve (1). If the queue is instead empty, we
postpone the resolution of the Promise by queuing the resolve callback into the
consumerQueue. This will effectively put the Promise—and the consumer that is
awaiting the Promise—to sleep.

Now comes the "gluing" part of the whole TaskQueuePC class, which corresponds to
the producer side of the algorithm. That's implemented in the runTask() method:

runTask (task) {
 return new Promise((resolve, reject) => {
 const taskWrapper = () => { // (1)
 const taskPromise = task()

By the look of it, it may seem that each consumer in TaskQueuePC
is an actual thread. In fact, our consumer() function has an infinite
loop and it can "pause" until awakened by some other "thread."
In reality, we should not forget that each consumer is an async
function, which is nothing more than a nice syntax built around
promises and callbacks. The while loop may seem to be spinning
continuously consuming CPU cycles, but under the hood, the loop
is more similar to an asynchronous recursion than a traditional
while loop.

Asynchronous Control Flow Patterns with Promises and Async/Await

[152]

 taskPromise.then(resolve, reject)
 return taskPromise
 }

 if (this.consumerQueue.length !== 0) { // (2)
 const consumer = this.consumerQueue.shift()
 consumer(taskWrapper)
 } else { // (3)
 this.taskQueue.push(taskWrapper)
 }
 })
}

First, we create a taskWrapper function (1) that, when executed, has the responsibility
for running the input task and forwarding the status of the Promise returned by
task() to the outer Promise returned by runTask(). Next, if the consumerQueue is not
empty (2), it means that there is at least one consumer that is asleep, waiting for new
tasks to run. We then extract the first consumer from the queue (remember, that's
essentially the resolve callback of the Promise returned by getNextTask()) and we
invoke it immediately by passing our taskWrapper. If, instead, all the consumers are
already busy (3), we push taskWrapper into the taskQueue.

This concludes the implementation of our TaskQueuePC class. The public interface of
the TaskQueuePC class is identical to that of the TaskQueue class that we implemented
in the Promises section, so migrating the code of our web spider to the new algorithm
will be a trivial task.

This also concludes our exploration of the async/await construct. But, before we
wrap up the chapter, we'll dive into a subtle problem affecting promises.

The problem with infinite recursive
promise resolution chains
At this point in the chapter, you should have a strong understanding of how
promises work and how to use them to implement the most common control flow
constructs. This is therefore the right time to discuss an advanced topic that every
professional Node.js developer should know and understand. This advanced topic
is about a memory leak caused by infinite Promise resolution chains. The bug seems
to affect the actual Promises/A+ specification, so no compliant implementation
is immune.

Chapter 5

[153]

It is quite common in programming to have tasks that don't have a predefined
ending or take as an input a potentially infinite array of data. We can include in
this category things like the encoding/decoding of live audio/video streams, the
processing of live cryptocurrency market data, and the monitoring of IoT sensors.
But we can have much more trivial situations than those, for example, when making
heavy use of functional programming.

To take a simple example, let's consider the following code, which defines a simple
infinite operation using promises:

function leakingLoop () {
 return delay(1)
 .then(() => {
 console.log(`Tick ${Date.now()}`)
 return leakingLoop()
 })
}

The leakingLoop() function that we just defined uses the delay() function (which
we created at the beginning of this chapter) to simulate an asynchronous operation.
When the given number of milliseconds has elapsed, we print the current timestamp
and we invoke leakingLoop() recursively to start the operation over again. The
interesting part is that the Promise returned by leakingLoop() never resolves
because its status depends on the next invocation of leakingLoop(), which in turn
depends on the next invocation of leakingLoop() and so on. This situation creates
a chain of promises that never settle, and it will cause a memory leak in Promise
implementations that strictly follow the Promises/A+ specification, including
JavaScript ES6 promises.

To demonstrate the leak, we can try running the leakingLoop() function many times
to accentuate the effects of the leak:

for (let i = 0; i < 1e6; i++) {
 leakingLoop()
}

Then we can take a look at the memory footprint of the process using our favorite
process inspector and notice how it grows indefinitely until (after a few minutes) the
process crashes entirely.

The solution to the problem is to break the chain of Promise resolution. We can do
that by making sure that the status of the Promise returned by leakingLoop() does
not depend on the promise returned by the next invocation of leakingLoop().

Asynchronous Control Flow Patterns with Promises and Async/Await

[154]

We can ensure that by simply removing a return instruction:

function nonLeakingLoop () {
 delay(1)
 .then(() => {
 console.log(`Tick ${Date.now()}`)
 nonLeakingLoop()
 })
}

Now, if we use this new function in our sample program, we should see that the
memory footprint of the process will go up and down, following the schedule of the
various runs of the garbage collector, which means that there is no memory leak.

However, the solution we have just proposed radically changes the behavior of the
original leakingLoop() function. In particular, this new function won't propagate
eventual errors produced deeply within the recursion, since there is no link between
the status of the various promises. This inconvenience may be mitigated by adding
some extra logging within the function. But sometimes the new behavior itself may
not be an option. So, a possible solution involves wrapping the recursive function
with a Promise constructor, such as in the following code sample:

function nonLeakingLoopWithErrors () {
 return new Promise((resolve, reject) => {
 (function internalLoop () {
 delay(1)
 .then(() => {
 console.log(`Tick ${Date.now()}`)
 internalLoop()
 })
 .catch(err => {
 reject(err)
 })
 })()
 })
}

In this case, we still don't have any link between the promises created at
the various stages of the recursion; however, the Promise returned by the
nonLeakingLoopWithErrors() function will still reject if any asynchronous
operation fails, no matter at what depth in the recursion that happens.

Chapter 5

[155]

A third solution makes use of async/await. In fact, with async/await we can simulate
a recursive Promise chain with a simple infinite while loop, such as the following:

async function nonLeakingLoopAsync () {
 while (true) {
 await delay(1)
 console.log(`Tick ${Date.now()}`)
 }
}

In this function too, we preserve the behavior of the original recursive function,
whereby any error thrown by the asynchronous task (in this case delay()) is
propagated to the original function caller.

We should note that we would still have a memory leak if instead of a while loop, we
chose to implement the async/await solution with an actual asynchronous recursive
step, such as the following:

async function leakingLoopAsync () {
 await delay(1)
 console.log(`Tick ${Date.now()}`)
 return leakingLoopAsync()
}

The code above would still create an infinite chain of promises that never resolve and
therefore it's still affected by the same memory leak issue of the equivalent promise-
based implementation.

So, the next time you are building an infinite promise chain, remember to double-
check if there are the conditions for creating a memory leak, as you learned in this
section. If that's the case, you can apply one of the proposed solutions, making sure
to choose the one that is best suited to your context.

If you are interested in knowing more about the memory leak
discussed in this section, you can check the related Node.js issue at
nodejsdp.link/node-6673 or the related issue on the Promises/
A+ GitHub repository at nodejsdp.link/promisesaplus-
memleak.

http://nodejsdp.link/node-6673
http://nodejsdp.link/promisesaplus-memleak
http://nodejsdp.link/promisesaplus-memleak

Asynchronous Control Flow Patterns with Promises and Async/Await

[156]

Summary
In this chapter, we've learned how to use promises and async/await syntax to write
asynchronous code that is more concise, cleaner, and easier to read.

As we've seen, promises and async/await greatly simplify the serial execution flow,
which is the most commonly used control flow. In fact, with async/await, writing a
sequence of asynchronous operations is almost as easy as writing synchronous code.
Running some asynchronous operations in parallel is also very easy thanks to the
Promise.all() utility.

But the advantages of using promises and async/await don't stop here. We've
learned that they provide a transparent shield against tricky situations such as code
with mixed synchronous/asynchronous behavior (a.k.a. Zalgo, which we discussed
in Chapter 3, Callbacks and Events). On top of that, error management with promises
and async/await is much more intuitive and leaves less room for mistakes (such
as forgetting to forward errors, which is a serious source of bugs in code using
callbacks).

In terms of patterns and techniques, we should definitely keep in mind the chain
of promises (to run tasks in series), promisification, and the Producer-Consumer
pattern. Also, pay attention when using Array.forEach() with async/await (you are
probably doing it wrong) and keep in mind the difference between a simple return
and return await in async functions.

Callbacks are still widely used in the Node.js and JavaScript world. We find them in
legacy APIs, in code that interacts with native libraries, or when there is the need to
micro-optimize particular routines. That's why they are still relevant to us, Node.js
developers; however, for most of our day-to-day programming tasks, promises and
async/await are a huge step ahead compared to callbacks and therefore they are now
the de facto standard for dealing with asynchronous code in Node.js. That's why we
will be using promises and async/await throughout the rest of the book too to write
our asynchronous code.

In the next chapter, we will explore another fascinating topic relative to
asynchronous code execution, which is also another fundamental building
block in the whole Node.js ecosystem, that is, streams.

Chapter 5

[157]

Exercises
• 5.1 Dissecting Promise.all(): Implement your own version of Promise.

all() leveraging promises, async/await, or a combination of the two.
The function must be functionally equivalent to its original counterpart.

• 5.2 TaskQueue with promises: Migrate the TaskQueue class internals from
promises to async/await where possible. Hint: you won't be able to use
async/await everywhere.

• 5.3 Producer-consumer with promises: Update the TaskQueuePC class
internal methods so that they use just promises, removing any use of the
async/await syntax. Hint: the infinite loop must become an asynchronous
recursion. Beware of the recursive Promise resolution memory leak!

• 5.4 An asynchronous map(): Implement a parallel asynchronous version
of Array.map() that supports promises and a concurrency limit. The
function should not directly leverage the TaskQueue or TaskQueuePC
classes we presented in this chapter, but it can use the underlying patterns.
The function, which we will define as mapAsync(iterable, callback,
concurrency), will accept the following as inputs:

• An iterable, such as an array.
• A callback, which will receive as the input each item of the iterable

(exactly like in the original Array.map()) and can return either
a Promise or a simple value.

• A concurrency, which defines how many items in the iterable can
be processed by callback in parallel at each given time.

[159]

6
Coding with Streams

Streams are one of the most important components and patterns of Node.js. There
is a motto in the community that goes, "stream all the things!", and this alone should
be enough to describe the role of streams in Node.js. Dominic Tarr, a top contributor
to the Node.js community, defines streams as "Node's best and most misunderstood
idea." There are different reasons that make Node.js streams so attractive; again, it's
not just related to technical properties, such as performance or efficiency, but it's
more about their elegance and the way they fit perfectly into the Node.js philosophy.

This chapter aims to provide a complete understanding of Node.js streams. The first
half of this chapter serves as an introduction to the main ideas, the terminology,
and the libraries behind Node.js streams. In the second half, we will cover more
advanced topics and, most importantly, we will explore useful streaming patterns
that can make your code more elegant and effective in many circumstances.

In this chapter, you will learn about the following topics:

• Why streams are so important in Node.js
• Understanding, using, and creating streams
• Streams as a programming paradigm: leveraging their power in many

different contexts and not just for I/O
• Streaming patterns and connecting streams together in different

configurations

Without further ado, let's discover together why streams are one of the cornerstones
of Node.js.

Coding with Streams

[160]

Discovering the importance of streams
In an event-based platform such as Node.js, the most efficient way to handle I/O is
in real time, consuming the input as soon as it is available and sending the output as
soon as the application produces it.

In this section, we will give you an initial introduction to Node.js streams and their
strengths. Please bear in mind that this is only an overview, as a more detailed
analysis on how to use and compose streams will follow later in this chapter.

Buffering versus streaming
Almost all the asynchronous APIs that we've seen so far in this book work using
buffer mode. For an input operation, buffer mode causes all the data coming from
a resource to be collected into a buffer until the operation is completed; it is then
passed back to the caller as one single blob of data. The following diagram shows a
visual example of this paradigm:

Figure 6.1: Buffering

Chapter 6

[161]

In Figure 6.1, we can see that, at time t1, some data is received from the resource and
saved into the buffer. At time t2, another data chunk is received—the final one—
which completes the read operation, so that, at t3, the entire buffer is sent to the
consumer.

On the other side, streams allow us to process the data as soon as it arrives from the
resource. This is shown in the following diagram:

Figure 6.2: Streaming

This time, Figure 6.2 shows you that as soon as each new chunk of data is received
from the resource, it is immediately passed to the consumer, who now has the
chance to process it straight away, without waiting for all the data to be collected
in the buffer.

But what are the differences between these two approaches? Purely from an
efficiency perspective, streams can be more efficient in terms of both space (memory
usage) and time (computation clock time). However, Node.js streams have another
important advantage: composability. Let's now see what impact these properties
have on the way we design and write our applications.

Spatial efficiency
First of all, streams allow us to do things that would not be possible by buffering
data and processing it all at once. For example, consider the case in which we have
to read a very big file, let's say, in the order of hundreds of megabytes or even
gigabytes. Clearly, using an API that returns a big buffer when the file is completely
read is not a good idea. Imagine reading a few of these big files concurrently; our
application would easily run out of memory. Besides that, buffers in V8 are limited
in size. You cannot allocate more than a few gigabytes of data, so we may hit a wall
way before running out of physical memory.

Coding with Streams

[162]

Gzipping using a buffered API
To make a concrete example, let's consider a simple command-line application that
compresses a file using the GZIP format. Using a buffered API, such an application
will look like the following in Node.js (error handling is omitted for brevity):

import { promises as fs } from 'fs'
import { gzip } from 'zlib'
import { promisify } from 'util'
const gzipPromise = promisify(gzip)

const filename = process.argv[2]

async function main () {
 const data = await fs.readFile(filename)
 const gzippedData = await gzipPromise(data)
 await fs.writeFile(`${filename}.gz`, gzippedData)
 console.log('File successfully compressed')
}

main()

Now, we can try to put the preceding code in a file named gzip-buffer.js and then
run it with the following command:

node gzip-buffer.js <path to file>

If we choose a file that is big enough (for instance, about 8 GB), we will most likely
receive an error message saying that the file that we are trying to read is bigger than
the maximum allowed buffer size:

RangeError [ERR_FS_FILE_TOO_LARGE]: File size (8130792448) is greater
than possible Buffer: 2147483647 bytes

That's exactly what we expected, and it's a symptom of the fact that we are using the
wrong approach.

The actual maximum size of a buffer changes across platforms and
versions of Node.js. If you are curious to find out what's the limit
in bytes in a given platform, you can run this code:

import buffer from 'buffer'
console.log(buffer.constansts.MAX_LENGTH)

Chapter 6

[163]

Gzipping using streams
The simplest way we have to fix our Gzip application and make it work with big
files is to use a streaming API. Let's see how this can be achieved. Let's write a new
module with the following code:

// gzip-stream.js
import { createReadStream, createWriteStream } from 'fs'
import { createGzip } from 'zlib'

const filename = process.argv[2]

createReadStream(filename)
 .pipe(createGzip())
 .pipe(createWriteStream(`${filename}.gz`))
 .on('finish', () => console.log('File successfully compressed'))

"Is that it?" you may ask. Yes! As we said, streams are amazing because of their
interface and composability, thus allowing clean, elegant, and concise code. We will
see this in a while in more detail, but for now, the important thing to realize is that
the program will run smoothly against files of any size and with constant memory
utilization. Try it yourself (but consider that compressing a big file may take a while).

Time efficiency
Let's now consider the case of an application that compresses a file and uploads it to
a remote HTTP server, which, in turn, decompresses it and saves it on the filesystem.
If the client component of our application was implemented using a buffered API,
the upload would start only when the entire file had been read and compressed.
On the other hand, the decompression would start on the server only when all the
data had been received. A better solution to achieve the same result involves the
use of streams. On the client machine, streams allow us to compress and send the
data chunks as soon as they are read from the filesystem, whereas on the server,
they allow us to decompress every chunk as soon as it is received from the remote
peer. Let's demonstrate this by building the application that we mentioned earlier,
starting from the server side.

Note that, in the previous example, we omitted error handling
for brevity. We will discuss the nuances of proper error handling
with streams later in this chapter. Until then, be aware that most
examples will be lacking proper error handling.

Coding with Streams

[164]

Let's create a module named gzip-receive.js containing the following code:

import { createServer } from 'http'
import { createWriteStream } from 'fs'
import { createGunzip } from 'zlib'
import { basename, join } from 'path'

const server = createServer((req, res) => {
 const filename = basename(req.headers['x-filename'])
 const destFilename = join('received_files', filename)
 console.log(`File request received: ${filename}`)
 req
 .pipe(createGunzip())
 .pipe(createWriteStream(destFilename))
 .on('finish', () => {
 res.writeHead(201, { 'Content-Type': 'text/plain' })
 res.end('OK\n')
 console.log(`File saved: ${destFilename}`)
 })
})

server.listen(3000, () => console.log('Listening on http://
localhost:3000'))

In the preceding example, req is a stream object that is used by the server to receive
the request data in chunks from the network. Thanks to Node.js streams, every
chunk of data is decompressed and saved to disk as soon as it is received.

 You might have noticed that, in our server application, we are
using basename() to remove any possible path from the name of
the received file. This is a security best practice as we want to make
sure that the received file is saved exactly within our received_
files folder. Without basename(), a malicious user could craft
a request that could effectively override system files and inject
malicious code into the server machine. Imagine, for instance, what
happens if filename is set to /usr/bin/node? In such a case, the
attacker could effectively replace our Node.js interpreter with any
arbitrary file.

Chapter 6

[165]

The client side of our application will go into a module named gzip-send.js, and it
looks as follows:

import { request } from 'http'
import { createGzip } from 'zlib'
import { createReadStream } from 'fs'
import { basename } from 'path'

const filename = process.argv[2]
const serverHost = process.argv[3]

const httpRequestOptions = {
 hostname: serverHost,
 port: 3000,
 path: '/',
 method: 'PUT',
 headers: {
 'Content-Type': 'application/octet-stream',
 'Content-Encoding': 'gzip',
 'X-Filename': basename(filename)
 }
}

const req = request(httpRequestOptions, (res) => {
 console.log(`Server response: ${res.statusCode}`)
})

createReadStream(filename)
 .pipe(createGzip())
 .pipe(req)
 .on('finish', () => {
 console.log('File successfully sent')
 })

In the preceding code, we are again using streams to read the data from the file, and
then compressing and sending each chunk as soon as it is read from the filesystem.

Now, to try out the application, let's first start the server using the following
command:

node gzip-receive.js

Coding with Streams

[166]

Then, we can launch the client by specifying the file to send and the address of the
server (for example, localhost):

node gzip-send.js <path to file> localhost

If we choose a file big enough, we can appreciate how the data flows from the client
to the server. But why exactly is this paradigm—where we have flowing data—more
efficient compared to using a buffered API? Figure 6.3 should make this concept
easier to grasp:

Figure 6.3: Buffering and streaming compared

When a file is processed, it goes through a number of sequential stages:

1. [Client] Read from the filesystem
2. [Client] Compress the data
3. [Client] Send it to the server
4. [Server] Receive from the client
5. [Server] Decompress the data
6. [Server] Write the data to disk

To complete the processing, we have to go through each stage like in an assembly
line, in sequence, until the end. In Figure 6.3, we can see that, using a buffered API,
the process is entirely sequential. To compress the data, we first have to wait for the
entire file to be read, then, to send the data, we have to wait for the entire file to be
both read and compressed, and so on.

Chapter 6

[167]

Using streams, the assembly line is kicked off as soon as we receive the first chunk
of data, without waiting for the entire file to be read. But more amazingly, when the
next chunk of data is available, there is no need to wait for the previous set of tasks
to be completed; instead, another assembly line is launched in parallel. This works
perfectly because each task that we execute is asynchronous, so it can be parallelized
by Node.js. The only constraint is that the order in which the chunks arrive in each
stage must be preserved. The internal implementation of Node.js streams takes care
of maintaining the order for us.

As we can see from Figure 6.3, the result of using streams is that the entire process
takes less time, because we waste no time waiting for all the data to be read and
processed all at once.

Composability
The code we have seen so far has already given us an overview of how streams can
be composed thanks to the pipe() method, which allows us to connect the different
processing units, each being responsible for one single functionality, in perfect
Node.js style. This is possible because streams have a uniform interface, and they
can understand each other in terms of API. The only prerequisite is that the next
stream in the pipeline has to support the data type produced by the previous stream,
which can be either binary, text, or even objects, as we will see later in this chapter.

To take a look at another demonstration of the power of this property, we can try
to add an encryption layer to the gzip-send/gzip-receive application that we
built previously.

In order to do this, we will need to apply some small changes to both our client
and server.

Adding client-side encryption
Let's start with the client:

// ...
import { createCipheriv, randomBytes } from 'crypto' // (1)
const filename = process.argv[2]
const serverHost = process.argv[3]
const secret = Buffer.from(process.argv[4], 'hex') // (2)
const iv = randomBytes(16) // (3)
// ...

Coding with Streams

[168]

Let's review what we changed here:

1. First of all, we import the createCipheriv() Transform stream and the
randomBytes() function from the crypto module.

2. We get the server's encryption secret from the command line. We expect the
string to be passed as a hexadecimal string, so we read this value and load it
in memory using a buffer set to hex mode.

3. Finally, we generate a random sequence of bytes that we will be using as an
initialization vector for the file encryption.

Now, we can update the piece of code responsible for creating the HTTP request:

const httpRequestOptions = {
 hostname: serverHost,
 headers: {
 'Content-Type': 'application/octet-stream',
 'Content-Encoding': 'gzip',
 'X-Filename': basename(filename),
 'X-Initialization-Vector': iv.toString('hex') // (1)
 }
}

// ...

const req = request(httpRequestOptions, (res) => {
 console.log(`Server response: ${res.statusCode}`)
})

createReadStream(filename)
 .pipe(createGzip())
 .pipe(createCipheriv('aes192', secret, iv)) // (2)
 .pipe(req)

// ...

The main changes here are:

1. We pass the initialization vector to the server as an HTTP header.
2. We encrypt the data, just after the Gzip phase.

That's all for the client side.

Chapter 6

[169]

Adding server-side decryption
Let's now refactor the server. The first thing that we need to do is import some utility
functions from the core crypto module, which we can use to generate a random
encryption key (the secret):

// ...
import { createDecipheriv, randomBytes } from 'crypto'
const secret = randomBytes(24)
console.log(`Generated secret: ${secret.toString('hex')}`)

The generated secret is printed to the console as a hex string so that we can share that
with our clients.

Now, we need to update the file reception logic:

const server = createServer((req, res) => {
 const filename = basename(req.headers['x-filename'])
 const iv = Buffer.from(
 req.headers['x-initialization-vector'], 'hex') // (1)
 const destFilename = join('received_files', filename)
 console.log(`File request received: ${filename}`)
 req
 .pipe(createDecipheriv('aes192', secret, iv)) // (2)
 .pipe(createGunzip())
 .pipe(createWriteStream(destFilename))
 // ...

Here, we are applying two changes:

1. We have to read the encryption initialization vector (nodejsdp.link/iv) sent
by the client.

2. The first step of our streaming pipeline is now responsible for decrypting
the incoming data using the createDecipheriv Transform stream from the
crypto module.

With very little effort (just a few lines of code), we added an encryption layer to
our application; we simply had to use some already available Transform streams
(createCipheriv and createDecipheriv) and included them in the stream processing
pipelines for the client and the server. In a similar way, we can add and combine
other streams, as if we were playing with Lego bricks.

http://nodejsdp.link/iv

Coding with Streams

[170]

The main advantage of this approach is reusability, but as we can see from the
code so far, streams also enable cleaner and more modular code. For these reasons,
streams are often used not just to deal with pure I/O, but also as a means to simplify
and modularize the code.

Now that we have introduced streams, we are ready to explore, in a more structured
way, the different types of streams available in Node.js.

Getting started with streams
In the previous section, we learned why streams are so powerful, but also that
they are everywhere in Node.js, starting from its core modules. For example, we
have seen that the fs module has createReadStream() for reading from a file and
createWriteStream() for writing to a file, the HTTP request and response objects
are essentially streams, the zlib module allows us to compress and decompress
data using a streaming interface and, finally, even the crypto module exposes some
useful streaming primitives like createCipheriv and createDecipheriv.

Now that we know why streams are so important, let's take a step back and start to
explore them in more detail.

Anatomy of streams
Every stream in Node.js is an implementation of one of the four base abstract classes
available in the stream core module:

• Readable

• Writable

• Duplex

• Transform

Each stream class is also an instance of EventEmitter. Streams, in fact, can produce
several types of event, such as end when a Readable stream has finished reading,
finish when a Writable stream has completed writing, or error when something goes
wrong.

One reason why streams are so flexible is the fact that they can handle not just binary
data, but almost any JavaScript value. In fact, they support two operating modes:

• Binary mode: To stream data in the form of chunks, such as buffers or strings
• Object mode: To stream data as a sequence of discrete objects (allowing us to

use almost any JavaScript value)

Chapter 6

[171]

These two operating modes allow us to use streams not just for I/O, but also as a
tool to elegantly compose processing units in a functional fashion, as we will see
later in this chapter.

Let's start our deep dive of Node.js streams by introducing the class of Readable
streams.

Readable streams
A Readable stream represents a source of data. In Node.js, it's implemented using
the Readable abstract class, which is available in the stream module.

Reading from a stream
There are two approaches to receive the data from a Readable stream: non-flowing
(or paused) and flowing. Let's analyze these modes in more detail.

The non-flowing mode
The non-flowing or paused mode is the default pattern for reading from a Readable
stream. It involves attaching a listener to the stream for the readable event, which
signals the availability of new data to read. Then, in a loop, we read the data
continuously until the internal buffer is emptied. This can be done using the read()
method, which synchronously reads from the internal buffer and returns a Buffer
object representing the chunk of data. The read() method has the following signature:

readable.read([size])

Using this approach, the data is imperatively pulled from the stream on demand.

To show how this works, let's create a new module named read-stdin.js, which
implements a simple program that reads from the standard input (which is also a
Readable stream) and echoes everything back to the standard output:

process.stdin
 .on('readable', () => {
 let chunk
 console.log('New data available')
 while ((chunk = process.stdin.read()) !== null) {
 console.log(
 `Chunk read (${chunk.length} bytes): "${chunk.toString()}"`
)
 }

Coding with Streams

[172]

 })
 .on('end', () => console.log('End of stream'))

The read() method is a synchronous operation that pulls a data chunk from the
internal buffers of the Readable stream. The returned chunk is, by default, a Buffer
object if the stream is working in binary mode.

The data is read solely from within the Readable listener, which is invoked as soon
as new data is available. The read() method returns null when there is no more data
available in the internal buffers; in such a case, we have to wait for another readable
event to be fired, telling us that we can read again, or wait for the end event that
signals the end of the stream. When a stream is working in binary mode, we can also
specify that we are interested in reading a specific amount of data by passing a size
value to the read() method. This is particularly useful when implementing network
protocols or when parsing specific data formats.

Now, we are ready to run the read-stdin.js module and experiment with it.
Let's type some characters into the console and then press Enter to see the data
echoed back into the standard output. To terminate the stream and hence generate
a graceful end event, we need to insert an EOF (end-of-file) character (using Ctrl + Z
on Windows or Ctrl + D on Linux and macOS).

In a Readable stream working in binary mode, we can read strings
instead of buffers by calling setEncoding(encoding) on the
stream, and providing a valid encoding format (for example, utf8).
This approach is recommended when streaming UTF-8 text data
as the stream will properly handle multibyte characters, doing the
necessary buffering to make sure that no character ends up being
split into separate chunks. In other words, every chunk produced
by the stream will be a valid UTF-8 sequence of bytes.

Note that you can call setEncoding() as many times as you want
on a Readable stream, even after you've started consuming the
data from the stream. The encoding will be switched dynamically
on the next available chunk. Streams are inherently binary;
encoding is just a view over the binary data that is emitted by the
stream.

Chapter 6

[173]

Flowing mode
Another way to read from a stream is by attaching a listener to the data event. This
will switch the stream into using flowing mode, where the data is not pulled using
read(), but instead is pushed to the data listener as soon as it arrives. For example,
the read-stdin.js application that we created earlier will look like this using
flowing mode:

process.stdin
 .on('data', (chunk) => {
 console.log('New data available')
 console.log(
 `Chunk read (${chunk.length} bytes): "${chunk.toString()}"`
)
 })
 .on('end', () => console.log('End of stream'))

Flowing mode offers less flexibility to control the flow of data compared to non-
flowing mode. The default operating mode for streams is non-flowing, so to enable
flowing mode, it's necessary to attach a listener to the data event or explicitly invoke
the resume() method. To temporarily stop the stream from emitting data events,
we can invoke the pause() method, causing any incoming data to be cached in the
internal buffer. Calling pause() will switch the stream back to non-flowing mode.

We can also try to connect our program with other processes. This
is possible using the pipe operator (|), which redirects the standard
output of a program to the standard input of another. For example,
we can run a command such as the following:

cat <path to a file> | node read-stdin.js

This is an amazing demonstration of how the streaming paradigm
is a universal interface that enables our programs to communicate,
regardless of the language they are written in.

Coding with Streams

[174]

Async iterators
Readable streams are also async iterators; therefore, we could rewrite our
read-stdin.js example as follows:

async function main () {
 for await (const chunk of process.stdin) {
 console.log('New data available')
 console.log(
 `Chunk read (${chunk.length} bytes): "${chunk.toString()}"`
)
 }
 console.log('End of stream')
}

main()

We will discuss async iterators in greater detail in Chapter 9, Behavioral Design
Patterns, so don't worry too much about the syntax in the preceding example
for now. What's important to know is that if you need to write a function that
consumes an entire Readable stream and returns a Promise, this syntax could
come in very handy.

Implementing Readable streams
Now that we know how to read from a stream, the next step is to learn how to
implement a new custom Readable stream. To do this, it's necessary to create a new
class by inheriting the prototype Readable from the stream module. The concrete
stream must provide an implementation of the _read() method, which has the
following signature:

readable._read(size)

The internals of the Readable class will call the _read() method, which, in turn, will
start to fill the internal buffer using push():

readable.push(chunk)

Please note that read() is a method called by the stream
consumers, while _read() is a method to be implemented
by a stream subclass and should never be called directly. The
underscore usually indicates that the method is not public and
should not be called directly.

Chapter 6

[175]

To demonstrate how to implement new Readable streams, we can try to implement
a stream that generates random strings. Let's create a new module called
random-stream.js that contains the code of our random string generator:

import { Readable } from 'stream'
import Chance from 'chance'

const chance = new Chance()

export class RandomStream extends Readable {
 constructor (options) {
 super(options)
 this.emittedBytes = 0
 }

 _read (size) {
 const chunk = chance.string({ length: size }) // (1)
 this.push(chunk, 'utf8') // (2)
 this.emittedBytes += chunk.length
 if (chance.bool({ likelihood: 5 })) { // (3)
 this.push(null)
 }
 }
}

At the top of the file, we load our dependencies. There is nothing special there,
except that we are loading an npm module called chance (nodejsdp.link/chance),
which is a library for generating all sorts of random values, from numbers to strings
to entire sentences.

The next step is to create a new class called RandomStream, which specifies Readable
as its parent. In the preceding code, invoking super(options) in the RandomStream
constructor will call the constructor of the parent class, allowing us to initialize the
stream's internal state.

If you have a constructor that only invokes super(options),
you can remove it as you will inherit the parent constructor. Just
be careful to remember to call super(options) every time you
need to write a custom constructor.

http://nodejsdp.link/chance

Coding with Streams

[176]

The possible parameters that can be passed through the options object include the
following:

• The encoding argument, which is used to convert buffers into strings
(defaults to null)

• A flag to enable object mode (objectMode, defaults to false)
• The upper limit of the data stored in the internal buffer, after which no more

reading from the source should be done (highWaterMark, defaults to 16KB)

Okay, now let's explain the _read() method:

1. The method generates a random string of length equal to size using chance.
2. It pushes the string into the internal buffer. Note that since we are pushing

strings, we also need to specify the encoding, utf8 (this is not necessary if the
chunk is simply a binary Buffer).

3. It terminates the stream randomly, with a likelihood of 5 percent, by pushing
null into the internal buffer to indicate an EOF situation or, in other words,
the end of the stream.

Note that the size argument in the _read() function is an advisory parameter. It's
good to honor it and push only the amount of data that was requested by the caller,
even though it is not mandatory to do so.

That's it for RandomStream, we are now ready to use it. Let's see how to instantiate a
RandomStream object and pull some data from it:

// index.js
import { RandomStream } from './random-stream.js'

const randomStream = new RandomStream()
randomStream
 .on('data', (chunk) => {
 console.log(`Chunk received (${chunk.length} bytes): ${chunk.
toString()}`)
 })

When we invoke push(), we should check whether it returns
false. When that happens, it means that the internal buffer of the
receiving stream has reached the highWaterMark limit and we
should stop adding more data to it. This is called backpressure,
and we will be discussing it in more detail in the next section of
this chapter.

Chapter 6

[177]

 .on('end', () => {
 console.log(`Produced ${randomStream.emittedBytes} bytes of random
data`)
 })

Now, everything is ready for us to try our new custom stream. Simply execute the
index.js module as usual and watch a random set of strings flowing on the screen.

Simplified construction
For simple custom streams, we can avoid creating a custom class by using the
Readable stream's simplified construction approach. With this approach, we only
need to invoke new Readable(options) and pass a method named read() in the set
of options. The read() method here has exactly the same semantic as the _read()
method that we saw in the class extension approach. Let's rewrite our RandomStream
using the simplified constructor approach:

import { Readable } from 'stream'
import Chance from 'chance'

const chance = new Chance()
let emittedBytes = 0

const randomStream = new Readable({
 read (size) {
 const chunk = chance.string({ length: size })
 this.push(chunk, 'utf8')
 emittedBytes += chunk.length
 if (chance.bool({ likelihood: 5 })) {
 this.push(null)
 }
 }
})

// now use randomStream instance directly ...

This approach can be particularly useful when you don't need to manage a
complicated state and allows you to take advantage of a more succinct syntax. In the
previous example, we created a single instance of our custom stream. If we want to
adopt the simplified constructor approach but we need to create multiple instances
of the custom stream, we can wrap the initialization logic in a factory function that
we can invoke multiple times to create those instances.

Coding with Streams

[178]

Readable streams from iterables
You can easily create Readable stream instances from arrays or other iterable objects
(that is, generators, iterators, and async iterators) using the Readable.from() helper.

In order to get accustomed with this helper, let's look at a simple example where we
convert data from an array into a Readable stream:

import { Readable } from 'stream'

const mountains = [
 { name: 'Everest', height: 8848 },
 { name: 'K2', height: 8611 },
 { name: 'Kangchenjunga', height: 8586 },
 { name: 'Lhotse', height: 8516 },
 { name: 'Makalu', height: 8481 }
]

const mountainsStream = Readable.from(mountains)
mountainsStream.on('data', (mountain) => {
 console.log(`${mountain.name.padStart(14)}\t${mountain.height}m`)
})

As we can see from this code, the Readable.from() method is quite simple to
use: the first argument is an iterable instance (in our case, the mountains array).
Readable.from() accepts an additional optional argument that can be used to specify
stream options like objectMode.

Running the previous code will produce the following output:

 Everest 8848m
 K2 8611m
 Kangchenjunga 8586m
 Lhotse 8516m
 Makalu 8481m

Note that we didn't have to explicitly set objectMode to true. By
default, Readable.from() will set objectMode to true, unless this
is explicitly opted out by setting it to false. Stream options can be
passed as a second argument to the function.

Chapter 6

[179]

Writable streams
A Writable stream represents a data destination. Imagine, for instance, a file on the
filesystem, a database table, a socket, the standard error, or the standard output
interface. In Node.js, it's implemented using the Writable abstract class, which is
available in the stream module.

Writing to a stream
Pushing some data down a Writable stream is a straightforward business; all we
have to do is use the write() method, which has the following signature:

writable.write(chunk, [encoding], [callback])

The encoding argument is optional and can be specified if chunk is a string (it defaults to
utf8, and it's ignored if chunk is a buffer). The callback function, on the other hand, is
called when the chunk is flushed into the underlying resource and is optional as well.

To signal that no more data will be written to the stream, we have to use the end()
method:

writable.end([chunk], [encoding], [callback])

We can provide a final chunk of data through the end() method; in this case, the
callback function is equivalent to registering a listener to the finish event, which
is fired when all the data written in the stream has been flushed into the underlying
resource.

Try not to instantiate large arrays in memory. Imagine if, in the
previous example, we wanted to list all the mountains in the
world. There are about 1 million mountains, so if we were to
load all of them in an array upfront, we would allocate a quite
significant amount of memory. Even if we then consume the
data in the array through a Readable stream, all the data has
already been preloaded, so we are effectively voiding the memory
efficiency of streams. It's always preferable to load and consume
the data in chunks, and you could do so by using native streams
such as fs.createReadStream, by building a custom stream, or
by using Readable.from with lazy iterables such as generators,
iterators, or async iterators. We will see some examples of the latter
approach in Chapter 9, Behavioral Design Patterns.

Coding with Streams

[180]

Now, let's show how this works by creating a small HTTP server that outputs a
random sequence of strings:

// entropy-server.js
import { createServer } from 'http'
import Chance from 'chance'

const chance = new Chance()
const server = createServer((req, res) => {
 res.writeHead(200, { 'Content-Type': 'text/plain' }) // (1)
 while (chance.bool({ likelihood: 95 })) { // (2)
 res.write(`${chance.string()}\n`) // (3)
 }
 res.end('\n\n') // (4)
 res.on('finish', () => console.log('All data sent')) // (5)
})
server.listen(8080, () => {
 console.log('listening on http://localhost:8080')
})

The HTTP server that we created writes into the res object, which is an instance of
http.ServerResponse and also a Writable stream. What happens is explained as
follows:

1. We first write the head of the HTTP response. Note that writeHead() is not a
part of the Writable interface; in fact, it's an auxiliary method exposed by the
http.ServerResponse class and is specific to the HTTP protocol.

2. We start a loop that terminates with a likelihood of 5% (we instruct chance.
bool() to return true 95% of the time).

3. Inside the loop, we write a random string into the stream.
4. Once we are out of the loop, we call end() on the stream, indicating that no

more data will be written. Also, we provide a final string containing two new
line characters to be written into the stream before ending it.

5. Finally, we register a listener for the finish event, which will be fired when
all the data has been flushed into the underlying socket.

To test the server, we can open a browser at the address http://localhost:8080 or
use curl from the terminal as follows:

curl localhost:8080

Chapter 6

[181]

At this point, the server should start sending random strings to the HTTP client that
you chose (please bear in mind that some browsers might buffer the data, and the
streaming behavior might not be apparent).

Backpressure
Similar to a liquid flowing in a real piping system, Node.js streams can also suffer
from bottlenecks, where data is written faster than the stream can consume it.
The mechanism to cope with this problem involves buffering the incoming data;
however, if the stream doesn't give any feedback to the writer, we may incur
a situation where more and more data is accumulated in the internal buffer, leading
to undesired levels of memory usage.

To prevent this from happening, writable.write() will return false when
the internal buffer exceeds the highWaterMark limit. In Writable streams, the
highWaterMark property is the limit of the internal buffer size, beyond which the
write() method starts returning false, indicating that the application should now
stop writing. When the buffer is emptied, the drain event is emitted, communicating
that it's safe to start writing again. This mechanism is called backpressure.

Backpressure is an advisory mechanism. Even if write() returns false, we could
ignore this signal and continue writing, making the buffer grow indefinitely. The
stream won't be blocked automatically when the highWaterMark threshold is reached;
therefore, it is recommended to always be mindful and respect the backpressure.

We can quickly demonstrate how to take into account the backpressure of a Writable
stream by modifying the entropy-server.js module that we created previously:

// ...
const server = createServer((req, res) => {
 res.writeHead(200, { 'Content-Type': 'text/plain' })
 function generateMore () { // (1)
 while (chance.bool({ likelihood: 95 })) {
 const randomChunk = chance.string({ // (2)
 length: (16 * 1024) - 1
 })

The mechanism described in this section is similarly applicable
to Readable streams. In fact, backpressure exists in Readable
streams too, and it's triggered when the push() method, which is
invoked inside _read(), returns false. However, that's a problem
specific to stream implementers, so we usually have to deal with it
less frequently.

Coding with Streams

[182]

 const shouldContinue = res.write(`${randomChunk}\n`) // (3)
 if (!shouldContinue) {
 console.log('back-pressure')
 return res.once('drain', generateMore)
 }
 }
 res.end('\n\n')
 }
 generateMore()
 res.on('finish', () => console.log('All data sent'))
})
// ...

The most important steps of the previous code can be summarized as follows:

1. We wrapped the main logic in a function called generateMore().
2. To increase the chances of receiving some backpressure, we increased the

size of the data chunk to 16 KB minus 1 byte, which is very close to the
default highWaterMark limit.

3. After writing a chunk of data, we check the return value of res.write(). If
we receive false, it means that the internal buffer is full and we should stop
sending more data. When this happens, we exit the function and register
another cycle of writes using generateMore() for when the drain event is
emitted.

If we now try to run the server again, and then generate a client request with
curl, there is a high probability that there will be some backpressure, as the server
produces data at a very high rate, faster than the underlying socket can handle.

Implementing Writable streams
We can implement a new Writable stream by inheriting the class Writable and
providing an implementation for the _write() method. Let's try to do it immediately
while discussing the details along the way.

Let's build a Writable stream that receives objects in the following format:

{
 path: <path to a file>
 content: <string or buffer>
}

Chapter 6

[183]

For each one of these objects, our stream has to save the content property into a
file created at the given path. We can immediately see that the inputs of our stream
are objects, and not strings or buffers. This means that our stream has to work in
object mode.

Let's call the module to-file-stream.js:

import { Writable } from 'stream'
import { promises as fs } from 'fs'
import { dirname } from 'path'
import mkdirp from 'mkdirp-promise'

export class ToFileStream extends Writable {
 constructor (options) {
 super({ ...options, objectMode: true })
 }

 _write (chunk, encoding, cb) {
 mkdirp(dirname(chunk.path))
 .then(() => fs.writeFile(chunk.path, chunk.content))
 .then(() => cb())
 .catch(cb)
 }
}

We created a new class for our new stream, which extends Writable from the stream
module.

We had to invoke the parent constructor to initialize its internal state; we also needed
to make sure that the options object specifies that the stream works in object mode
(objectMode: true). Other options accepted by Writable are as follows:

• highWaterMark (the default is 16 KB): This controls the backpressure limit.
• decodeStrings (defaults to true): This enables the automatic decoding of

strings into binary buffers before passing them to the _write() method. This
option is ignored in object mode.

Finally, we provided an implementation for the _write() method. As you can see,
the method accepts a data chunk and an encoding (which makes sense only if we
are in binary mode and the stream option decodeStrings is set to false). Also,
the method accepts a callback function (cb), which needs to be invoked when the
operation completes; it's not necessary to pass the result of the operation but, if
needed, we can still pass an error that will cause the stream to emit an error event.

Coding with Streams

[184]

Now, to try the stream that we just built, we can create a new module and perform
some write operations against the stream:

import { join } from 'path'
import { ToFileStream } from './to-file-stream.js'
const tfs = new ToFileStream()

tfs.write({
 path: join('files', 'file1.txt'), content: 'Hello' })
tfs.write({
 path: join('files', 'file2.txt'), content: 'Node.js' })
tfs.write({
 path: join('files', 'file3.txt'), content: 'streams' })
tfs.end(() => console.log('All files created'))

Here, we created and used our first custom Writable stream. Run the new module as
usual and check its output. You will see that after the execution, three new files will
be created within a new folder called files.

Simplified construction
As we saw for Readable streams, Writable streams also offer a simplified
construction mechanism. If we were to rewrite our ToFileStream using the simplified
construction for Writable streams, it would look like this:

// ...
const tfs = new Writable({
 objectMode: true,
 write (chunk, encoding, cb) {
 mkdirp(dirname(chunk.path))
 .then(() => fs.writeFile(chunk.path, chunk.content))
 .then(() => cb())
 .catch(cb)
 }
})
// ...

With this approach, we are simply using the Writable constructor and passing a
write() function that implements the custom logic of our Writable instance. Note
that with this approach, the write() function doesn't have an underscore in the
name. We can also pass other construction options like objectMode.

Chapter 6

[185]

Duplex streams
A Duplex stream is a stream that is both Readable and Writable. It is useful when we
want to describe an entity that is both a data source and a data destination, such as
network sockets, for example. Duplex streams inherit the methods of both stream.
Readable and stream.Writable, so this is nothing new to us. This means that we can
read() or write() data, or listen for both readable and drain events.

To create a custom Duplex stream, we have to provide an implementation for both
_read() and _write(). The options object passed to the Duplex() constructor is
internally forwarded to both the Readable and Writable constructors. The options are
the same as those we already discussed in the previous sections, with the addition of
a new one called allowHalfOpen (defaults to true) that, if set to false, will cause both
parts (Readable and Writable) of the stream to end if only one of them does.

Transform streams
Transform streams are a special kind of Duplex stream that are specifically designed
to handle data transformations. Just to give you a few concrete examples, the
functions zlib.createGzip() and crypto.createCipheriv() that we discussed at the
beginning of this chapter create Transform streams for compression and encryption,
respectively.

In a simple Duplex stream, there is no immediate relationship between the data read
from the stream and the data written into it (at least, the stream is agnostic to such a
relationship). Think about a TCP socket, which just sends and receives data to and
from the remote peer; the socket is not aware of any relationship between the input
and output. Figure 6.4 illustrates the data flow in a Duplex stream:

Figure 6.4: Duplex stream schematic representation

If we need to have a Duplex stream working in object mode on
one side and binary mode on the other, we can use the options
readableObjectMode and writableObjectMode independently.

Coding with Streams

[186]

On the other hand, Transform streams apply some kind of transformation to
each chunk of data that they receive from their Writable side, and then make the
transformed data available on their Readable side. Figure 6.5 shows how the data
flows in a Transform stream:

Figure 6.5: Transform stream schematic representation

From the outside, the interface of a Transform stream is exactly like that of a Duplex
stream. However, when we want to build a new Duplex stream, we have to provide
both the _read() and _write() methods, while for implementing a new Transform
stream, we have to fill in another pair of methods: _transform() and _flush().

Let's see how to create a new Transform stream with an example.

Implementing Transform streams
Let's implement a Transform stream that replaces all the occurrences of a given
string. To do this, we have to create a new module named replaceStream.js. Let's
jump directly to the implementation:

import { Transform } from 'stream'

export class ReplaceStream extends Transform {
 constructor (searchStr, replaceStr, options) {
 super({ ...options })
 this.searchStr = searchStr
 this.replaceStr = replaceStr
 this.tail = ''
 }

 _transform (chunk, encoding, callback) {
 const pieces = (this.tail + chunk).split(this.searchStr) // (1)
 const lastPiece = pieces[pieces.length - 1] // (2)
 const tailLen = this.searchStr.length - 1
 this.tail = lastPiece.slice(-tailLen)
 pieces[pieces.length - 1] = lastPiece.slice(0, -tailLen)

Chapter 6

[187]

 this.push(pieces.join(this.replaceStr)) // (3)
 callback()
 }

 _flush (callback) {
 this.push(this.tail)
 callback()
 }
}

In this example, we created a new class extending the Transform base class. The
constructor of the class accepts three arguments: searchStr, replaceStr, and options.
As you can imagine, they allow us to define the text to match and the string to use as
a replacement, plus an options object for advanced configuration of the underlying
Transform stream. We also initialize an internal tail variable, which will be used
later by the _transform() method.

Now, let's analyze the _transform() method, which is the core of our new class.
The _transform() method has practically the same signature as the _write() method
of the Writable stream, but instead of writing data into an underlying resource, it
pushes it into the internal read buffer using this.push(), exactly as we would do
in the _read() method of a Readable stream. This shows how the two sides of a
Transform stream are connected.

The _transform() method of ReplaceStream implements the core of our algorithm.
To search for and replace a string in a buffer is an easy task; however, it's a
totally different story when the data is streaming, and possible matches might be
distributed across multiple chunks. The procedure followed by the code can be
explained as follows:

1. Our algorithm splits the data in memory (tail data and the current chunk)
using searchStr as a separator.

2. Then, it takes the last item of the array generated by the operation and
extracts the last searchString.length - 1 characters. The result is saved
in the tail variable and will be prepended to the next chunk of data.

3. Finally, all the pieces resulting from split() are joined together using
replaceStr as a separator and pushed into the internal buffer.

When the stream ends, we might still have some content in the tail variable not
pushed into the internal buffer. That's exactly what the _flush() method is for;
it is invoked just before the stream is ended, and this is where we have one final
chance to finalize the stream or push any remaining data before completely ending
the stream.

Coding with Streams

[188]

The _flush() method only takes in a callback, which we have to make sure to invoke
when all the operations are complete, causing the stream to be terminated. With this,
we have completed our ReplaceStream class.

Now, it's time to try the new stream. Let's create a script that writes some data into
the stream and then reads the transformed result:

import { ReplaceStream } from './replace-stream.js'

const replaceStream = new ReplaceStream('World', 'Node.js')
replaceStream.on('data', chunk => console.log(chunk.toString()))

replaceStream.write('Hello W')
replaceStream.write('orld!')
replaceStream.end()

To make life a little bit harder for our stream, we spread the search term (which is
World) across two different chunks, then, using the flowing mode, we read from the
same stream, logging each transformed chunk. Running the preceding program
should produce the following output:

Hel
lo Node.js
!

Simplified construction
Unsurprisingly, even Transform streams support simplified construction. At this
point, we should have developed an instinct for how this API might look, so let's get
our hands dirty straight away and rewrite the previous example using this approach:

const searchStr = 'World'
const replaceStr = 'Node.js'
let tail = ''

Please note that the preceding output is broken into multiple lines
because we are using console.log() to print it out. This allows
us to demonstrate that our implementation is able to replace string
matches correctly, even when the matching text spans multiple
chunks of data.

Chapter 6

[189]

const replaceStream = new Transform({
 defaultEncoding: 'utf8',

 transform (chunk, encoding, cb) {
 const pieces = (tail + chunk).split(searchStr)
 const lastPiece = pieces[pieces.length - 1]
 const tailLen = searchStr.length - 1
 tail = lastPiece.slice(-tailLen)
 pieces[pieces.length - 1] = lastPiece.slice(0, -tailLen)
 this.push(pieces.join(replaceStr))
 cb()
 },

 flush (cb) {
 this.push(tail)
 cb()
 }
})
// now write to replaceStream ...

As expected, simplified construction works by directly instantiating a new Transform
object and passing our specific transformation logic through the transform() and
flush() functions directly through the options object. Note that transform() and
flush() don't have a prepended underscore here.

Filtering and aggregating data with Transform
streams
As we mentioned in the previous section, Transform streams are the perfect
building blocks for implementing data transformation pipelines. In the previous
section, we illustrated an example of a Transform stream that can replace words in a
stream of text. But Transform streams can be used to implement other types of data
transformation as well. For instance, it's quite common to use Transform streams to
implement data filtering and data aggregation.

Just to make a practical example, let's imagine we are asked by a Fortune 500
company to analyze a big file containing all the sales for the year 2020. The company
wants us to use data.csv, a sales report in CSV format, to calculate the total profit for
the sales made in Italy.

Coding with Streams

[190]

For simplicity, let's imagine the sales data that is stored in the CSV file contains three
fields per line: item type, country of sale, and profit. So, such a file could look like
this:

type,country,profit
Household,Namibia,597290.92
Baby Food,Iceland,808579.10
Meat,Russia,277305.60
Meat,Italy,413270.00
Cereal,Malta,174965.25
Meat,Indonesia,145402.40
Household,Italy,728880.54
[... many more lines]

Now, it's clear that we have to find all the records that have "Italy" as country and, in
the process, sum up the profit value of the matching lines into a single number.

In order to process a CSV file in a streaming fashion, we can use the excellent csv-
parse module (nodejsdp.link/csv-parse).

If we assume for a moment that we have already implemented our custom streams
to filter and aggregate the data, a possible solution to this task might look like this:

import { createReadStream } from 'fs'
import parse from 'csv-parse'
import { FilterByCountry } from './filter-by-country.js'
import { SumProfit } from './sum-profit.js'

const csvParser = parse({ columns: true })

createReadStream('data.csv') // (1)
 .pipe(csvParser) // (2)
 .pipe(new FilterByCountry('Italy')) // (3)
 .pipe(new SumProfit()) // (4)
 .pipe(process.stdout) // (5)

The streaming pipeline proposed here consists of five steps:

1. We read the source CSV file as a stream.
2. We use the csv-parse library to parse every line of the document as a

CSV record. For every line, this stream will emit an object containing the
properties type, country, and profit.

http://nodejsdp.link/csv-parse

Chapter 6

[191]

3. We filter all the records by country, retaining only the records that match the
country "Italy." All the records that don't match "Italy" are dropped, which
means that they will not be passed to the other steps in the pipeline. Note
that this is one of the custom Transform streams that we have to implement.

4. For every record, we accumulate the profit. This stream will eventually emit
one single string, which represents the value of the total profit for products
sold in Italy. This value will be emitted by the stream only when all the data
from the original file has been completely processed. Note that this is the
second custom Transform stream that we have to implement to complete this
project.

5. Finally, the data emitted from the previous step is displayed in the standard
output.

Now, let's implement the FilterByCountry stream:

import { Transform } from 'stream'

export class FilterByCountry extends Transform {
 constructor (country, options = {}) {
 options.objectMode = true
 super(options)
 this.country = country
 }

 _transform (record, enc, cb) {
 if (record.country === this.country) {
 this.push(record)
 }
 cb()
 }
}

FilterByCountry is a custom Transform stream. We can see that the constructor
accepts an argument called country, which allows us to specify the country name
we want to filter on. In the constructor, we also set the stream to run in objectMode
because we know it will be used to process objects (records from the CSV file).

In the _transform method, we check if the country of the current record matches
the country specified at construction time. If it's a match, then we pass the record on
to the next stage of the pipeline by calling this.push(). Regardless of whether the
record matches or not, we need to invoke cb() to indicate that the current record has
been successfully processed and that the stream is ready to receive another record.

Coding with Streams

[192]

Finally, let's implement the SumProfit filter:

import { Transform } from 'stream'

export class SumProfit extends Transform {
 constructor (options = {}) {
 options.objectMode = true
 super(options)
 this.total = 0
 }

 _transform (record, enc, cb) {
 this.total += Number.parseFloat(record.profit)
 cb()
 }

 _flush (cb) {
 this.push(this.total.toString())
 cb()
 }
}

This stream needs to run in objectMode as well, because it will receive objects
representing records from the CSV file. Note that, in the constructor, we also
initialize an instance variable called total and we set its value to 0.

In the _transform() method, we process every record and use the current profit
value to increase the total. It's important to note that this time, we are not calling
this.push(). This means that no value is emitted while the data is flowing through
the stream. We still need to call cb(), though, to indicate that the current record has
been processed and the stream is ready to receive another one.

In order to emit the final result when all the data has been processed, we have to
define a custom flush behavior using the _flush() method. Here, we finally call
this.push() to emit a string representation of the resulting total value. Remember
that _flush() is automatically invoked before the stream is closed.

Pattern: Transform filter

Invoke this.push() in a conditional way to allow only some data
to reach the next stage of the pipeline.

Chapter 6

[193]

This completes our example. Now, you can grab the CSV file from the code
repository and execute this program to see what the total profit for Italy is.
No surprise it's going to be a lot of money since we are talking about the profit
of a Fortune 500 company!

PassThrough streams
There is a fifth type of stream that is worth mentioning: PassThrough. This type of
stream is a special type of Transform that outputs every data chunk without applying
any transformation.

PassThrough is possibly the most underrated type of stream, but there are actually
several circumstances in which it can be a very valuable tool in our toolbelt. For
instance, PassThrough streams can be useful for observability or to implement late
piping and lazy stream patterns.

Observability
If we want to observe how much data is flowing through one or more streams, we
could do so by attaching a data event listener to a PassThrough instance and then
piping this instance in a given point of a stream pipeline. Let's a see a simplified
example to be able to appreciate this concept:

import { PassThrough } from 'stream'

let bytesWritten = 0
const monitor = new PassThrough()
monitor.on('data', (chunk) => {
 bytesWritten += chunk.length
})
monitor.on('finish', () => {
 console.log(`${bytesWritten} bytes written`)
})

monitor.write('Hello!')
monitor.end()

Pattern: Streaming aggregation

Use _transform() to process the data and accumulate the partial
result, then call this.push() only in the _flush() method to emit
the result when all the data has been processed.

Coding with Streams

[194]

In this example, we are creating a new instance of PassThrough and using the data
event to count how many bytes are flowing through the stream. We also use the
finish event to dump the total amount to the console. Finally we write some data
directly into the stream using write() and end(). This is just an illustrative example;
in a more realistic scenario, we would be piping our monitor instance in a given
point of a stream pipeline. For instance, if we wanted to monitor how many bytes are
written to disk in our first file compression example of this chapter, we could easily
achieve that by doing something like this:

createReadStream(filename)
 .pipe(createGzip())
 .pipe(monitor)
 .pipe(createWriteStream(`${filename}.gz`))

The beauty of this approach is that we didn't have to touch any of the other existing
streams in the pipeline, so if we need to observe other parts of the pipeline (for
instance, imagine we want to know the number of bytes of the uncompressed data),
we can move monitor around with very little effort.

Late piping
In some circumstances, we might have to use APIs that accept a stream as an input
parameter. This is generally not a big deal because we already know how to create
and use streams. However, it may get a little bit more complicated if the data we
want to read or write through the stream is available after we've called the given
API.

To visualize this scenario in more concrete terms, let's imagine that we have to use an
API that gives us the following function to upload a file to a data storage service:

function upload (filename, contentStream) {
 // ...
}

Note that you could implement an alternative version of the
monitor stream by using a custom transform stream instead. In
such a case, you would have to make sure that the received chunks
are pushed without any modification or delay, which is something
that a PassThrough stream would do automatically for you. Both
approaches are equally valid, so pick the approach that feels more
natural to you.

Chapter 6

[195]

Now, if we want to upload a file from the filesystem, this is a trivial operation, and
we can do something like this:

import { createReadStream } from 'fs'
upload('a-picture.jpg', createReadStream('/path/to/a-picture.jpg'))

But what if we want to do some processing to the file stream before the upload. For
instance, let's say we want to compress or encrypt the data? Also, what if we have to
do this transformation asynchronously after the upload function has been called?

In such cases, we can provide a PassThrough stream to the upload() function, which
will effectively act as a placeholder. The internal implementation of upload() will
immediately try to consume data from it, but there will be no data available in the
stream until we actually write to it. Also, the stream won't be considered complete
until we close it, so the upload() function will have to wait for data to flow through
the PassThrough instance to initiate the upload.

Let's see a possible command-line script that uses this approach to upload a file from
the filesystem and also compresses it using the Brotli compression. We are going to
assume that the third-party upload() function is provided in a file called upload.js:

import { createReadStream } from 'fs'
import { createBrotliCompress } from 'zlib'
import { PassThrough } from 'stream'
import { basename } from 'path'
import { upload } from './upload.js'

const filepath = process.argv[2] // (1)
const filename = basename(filepath)
const contentStream = new PassThrough() // (2)

upload(`${filename}.br`, contentStream) // (3)
 .then((response) => {
 console.log(`Server response: ${response.data}`)
 })
 .catch((err) => {

This function is effectively a simplified version of what is
commonly available in the SDK of file storage services like Amazon
Simple Storage Service (S3) or Azure Blob Storage service. Often,
those libraries will provide the user with a more flexible function
that can receive the content data in different formats (for example,
a string, a buffer, or a Readable stream).

Coding with Streams

[196]

 console.error(err)
 process.exit(1)
 })

createReadStream(filepath) // (4)
 .pipe(createBrotliCompress())
 .pipe(contentStream)

Let's review what's happening in the previous example:

1. We get the path to the file we want to upload from the first command-line
argument and use basename to extrapolate the filename from the given path.

2. We create a placeholder for our content stream as a PassThrough instance.
3. Now, we invoke the upload function by passing our filename (with the

added .br suffix, indicating that it is using the Brotli compression) and the
placeholder content stream.

4. Finally, we create a pipeline by chaining a filesystem Readable stream, a
Brotli compression Transform stream, and finally our content stream as the
destination.

When this code is executed, the upload will start as soon as we invoke the upload()
function (possibly establishing a connection to the remote server), but the data will
start to flow only later, when our pipeline is initialized. Note that our pipeline will
also close the contentStream when the processing completes, which will indicate to
the upload() function that all the content has been fully consumed.

In this book's repository, you will find a complete implementation
of this example that allows you to upload files to an HTTP server
that you can run locally.

Pattern

Use a PassThrough stream when you need to provide a
placeholder for data that will be read or written in the future.

Chapter 6

[197]

We can also use this pattern to transform the interface of the upload() function.
Instead of accepting a Readable stream as input, we can make it return a Writeable
stream, which can then be used to provide the data we want to upload:

function createUploadStream (filename) {
 // ...
 // returns a writable stream that can be used to upload data
}

If we were tasked to implement this function, we could achieve that in a very elegant
way by using a PassThrough instance, as in the following example implementation:

function createUploadStream (filename) {
 const connector = new PassThrough()
 upload(filename, connector)
 return connector
}

In the preceding code, we are using a PassThrough stream as a connector. This stream
becomes a perfect abstraction for a case where the consumer of the library can write
data at any later stage.

The createUploadStream() function can then be used as follows:

const upload = createUploadStream('a-file.txt')
upload.write('Hello World')
upload.end()

Lazy streams
Sometimes, we need to create a large number of streams at the same time, for
example, to pass them to a function for further processing. A typical example is
when using archiver (nodejsdp.link/archiver), a package for creating archives
such as TAR and ZIP. The archiver package allows you to create an archive from
a set of streams, representing the files to add. The problem is that if we want to
pass a large number of streams, such as from files on the filesystem, we would
likely get an EMFILE, too many open files error. This is because functions like
createReadStream() from the fs module will actually open a file descriptor every
time a new stream is created, even before you start to read from those streams.

This book's repository also contains an HTTP upload example that
adopts this alternative pattern.

http://nodejsdp.link/archiver

Coding with Streams

[198]

In more generic terms, creating a stream instance might initialize expensive
operations straight away (for example, open a file or a socket, initialize a connection
to a database, and so on), even before we actually start to use such a stream. This
might not be desirable if you are creating a large number of stream instances for later
consumption.

In these cases, you might want to delay the expensive initialization until you actually
need to consume data from the stream.

It is possible to achieve this by using a library like lazystream (nodejsdp.link/
lazystream). This library allows you to effectively create proxies for actual stream
instances, where the proxied instance is not created until some piece of code is
actually starting to consume data from the proxy.

In the following example, lazystream allows us to create a lazy Readable stream for
the special Unix file /dev/urandom:

import lazystream from 'lazystream'
const lazyURandom = new lazystream.Readable(function (options) {
 return fs.createReadStream('/dev/urandom')
})

The function we pass as a parameter to new lazystream.Readable() is effectively a
factory function that generates the proxied stream when necessary.

Behind the scenes, lazystream is implemented using a PassThrough stream that, only
when its _read() method is invoked for the first time, creates the proxied instance by
invoking the factory function, and pipes the generated stream into the PassThrough
itself. The code that consumes the stream is totally agnostic of the proxying that is
happening here, and it will consume the data as if it was flowing directly from the
PassThrough stream. lazystream implements a similar utility to create lazy Writable
streams as well.

Creating lazy Readable and Writable streams from scratch could be an interesting
exercise that is left to you. If you get stuck, have a look at the source code of
lazystream for inspiration on how to implement this pattern.

In the next section, we will discuss the .pipe() method in greater detail and also see
other ways to connect different streams to form a processing pipeline.

Connecting streams using pipes
The concept of Unix pipes was invented by Douglas Mcllroy. This enabled the
output of a program to be connected to the input of the next. Take a look at the
following command:

http://nodejsdp.link/lazystream
http://nodejsdp.link/lazystream

Chapter 6

[199]

echo Hello World! | sed s/World/Node.js/g

In the preceding command, echo will write Hello World! to its standard output,
which is then redirected to the standard input of the sed command (thanks to the
pipe | operator). Then, sed replaces any occurrence of World with Node.js and prints
the result to its standard output (which, this time, is the console).

In a similar way, Node.js streams can be connected using the pipe() method of the
Readable stream, which has the following interface:

readable.pipe(writable, [options])

Very intuitively, the pipe() method takes the data that is emitted from the readable
stream and pumps it into the provided writable stream. Also, the writable stream is
ended automatically when the readable stream emits an end event (unless we specify
{end: false} as options). The pipe() method returns the writable stream passed in
the first argument, allowing us to create chained invocations if such a stream is also
Readable (such as a Duplex or Transform stream).

Piping two streams together will create suction, which allows the data to flow
automatically to the writable stream, so there is no need to call read() or write(),
but most importantly, there is no need to control the backpressure anymore, because
it's automatically taken care of.

To provide a quick example, we can create a new module that takes a text stream from
the standard input, applies the replace transformation discussed earlier when we built
our custom ReplaceStream, and then pushes the data back to the standard output:

// replace.js
import { ReplaceStream } from './replace-stream.js'

process.stdin
 .pipe(new ReplaceStream(process.argv[2], process.argv[3]))
 .pipe(process.stdout)

The preceding program pipes the data that comes from the standard input into an
instance of ReplaceStream and then back to the standard output. Now, to try this
small application, we can leverage a Unix pipe to redirect some data into its standard
input, as shown in the following example:

echo Hello World! | node replace.js World Node.js

This should produce the following output:

Hello Node.js!

Coding with Streams

[200]

This simple example demonstrates that streams (and in particular, text streams) are a
universal interface and that pipes are the way to compose and interconnect all these
interfaces almost magically.

Pipes and error handling
The error events are not propagated automatically through the pipeline when using
pipe(). Take, for example, this code fragment:

stream1
 .pipe(stream2)
 .on('error', () => {})

In the preceding pipeline, we will catch only the errors coming from stream2, which
is the stream that we attached the listener to. This means that, if we want to catch any
error generated from stream1, we have to attach another error listener directly to it,
which will make our example look like this:

stream1
 .on('error', () => {})
 .pipe(stream2)
 .on('error', () => {})

This is clearly not ideal, especially when dealing with pipelines with a significant
number of steps. To make this worse, in the event of an error, the failing stream is
only unpiped from the pipeline. The failing stream is not properly destroyed, which
might leave dangling resources (for example, file descriptors, connections, and so on)
and leak memory. A more robust (yet inelegant) implementation of the preceding
snippet might look like this:

function handleError (err) {
 console.error(err)
 stream1.destroy()
 stream2.destroy()
}

stream1
 .on('error', handleError)
 .pipe(stream2)
 .on('error', handleError)

Chapter 6

[201]

In this example, we registered a handler for the error event for both stream1 and
stream2. When an error happens, our handleError() function is invoked, and we can
log the error and destroy every stream in the pipeline. This allows us to ensure that
all the allocated resources are properly released, and the error is handled gracefully.

Better error handling with pipeline()
Handling errors manually in a pipeline is not just cumbersome, but also error-
prone—definitely something we should avoid if we can!

Luckily, the core stream package offers us an excellent utility function that can make
building pipelines a much safer and more enjoyable practice, which is the pipeline()
helper function.

In a nutshell, you can use the pipeline() function as follows:

pipeline(stream1, stream2, stream3, ... , cb)

This helper pipes every stream passed in the arguments list to the next one. For
each stream, it will also register a proper error and close listeners. This way, all the
streams are properly destroyed when the pipeline completes successfully or when
it's interrupted by an error. The last argument is an optional callback that will be
called when the stream finishes. If it finishes because of an error, the callback will be
invoked with the given error as the first argument.

In order to build up some practice with this helper, let's write a simple command-
line script that implements the following pipeline:

• Reads a Gzip data stream from the standard input
• Decompresses the data
• Makes all the text uppercase
• Gzips the resulting data
• Sends the data back to the standard output

Let's call this module uppercasify-gzipped.js:

import { createGzip, createGunzip } from 'zlib' // (1)
import { Transform, pipeline } from 'stream'

const uppercasify = new Transform({ // (2)
 transform (chunk, enc, cb) {
 this.push(chunk.toString().toUpperCase())
 cb()

Coding with Streams

[202]

 }
})

pipeline(// (3)
 process.stdin,
 createGunzip(),
 uppercasify,
 createGzip(),
 process.stdout,
 (err) => { // (4)
 if (err) {
 console.error(err)
 process.exit(1)
 }
 }
)

In this example:

1. We are importing the necessary dependencies from zlib and the stream
modules.

2. We create a simple Transform stream that makes every chunk uppercase.
3. We define our pipeline, where we list all the stream instances in order.
4. We add a callback to monitor the completion of the stream. In the event of

an error, we print the error in the standard error interface, and we exit with
error code 1.

The pipeline will start automatically by consuming data from the standard input and
producing data for the standard output.

We could test our script with the following command:

echo 'Hello World!' | gzip | node uppercasify-gzipped.js | gunzip

This should produce the following output:

HELLO WORLD!

If we try to remove the gzip step from the preceding sequence of commands, our
script will fail with an error similar to the following:

Chapter 6

[203]

Error: unexpected end of file
 at Zlib.zlibOnError [as onerror] (zlib.js:180:17) {
 errno: -5,
 code: 'Z_BUF_ERROR'
}

This error is raised by the stream created with the createGunzip() function, which
is responsible for decompressing the data. If the data is not actually gzipped, the
decompression algorithm won't be able to process the data and it will fail. In such
a case, pipeline() will take care of cleaning up after the error and destroy all the
streams in the pipeline.

Now that we have built a solid understanding of Node.js streams, we are ready
to move into some more involved stream patterns like control flow and advanced
piping patterns.

Asynchronous control flow patterns with
streams
Going through the examples that we have presented so far, it should be clear that
streams can be useful not only to handle I/O, but also as an elegant programming
pattern that can be used to process any kind of data. But the advantages do not end
at its simple appearance; streams can also be leveraged to turn "asynchronous control
flow" into "flow control," as we will see in this section.

Sequential execution
By default, streams will handle data in sequence. For example, the _transform()
function of a Transform stream will never be invoked with the next chunk of data
until the previous invocation completes by calling callback(). This is an important
property of streams, crucial for processing each chunk in the right order, but it can
also be exploited to turn streams into an elegant alternative to the traditional control
flow patterns.

The pipeline() function can be easily promisified by using the
promisify() helper from the core util module.

Coding with Streams

[204]

Some code is always better than too much explanation, so let's work on an example
to demonstrate how we can use streams to execute asynchronous tasks in sequence.
Let's create a function that concatenates a set of files received as input, making sure
to honor the order in which they are provided. Let's create a new module called
concat-files.js and define its contents as follows:

import { createWriteStream, createReadStream } from 'fs'
import { Readable, Transform } from 'stream'

export function concatFiles (dest, files) {
 return new Promise((resolve, reject) => {
 const destStream = createWriteStream(dest)
 Readable.from(files) // (1)
 .pipe(new Transform({ // (2)
 objectMode: true,
 transform (filename, enc, done) {
 const src = createReadStream(filename)
 src.pipe(destStream, { end: false })
 src.on('error', done)
 src.on('end', done) // (3)
 }
 }))
 .on('error', reject)
 .on('finish', () => { // (4)
 destStream.end()
 resolve()
 })
 })
}

The preceding function implements a sequential iteration over the files array by
transforming it into a stream. The algorithm can be explained as follows:

1. First, we use Readable.from() to create a Readable stream from the files
array. This stream operates in object mode (the default setting for streams
created with Readable.from()) and it will emit filenames: every chunk is a
string indicating the path to a file. The order of the chunks respects the order
of the files in the files array.

Chapter 6

[205]

2. Next, we create a custom Transform stream to handle each file in the
sequence. Since we are receiving strings, we set the option objectMode to
true. In our transformation logic, for each file, we create a Readable stream
to read the file content and pipe it into destStream (a Writable stream for the
destination file). We make sure not to close destStream after the source file
finishes reading by specifying { end: false } in the pipe() options.

3. When all the contents of the source file have been piped into destStream,
we invoke the done function to communicate the completion of the current
processing, which is necessary to trigger the processing of the next file.

4. When all the files have been processed, the finish event is fired; we can
finally end destStream and invoke the cb() function of concatFiles(),
which signals the completion of the whole operation.

We can now try to use the little module we just created. Let's do that in a new file,
called concat.js:

import { concatFiles } from './concat-files.js'

async function main () {
 try {
 await concatFiles(process.argv[2], process.argv.slice(3))
 } catch (err) {
 console.error(err)
 process.exit(1)
 }

 console.log('All files concatenated successfully')
}
main()

We can now run the preceding program by passing the destination file as the first
command-line argument, followed by a list of files to concatenate; for example:

node concat.js all-together.txt file1.txt file2.txt

This should create a new file called all-together.txt containing, in order, the
contents of file1.txt and file2.txt.

With the concatFiles() function, we were able to obtain an asynchronous
sequential iteration using only streams. This is an elegant and compact solution that
enriches our toolbelt, along with the techniques we already explored in Chapter 4,
Asynchronous Control Flow Patterns with Callbacks, and Chapter 5, Asynchronous Control
Flow Patterns with Promises and Async/Await.

Coding with Streams

[206]

In the next section, we will discover how to use Node.js streams to implement
unordered parallel task execution.

Unordered parallel execution
We just saw that streams process each data chunk in sequence, but sometimes, this
can be a bottleneck as we would not make the most of the concurrency of Node.js.
If we have to execute a slow asynchronous operation for every data chunk, it can
be advantageous to parallelize the execution and speed up the overall process. Of
course, this pattern can only be applied if there is no relationship between each
chunk of data, which might happen frequently for object streams, but very rarely for
binary streams.

To parallelize the execution of a Transform stream, we can apply the same patterns
that we learned in Chapter 4, Asynchronous Control Flow Patterns with Callbacks, but
with some adaptations to get them working with streams. Let's see how this works.

Implementing an unordered parallel stream
Let's immediately demonstrate how to implement an unordered parallel stream with
an example. Let's create a module called parallel-stream.js and define a generic
Transform stream that executes a given transform function in parallel:

import { Transform } from 'stream'

export class ParallelStream extends Transform {
 constructor (userTransform, opts) { // (1)
 super({ objectMode: true, ...opts })
 this.userTransform = userTransform
 this.running = 0
 this.terminateCb = null

Pattern

Use a stream, or combination of streams, to easily iterate over a set
of asynchronous tasks in sequence.

Caution

Unordered parallel streams cannot be used when the order in
which the data is processed is important.

Chapter 6

[207]

 }

 _transform (chunk, enc, done) { // (2)
 this.running++
 this.userTransform(
 chunk,
 enc,
 this.push.bind(this),
 this._onComplete.bind(this)
)
 done()
 }

 _flush (done) { // (3)
 if (this.running > 0) {
 this.terminateCb = done
 } else {
 done()
 }
 }

 _onComplete (err) { // (4)
 this.running--
 if (err) {
 return this.emit('error', err)
 }
 if (this.running === 0) {
 this.terminateCb && this.terminateCb()
 }
 }
}

Let's analyze this new class step by step:

1. As you can see, the constructor accepts a userTransform() function, which is
then saved as an instance variable. We invoke the parent constructor and for
convenience, we enable the object mode by default.

Coding with Streams

[208]

2. Next, it is the _transform() method's turn. In this method, we execute the
userTransform() function and then increment the count of running tasks.
Finally, we notify the Transform stream that the current transformation
step is complete by invoking done(). The trick for triggering the processing
of another item in parallel is exactly this. We are not waiting for the
userTransform() function to complete before invoking done(); instead,
we do it immediately. On the other hand, we provide a special callback to
userTransform(), which is the this._onComplete() method. This allows us to
get notified when the execution of userTransform() completes.

3. The _flush() method is invoked just before the stream terminates, so if there
are still tasks running, we can put the release of the finish event on hold by
not invoking the done() callback immediately. Instead, we assign it to the
this.terminateCallback variable.

4. To understand how the stream is then properly terminated, we have to look
into the _onComplete() method. This last method is invoked every time an
asynchronous task completes. It checks whether there are any more tasks
running and, if there are none, it invokes the this.terminateCallback()
function, which will cause the stream to end, releasing the finish event that
was put on hold in the _flush() method.

The ParallelStream class we just built allows us to easily create a Transform stream
that executes its tasks in parallel, but there is a caveat: it does not preserve the order
of the items as they are received. In fact, asynchronous operations can complete
and push data at any time, regardless of when they are started. We immediately
understand that this property does not play well with binary streams where the
order of data usually matters, but it can surely be useful with some types of object
streams.

Implementing a URL status monitoring application
Now, let's apply our ParallelStream to a concrete example. Let's imagine that
we want to build a simple service to monitor the status of a big list of URLs. Let's
imagine all these URLs are contained in a single file and are newline separated.

Streams can offer a very efficient and elegant solution to this problem, especially if
we use our ParallelStream class to parallelize the checking of the URLs.

Let's build this simple application immediately in a new module called
check-urls.js:

import { pipeline } from 'stream'
import { createReadStream, createWriteStream } from 'fs'
import split from 'split'

Chapter 6

[209]

import superagent from 'superagent'
import { ParallelStream } from './parallel-stream.js'

pipeline(
 createReadStream(process.argv[2]), // (1)
 split(), // (2)
 new ParallelStream(// (3)
 async (url, enc, push, done) => {
 if (!url) {
 return done()
 }
 try {
 await superagent.head(url, { timeout: 5 * 1000 })
 push(`${url} is up\n`)
 } catch (err) {
 push(`${url} is down\n`)
 }
 done()
 }
),
 createWriteStream('results.txt'), // (4)
 (err) => {
 if (err) {
 console.error(err)
 process.exit(1)
 }
 console.log('All urls have been checked')
 }
)

As we can see, with streams, our code looks very elegant and straightforward:
everything is contained in a single streaming pipeline. Let's see how it works:

1. First, we create a Readable stream from the file given as input.
2. We pipe the contents of the input file through split (nodejsdp.link/split),

a Transform stream that ensures each line is emitted in a different chunk.
3. Then, it's time to use our ParallelStream to check the URL. We do this by

sending a head request and waiting for a response. When the operation
completes, we push the result down the stream.

4. Finally, all the results are piped into a file, results.txt.

Now, we can run the check-urls.js module with a command such as this:

http://nodejsdp.link/split

Coding with Streams

[210]

node check-urls.js urls.txt

Here, the file urls.txt contains a list of URLs (one per line); for example:

https://mario.fyi
https://loige.co
http://thiswillbedownforsure.com

When the command finishes running, we will see that a file, results.txt, was
created. This contains the results of the operation; for example:

http://thiswillbedownforsure.com is down
https://mario.fyi is up
https://loige.co is up

There is a good probability that the order in which the results are written is different
from the order in which the URLs were specified in the input file. This is clear
evidence that our stream executes its tasks in parallel, and it does not enforce any
order between the various data chunks in the stream.

In the next section, we will see how to extend this pattern to limit the number of
parallel tasks running at a given time.

Unordered limited parallel execution
If we try to run the check-urls.js application against a file that contains thousands
or millions of URLs, we will surely run into issues. Our application will create an
uncontrolled number of connections all at once, sending a considerable amount of
data in parallel, and potentially undermining the stability of the application and the
availability of the entire system. As we already know, the solution to keep the load
and resource usage under control is to limit the concurrency of the parallel tasks.

Let's see how this works with streams by creating a limited-parallel-stream.js
module, which is an adaptation of parallel-stream.js we created in the
previous section.

For the sake of curiosity, we might want to try replacing
ParallelStream with a normal Transform stream and compare
the behavior and performance of the two (you might want to
do this as an exercise). Using Transform directly is way slower,
because each URL is checked in sequence, but on the other hand
the order of the results in the file results.txt is preserved.

Chapter 6

[211]

Let's see what it looks like, starting from its constructor (we will highlight the
changed parts):

export class LimitedParallelStream extends Transform {
 constructor (concurrency, userTransform, opts) {
 super({ ...opts, objectMode: true })
 this.concurrency = concurrency
 this.userTransform = userTransform
 this.running = 0
 this.continueCb = null
 this.terminateCb = null
 }
// ...

We need a concurrency limit to be taken as input, and this time, we are going to save
two callbacks, one for any pending _transform method (continueCb—more on this
next) and another one for the callback of the _flush method (terminateCb).

Next is the _transform() method:

 _transform (chunk, enc, done) {
 this.running++
 this.userTransform(
 chunk,
 enc,
 this.push.bind(this),
 this._onComplete.bind(this)
)
 if (this.running < this.concurrency) {
 done()
 } else {
 this.continueCb = done
 }
 }

This time, in the _transform() method, we have to check whether we have any free
execution slots before we can invoke done() and trigger the processing of the next
item. If we have already reached the maximum number of concurrently running
streams, we can simply save the done() callback in the continueCb variable so that
it can be invoked as soon as a task finishes.

Coding with Streams

[212]

The _flush() method remains exactly the same as in the ParallelStream class, so
let's move directly to implementing the _onComplete() method:

 _onComplete (err) {
 this.running--
 if (err) {
 return this.emit('error', err)
 }
 const tmpCb = this.continueCb
 this.continueCb = null
 tmpCb && tmpCb()
 if (this.running === 0) {
 this.terminateCb && this.terminateCb()
 }
 }

Every time a task completes, we invoke any saved continueCb() that will cause the
stream to unblock, triggering the processing of the next item.

That's it for the LimitedParallelStream class. We can now use it in the check-urls.js
module in place of ParallelStream and have the concurrency of our tasks limited to
the value that we set.

Ordered parallel execution
The parallel streams that we created previously may shuffle the order of the emitted
data, but there are situations where this is not acceptable. Sometimes, in fact, it is
necessary to have each chunk emitted in the same order in which it was received.
However, not all hope is lost: we can still run the transform function in parallel;
all we have to do is to sort the data emitted by each task so that it follows the same
order in which the data was received.

This technique involves the use of a buffer to reorder the chunks while they
are emitted by each running task. For brevity, we are not going to provide an
implementation of such a stream, as it's quite verbose for the scope of this book.
What we are going to do instead is reuse one of the available packages on npm built
for this specific purpose, that is, parallel-transform (nodejsdp.link/parallel-
transform).

We can quickly check the behavior of an ordered parallel execution by modifying
our existing check-urls module. Let's say that we want our results to be written in
the same order as the URLs in the input file, while executing our checks in parallel.
We can do this using parallel-transform:

http://nodejsdp.link/parallel-transform
http://nodejsdp.link/parallel-transform

Chapter 6

[213]

//...
import parallelTransform from 'parallel-transform'

pipeline(
 createReadStream(process.argv[2]),
 split(),
 parallelTransform(4, async function (url, done) {
 if (!url) {
 return done()
 }
 console.log(url)
 try {
 await request.head(url, { timeout: 5 * 1000 })
 this.push(`${url} is up\n`)
 } catch (err) {
 this.push(`${url} is down\n`)
 }
 done()
 }),
 createWriteStream('results.txt'),
 (err) => {
 if (err) {
 console.error(err)
 process.exit(1)
 }
 console.log('All urls have been checked')
 }
)

In the example here, parallelTransform() creates a Transform stream in object
mode that executes our transformation logic with a maximum concurrency of 4. If
we try to run this new version of check-urls.js, we will now see that the results.
txt file lists the results in the same order as the URLs appear in the input file. It is
important to see that, even though the order of the output is the same as the input,
the asynchronous tasks still run in parallel and can possibly complete in any order.

Coding with Streams

[214]

With this, we conclude our analysis of the asynchronous control flow patterns with
streams. Next, we are going to focus on some piping patterns.

Piping patterns
As in real-life plumbing, Node.js streams can also be piped together by following
different patterns. We can, in fact, merge the flow of two different streams into one,
split the flow of one stream into two or more pipes, or redirect the flow based on
a condition. In this section, we are going to explore the most important plumbing
patterns that can be applied to Node.js streams.

Combining streams
In this chapter, we have stressed the fact that streams provide a simple infrastructure
to modularize and reuse our code, but there is one last piece missing in this puzzle:
what if we want to modularize and reuse an entire pipeline? What if we want to
combine multiple streams so that they look like one from the outside? The following
figure shows what this means:

Figure 6.6: Combining streams

When using the ordered parallel execution pattern, we need to be
aware of slow items blocking the pipeline or growing the memory
indefinitely. In fact, if there is an item that requires a very long time
to complete, depending on the implementation of the pattern, it
will either cause the buffer containing the pending ordered results
to grow indefinitely or the entire processing to block until the
slow item completes. With the first strategy, we are optimizing for
performance, while with the second, we get predictable memory
usage. parallel-transform implementation opts for predictable
memory utilization and maintains an internal buffer that will not
grow more than the specified maximum concurrency.

Chapter 6

[215]

From Figure 6.6, we should already get a hint of how this works:

• When we write into the combined stream, we are actually writing into the
first stream of the pipeline.

• When we read from the combined stream, we are actually reading from the
last stream of the pipeline.

A combined stream is usually a Duplex stream, which is built by connecting the first
stream to its Writable side and the last stream to its Readable side.

But that's not enough. In fact, another important characteristic of a combined stream
is that it has to capture and propagate all the errors that are emitted from any stream
inside the pipeline. As we already mentioned, any error event is not automatically
propagated down the pipeline when we use pipe(), and we should explicitly attach
an error listener to each stream. We saw that we could use the pipeline() helper
function to overcome the limitations of pipe() with error management, but the issue
with both pipe() and the pipeline() helper is that the two functions return only the
last stream of the pipeline, so we only get the (last) Readable component and not the
(first) Writable component.

We can verify this very easily with the following snippet of code:

import { createReadStream, createWriteStream } from 'fs'
import { Transform, pipeline } from 'stream'
import { strict as assert } from 'assert'

const streamA = createReadStream('package.json')
const streamB = new Transform({
 transform (chunk, enc, done) {
 this.push(chunk.toString().toUpperCase())
 done()
 }
})
const streamC = createWriteStream('package-uppercase.json')

const pipelineReturn = pipeline(
 streamA,
 streamB,

To create a Duplex stream out of two different streams, one
Writable and one Readable, we can use an npm module such
as duplexer2 (nodejsdp.link/duplexer2) or duplexify
(nodejsdp.link/duplexify).

http://nodejsdp.link/duplexer2
http://nodejsdp.link/duplexify

Coding with Streams

[216]

 streamC,
 () => {
 // handle errors here
 })
assert.strictEqual(streamC, pipelineReturn) // valid

const pipeReturn = streamA.pipe(streamB).pipe(streamC)
assert.strictEqual(streamC, pipeReturn) // valid

From the preceding code, it should be clear that with just pipe() or pipeline(),
it would not be trivial to construct a combined stream.

To recap, a combined stream has two major advantages:

• We can redistribute it as a black box by hiding its internal pipeline.
• We have simplified error management, as we don't have to attach an error

listener to each stream in the pipeline, but just to the combined stream itself.

Combining streams is a pretty common practice, so if we don't have any particular
need, we might just want to reuse an existing library such as pumpify (nodejsdp.
link/pumpify).

This library offers a very simple interface. In fact, all you have to do to obtain a
combined stream is to call pumpify(), passing all the streams you want in your
pipeline. This is very similar to the signature of pipeline(), except that there's no
callback:

const combinedStream = pumpify(streamA, streamB, streamC)

When we do something like this, pumpify will create a pipeline out of our streams,
return a new combined stream that abstracts away the complexity of our pipeline,
and provide the advantages discussed previously.

If you are curious to see what it takes to build a library like
pumpify, you should check its source code on GitHub (nodejsdp.
link/pumpify-gh). One interesting fact is that, internally, pumpify
uses pump (nodejsdp.link/pump), a module that was born before
the Node.js pipeline() helper. pump is effectively the module
that inspired the development of pipeline(). If you compare
their source code, you will find out that, unsurprisingly, the two
modules have a lot in common.

http://nodejsdp.link/pumpify
http://nodejsdp.link/pumpify
http://nodejsdp.link/pumpify-gh
http://nodejsdp.link/pumpify-gh
http://nodejsdp.link/pump

Chapter 6

[217]

Implementing a combined stream
To illustrate a simple example of combining streams, let's consider the case of the
following two Transform streams:

• One that both compresses and encrypts the data
• One that both decrypts and decompresses the data

Using a library such as pumpify, we can easily build these streams (in a file called
combined-streams.js) by combining some of the streams that we already have
available from the core libraries:

import { createGzip, createGunzip } from 'zlib'
import {
 createCipheriv,
 createDecipheriv,
 scryptSync
} from 'crypto'
import pumpify from 'pumpify'
function createKey (password) {
 return scryptSync(password, 'salt', 24)
}

export function createCompressAndEncrypt (password, iv) {
 const key = createKey(password)
 const combinedStream = pumpify(
 createGzip(),
 createCipheriv('aes192', key, iv)
)
 combinedStream.iv = iv

 return combinedStream
}

export function createDecryptAndDecompress (password, iv) {
 const key = createKey(password)
 return pumpify(
 createDecipheriv('aes192', key, iv),
 createGunzip()
)
}

Coding with Streams

[218]

We can now use these combined streams as if they were black boxes, for example, to
create a small application that archives a file by compressing and encrypting it. Let's
do that in a new module named archive.js:

import { createReadStream, createWriteStream } from 'fs'
import { pipeline } from 'stream'
import { randomBytes } from 'crypto'
import { createCompressAndEncrypt } from './combined-streams.js'

const [,, password, source] = process.argv
const iv = randomBytes(16)
const destination = `${source}.gz.enc`

pipeline(
 createReadStream(source),
 createCompressAndEncrypt(password, iv),

 createWriteStream(destination),
 (err) => {
 if (err) {
 console.error(err)
 process.exit(1)
 }
 console.log(`${destination} created with iv: ${iv.
toString('hex')}`)
 }
)

Note how we don't have to worry about how many steps there are within
archiveFile. In fact, we just treat it as a single stream within our current pipeline.
This makes our combined stream easily reusable in other contexts.

Now, to run the archive module, simply specify a password and a file in the
command-line arguments:

node archive.js mypassword /path/to/a/file.txt

This command will create a file called /path/to/a/file.txt.gz.enc and it will print
the generated initialization vector to the console.

Now, as an exercise, you could use the createDecryptAndDecompress() function to
create a similar script that takes a password, an initialization vector, and an archived
file and unarchives it.

Chapter 6

[219]

With this example, we have clearly demonstrated how important it is to combine
streams. From one side, it allows us to create reusable compositions of streams, and
from the other, it simplifies the error management of a pipeline.

Forking streams
We can perform a fork of a stream by piping a single Readable stream into multiple
Writable streams. This is useful when we want to send the same data to different
destinations; for example, two different sockets or two different files. It can also
be used when we want to perform different transformations on the same data, or
when we want to split the data based on some criteria. If you are familiar with the
Unix command tee (nodejsdp.link/tee), this is exactly the same concept applied to
Node.js streams!

Figure 6.7 gives us a graphical representation of this pattern:

Figure 6.7: Forking a stream

In real-life applications, it is generally preferable to include the
initialization vector as part of the encrypted data, rather than
requiring the user to pass it around. One way to implement this
is by having the first 16 bytes emitted by the archive stream to be
representing the initialization vector. The unarchive utility would
need to be updated accordingly to consume the first 16 bytes before
starting to process the data in a streaming fashion. This approach
would add some additional complexity, which is outside the scope
of this example, therefore we opted for a simpler solution. Once
you feel comfortable with streams, we encourage you to try to
implement as an exercise a solution where the initialization vector
doesn't have to be passed around by the user.

http://nodejsdp.link/tee

Coding with Streams

[220]

Forking a stream in Node.js is quite easy, but there are a few caveats to keep in mind.
Let's start by discussing this pattern with an example. It will be easier to appreciate
the caveats of this pattern once we have an example at hand.

Implementing a multiple checksum generator
Let's create a small utility that outputs both the sha1 and md5 hashes of a given file.
Let's call this new module generate-hashes.js:

import { createReadStream, createWriteStream } from 'fs'
import { createHash } from 'crypto'

const filename = process.argv[2]
const sha1Stream = createHash('sha1').setEncoding('hex')
const md5Stream = createHash('md5').setEncoding('hex')
const inputStream = createReadStream(filename)

inputStream
 .pipe(sha1Stream)
 .pipe(createWriteStream(`${filename}.sha1`))

inputStream
 .pipe(md5Stream)
 .pipe(createWriteStream(`${filename}.md5`))

Very simple, right? The inputStream variable is piped into sha1Stream on one side
and md5Stream on the other. There are a few things to note that happen behind the
scenes:

• Both md5Stream and sha1Stream will be ended automatically when
inputStream ends, unless we specify { end: false } as an option when
invoking pipe().

• The two forks of the stream will receive the same data chunks, so we must
be very careful when performing side-effect operations on the data, as that
would affect every stream that we are sending data to.

• Backpressure will work out of the box; the flow coming from inputStream
will go as fast as the slowest branch of the fork. In other words, if one
destination pauses the source stream to handle backpressure for a long
time, all the other destinations will be waiting as well. Also, one destination
blocking indefinitely will block the entire pipeline!

Chapter 6

[221]

• If we pipe to an additional stream after we've started consuming the data at
source (async piping), the new stream will only receive new chunks of data.
In those cases, we can use a PassThrough instance as a placeholder to collect
all the data from the moment we start consuming the stream. Then, the
PassThrough stream can be read at any future time without the risk of losing
any data. Just be aware that this approach might generate backpressure and
block the entire pipeline, as discussed in the previous point.

Merging streams
Merging is the opposite operation to forking and involves piping a set of Readable
streams into a single Writable stream, as shown in Figure 6.8:

Figure 6.8: Merging streams

Merging multiple streams into one is, in general, a simple operation; however, we
have to pay attention to the way we handle the end event, as piping using the default
options (whereby { end: true }) causes the destination stream to end as soon as
one of the sources ends. This can often lead to an error, as the other active sources
continue to write to an already terminated stream.

The solution to this problem is to use the option { end: false } when piping
multiple sources to a single destination and then invoke end() on the destination
only when all the sources have completed reading.

Merging text files
To make a simple example, let's implement a small program that takes an output
path and an arbitrary number of text files, and then merges the lines of every file
into the destination file. Our new module is going to be called merge-lines.js.
Let's define its contents, starting from some initialization steps:

import { createReadStream, createWriteStream } from 'fs'
import split from 'split'

Coding with Streams

[222]

const dest = process.argv[2]
const sources = process.argv.slice(3)

In the preceding code, we are just loading all the dependencies and initializing the
variables that contain the name of the destination (dest) file and all the source files
(sources).

Next, we will create the destination stream:

const destStream = createWriteStream(dest)

Now, it's time to initialize the source streams:

let endCount = 0
for (const source of sources) {
 const sourceStream = createReadStream(source, { highWaterMark: 16 })
 sourceStream.on('end', () => {
 if (++endCount === sources.length) {
 destStream.end()
 console.log(`${dest} created`)
 }
 })
 sourceStream
 .pipe(split((line) => line + '\n'))
 .pipe(destStream, { end: false })
}

In the preceding code, we created a Readable stream for every source file. Then, for
each source stream, we attached an end listener, which will terminate the destination
stream only when all the files have been read completely. Finally, we piped every
source stream to split(), a Transform stream that makes sure that we produce a
chunk for every line of text, and finally, we piped the results to our destination
stream. This is when the real merge happens. We are piping multiple source streams
into one single destination.

We can now execute this code with the following command:

node merge-lines.js <destination> <source1> <source2> <source3> ...

If you run this code with large enough files, you will notice that the destination file
will contain lines that are randomly intermingled from all the source files (a low
highWaterMark of 16 bytes makes this property even more apparent). This kind of
behavior can be acceptable in some types of object streams and some text streams
split by line (as in our current example), but it is often undesirable when dealing
with most binary streams.

Chapter 6

[223]

There is one variation of the pattern that allows us to merge streams in order; it
consists of consuming the source streams one after the other. When the previous
one ends, the next one starts emitting chunks (it is like concatenating the output of all
the sources). As always, on npm, we can find some packages that also deal with this
situation. One of them is multistream (https://npmjs.org/package/multistream).

Multiplexing and demultiplexing
There is a particular variation of the merge stream pattern in which we don't really
want to just join multiple streams together but, instead, use a shared channel to
deliver the data of a set of streams. This is a conceptually different operation because
the source streams remain logically separated inside the shared channel, which
allows us to split the stream again once the data reaches the other end of the shared
channel. Figure 6.9 clarifies this situation:

Figure 6.9: Multiplexing and demultiplexing streams

The operation of combining multiple streams (in this case, also known as channels)
to allow transmission over a single stream is called multiplexing, while the opposite
operation, namely reconstructing the original streams from the data received from
a shared stream, is called demultiplexing. The devices that perform these operations
are called multiplexer (or mux) and demultiplexer (or demux), respectively. This
is a widely studied area in computer science and telecommunications in general,
as it is one of the foundations of almost any type of communication media such as
telephony, radio, TV, and, of course, the Internet itself. For the scope of this book,
we will not go too far with the explanations, as this is a vast topic.

What we want to demonstrate in this section is how it's possible to use a shared
Node.js stream to transmit multiple logically separated streams that are then
separated again at the other end of the shared stream.

https://npmjs.org/package/multistream

Coding with Streams

[224]

Building a remote logger
Let's use an example to drive our discussion. We want a small program that starts a
child process and redirects both its standard output and standard error to a remote
server, which, in turn, saves the two streams in two separate files. So, in this case, the
shared medium is a TCP connection, while the two channels to be multiplexed are
the stdout and stderr of a child process. We will leverage a technique called packet
switching, the same technique that is used by protocols such as IP, TCP, and UDP.
Packet switching involves wrapping the data into packets, allowing us to specify
various meta information that's useful for multiplexing, routing, controlling the flow,
checking for corrupted data, and so on. The protocol that we are implementing in
our example is very minimalist. We wrap our data into simple packets, as illustrated
in Figure 6.10:

Figure 6.10: Bytes structure of the data packet for our remote logger

As shown in Figure 6.10, the packet contains the actual data, but also a header
(Channel ID + Data length), which will make it possible to differentiate the data of
each stream and enable the demultiplexer to route the packet to the right channel.

Client side – multiplexing
Let's start to build our application from the client side. With a lot of creativity, we
will call the module client.js. This represents the part of the application that is
responsible for starting a child process and multiplexing its streams.

So, let's start by defining the module. First, we need some dependencies:

import { fork } from 'child_process'
import { connect } from 'net'

Now, let's implement a function that performs the multiplexing of a list of sources:

function multiplexChannels (sources, destination) {
 let openChannels = sources.length
 for (let i = 0; i < sources.length; i++) {
 sources[i]
 .on('readable', function () { // (1)
 let chunk

Chapter 6

[225]

 while ((chunk = this.read()) !== null) {
 const outBuff = Buffer.alloc(1 + 4 + chunk.length) // (2)
 outBuff.writeUInt8(i, 0)
 outBuff.writeUInt32BE(chunk.length, 1)
 chunk.copy(outBuff, 5)
 console.log(`Sending packet to channel: ${i}`)
 destination.write(outBuff) // (3)
 }
 })
 .on('end', () => { // (4)
 if (--openChannels === 0) {
 destination.end()
 }
 })
 }
}

The multiplexChannels() function takes in, as input, the source streams to be
multiplexed and the destination channel, and then it performs the following steps:

1. For each source stream, it registers a listener for the readable event, where
we read the data from the stream using the non-flowing mode.

2. When a chunk is read, we wrap it into a packet that contains, in order, 1 byte
(UInt8) for the channel ID, 4 bytes (UInt32BE) for the packet size, and then the
actual data.

3. When the packet is ready, we write it into the destination stream.
4. Finally, we register a listener for the end event so that we can terminate the

destination stream when all the source streams have ended.

Now, the last part of our client becomes very easy:

const socket = connect(3000, () => { // (1)
 const child = fork(// (2)
 process.argv[2],
 process.argv.slice(3),
 { silent: true }

Our protocol is to be able to multiplex up to 256 different source
streams because we only have 1 byte to identify the channel.

Coding with Streams

[226]

)
 multiplexChannels([child.stdout, child.stderr], socket) // (3)
})

In this last code fragment, we perform the following operations:

1. We create a new TCP client connection to the address localhost:3000.
2. We start the child process by using the first command-line argument as the

path, while we provide the rest of the process.argv array as arguments for
the child process. We specify the option {silent: true} so that the child
process does not inherit stdout and stderr of the parent.

3. Finally, we take stdout and stderr of the child process and we multiplex
them into the socket's Writable stream using the mutiplexChannels()
function.

Server side – demultiplexing
Now, we can take care of creating the server side of the application (server.js),
where we demultiplex the streams from the remote connection and pipe them into
two different files.

Let's start by creating a function called demultiplexChannel():

import { createWriteStream } from 'fs'
import { createServer } from 'net'

function demultiplexChannel (source, destinations) {
 let currentChannel = null
 let currentLength = null

 source
 .on('readable', () => { // (1)
 let chunk
 if (currentChannel === null) { // (2)
 chunk = source.read(1)
 currentChannel = chunk && chunk.readUInt8(0)
 }

 if (currentLength === null) { // (3)
 chunk = source.read(4)
 currentLength = chunk && chunk.readUInt32BE(0)

Chapter 6

[227]

 if (currentLength === null) {
 return null
 }
 }

 chunk = source.read(currentLength) // (4)
 if (chunk === null) {
 return null
 }

 console.log(`Received packet from: ${currentChannel}`)
 destinations[currentChannel].write(chunk) // (5)
 currentChannel = null
 currentLength = null
 })
 .on('end', () => { // (6)
 destinations.forEach(destination => destination.end())
 console.log('Source channel closed')
 })
}

The preceding code might look complicated, but it is not. Thanks to the features of
Node.js Readable streams, we can easily implement the demultiplexing of our little
protocol as follows:

1. We start reading from the stream using the non-flowing mode.
2. First, if we have not read the channel ID yet, we try to read 1 byte from the

stream and then transform it into a number.
3. The next step is to read the length of the data. We need 4 bytes for that, so

it's possible (even if unlikely) that we don't have enough data in the internal
buffer, which will cause the this.read() invocation to return null. In such
a case, we simply interrupt the parsing and retry at the next readable event.

4. When we can finally also read the data size, we know how much data to pull
from the internal buffer, so we try to read it all.

5. When we read all the data, we can write it to the right destination channel,
making sure that we reset the currentChannel and currentLength variables
(these will be used to parse the next packet).

6. Lastly, we make sure to end all the destination channels when the source
channel ends.

Coding with Streams

[228]

Now that we can demultiplex the source stream, let's put our new function to work:

const server = createServer((socket) => {
 const stdoutStream = createWriteStream('stdout.log')
 const stderrStream = createWriteStream('stderr.log')
 demultiplexChannel(socket, [stdoutStream, stderrStream])
})
server.listen(3000, () => console.log('Server started'))

In the preceding code, we first start a TCP server on port 3000; then, for each
connection that we receive, we create two Writable streams pointing to two
different files: one for the standard output and the other for the standard error.
These are our destination channels. Finally, we use demultiplexChannel() to
demultiplex the socket stream into stdoutStream and stderrStream.

Running the mux/demux application
Now, we are ready to try our new mux/demux application, but first, let's
create a small Node.js program to produce some sample output; let's call it
generate-data.js:

console.log('out1')
console.log('out2')
console.error('err1')
console.log('out3')
console.error('err2')

Okay; now, we are ready to try our remote logging application. First, let's start the
server:

node server.js

Then, we'll start the client by providing the file that we want to start as a child
process:

node client.js generateData.js

The client will run almost immediately, but at the end of the process, the standard
input and standard output of the generate-data.js application will have traveled
through one single TCP connection and then, on the server, be demultiplexed into
two separate files.

Chapter 6

[229]

Multiplexing and demultiplexing object streams
The example that we have just shown demonstrates how to multiplex and
demultiplex a binary/text stream, but it's worth mentioning that the same rules
apply to object streams. The biggest difference is that when using objects, we already
have a way to transmit the data using atomic messages (the objects), so multiplexing
would be as easy as setting a channelID property in each object. Demultiplexing
would simply involve reading the channelID property and routing each object
toward the right destination stream.

Another pattern involving only demultiplexing is routing the data coming from a
source depending on some condition. With this pattern, we can implement complex
flows, such as the one shown in Figure 6.11:

Figure 6.11: Demultiplexing an object stream

The demultiplexer used in the system in Figure 6.11 takes a stream of objects
representing animals and distributes each of them to the right destination stream
based on the class of the animal: reptiles, amphibians, or mammals.

Using the same principle, we can also implement an if...else statement for
streams. For some inspiration, take a look at the ternary-stream package (nodejsdp.
link/ternary-stream), which allows us to do exactly that.

Please make a note that, as we are using child_process.fork()
(nodejsdp.link/fork), our client will only be able to launch other
Node.js modules.

http://nodejsdp.link/ternary-stream
http://nodejsdp.link/ternary-stream
http://nodejsdp.link/fork

Coding with Streams

[230]

Summary
In this chapter, we have shed some light on Node.js streams and some of their
most common use cases. We learned why streams are so acclaimed by the Node.js
community and we mastered their basic functionality, enabling us to discover more
and navigate comfortably in this new world. We analyzed some advanced patterns
and started to understand how to connect streams in different configurations,
grasping the importance of interoperability, which is what makes streams so
versatile and powerful.

If we can't do something with one stream, we can probably do it by connecting other
streams together, and this works great with the one thing per module philosophy.
At this point, it should be clear that streams are not just a good to know feature of
Node.js; they are an essential part—a crucial pattern to handle binary data, strings,
and objects. It's not by chance that we dedicated an entire chapter to them.

In the next few chapters, we will focus on the traditional object-oriented design
patterns. But don't be fooled; even though JavaScript is, to some extent, an object-
oriented language, in Node.js, the functional or hybrid approach is often preferred.
Get rid of every prejudice before reading the next chapters.

Exercises
• 6.1 Data compression efficiency: Write a command-line script that takes a

file as input and compresses it using the different algorithms available in the
zlib module (Brotli, Deflate, Gzip). You want to produce a summary table
that compares the algorithm's compression time and compression efficiency
on the given file. Hint: This could be a good use case for the fork pattern, but
remember that we made some important performance considerations when
we discussed it earlier in this chapter.

• 6.2 Stream data processing: On Kaggle, you can find a lot of interesting data
sets, such as the London Crime Data (nodejsdp.link/london-crime). You can
download the data in CSV format and build a stream processing script that
analyzes the data and tries to answer the following questions:

• Did the number of crimes go up or down over the years?
• What are the most dangerous areas of London?
• What is the most common crime per area?
• What is the least common crime?

http://nodejsdp.link/london-crime

Chapter 6

[231]

Hint: You can use a combination of Transform streams and PassThrough
streams to parse and observe the data as it is flowing. Then, you can build in-
memory aggregations for the data, which can help you answer the preceding
questions. Also, you don't need to do everything in one pipeline; you could
build very specialized pipelines (for example, one per question) and use the
fork pattern to distribute the parsed data across them.

• 6.3 File share over TCP: Build a client and a server to transfer files over TCP.
Extra points if you add a layer of encryption on top of that and if you can
transfer multiple files at once. Once you have your implementation ready,
give the client code and your IP address to a friend or a colleague, then ask
them to send you some files! Hint: You could use mux/demux to receive
multiple files at once.

• 6.4 Animations with Readable streams: Did you know you can create
amazing terminal animations with just Readable streams? Well, to
understand what we are talking about here, try to run curl parrot.live
in your terminal and see what happens! If you think that this is cool, why
don't you try to create something similar? Hint: If you need some help with
figuring out how to implement this, you can check out the actual source code
of parrot.live by simply accessing its URL through your browser.

[233]

7
Creational Design Patterns

A design pattern is a reusable solution to a recurring problem. The term is really
broad in its definition and can span multiple domains of an application. However,
the term is often associated with a well-known set of object-oriented patterns that
were popularized in the 90s by the book, Design Patterns: Elements of Reusable Object-
Oriented Software, Pearson Education, by the almost legendary Gang of Four (GoF):
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. We will often refer
to these specific sets of patterns as traditional design patterns or GoF design patterns.

Applying this set of object-oriented design patterns in JavaScript is not as linear and
formal as it would be in a classical object-oriented language. As we know, JavaScript
is object-oriented, prototype-based, and has dynamic typing. It also treats functions
as first-class citizens and allows functional programming styles. These characteristics
make JavaScript a very versatile language, which gives tremendous power to
the developer but at the same time, it causes fragmentation of programming
styles, conventions, techniques, and ultimately the patterns of its ecosystem. With
JavaScript, there are so many ways to achieve the same result that each developer
has their own opinion on what's the best way to approach a problem. A clear
demonstration of this phenomenon is the abundance of frameworks and opinionated
libraries in the JavaScript ecosystem; probably no other language has ever seen
so many, especially now that Node.js has given new astonishing possibilities to
JavaScript and has created so many new scenarios.

In this context, the nature of JavaScript affects traditional design patterns too.
There are so many ways in which traditional design patterns can be implemented
in JavaScript that the traditional, strongly object-oriented implementation stops
being relevant.

Creational Design Patterns

[234]

In some cases, the traditional implementation of these design patterns is not even
possible because JavaScript, as we know, doesn't have real classes or abstract
interfaces. What doesn't change, though, is the original idea at the base of each
pattern, the problem it solves, and the concepts at the heart of the solution.

In this chapter and in the two that follow, we will see how some of the most
important GoF design patterns apply to Node.js and its philosophy, thus
rediscovering their importance from another perspective. Among these traditional
patterns, we will also have a look at some "less traditional" design patterns born
from within the JavaScript ecosystem itself.

In this chapter, in particular, we'll take a look at a class of design patterns called
creational. As the name suggests, these patterns address problems related to the
creation of objects. For example, the Factory pattern allows us to encapsulate the
creation of an object within a function. The Revealing Constructor pattern allows us
to expose private object properties and methods only during the object's creation,
while the Builder pattern simplifies the creation of complex objects. Finally, the
Singleton pattern and the Dependency Injection pattern help us with wiring the
modules within our applications.

Factory
We'll begin our journey from one of the most common design patterns in
Node.js: Factory. As you will see, the Factory pattern is very versatile and has more
than just one purpose. Its main advantage is its ability to decouple the creation of
an object from one particular implementation. This allows us, for example, to create
an object whose class is determined at runtime. Factory also allows us to expose
"a surface area" that is much smaller than that of a class; a class can be extended or
manipulated, while a factory, being just a function, offers fewer options to the user,
making it more robust and easier to understand. Finally, a factory can also be used
to enforce encapsulation by leveraging closures.

This chapter, as well as the following two, assume that you have
some notion of how inheritance works in JavaScript. Please also be
advised that we will often use generic and more intuitive diagrams
to describe a pattern in place of standard UML. This is because
many patterns can have an implementation based not only on
classes but also on objects and even functions.

Chapter 7

[235]

Decoupling object creation and
implementation
We already stressed the fact that, in JavaScript, the functional paradigm is often
preferred to a purely object-oriented design for its simplicity, usability, and small
surface area. This is especially true when creating new object instances. In fact,
invoking a factory, instead of directly creating a new object from a class using
the new operator or Object.create(), is so much more convenient and flexible
in several respects.

First and foremost, a factory allows us to separate the creation of an object from its
implementation. Essentially, a factory wraps the creation of a new instance, giving
us more flexibility and control in the way we do it. Inside the factory, we can choose
to create a new instance of a class using the new operator, or leverage closures to
dynamically build a stateful object literal, or even return a different object type based
on a particular condition. The consumer of the factory is totally agnostic about how
the creation of the instance is carried out. The truth is that, by using new, we are
binding our code to one specific way of creating an object, while with a factory, we
can have much more flexibility, almost for free. As a quick example, let's consider
a simple factory that creates an Image object:

function createImage (name) {
 return new Image(name)
}
const image = createImage('photo.jpeg')

The createImage() factory might look totally unnecessary; why not instantiate
the Image class by using the new operator directly? Why not write something like
the following:

const image = new Image(name)

As we already mentioned, using new binds our code to one particular type of object,
which in the preceding case is to the Image object type. A factory, on the other hand,
gives us much more flexibility. Imagine that we want to refactor the Image class,
splitting it into smaller classes, one for each image format that we support.

Creational Design Patterns

[236]

If we exposed a factory as the only means to create new images, we could simply
rewrite it as follows, without breaking any of the existing code:

function createImage (name) {
 if (name.match(/\.jpe?g$/)) {
 return new ImageJpeg(name)
 } else if (name.match(/\.gif$/)) {
 return new ImageGif(name)
 } else if (name.match(/\.png$/)) {
 return new ImagePng(name)
 } else {
 throw new Error('Unsupported format')
 }
}

Our factory also allows us to keep the classes hidden and prevents them from being
extended or modified (remember the principle of small surface area?). In JavaScript,
this can be achieved by exporting only the factory, while keeping the classes private.

A mechanism to enforce encapsulation
A factory can also be used as an encapsulation mechanism, thanks to closures.

Encapsulation refers to controlling the access to some internal details of a component
by preventing external code from manipulating them directly. The interaction with
the component happens only through its public interface, isolating the external code
from the changes in the implementation details of the component. Encapsulation
is a fundamental principle of object-oriented design, together with inheritance,
polymorphism, and abstraction.

In JavaScript, one of the main ways to enforce encapsulation is through function
scopes and closures. A factory makes it straightforward to enforce private variables.
Consider the following, for example:

function createPerson (name) {
 const privateProperties = {}

 const person = {
 setName (name) {
 if (!name) {
 throw new Error('A person must have a name')
 }

Chapter 7

[237]

 privateProperties.name = name
 },
 getName () {
 return privateProperties.name
 }
 }

 person.setName(name)
 return person
}

In the preceding code, we leverage a closure to create two objects: a person object,
which represents the public interface returned by the factory, and a group
of privateProperties that are inaccessible from the outside and that can be
manipulated only through the interface provided by the person object. For example,
in the preceding code, we make sure that a person's name is never empty; this would
not be possible to enforce if name was just a normal property of the person object.

Using closures is not the only technique that we have for enforcing
encapsulation. In fact, other possible approaches are:

• Using private class fields (the hashbang # prefix syntax),
introduced in Node.js 12. More on this at nodejsdp.
link/tc39-private-fields. This is the most modern
approach, but at the time of writing, the feature is still
experimental and has yet to be included in the official
ECMAScript specification.

• Using WeakMaps. More on this at nodejsdp.link/
weakmaps-private.

• Using symbols, as explained in the following article:
nodejsdp.link/symbol-private.

• Defining private variables in a constructor (as
recommended by Douglas Crockford: nodejsdp.link/
crockford-private). This is the legacy but also the best-
known approach.

• Using conventions, for example, prefixing the name of a
property with an underscore "_". However, this does not
technically prevent a member from being read or modified
from the outside.

http://nodejsdp.link/tc39-private-fields
http://nodejsdp.link/tc39-private-fields
http://nodejsdp.link/weakmaps-private
http://nodejsdp.link/weakmaps-private
http://nodejsdp.link/symbol-private
http://nodejsdp.link/crockford-private
http://nodejsdp.link/crockford-private

Creational Design Patterns

[238]

Building a simple code profiler
Now, let's work on a complete example using a factory. Let's build a simple code
profiler, an object with the following properties:

• A start() method that triggers the start of a profiling session
• An end() method to terminate the session and log its execution time to

the console

Let's start by creating a file named profiler.js, which will have the following
content:

class Profiler {
 constructor (label) {
 this.label = label
 this.lastTime = null
 }

 start () {
 this.lastTime = process.hrtime()
 }

 end () {
 const diff = process.hrtime(this.lastTime)
 console.log(`Timer "${this.label}" took ${diff[0]} seconds ` +
 `and ${diff[1]} nanoseconds.`)
 }
}

The Profiler class we just defined uses the default high resolution timer of Node.js
to save the current time when start() is invoked, and then calculate the elapsed
time when end() is executed, printing the result to the console.

Now, if we are going to use such a profiler in a real-world application to calculate
the execution time of different routines, we can easily imagine the huge amount of
profiling information printed to the console, especially in a production environment.
What we may want to do instead is redirect the profiling information to another
source, for example, a dedicated log file, or alternatively, disable the profiler
altogether if the application is running in production mode. It's clear that if we were
to instantiate a Profiler object directly by using the new operator, we would need
some extra logic in the client code or in the Profiler object itself in order to switch
between the different logics.

Chapter 7

[239]

Alternatively, we can use a factory to abstract the creation of the Profiler object
so that, depending on whether the application runs in production or development
mode, we can return a fully working Profiler instance or a mock object with the
same interface but with empty methods. This is exactly what we are going to do
in our profiler.js module. Instead of exporting the Profiler class, we will export
only our factory. The following is its code:

const noopProfiler = {
 start () {},
 end () {}
}

export function createProfiler (label) {
 if (process.env.NODE_ENV === 'production') {
 return noopProfiler
 }

 return new Profiler(label)
}

The createProfiler() function is our factory and its role is abstracting the creation
of a Profiler object from its implementation. If the application is running in
production mode, we return noopProfiler, which essentially doesn't do anything,
effectively disabling any profiling. If the application is not running in production
mode, then we create and return a new, fully functional Profiler instance.

Thanks to JavaScript's dynamic typing, we were able to return an object instantiated
with the new operator in one circumstance and a simple object literal in the other
(this is also known as duck typing, and you can read more about it at nodejsdp.
link/duck-typing). This confirms how we can create objects in any way we like
inside the factory function. We could also execute additional initialization steps
or return a different type of object based on particular conditions, all of this while
isolating the consumer of the object from all these details. We can easily understand
the power of this simple pattern.

Now, let's play with our profiler factory a bit. Let's create an algorithm to calculate
all the factors of a given number and use our profiler to record its running time:

// index.js
import { createProfiler } from './profiler.js'

http://nodejsdp.link/duck-typing
http://nodejsdp.link/duck-typing

Creational Design Patterns

[240]

function getAllFactors (intNumber) {
 const profiler = createProfiler(
 `Finding all factors of ${intNumber}`)

 profiler.start()
 const factors = []
 for (let factor = 2; factor <= intNumber; factor++) {
 while ((intNumber % factor) === 0) {
 factors.push(factor)
 intNumber = intNumber / factor
 }
 }
 profiler.end()

 return factors
}

const myNumber = process.argv[2]
const myFactors = getAllFactors(myNumber)
console.log(`Factors of ${myNumber} are: `, myFactors)

The profiler variable contains our Profiler object, whose implementation will
be decided by the createProfiler() factory at runtime, based on the NODE_ENV
environment variable.

For example, if we run the module in production mode, we will get no profiling
information:

NODE_ENV=production node index.js 2201307499

While if we run the module in development mode, we will see the profiling
information printed to the console:

node index.js 2201307499

The example that we just presented is just a simple application of the factory function
pattern, but it clearly shows the advantages of separating an object's creation from its
implementation.

Chapter 7

[241]

In the wild
As we said, factories are very common in Node.js. We can find one example in the
popular Knex (nodejsdp.link/knex) package. Knex is a SQL query builder that
supports multiple databases. Its package exports just a function, which is a factory.
The factory performs various checks, selects the right dialect object to use based on
the database engine, and finally creates and returns the Knex object. Take a look at
the code at nodejsdp.link/knex-factory.

Builder
Builder is a creational design pattern that simplifies the creation of complex objects
by providing a fluent interface, which allows us to build the object step by step. This
greatly improves the readability and the general developer experience when creating
such complex objects.

The most apparent situation in which we could benefit from the Builder pattern is
a class with a constructor that has a long list of arguments, or takes many complex
parameters as input. Usually, these kinds of classes require so many parameters in
advance because all of them are necessary to build an instance that is complete and
in a consistent state, so it's necessary to take this into account when considering
potential solutions.

So, let's see the general structure of the pattern. Imagine having a Boat class with a
constructor such as the following:

class Boat {
 constructor (hasMotor, motorCount, motorBrand, motorModel,
 hasSails, sailsCount, sailsMaterial, sailsColor,
 hullColor, hasCabin) {
 // ...
 }
}

Invoking such a constructor would create some hard to read code, which is easily
prone to errors (which argument is what?). Take the following code, for example:

const myBoat = new Boat(true, 2, 'Best Motor Co. ', 'OM123', true, 1,
 'fabric', 'white', 'blue', false)

http://nodejsdp.link/knex
http://nodejsdp.link/knex-factory

Creational Design Patterns

[242]

A first step to improve the design of this constructor is to aggregate all arguments in
a single object literal, such as the following:

class Boat {
 constructor (allParameters) {
 // ...
 }
}

const myBoat = new Boat({
 hasMotor: true,
 motorCount: 2,
 motorBrand: 'Best Motor Co. ',
 motorModel: 'OM123',
 hasSails: true,
 sailsCount: 1,
 sailsMaterial: 'fabric',
 sailsColor: 'white',
 hullColor: 'blue',
 hasCabin: false
})

As we can note from the previous code, this new constructor is indeed much better
than the original one as it allows us to clearly see what is the parameter that receives
each value. However, we can do even better than this. One drawback of using a
single object literal to pass all inputs at once is that the only way to know what the
actual inputs are is to look at the class documentation or, even worse, into the code of
the class. In addition to that, there is no enforced protocol that guides the developers
toward the creation of a coherent class. For example, if we specify hasMotor: true,
then we are required to also specify a motorCount, a motorBrand, and a motorModel,
but there is nothing in this interface that conveys this information to us.

The Builder pattern fixes even these last few flaws and provides a fluent interface
that is simple to read, self-documenting, and that provides guidance toward the
creation of a coherent object. Let's take a look at the BoatBuilder class, which
implements the Builder pattern for the Boat class:

class BoatBuilder {
 withMotors (count, brand, model) {
 this.hasMotor = true
 this.motorCount = count
 this.motorBrand = brand
 this.motorModel = model
 return this
 }

Chapter 7

[243]

 withSails (count, material, color) {
 this.hasSails = true
 this.sailsCount = count
 this.sailsMaterial = material
 this.sailsColor = color
 return this
 }

 hullColor (color) {
 this.hullColor = color
 return this
 }

 withCabin () {
 this.hasCabin = true
 return this
 }

 build() {
 return new Boat({
 hasMotor: this.hasMotor,
 motorCount: this.motorCount,
 motorBrand: this.motorBrand,
 motorModel: this.motorModel,
 hasSails: this.hasSails,
 sailsCount: this.sailsCount,
 sailsMaterial: this.sailsMaterial,
 sailsColor: this.sailsColor,
 hullColor: this.hullColor,
 hasCabin: this.hasCabin
 })
 }
}

To fully appreciate the positive impact that the Builder pattern has on the way we
create our Boat objects, let's see an example of that:

const myBoat = new BoatBuilder()
 .withMotors(2, 'Best Motor Co. ', 'OM123')
 .withSails(1, 'fabric', 'white')
 .withCabin()
 .hullColor('blue')
 .build()

Creational Design Patterns

[244]

As we can see, the role of our BoatBuilder class is to collect all the parameters
needed to create a Boat using some helper methods. We usually have a method for
each parameter or set of related parameters, but there is not an exact rule to that. It
is down to the designer of the Builder class to decide the name and behavior of each
method responsible for collecting the input parameters.

We can instead summarize some general rules for implementing the Builder pattern,
as follows:

• The main objective is to break down a complex constructor into multiple,
more readable, and more manageable steps.

• Try to create builder methods that can set multiple related parameters at
once.

• Deduce and implicitly set parameters based on the values received as input
by a setter method, and in general, try to encapsulate as much parameter
setting related logic into the setter methods so that the consumer of the
builder interface is free from doing so.

• If necessary, it's possible to further manipulate the parameters (for example,
type casting, normalization, or extra validation) before passing them to the
constructor of the class being built to simplify the work left to do by the
builder class consumer even more.

Next, we will work on a more concrete example that makes use of the Builder
pattern we've just learned.

Implementing a URL object builder
We want to implement a Url class that can hold all the components of a standard
URL, validate them, and format them back into a string. This class in going to be
intentionally simple and minimal, so for standard production use, we recommend
the built-in URL class (nodejsdp.link/docs-url).

In JavaScript, the Builder pattern can also be applied to invoke
functions, not just to build objects using their constructor. In
fact, from a technical point of view, the two scenarios are almost
identical. The major difference when dealing with functions is that
instead of having a build() method, we would have an invoke()
method that invokes the complex function with the parameters
collected by the builder object and returns any eventual result to
the caller.

http://nodejsdp.link/docs-url

Chapter 7

[245]

Now, let's implement our custom Url class in a file called url.js:

export class Url {
 constructor (protocol, username, password, hostname,
 port, pathname, search, hash) {
 this.protocol = protocol
 this.username = username
 this.password = password
 this.hostname = hostname
 this.port = port
 this.pathname = pathname
 this.search = search
 this.hash = hash

 this.validate()
 }

 validate () {
 if (!this.protocol || !this.hostname) {
 throw new Error('Must specify at least a ' +
 'protocol and a hostname')
 }
 }

 toString () {
 let url = ''
 url += `${this.protocol}://`
 if (this.username && this.password) {
 url += `${this.username}:${this.password}@`
 }
 url += this.hostname
 if (this.port) {
 url += this.port
 }
 if (this.pathname) {
 url += this.pathname
 }
 if (this.search) {
 url += `?${this.search}`
 }

Creational Design Patterns

[246]

 if (this.hash) {
 url += `#${this.hash}`
 }
 return url
 }
}

A standard URL is made of several components, so to take them all in, the Url class'
constructor is inevitably big. Invoking such a constructor can be a challenge, as we
have to keep track of the argument position to know what component of the URL
we are passing. Take a look at the following example to get an idea of this:

return new Url('https', null, null, 'example.com', null, null, null,
 null)

This is the perfect situation for applying the Builder pattern we just learned. Let's
do that now. The plan is to create a UrlBuilder class, which has a setter method for
each parameter (or set of related parameters) needed to instantiate the Url class.
Finally, the builder is going to have a build() method to retrieve a new Url instance
that's been created using all the parameters that have been set in the builder. So, let's
implement the builder in a file called urlBuilder.js:

export class UrlBuilder {
 setProtocol (protocol) {
 this.protocol = protocol
 return this
 }

 setAuthentication (username, password) {
 this.username = username
 this.password = password
 return this
 }

 setHostname (hostname) {
 this.hostname = hostname
 return this
 }

 setPort (port) {
 this.port = port
 return this
 }

Chapter 7

[247]

 setPathname (pathname) {
 this.pathname = pathname
 return this
 }

 setSearch (search) {
 this.search = search
 return this
 }

 setHash (hash) {
 this.hash = hash
 return this
 }

 build () {
 return new Url(this.protocol, this.username, this.password,
 this.hostname, this.port, this.pathname, this.search,
 this.hash)
 }
}

This should be pretty straightforward. Just note the way we coupled together the
username and password parameters into a single setAuthentication() method. This
clearly conveys the fact that if we want to specify any authentication information in
the Url, we have to provide both username and password.

Now, we are ready to try our UrlBuilder and witness its benefits over using the Url
class directly. We can do that in a file called index.js:

import { UrlBuilder } from './urlBuilder.js'

const url = new UrlBuilder()
 .setProtocol('https')
 .setAuthentication('user', 'pass')
 .setHostname('example.com')
 .build()

console.log(url.toString())

As we can see, the readability of the code has improved dramatically. Each setter
method clearly gives us a hint of what parameter we are setting, and on top of that,
they provide some guidance on how those parameters must be set (for example,
username and password must be set together).

Creational Design Patterns

[248]

In the wild
The Builder pattern is a quite common pattern in Node.js and JavaScript as it
provides a very elegant solution to the problem of creating complex objects or
invoking complex functions. One perfect example is creating new HTTP(S) client
requests with the request() API from the http and https built-in modules. If we
look at its documentation (available at nodejsdp.link/docs-http-request), we can
immediately see it accepts a large amount of options, which is the usual sign that
the Builder pattern can potentially provide a better interface. In fact, one of the most
popular HTTP(S) request wrappers, superagent (nodejsdp.link/superagent), aims
to simplify the creation of new requests by implementing the Builder pattern, thus
providing a fluent interface to create new requests step by step. See the following
code fragment for an example:

superagent
 .post('https://example.com/api/person')
 .send({ name: 'John Doe', role: 'user' })
 .set('accept', 'json')
 .then((response) => {
 // deal with the response
 })

The Builder pattern can also be implemented directly into the
target class. For example, we could have refactored the Url class
by adding an empty constructor (and therefore no validation at
the object's creation time) and the setter methods for the various
components, rather than creating a separate UrlBuilder class.
However, this approach has a major flaw. Using a builder that
is separate from the target class has the advantage of always
producing instances that are guaranteed to be in a consistent state.
For example, every Url object returned by UrlBuilder.build()
is guaranteed to be valid and in a consistent state; calling
toString() on such objects will always return a valid URL. The
same cannot be said if we implemented the Builder pattern on the
Url class directly. In fact, in this case, if we invoke toString()
while we are still setting the various URL components, its return
value may not be valid. This can be mitigated by adding extra
validations, but at the cost of adding more complexity.

http://nodejsdp.link/docs-http-request
http://nodejsdp.link/superagent

Chapter 7

[249]

From the previous code, we can note that this is an unusual builder; in fact, we
don't have a build() or invoke() method (or any other method with a similar
purpose), and have not used the new operator. What triggers the request instead is an
invocation to the then() method. It's interesting to note that the superagent request
object is not a promise but rather a custom thenable where the then() method triggers
the execution of the request we have built with the builder object.

If you take a look at the library's code, you will see the Builder pattern in action in
the Request class (nodejsdp.link/superagent-src-builder).

This concludes our exploration of the Builder pattern. Next, we'll look at the
Revealing Constructor pattern.

Revealing Constructor
The Revealing Constructor pattern is one of those patterns that you won't find in the
"Gang of Four" book, since it originated directly from the JavaScript and the Node.js
community. It solves a very tricky problem, which is: how can we "reveal" some
private functionality of an object only at the moment of the object's creation? This is
particularly useful when we want to allow an object's internals to be manipulated
only during its creation phase. This allows for a few interesting scenarios, such as:

• Creating objects that can be modified only at creation time
• Creating objects whose custom behavior can be defined only at creation time
• Creating objects that can be initialized only once at creation time

These are just a few possibilities enabled by the Revealing Constructor pattern. But
to better understand all the possible use cases, let's see what the pattern is about by
looking at the following code fragment:

// (1) (2) (3)
const object = new SomeClass(function executor(revealedMembers) {
 // manipulation code ...
})

We already discussed thenables in Chapter 5, Asynchronous Control
Flow Patterns with Promises and Async/Await.

http://nodejsdp.link/superagent-src-builder

Creational Design Patterns

[250]

As we can see from the previous code, the Revealing Constructor pattern is made
of three fundamental elements; a constructor (1) that takes a function as input (the
executor (2)), which is invoked at creation time and receives a subset of the object's
internals as input (revealed members (3)).

For the pattern to work, the revealed functionality must otherwise be not accessible
by the users of the object once it is created. This can be achieved with one of the
encapsulation techniques we've mentioned in the previous section regarding the
Factory pattern.

Now, let's look at a couple of examples to better understand how the Revealing
Constructor pattern works.

Building an immutable buffer
Immutable objects and data structures have many excellent properties that make
them ideal to use in countless situations in place of their mutable (or changeable)
counterparts. Immutable refers to the property of an object by which its data or state
becomes unmodifiable once it's been created.

With immutable objects, we don't need to create defensive copies before passing
them around to other libraries or functions. We simply have a strong guarantee, by
definition, that they won't be modified, even when they are passed to code that we
don't know or control.

Modifying an immutable object can only be done by creating a new copy and can
make the code more maintainable and easier to reason about. We do this to make
it easier to keep track of state changes.

Another common use case for immutable objects is efficient change detection.
Since every change requires a copy and if we assume that every copy corresponds
to a modification, then detecting a change is as simple as using the strict equality
operator (or triple equal ===). This technique is used extensively in frontend
programming to efficiently detect if the UI needs refreshing.

In this context, let's now create a simple immutable version of the Node.js Buffer
component (nodejsdp.link/docs-buffer) using the Revealing Constructor pattern.
The pattern allows us to manipulate an immutable buffer only at creation time.

Domenic Denicola was the first to identify and name the pattern
in one of his blog posts, which can be found at nodejsdp.link/
domenic-revealing-constructor.

http://nodejsdp.link/docs-buffer
http://nodejsdp.link/domenic-revealing-constructor
http://nodejsdp.link/domenic-revealing-constructor

Chapter 7

[251]

Let's implement our immutable buffer in a new file called immutableBuffer.js, as
follows:

const MODIFIER_NAMES = ['swap', 'write', 'fill']

export class ImmutableBuffer {
 constructor (size, executor) {
 const buffer = Buffer.alloc(size) // (1)
 const modifiers = {} // (2)
 for (const prop in buffer) { // (3)
 if (typeof buffer[prop] !== 'function') {
 continue
 }

 if (MODIFIER_NAMES.some(m => prop.startsWith(m))) { // (4)
 modifiers[prop] = buffer[prop].bind(buffer)
 } else {
 this[prop] = buffer[prop].bind(buffer) // (5)
 }
 }

 executor(modifiers) // (6)
 }
}

Let's now see how our new ImmutableBuffer class works:

1. First, we allocate a new Node.js Buffer (buffer) of the size specified in the
size constructor argument.

2. Then, we create an object literal (modifiers) to hold all the methods that can
mutate the buffer.

3. After that, we iterate over all the properties (own and inherited) of our
internal buffer, making sure to skip all those that are not functions.

4. Next, we try to identify if the current prop is a method that allows us to
modify the buffer. We do that by trying to match its name with one of the
strings in the MODIFIER_NAMES array. If we have such a method, we bind it to
the buffer instance, and then we add it to the modifiers object.

5. If our method is not a modifier method, then we add it directly to the current
instance (this).

6. Finally, we invoke the executor function received as input in the constructor
and pass the modifiers object as an argument, which will allow executor to
mutate our internal buffer.

Creational Design Patterns

[252]

In practice, our ImmutableBuffer is acting as a proxy between its consumers and
the internal buffer object. Some of the methods of the buffer instance are exposed
directly through the ImmutableBuffer interface (mainly the read-only methods),
while others are provided to the executor function (the modifier methods).

We will analyze the Proxy pattern in more detail in Chapter 8, Structural Design
Patterns.

Now, let's write some code to demonstrate how to use our new ImmutableBuffer
class. Let's create a new file, index.js, containing the following code:

import { ImmutableBuffer } from './immutableBuffer.js'

const hello = 'Hello!'
const immutable = new ImmutableBuffer(hello.length,
 ({ write }) => { // (1)
 write(hello)
 })

console.log(String.fromCharCode(immutable.readInt8(0))) // (2)

// the following line will throw
// "TypeError: immutable.write is not a function"

// immutable.write('Hello?') // (3)

The first thing we can note from the previous code is how the executor function uses
the write() function (which is part of the modifier methods) to write a string into the
buffer (1). In a similar way, the executor function could've used fill(), writeInt8(),
swap16() or any other method exposed in the modifiers object.

The code we've just seen also demonstrates how the new ImmutableBuffer instance
exposes only the methods that don't mutate the buffer, such as readInt8() (2), while
it doesn't provide any method to change the content of the buffer (3).

Please keep in mind that this is just a demonstration of the
Revealing Constructor pattern, so the implementation of the
immutable buffer is intentionally kept simple. For example, we
are not exposing the size of the buffer or providing other means
to initialize the buffer. We'll leave this to you as an exercise.

Chapter 7

[253]

In the wild
The Revealing Constructor pattern offers very strong guarantees and for this reason,
it's mainly used in contexts where we need to provide foolproof encapsulation. A
perfect application of the pattern would be in components used by hundreds of
thousands of developers that have to provide unopinionated interfaces and strict
encapsulation. However, we can also use the pattern in our projects to improve
reliability and simplify code sharing with other people and teams (since it can make
an object safer to use by third parties).

A popular application of the Revealing Constructor pattern is in the JavaScript
Promise class. Some of you may have already noticed it. When we create a new
Promise from scratch, its constructor accepts as input an executor function that will
receive the resolve() and reject() functions used to mutate the internal state of the
Promise. Let's provide a reminder of what this looks like:

return new Promise((resolve, reject) => {
 // ...
})

Once created, the Promise state cannot be altered by any other means. All we can
do is receive its fulfilment value or rejection reason using the methods we already
learned about in Chapter 5, Asynchronous Control Flow Patterns with Promises and
Async/Await.

Singleton
Now, we are going to spend a few words on a pattern that is among the most used
in object-oriented programming, which is the Singleton pattern. As we will see,
Singleton is one of those patterns that has a trivial implementation in Node.js that's
almost not worth discussing. However, there are a few caveats and limitations that
every good Node.js developer must know.

The purpose of the Singleton pattern is to enforce the presence of only one instance
of a class and centralize its access. There are a few reasons for using a single instance
across all the components of an application:

• For sharing stateful information
• For optimizing resource usage
• To synchronize access to a resource

Creational Design Patterns

[254]

As you can imagine, those are quite common scenarios. Take, for example, a typical
Database class, which provides access to a database:

// 'Database.js'
export class Database {
 constructor (dbName, connectionDetails) {
 // ...
 }
 // ...
}

Typical implementations of such a class usually keep a pool of database connections,
so it doesn't make sense to create a new Database instance for each request. Plus, a
Database instance may store some stateful information, such as the list of pending
transactions. So, our Database class meets two criterions for justifying the Singleton
pattern. Therefore, what we usually want is to configure and instantiate one single
Database instance at the start of our application and let every component use that
single shared Database instance.

A lot of people new to Node.js get confused about how to implement the Singleton
pattern correctly; however, the answer is easier than what we might think. Simply
exporting an instance from a module is already enough to obtain something very
similar to the Singleton pattern. Consider, for example, the following lines of code:

// file 'dbInstance.js'
import { Database } from './Database.js'

export const dbInstance = new Database('my-app-db', {
 url: 'localhost:5432',
 username: 'user',
 password: 'password'
})

By simply exporting a new instance of our Database class, we can already assume
that within the current package (which can easily be the entire code of our
application), we are going to have only one instance of the dbInstance module. This
is possible because, as we know from Chapter 2, The Module System, Node.js will
cache the module, making sure not to execute its code at every import.

For example, we can easily obtain a shared instance of the dbInstance module, which
we defined earlier, with the following line of code:

import { dbInstance } from './dbInstance.js'

Chapter 7

[255]

But there is a caveat. The module is cached using its full path as the lookup key, so it
is only guaranteed to be a singleton within the current package. In fact, each package
may have its own set of private dependencies inside its node_modules directory,
which might result in multiple instances of the same package and therefore of the
same module, resulting in our singleton not really being unique anymore! This is, of
course, a rare scenario, but it's important to understand what its consequences are.

Consider, for example, the case in which the Database.js and dbInstance.js files
that we saw earlier are wrapped into a package named mydb. The following lines of
code would be in its package.json file:

{
 "name": "mydb",
 "version": "2.0.0",
 "type": "module",
 "main": "dbInstance.js"
}

Next, consider two packages (package-a and package-b), both of which have a single
file called index.js containing the following code:

import { dbInstance } from 'mydb'

export function getDbInstance () {
 return dbInstance
}

Both package-a and package-b have a dependency on the mydb package. However,
package-a depends on version 1.0.0 of the mydb package, while package-b depends
on version 2.0.0 of the same package (which, for our example, has an identical
implementation, but just a different version specified in its package.json file).

Given the structure we just described, we would end up with the following package
dependency tree:

app/
`-- node_modules
 |-- package-a
 | `-- node_modules
 | `-- mydb
 `-- package-b
 `-- node_modules
 `-- mydb

Creational Design Patterns

[256]

We end up with a directory structure like the one here because package-a and
package-b require two different incompatible versions of the mydb module (for
example, 1.0.0 versus 2.0.0). In this case, a typical package manager such as npm
or yarn would not "hoist" the dependency to the top node_modules directory, but it
will instead install a private copy of each package in an attempt to fix the version
incompatibility.

With the directory structure we just saw, both package-a and package-b have
a dependency on the mydb package; in turn, the app package, which is our root
package, depends on both package-a and package-b.

The scenario we just described will break the assumption about the uniqueness of
the database instance. In fact, consider the following file (index.js) located in the
root folder of the app package:

import { getDbInstance as getDbFromA } from 'package-a'
import { getDbInstance as getDbFromB } from 'package-b'

const isSame = getDbFromA() === getDbFromB()
console.log('Is the db instance in package-a the same ' +
 `as package-b? ${isSame ? 'YES' : 'NO'}`)

If you run the previous file, you will notice that the answer to Is the db instance in
package-a the same as package-b? is NO. In fact, package-a and package-b will actually
load two different instances of the dbInstance object because the mydb module will
resolve to a different directory, depending on the package it is required from. This
clearly break the assumptions of the Singleton pattern.

If instead, both package-a and package-b required two versions
of the mydb package compatible with each other, for example,
^2.0.1 and ^2.0.7, then the package manager would install the
mydb package into the top-level node_modules directory (a practice
known as dependency hoisting), effectively sharing the same
instance with package-a, package-b, and the root package.

Chapter 7

[257]

At this point, we can easily say that the Singleton pattern, as described in the
literature, does not exist in Node.js, unless we use a real global variable to store it,
such as the following:

global.dbInstance = new Database('my-app-db', {/*...*/})

This guarantees that the instance is the only one shared across the entire application
and not just the same package. However, please consider that most of the time, we
don't really need a pure singleton. In fact, we usually create and import singletons
within the main package of an application or, at worst, in a subcomponent of the
application that has been modularized into a dependency.

Throughout this book, for simplicity, we will use the term singleton to describe a
class instance or a stateful object exported by a module, even if this doesn't represent
a real singleton in the strict definition of the term.

Next, we are going to see the two main approaches for dealing with dependencies
between modules, one based on the Singleton pattern and the other leveraging the
Dependency Injection pattern.

Wiring modules
Every application is the result of the aggregation of several components and, as the
application grows, the way we connect these components becomes a win or lose
factor for the maintainability and success of the project.

When a component, A, needs component B to fulfill a given functionality, we
say that "A is dependent on B" or, conversely, that "B is a dependency of A." To
appreciate this concept, let's present an example.

Let's say we want to write an API for a blogging system that uses a database to store
its data. We can have a generic module implementing a database connection (db.js)
and a blog module that exposes the main functionality to create and retrieve blog
posts from the database (blog.js).

If you are creating a package that is going to be used by third
parties, try to keep it stateless to avoid the issues we've discussed
in this section.

Creational Design Patterns

[258]

The following figure illustrates the relationship between the database module and
the blog module:

Figure 7.1: Dependency graph between the blog module and the database module

In this section, we are going to see how we can model this dependency using two
different approaches, one based on the Singleton pattern and the other using the
Dependency Injection pattern.

Singleton dependencies
The simplest way to wire two modules together is by leveraging Node.js' module
system. Stateful dependencies wired in this way are de facto singletons, as we
discussed in the previous section.

To see how this works in practice, we are going to implement the simple blogging
application that we described earlier using a singleton instance for the database
connection. Let's see a possible implementation of this approach (the file db.js):

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import sqlite3 from 'sqlite3'
const __dirname = dirname(fileURLToPath(import.meta.url))
export const db = new sqlite3.Database(
 join(__dirname, 'data.sqlite'))

In the previous code, we are using SQLite (nodejsdp.link/sqlite) as a database to
store our posts. To interact with SQLite, we are using the module sqlite3 (nodejsdp.
link/sqlite3) from npm. SQLite is a database system that keeps all the data in a
single local file. In our database module, we decided to use a file called data.sqlite
saved in the same folder as the module.

http://nodejsdp.link/sqlite
http://nodejsdp.link/sqlite3
http://nodejsdp.link/sqlite3

Chapter 7

[259]

The preceding code creates a new instance of the database pointing to our data file
and exports the database connection object as a singleton with the name db.

Now, let's see how we can implement the blog.js module:

import { promisify } from 'util'
import { db } from './db.js'

const dbRun = promisify(db.run.bind(db))
const dbAll = promisify(db.all.bind(db))

export class Blog {
 initialize () {
 const initQuery = `CREATE TABLE IF NOT EXISTS posts (
 id TEXT PRIMARY KEY,
 title TEXT NOT NULL,
 content TEXT,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);`

 return dbRun(initQuery)
 }

 createPost (id, title, content, createdAt) {
 return dbRun('INSERT INTO posts VALUES (?, ?, ?, ?)',
 id, title, content, createdAt)
 }

 getAllPosts () {
 return dbAll('SELECT * FROM posts ORDER BY created_at DESC')
 }
}

The blog.js module exports a class called Blog containing three methods:

• initialize(): Creates the posts table if it doesn't exist. The table will be used
to store the blog post's data.

• createPost(): Takes all the necessary parameters needed to create a post. It
will execute an INSERT statement to add the new post to the database.

• getAllPosts(): Retrieves all the posts available in the database and returns
them as an array.

Creational Design Patterns

[260]

Now, let's create a module to try out the functionality of the blog module we just
created (the file index.js):

import { Blog } from './blog.js'

async function main () {
 const blog = new Blog()
 await blog.initialize()
 const posts = await blog.getAllPosts()
 if (posts.length === 0) {
 console.log('No post available. Run `node import-posts.js`' +
 ' to load some sample posts')
 }

 for (const post of posts) {
 console.log(post.title)
 console.log('-'.repeat(post.title.length))
 console.log(`Published on ${new Date(post.created_at)
 .toISOString()}`)
 console.log(post.content)
 }
}

main().catch(console.error)

This preceding module is very simple. We retrieve the array with all the posts using
blog.getAllPosts() and then we loop over it and display the data for every single
post, giving it a bit of formatting.

You can use the provided import-posts.js module to load some sample posts into
the database before running index.js. You can find import-posts.js in the code
repository of this book, along with the rest of the files for this example.

As we can see from the preceding code, we can implement a very simple command-
line blog management system by leveraging the Singleton pattern to pass the db
instance around. Most of the time, this is how we manage stateful dependencies in
our application; however, there are situations in which this may not be enough.

As a fun exercise, you could try to modify the index.js module to
generate HTML files; one for the blog index and then a dedicated
file for each blog post. This way, you would build your own
minimalistic static website generator!

Chapter 7

[261]

Using a singleton, as we have done in the previous example, is certainly the most
simple, immediate, and readable solution to pass stateful dependencies around.
However, what happens if we want to mock our database during our tests? What
can we do if we want to let the user of the blogging CLI or the blogging API select
another database backend, instead of the standard SQLite backend that we provide
by default? For these use cases, a singleton can be an obstacle for implementing a
properly structured solution.

We could introduce if statements in our db.js module to pick different
implementations based on some environment condition or some configuration.
Alternatively, we could fiddle with the Node.js module system to intercept the
import of the database file and replace it with something else. But, as you can image,
these solutions are far from elegant.

In the next section, we will learn about another strategy for wiring modules, which
can be the ideal solution to some of the issues we discussed here.

Dependency Injection
The Node.js module system and the Singleton pattern can serve as great tools for
organizing and wiring together the components of an application. However, these
do not always guarantee success. If, on the one hand, they are simple to use and
very practical, then on the other, they might introduce a tighter coupling between
components.

In the previous example, we can see that the blog.js module is tightly coupled with
the db.js module. In fact, our blog.js module cannot work without the database.js
module by design, nor can it use a different database module if necessary. We
can easily fix this tight coupling between the two modules by leveraging the
Dependency Injection pattern.

Dependency Injection (DI) is a very simple pattern in which the dependencies
of a component are provided as input by an external entity, often referred to as the
injector.

The injector initializes the different components and ties their dependencies together.
It can be a simple initialization script or a more sophisticated global container that
maps all the dependencies and centralizes the wiring of all the modules of the
system. The main advantage of this approach is improved decoupling, especially for
modules depending on stateful instances (for example, a database connection). Using
DI, each dependency, instead of being hardcoded into the module, is received from
the outside. This means that the dependent module can be configured to use any
compatible dependency, and therefore the module itself can be reused in different
contexts with minimal effort.

Creational Design Patterns

[262]

The following diagram illustrates this idea:

Figure 7.2: Dependency injection schematic

In Figure 7.2, we can see that a generic service expects a dependency with a
predetermined interface. It's the responsibility of the injector to retrieve or create an
actual concrete instance that implements such an interface and passes it (or "injects
it") into the service. In other words, the injector has the goal of providing an instance
that fulfills the dependency for the service.

To demonstrate this pattern in practice, let's refactor the simple blogging system
that we built in the previous section by using DI to wire its modules. Let's start by
refactoring the blog.js module:

import { promisify } from 'util'

export class Blog {
 constructor (db) {
 this.db = db
 this.dbRun = promisify(db.run.bind(db))
 this.dbAll = promisify(db.all.bind(db))
 }

 initialize () {

Chapter 7

[263]

 const initQuery = `CREATE TABLE IF NOT EXISTS posts (
 id TEXT PRIMARY KEY,
 title TEXT NOT NULL,
 content TEXT,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);`

 return this.dbRun(initQuery)
 }

 createPost (id, title, content, createdAt) {
 return this.dbRun('INSERT INTO posts VALUES (?, ?, ?, ?)',
 id, title, content, createdAt)
 }

 getAllPosts () {
 return this.dbAll(
 'SELECT * FROM posts ORDER BY created_at DESC')
 }
}

If you compare the new version with the previous one, they are almost identical.
There are only two small but important differences:

• We are not importing the database module anymore
• The Blog class constructor takes db as an argument

The new constructor argument db is the expected dependency that needs to be
provided at runtime by the client component of the Blog class. This client component
is going to be the injector of the dependency. Since JavaScript doesn't have any way
to represent abstract interfaces, the provided dependency is expected to implement
the db.run() and db.all() methods. This is called duck typing, as mentioned earlier
in this book.

Let's now rewrite our db.js module. The goal here is to get rid of the Singleton
pattern and to come up with an implementation that is more reusable and
configurable:

import sqlite3 from 'sqlite3'

export function createDb (dbFile) {
 return new sqlite3.Database(dbFile)
}

Creational Design Patterns

[264]

This new implementation of the db module provides a factory function called
createDb(), which allows us to create new instances of the database at runtime.
It also allows us to pass the path to the database file at creation time so that we
can create independent instances that can write to different files if we have to.

At this point, we have almost all the building blocks in place, we are only missing
the injector. We will give an example of the injector by reimplementing the index.js
module:

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { Blog } from './blog.js'
import { createDb } from './db.js'

const __dirname = dirname(fileURLToPath(import.meta.url))

async function main () {
 const db = createDb(join(__dirname, 'data.sqlite'))
 const blog = new Blog(db)
 await blog.initialize()
 const posts = await blog.getAllPosts()
 if (posts.length === 0) {
 console.log('No post available. Run `node import-posts.js`' +
 ' to load some sample posts')
 }
 for (const post of posts) {
 console.log(post.title)
 console.log('-'.repeat(post.title.length))
 console.log(`Published on ${new Date(post.created_at)
 .toISOString()}`)
 console.log(post.content)
 }
}

main().catch(console.error)

This code is also quite similar to the previous implementation, except for two
important changes (highlighted in the preceding code):

1. We create the database dependency (db) using the factory function
createDb().

2. We explicitly "inject" the database instance when we instantiate the Blog class.

Chapter 7

[265]

In this implementation of our blogging system, the blog.js module is totally
decoupled from the actual database implementation, making it more composable
and easy to test in isolation.

Unfortunately, the advantages in terms of decoupling and reusability offered by
the Dependency Injection pattern come with a price to pay. In general, the inability
to resolve a dependency at coding time makes it more difficult to understand the
relationship between the various components of a system. This is especially true
in large applications where we might have a significant amount of services with
a complex dependency graph.

Also, if we look at the way we instantiated our database dependency in our
preceding example script, we can see that we had to make sure that the database
instance was created before we could invoke any function from our Blog instance.
This means that, when used in its raw form, Dependency Injection forces us to build
the dependency graph of the entire application by hand, making sure that we do it
in the right order. This can become unmanageable when the number of modules to
wire becomes too high.

We saw how to inject dependencies as constructor arguments
(constructor injection), but dependencies can also be passed
when invoking a function or method (function injection) or
injected explicitly by assigning the relevant properties of an
object (property injection).

Another pattern, called Inversion of Control, allows us to
shift the responsibility of wiring the modules of an application
to a third-party entity. This entity can be a service locator (a
simple component used to retrieve a dependency, for example,
serviceLocator.get('db')) or a dependency injection
container (a system that injects the dependencies into a component
based on some metadata specified in the code itself or in a
configuration file). You can find more about these components
on Martin Fowler's blog at nodejsdp.link/ioc-containers.
Even though these techniques derail a bit from the Node.js way of
doing things, some of them have recently gained some popularity.
Check out inversify (nodejsdp.link/inversify) and awilix
(nodejsdp.link/awilix) to find out more.

http://nodejsdp.link/ioc-containers
http://nodejsdp.link/inversify
http://nodejsdp.link/awilix

Creational Design Patterns

[266]

Summary
In this chapter, you were gently introduced to a set of traditional design patterns
concerning the creation of objects. Some of those patterns are so basic, and yet
essential at the same time, that you have probably already used them in one way
or another.

Patterns such as Factory and Singleton are, for example, two of the most ubiquitous
in object-oriented programming in general. However, in JavaScript, their
implementation and significance are very different from what was thought up by the
Gang of Four book. For example, Factory becomes a very versatile pattern that works
in perfect harmony with the hybrid nature of the JavaScript language, that is, half
object-oriented and half functional. On the other hand, Singleton becomes so trivial
to implement that it's almost a non-pattern, but it carries a set of caveats that you
should have learned to take into account.

Among the patterns you've learned in this chapter, the Builder pattern may seem
the one that has retained most of its traditional object-oriented form. However,
we've shown you that it can also be used to invoke complex functions and not just
to build objects.

The Revealing Constructor pattern, on the other hand, deserves a category of its own.
Born from necessities arising from the JavaScript language itself, it provides an elegant
solution to the problem of "revealing" certain private object properties at construction
time only. It provides strong guarantees in a language that is relaxed by nature.

Finally, you learned about the two main techniques for wiring components together:
Singleton and Dependency Injection. We've seen how the first is the simplest and
most practical approach, while the second is more powerful but also potentially
more complex to implement.

As we already mentioned, this was just the first of a series of three chapters entirely
dedicated to traditional design patterns. In these chapters, we will try to teach the
right balance between creativity and rigor. We want to show not only that there are
patterns that can be reused to improve our code, but also that their implementation
is not the most important detail; in fact, it can vary a lot, or even overlap with other
patterns. What really matters, however, is the blueprint, the guidelines, and the idea
at the base of each pattern. This is the real reusable piece of information that we can
exploit to design better Node.js applications in a fun way.

In the next chapter, you will learn about another category of traditional design
patterns, called structural patterns. As the name suggests, these patterns are aimed
at improving the way we combine objects together to build more complex, yet
flexible and reusable structures.

Chapter 7

[267]

Exercises
• 7.1 Console color factory: Create a class called ColorConsole that has just

one empty method called log(). Then, create three subclasses: RedConsole,
BlueConsole, and GreenConsole. The log() method of every ColorConsole
subclass will accept a string as input and will print that string to the console
using the color that gives the name to the class. Then, create a factory
function that takes color as input, such as 'red', and returns the related
ColorConsole subclass. Finally, write a small command-line script to try
the new console color factory. You can use this Stack Overflow answer as
a reference for using colors in the console: nodejsdp.link/console-colors.

• 7.2 Request builder: Create your own Builder class around the built-in
http.request() function. The builder must be able to provide at least basic
facilities to specify the HTTP method, the URL, the query component of
the URL, the header parameters, and the eventual body data to be sent. To
send the request, provide an invoke() method that returns a Promise for the
invocation. You can find the docs for http.request() at the following URL:
nodejsdp.link/docs-http-request.

• 7.3 A tamper-free queue: Create a Queue class that has only one publicly
accessible method called dequeue(). Such a method returns a Promise
that resolves with a new element extracted from an internal queue data
structure. If the queue is empty, then the Promise will resolve when a new
item is added. The Queue class must also have a revealing constructor that
provides a function called enqueue() to the executor that pushes a new
element to the end of the internal queue. The enqueue() function can be
invoked asynchronously and it must also take care of "unblocking" any
eventual Promise returned by the dequeue() method. To try out the Queue
class, you could build a small HTTP server into the executor function. Such
a server would receive messages or tasks from a client and would push them
into the queue. A loop would then consume all those messages using the
dequeue() method.

http://nodejsdp.link/console-colors
http://nodejsdp.link/docs-http-request

[269]

8
Structural Design Patterns

In this chapter, we will explore some of the most popular structural design patterns
and discover how they apply to Node.js. Structural design patterns are focused on
providing ways to realize relationships between entities.

In particular, in this chapter, we will examine the following patterns:

• Proxy: A pattern that allows us to control access to another object
• Decorator: A common pattern to augment the behavior of an existing object

dynamically
• Adapter: A pattern that allows us to access the functionality of an object

using a different interface

Throughout the chapter, we will also explore some interesting concepts such
as reactive programming (RP), and we will also spend some time playing with
LevelDB, a database technology that is commonly adopted in the Node.js ecosystem.

By the end of this chapter, you will be familiar with several scenarios in which
structural design patterns can be useful and you will be able to implement them
effectively in your Node.js applications.

Proxy
A proxy is an object that controls access to another object, called the subject. The
proxy and the subject have an identical interface, and this allows us to swap one for
the other transparently; in fact, the alternative name for this pattern is surrogate.

Structural Design Patterns

[270]

A proxy intercepts all or some of the operations that are meant to be executed on the
subject, augmenting or complementing their behavior. Figure 8.1 shows a schematic
representation of this pattern:

Figure 8.1: Proxy pattern schematic

Figure 8.1 shows us how the proxy and the subject have the same interface, and how
this is transparent to the client, who can use one or the other interchangeably. The
proxy forwards each operation to the subject, enhancing its behavior with additional
preprocessing or postprocessing.

A proxy can be useful in several circumstances, for example:

• Data validation: The proxy validates the input before forwarding it to the
subject

• Security: The proxy verifies that the client is authorized to perform the
operation, and it passes the request to the subject only if the outcome of the
check is positive

• Caching: The proxy keeps an internal cache so that the proxied operations
are executed on the subject only if the data is not yet present in the cache

• Lazy initialization: If creating the subject is expensive, the proxy can delay
it until it's really necessary

• Logging: The proxy intercepts the method invocations and the relative
parameters, recoding them as they happen

• Remote objects: The proxy can take a remote object and make it appear local

There are more Proxy pattern applications, but these should give us an idea of
its purpose.

It's important to observe that we are not talking about proxying
between classes; the Proxy pattern involves wrapping an actual
instance of the subject, thus preserving its internal state.

Chapter 8

[271]

Techniques for implementing proxies
When proxying an object, we can decide to intercept all of its methods or only some
of them, while delegating the rest directly to the subject. There are several ways in
which this can be achieved, and in this section, we will present some of them.

We will be working on a simple example, a StackCalculator class that looks like this:

class StackCalculator {
 constructor () {
 this.stack = []
 }

 putValue (value) {
 this.stack.push(value)
 }

 getValue () {
 return this.stack.pop()
 }

 peekValue () {
 return this.stack[this.stack.length - 1]
 }

 clear () {
 this.stack = []
 }

 divide () {
 const divisor = this.getValue()
 const dividend = this.getValue()
 const result = dividend / divisor
 this.putValue(result)
 return result
 }

 multiply () {
 const multiplicand = this.getValue()
 const multiplier = this.getValue()
 const result = multiplier * multiplicand

Structural Design Patterns

[272]

 this.putValue(result)
 return result
 }
}

This class implements a simplified version of a stack calculator. The idea of this
calculator is to keep all operands (values) in a stack. When you perform an operation,
for example a multiplication, the multiplicand and the multiplier are extracted from
the stack and the result of the multiplication is pushed back into the stack. This
is not too different from how the calculator application on your mobile phone is
actually implemented.

Here's an example of how we might use StackCalculator to perform some
multiplications and divisions:

const calculator = new StackCalculator()
calculator.putValue(3)
calculator.putValue(2)
console.log(calculator.multiply()) // 3*2 = 6
calculator.putValue(2)
console.log(calculator.multiply()) // 6*2 = 12

There are also some utility methods such as peekValue(), which allows us to peek
the value at the top of the stack (the last value inserted or the result of the last
operation), and clear(), which allows us to reset the stack.

Fun fact: In JavaScript, when you perform a division by 0, you get back a mysterious
value called Infinity. In many other programming languages dividing by 0 is
an illegal operation that results in the program panicking or throwing a runtime
exception.

Our task in the next few sections will be to leverage the Proxy pattern to enhance
a StackCalculator instance by providing a more conservative behavior for division
by 0: rather than returning Infinity, we will throw an explicit error.

Object composition
Composition is a technique whereby an object is combined with another object for
the purpose of extending or using its functionality. In the specific case of the Proxy
pattern, a new object with the same interface as the subject is created, and a reference
to the subject is stored internally in the proxy in the form of an instance variable
or a closure variable. The subject can be injected from the client at creation time or
created by the proxy itself.

Chapter 8

[273]

The following example implements a safe calculator using object composition:

class SafeCalculator {
 constructor (calculator) {
 this.calculator = calculator
 }

 // proxied method
 divide () {
 // additional validation logic
 const divisor = this.calculator.peekValue()
 if (divisor === 0) {
 throw Error('Division by 0')
 }
 // if valid delegates to the subject
 return this.calculator.divide()
 }

 // delegated methods
 putValue (value) {
 return this.calculator.putValue(value)
 }

 getValue () {
 return this.calculator.getValue()
 }

 peekValue () {
 return this.calculator.peekValue()
 }

 clear () {
 return this.calculator.clear()
 }

 multiply () {
 return this.calculator.multiply()
 }
}

const calculator = new StackCalculator()

Structural Design Patterns

[274]

const safeCalculator = new SafeCalculator(calculator)

calculator.putValue(3)
calculator.putValue(2)
console.log(calculator.multiply()) // 3*2 = 6

safeCalculator.putValue(2)
console.log(safeCalculator.multiply()) // 6*2 = 12

calculator.putValue(0)
console.log(calculator.divide()) // 12/0 = Infinity

safeCalculator.clear()
safeCalculator.putValue(4)
safeCalculator.putValue(0)
console.log(safeCalculator.divide()) // 4/0 -> Error

The safeCalculator object is a proxy for the original calculator instance. By
invoking multiply() on safeCalculator, we will end up calling the same method on
calculator. The same goes for divide(), but in this case we can see that, if we try to
divide by zero, we will get different outcomes depending on whether we perform
the division on the subject or on the proxy.

To implement this proxy using composition, we had to intercept the methods that we
were interested in manipulating (divide()), while simply delegating the rest of them
to the subject (putValue(), getValue(), peekValue(), clear(), and multiply()).

Note that the calculator state (the values in the stack) is still maintained by the
calculator instance; safeCalculator will only invoke methods on calculator
to read or mutate the state as needed.

An alternative implementation of the proxy presented in the preceding code
fragment might just use an object literal and a factory function:

function createSafeCalculator (calculator) {
 return {
 // proxied method
 divide () {
 // additional validation logic
 const divisor = calculator.peekValue()
 if (divisor === 0) {
 throw Error('Division by 0')
 }

Chapter 8

[275]

 // if valid delegates to the subject
 return calculator.divide()
 },
 // delegated methods
 putValue (value) {
 return calculator.putValue(value)
 },
 getValue () {
 return calculator.getValue()
 },
 peekValue () {
 return calculator.peekValue()
 },
 clear () {
 return calculator.clear()
 },
 multiply () {
 return calculator.multiply()
 }
 }
}

const calculator = new StackCalculator()
const safeCalculator = createSafeCalculator(calculator)
 // ...

This implementation is simpler and more concise than the class-based one, but, once
again, it forces us to delegate all the methods to the subject explicitly.

Having to delegate many methods for complex classes can be very tedious and
might make it harder to implement these techniques. One way to create a proxy
that delegates most of its methods is to use a library that generates all the methods
for us, such as delegates (nodejsdp.link/delegates). A more modern and native
alternative is to use the Proxy object, which we will discuss later in this chapter.

Object augmentation
Object augmentation (or monkey patching) is probably the simplest and most
common way of proxying just a few methods of an object. It involves modifying the
subject directly by replacing a method with its proxied implementation.

http://nodejsdp.link/delegates

Structural Design Patterns

[276]

In the context of our calculator example, this could be done as follows:

function patchToSafeCalculator (calculator) {
 const divideOrig = calculator.divide
 calculator.divide = () => {
 // additional validation logic
 const divisor = calculator.peekValue()
 if (divisor === 0) {
 throw Error('Division by 0')
 }
 // if valid delegates to the subject
 return divideOrig.apply(calculator)
 }

 return calculator
}

const calculator = new StackCalculator()
const safeCalculator = patchToSafeCalculator(calculator)
// ...

This technique is definitely convenient when we need to proxy only one or a few
methods. Did you notice that we didn't have to reimplement the multiply() method
and all the other delegated methods here?

Unfortunately, simplicity comes at the cost of having to mutate the subject object
directly, which can be dangerous.

In the next section, we will explore the built-in Proxy object, which is a powerful
alternative for implementing the Proxy pattern and more.

Mutations should be avoided at all costs when the subject is shared
with other parts of the codebase. In fact, "monkey patching" the
subject might create undesirable side effects that affect other
components of our application. Use this technique only when
the subject exists in a controlled context or in a private scope. If
you want to appreciate why "monkey patching" is a dangerous
practice, you could try to invoke a division by zero in the original
calculator instance. If you do so, you will see that the original
instance will now throw an error rather than returning Infinity.
The original behavior has been altered, and this might have
unexpected effects on other parts of the application.

Chapter 8

[277]

The built-in Proxy object
The ES2015 specification introduced a native way to create powerful proxy objects.

We are talking about the ES2015 Proxy object, which consists of a Proxy constructor
that accepts a target and a handler as arguments:

const proxy = new Proxy(target, handler)

Here, target represents the object on which the proxy is applied (the subject for our
canonical definition), while handler is a special object that defines the behavior of the
proxy.

The handler object contains a series of optional methods with predefined names
called trap methods (for example, apply, get, set, and has) that are automatically
called when the corresponding operations are performed on the proxy instance.

To better understand how this API works, let's see how we can use the Proxy object
to implement our safe calculator proxy:

const safeCalculatorHandler = {
 get: (target, property) => {
 if (property === 'divide') {
 // proxied method
 return function () {
 // additional validation logic
 const divisor = target.peekValue()
 if (divisor === 0) {
 throw Error('Division by 0')
 }
 // if valid delegates to the subject
 return target.divide()
 }
 }

 // delegated methods and properties
 return target[property]
 }
}

Structural Design Patterns

[278]

const calculator = new StackCalculator()
const safeCalculator = new Proxy(
 calculator,
 safeCalculatorHandler
)
// ...

In this implementation of the safe calculator proxy using the Proxy object, we
adopted the get trap to intercept access to properties and methods of the original
object, including calls to the divide() method. When access to divide() is
intercepted, the proxy returns a modified version of the function that implements
the additional logic to check for possible divisions by zero. Note that we can simply
return all other methods and properties unchanged by using target[property].

Finally, it is important to mention that the Proxy object inherits the prototype of
the subject, therefore running safeCalculator instanceof StackCalculator will
return true.

With this example, it should be clear that the Proxy object allows us to avoid
mutating the subject while giving us an easy way to proxy only the bits that we
need to enhance, without having to explicitly delegate all the other properties and
methods.

Additional capabilities and limitations of the Proxy object
The Proxy object is a feature deeply integrated into the JavaScript language itself,
which enables developers to intercept and customize many operations that can be
performed on objects. This characteristic opens up new and interesting scenarios that
were not easily achievable before, such as meta-programming, operator overloading, and
object virtualization.

Let's see another example to clarify this concept:

const evenNumbers = new Proxy([], {
 get: (target, index) => index * 2,
 has: (target, number) => number % 2 === 0
})

console.log(2 in evenNumbers) // true
console.log(5 in evenNumbers) // false
console.log(evenNumbers[7]) // 14

Chapter 8

[279]

In this example, we are creating a virtual array that contains all even numbers. It
can be used as a regular array, which means we can access items in the array with
the regular array syntax (for example, evenNumbers[7]), or check the existence of an
element in the array with the in operator (for example, 2 in evenNumbers). The array
is considered virtual because we never store data in it.

Looking at the implementation, this proxy uses an empty array as the target and then
defines the get and has traps in the handler:

• The get trap intercepts access to the array elements, returning the even
number for the given index

• The has trap instead intercepts the usage of the in operator and checks
whether the given number is even or not

The Proxy object supports several other interesting traps such as set, delete, and
construct, and allows us to create proxies that can be revoked on demand, disabling
all the traps and restoring the original behavior of the target object.

Analyzing all these features goes beyond the scope of this chapter; what is important
here is understanding that the Proxy object provides a powerful foundation for
implementing the Proxy design pattern.

While the Proxy object is a powerful functionality of the JavaScript language, it
suffers from a very important limitation: the Proxy object cannot be fully transpiled
or polyfilled. This is because some of the Proxy object traps can be implemented
only at the runtime level and cannot be simply rewritten in plain JavaScript. This is
something to be aware of if you are working with old browsers or old versions of
Node.js that don't support the Proxy object directly.

It is very important to note that, while the previous code snippet
is a very interesting example that aims to showcase some of the
advanced capabilities of the Proxy object, it is not implementing
the Proxy pattern. This example allows us to see that, even though
the Proxy object is commonly used to implement the Proxy pattern
(hence the name), it can also be used to implement other patterns
and use cases. As an example, we will see later in this chapter how
to use the Proxy object—to implement the Decorator pattern.

If you are curious to discover all the capabilities and trap methods
offered by the Proxy object, you can read more in the related MDN
article at nodejsdp.link/mdn-proxy. Another good source is this
detailed article from Google at nodejsdp.link/intro-proxy.

http://nodejsdp.link/mdn-proxy
http://nodejsdp.link/intro-proxy

Structural Design Patterns

[280]

A comparison of the different proxying techniques
Composition can be considered a simple and safe way of creating a proxy because
it leaves the subject untouched without mutating its original behavior. Its only
drawback is that we have to manually delegate all the methods, even if we want to
proxy only one of them. Also, we might have to delegate access to the properties of
the subject.

Object augmentation, on the other hand, modifies the subject, which might not
always be ideal, but it does not suffer from the various inconveniences related to
delegation. For this reason, between these two approaches, object augmentation is
generally the preferred technique in all those circumstances in which modifying the
subject is an option.

However, there is at least one situation where composition is almost necessary; this
is when we want to control the initialization of the subject, for example, to create
it only when needed (lazy initialization).

Finally, the Proxy object is the go-to approach if you need to intercept function calls
or have different types of access to object attributes, even dynamic ones. The Proxy
object provides an advanced level of access control that is simply not available with
the other techniques. For example, the Proxy object allows us to intercept the deletion
of a key in an object and to perform property existence checks.

Transpilation: Short for transcompilation. It indicates the action
of compiling source code by translating it from one source
programming language to another. In the case of JavaScript, this
technique is used to convert a program using new capabilities of
the language into an equivalent program that can also run on older
runtimes that do not support these new capabilities.

Polyfill: Code that provides an implementation for a standard
API in plain JavaScript and that can be imported in environments
where this API is not available (generally older browsers or
runtimes). core-js (nodejsdp.link/corejs) is one of the
most complete polyfill libraries for JavaScript.

Object properties can be delegated using Object.
defineProperty(). Find out more at nodejsdp.link/define-
prop.

http://nodejsdp.link/corejs
http://nodejsdp.link/define-prop
http://nodejsdp.link/define-prop

Chapter 8

[281]

Once again, it's worth highlighting that the Proxy object does not mutate the subject,
so it can be safely used in contexts where the subject is shared between different
components of the application. We also saw that with the Proxy object, we can
easily perform delegation of all the methods and attributes that we want to leave
unchanged.

In the next section, we present a more realistic example leveraging the Proxy
pattern and use it to compare the different techniques we have discussed so far
for implementing this pattern.

Creating a logging Writable stream
To see the Proxy pattern applied to a real example, we will now build an object that
acts as a proxy to a Writable stream, which intercepts all the calls to the write()
method and logs a message every time this happens. We will use the Proxy object to
implement our proxy. Let's write our code in a file called logging-writable.js:

export function createLoggingWritable (writable) {
 return new Proxy(writable, { // (1)
 get (target, propKey, receiver) { // (2)
 if (propKey === 'write') { // (3)
 return function (...args) { // (4)
 const [chunk] = args
 console.log('Writing', chunk)
 return writable.write(...args)
 }
 }
 return target[propKey] // (5)
 }
 })
}

In the preceding code, we created a factory that returns a proxied version of the
writable object passed as an argument. Let's see what the main points of the
implementation are:

1. We create and return a proxy for the original writable object using the
ES2015 Proxy constructor.

2. We use the get trap to intercept access to the object properties.
3. We check whether the property accessed is the write method. If that is the

case, we return a function to proxy the original behavior.

Structural Design Patterns

[282]

4. The proxy implementation logic here is simple: we extract the current chunk
from the list of arguments passed to the original function, we log the content
of the chunk, and finally, we invoke the original method with the given list
of arguments.

5. We return unchanged any other property.

We can now use this newly created function and test our proxy implementation:

import { createWriteStream } from 'fs'
import { createLoggingWritable } from './logging-writable.js'

const writable = createWriteStream('test.txt')
const writableProxy = createLoggingWritable(writable)

writableProxy.write('First chunk')
writableProxy.write('Second chunk')
writable.write('This is not logged')
writableProxy.end()

The proxy did not change the original interface of the stream or its external behavior,
but if we run the preceding code, we will now see that every chunk that is written
into the writableProxy stream is transparently logged to the console.

Change observer with Proxy
The Change Observer pattern is a design pattern in which an object (the subject)
notifies one or more observers of any state changes, so that they can "react" to
changes as soon as they happen.

Proxies turn out to be quite an effective tool to create observable objects. Let's see
a possible implementation with create-observable.js:

export function createObservable (target, observer) {
 const observable = new Proxy(target, {
 set (obj, prop, value) {

Although very similar, the Change Observer pattern should not
be confused with the Observer pattern discussed in Chapter 3,
Callbacks and Events. The Change Observer pattern focuses on
allowing the detection of property changes, while the Observer
pattern is a more generic pattern that adopts an event emitter to
propagate information about events happening in the system.

Chapter 8

[283]

 if (value !== obj[prop]) {
 const prev = obj[prop]
 obj[prop] = value
 observer({ prop, prev, curr: value })
 }
 return true
 }
 })

 return observable
}

In the previous code, createObservable() accepts a target object (the object to
observe for changes) and an observer (a function to invoke every time a change is
detected).

Here, we create the observable instance through an ES2015 Proxy. The proxy
implements the set trap, which is triggered every time a property is set. The
implementation compares the current value with the new one and, if they are
different, the target object is mutated, and the observer gets notified. When the
observer is invoked, we pass an object literal that contains information related to
the change (the name of the property, the previous value, and the current value).

Let's see now how we can take advantage of observable objects with a trivial invoice
application where the invoice total is updated automatically based on observed
changes in the various fields of the invoice:

import { createObservable } from './create-observable.js'
function calculateTotal (invoice) { // (1)
 return invoice.subtotal -
 invoice.discount +
 invoice.tax
}

const invoice = {

This is a simplified implementation of the Change Observer
pattern. More advanced implementations support multiple
observers and use more traps to catch other types of mutation,
such as field deletions or changes of prototype. Moreover, our
implementation does not recursively create proxies for nested
objects or arrays—a more advanced implementation takes care of
these cases as well.

Structural Design Patterns

[284]

 subtotal: 100,
 discount: 10,
 tax: 20
}
let total = calculateTotal(invoice)
console.log(`Starting total: ${total}`)

const obsInvoice = createObservable(// (2)
 invoice,
 ({ prop, prev, curr }) => {
 total = calculateTotal(invoice)
 console.log(`TOTAL: ${total} (${prop} changed: ${prev} ->
${curr})`)
 }
)
 // (3)
obsInvoice.subtotal = 200 // TOTAL: 210
obsInvoice.discount = 20 // TOTAL: 200
obsInvoice.discount = 20 // no change: doesn't notify
obsInvoice.tax = 30 // TOTAL: 210

console.log(`Final total: ${total}`)

In the previous example, an invoice is composed of a subtotal value, a discount
value, and a tax value. The total amount can be calculated from these three values.
Let's discuss the implementation in greater detail:

1. We declare a function that calculates the total for a given invoice, then we
create an invoice object and a value to hold the total for it.

2. Here we create an observable version of the invoice object. Every time there
is a change in the original invoice object, we recalculate the total and we also
print some logs to keep track of the changes.

3. Finally, we apply some changes to the observable invoice. Every time we
mutate the obsInvoice object the observer function is triggered, the total gets
updated, and some logs are printed on the screen.

If we run this example, we will see the following output in the console:

Starting total: 110
TOTAL: 210 (subtotal changed: 100 -> 200)
TOTAL: 200 (discount changed: 10 -> 20)
TOTAL: 210 (tax changed: 20 -> 30)
Final total: 210

Chapter 8

[285]

In this example, we could make the total calculation logic arbitrarily complicated,
for instance, by introducing new fields in the computation (shipping costs, other
taxes, and so on). In this case, it will be fairly trivial to introduce the new fields in
the invoice object and update the calculateTotal() function. Once we do that,
every change to the new properties will be observed and the total will be kept up
to date with every change.

In the wild
The Proxy pattern and more specifically the Change Observer pattern are widely
adopted patterns, which can be found on backend projects and libraries as well as
in the frontend world. Some popular projects that take advantage of these patterns
include the following:

• LoopBack (nodejsdp.link/loopback) is a popular Node.js web framework
that uses the Proxy pattern to provide the capability to intercept and enhance
method calls on controllers. This capability can be used to build custom
validation or authentication mechanisms.

• Version 3 of Vue.js (nodejsdp.link/vue), a very popular JavaScript reactive
UI framework, has reimplemented observable properties using the Proxy
pattern with the Proxy object.

• MobX (nodejsdp.link/mobx) is a famous reactive state management library
commonly used in frontend applications in combination with React or Vue.js.
Like Vue.js, MobX implements reactive observables using the Proxy object.

Decorator
Decorator is a structural design pattern that consists in dynamically augmenting the
behavior of an existing object. It's different from classical inheritance, because the
behavior is not added to all the objects of the same class, but only to the instances
that are explicitly decorated.

Implementation-wise, it is very similar to the Proxy pattern, but instead of enhancing
or modifying the behavior of the existing interface of an object, it augments it with
new functionalities, as described in Figure 8.2:

Observables are the cornerstone of reactive programming (RP)
and functional reactive programming (FRP). If you are curious
to know more about these styles of programming check out the
Reactive Manifesto, at nodejsdp.link/reactive-manifesto.

http://nodejsdp.link/loopback
http://nodejsdp.link/vue
http://nodejsdp.link/mobx
http://nodejsdp.link/reactive-manifesto

Structural Design Patterns

[286]

Figure 8.2: Decorator pattern schematic

In Figure 8.2, the Decorator object is extending the Component object by adding the
methodC() operation. The existing methods are usually delegated to the decorated
object without further processing but, in some cases, they might also be intercepted
and augmented with extra behaviors.

Techniques for implementing decorators
Although proxy and decorator are conceptually two different patterns with different
intents, they practically share the same implementation strategies. We will review
them shortly. This time we want to use the Decorator pattern to be able to take
an instance of our StackCalculator class and "decorate it" so that it also exposes
a new method called add(), which we can use to perform additions between two
numbers. We will also use the decorator to intercept all the calls to the divide()
method and implement the same division-by-zero check that we already saw in our
SafeCalculator example.

Composition
Using composition, the decorated component is wrapped around a new object that
usually inherits from it. The decorator in this case simply needs to define the new
methods, while delegating the existing ones to the original component:

class EnhancedCalculator {
 constructor (calculator) {
 this.calculator = calculator
 }

 // new method
 add () {
 const addend2 = this.getValue()
 const addend1 = this.getValue()
 const result = addend1 + addend2
 this.putValue(result)
 return result

Chapter 8

[287]

 }

 // modified method
 divide () {
 // additional validation logic
 const divisor = this.calculator.peekValue()
 if (divisor === 0) {
 throw Error('Division by 0')
 }
 // if valid delegates to the subject
 return this.calculator.divide()
 }

 // delegated methods
 putValue (value) {
 return this.calculator.putValue(value)
 }

 getValue () {
 return this.calculator.getValue()
 }

 peekValue () {
 return this.calculator.peekValue()
 }

 clear () {
 return this.calculator.clear()
 }

 multiply () {
 return this.calculator.multiply()
 }
}

const calculator = new StackCalculator()
const enhancedCalculator = new EnhancedCalculator(calculator)

enhancedCalculator.putValue(4)
enhancedCalculator.putValue(3)
console.log(enhancedCalculator.add()) // 4+3 = 7
enhancedCalculator.putValue(2)
console.log(enhancedCalculator.multiply()) // 7*2 = 14

Structural Design Patterns

[288]

If you remember our composition implementation for the Proxy pattern, you can
probably see that the code here looks quite similar.

We created the new add() method and enhanced the behavior of the original
divide() method (effectively replicating the feature we saw in the previous
SafeCalculator example). Finally, we delegated the putValue(), getValue(),
peekValue(), clear(), and multiply() methods to the original subject.

Object augmentation
Object decoration can also be achieved by simply attaching new methods directly to
the decorated object (monkey patching), as follows:

function patchCalculator (calculator) {
 // new method
 calculator.add = function () {
 const addend2 = calculator.getValue()
 const addend1 = calculator.getValue()
 const result = addend1 + addend2
 calculator.putValue(result)
 return result
 }

 // modified method
 const divideOrig = calculator.divide
 calculator.divide = () => {
 // additional validation logic
 const divisor = calculator.peekValue()
 if (divisor === 0) {
 throw Error('Division by 0')
 }
 // if valid delegates to the subject
 return divideOrig.apply(calculator)
 }

 return calculator
}

const calculator = new StackCalculator()
const enhancedCalculator = patchCalculator(calculator)
// ...

Chapter 8

[289]

Note that in this example, calculator and enhancedCalculator reference the same
object (calculator == enhancedCalculator). This is because patchCalculator() is
mutating the original calculator object and then returning it. You can confirm this
by invoking calculator.add() or calculator.divide().

Decorating with the Proxy object
It's possible to implement object decoration by using the Proxy object. A generic
example might look like this:

const enhancedCalculatorHandler = {
 get (target, property) {
 if (property === 'add') {
 // new method
 return function add () {
 const addend2 = target.getValue()
 const addend1 = target.getValue()
 const result = addend1 + addend2
 target.putValue(result)
 return result
 }
 } else if (property === 'divide') {
 // modified method
 return function () {
 // additional validation logic
 const divisor = target.peekValue()
 if (divisor === 0) {
 throw Error('Division by 0')
 }
 // if valid delegates to the subject
 return target.divide()
 }
 }

 // delegated methods and properties
 return target[property]
 }
}

const calculator = new StackCalculator()
const enhancedCalculator = new Proxy(
 calculator,

Structural Design Patterns

[290]

 enhancedCalculatorHandler
)
// ...

If we were to compare these different implementations, the same caveats discussed
during the analysis of the Proxy pattern would also apply for the decorator. Let's
focus instead on practicing the pattern with a real-life example!

Decorating a LevelUP database
Before we start coding the next example, let's say a few words about LevelUP, the
module that we are now going to work with.

Introducing LevelUP and LevelDB
LevelUP (nodejsdp.link/levelup) is a Node.js wrapper around Google's LevelDB,
a key-value store originally built to implement IndexedDB in the Chrome browser,
but it's much more than that. LevelDB has been defined as the "Node.js of databases"
because of its minimalism and extensibility. Like Node.js, LevelDB provides
blazingly fast performance and only the most basic set of features, allowing
developers to build any kind of database on top of it.

The Node.js community, and in this case Rod Vagg, did not miss the chance to bring
the power of this database into the Node.js world by creating LevelUP. Born as a
wrapper for LevelDB, it then evolved to support several kinds of backends, from
in-memory stores, to other NoSQL databases such as Riak and Redis, to web storage
engines such as IndexedDB and localStorage, allowing us to use the same API on
both the server and the client, opening up some really interesting scenarios.

Today, there is a vast ecosystem around LevelUP made of plugins and modules that
extend the tiny core to implement features such as replication, secondary indexes,
live updates, query engines, and more. Complete databases were also built on top of
LevelUP, including CouchDB clones such as PouchDB (nodejsdp.link/pouchdb), and
even a graph database, LevelGraph (nodejsdp.link/levelgraph), which can work
both on Node.js and the browser!

Find out more about the LevelUP ecosystem at nodejsdp.link/
awesome-level.

http://nodejsdp.link/levelup
http://nodejsdp.link/pouchdb
http://nodejsdp.link/levelgraph
http://nodejsdp.link/awesome-level
http://nodejsdp.link/awesome-level

Chapter 8

[291]

Implementing a LevelUP plugin
In the next example, we are going to show you how we can create a simple plugin
for LevelUP using the Decorator pattern, and in particular, the object augmentation
technique, which is the simplest but also the most pragmatic and effective way to
decorate objects with additional capabilities.

What we want to build is a plugin for LevelUP that allows us to receive notifications
every time an object with a certain pattern is saved into the database. For example,
if we subscribe to a pattern such as {a: 1}, we want to receive a notification when
objects such as {a: 1, b: 3} or {a: 1, c: 'x'} are saved into the database.

Let's start to build our small plugin by creating a new module called level-
subscribe.js. We will then insert the following code:

export function levelSubscribe (db) {
 db.subscribe = (pattern, listener) => { // (1)
 db.on('put', (key, val) => { // (2)
 const match = Object.keys(pattern).every(
 k => (pattern[k] === val[k]) // (3)
)
 if (match) {
 listener(key, val) // (4)
 }
 })
 }

 return db
}

That's it for our plugin; it's extremely simple. Let's briefly analyze the preceding code:

1. We decorate the db object with a new method named subscribe(). We
simply attach the method directly to the provided db instance (object
augmentation).

2. We listen for any put operation performed on the database.

For convenience, we are going to use the level package
(nodejsdp.link/level), which bundles both levelup and the
default adapter called leveldown, which uses LevelDB as the
backend.

http://nodejsdp.link/level

Structural Design Patterns

[292]

3. We perform a very simple pattern-matching algorithm, which verifies that
all the properties in the provided pattern are also available in the data being
inserted.

4. If we have a match, we notify the listener.

Let's now write some code to try out our new plugin:

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import level from 'level'
import { levelSubscribe } from './level-subscribe.js'

const __dirname = dirname(fileURLToPath(import.meta.url))

const dbPath = join(__dirname, 'db')
const db = level(dbPath, { valueEncoding: 'json' }) // (1)
levelSubscribe(db) // (2)

db.subscribe(// (3)
 { doctype: 'tweet', language: 'en' },
 (k, val) => console.log(val)
)
db.put('1', { // (4)
 doctype: 'tweet',
 text: 'Hi',
 language: 'en'
})
db.put('2', {
 doctype: 'company',
 name: 'ACME Co.'
})

This is how the preceding code works:

1. First, we initialize our LevelUP database, choosing the directory where the
files are stored and the default encoding for the values.

2. Then, we attach our plugin, which decorates the original db object.
3. At this point, we are ready to use the new feature provided by our plugin,

which is the subscribe() method, where we specify that we are interested in
all the objects with doctype: 'tweet' and language: 'en'.

Chapter 8

[293]

4. Finally, we save some values in the database using put. The first call triggers
the callback associated with our subscription and we should see the stored
object printed to the console. This is because, in this case, the object matches
the subscription. The second call does not generate any output because the
stored object does not match the subscription criteria.

This example shows a real application of the Decorator pattern in its simplest
implementation, which is object augmentation. It may look like a trivial pattern,
but it has undoubted power if used appropriately.

In the wild
For more examples of how decorators are used in the real world, you can inspect the
code of some more LevelUP plugins:

• level-inverted-index (nodejsdp.link/level-inverted-index): This is a
plugin that adds inverted indexes to a LevelUP database, allowing us to
perform simple text searches across the values stored in the database

• levelplus (nodejsdp.link/levelplus): This is a plugin that adds atomic
updates to a LevelUP database

Aside from LevelUP plugins, the following projects are also good examples of the
adoption of the Decorator pattern:

• json-socket (nodejsdp.link/json-socket): This module makes it easier to
send JSON data over a TCP (or a Unix) socket. It is designed to decorate an
existing instance of net.Socket, which gets enriched with additional methods
and behaviors.

• fastify (nodejsdp.link/fastify) is a web application framework that
exposes an API to decorate a Fastify server instance with additional
functionality or configuration. With this approach, the additional
functionality is made accessible to different parts of the application. This is
a quite generalized implementation of the Decorator pattern. Check out the
dedicated documentation page to find out more at nodejsdp.link/fastify-
decorators.

For simplicity, our plugin works only in combination with put
operations, but it can be easily expanded to work even with batch
operations (nodejsdp.link/levelup-batch).

http://nodejsdp.link/level-inverted-index
http://nodejsdp.link/levelplus
http://nodejsdp.link/json-socket
http://nodejsdp.link/fastify
http://nodejsdp.link/fastify-decorators
http://nodejsdp.link/fastify-decorators
http://nodejsdp.link/levelup-batch

Structural Design Patterns

[294]

The line between proxy and decorator
At this point in the book, you might have some legitimate doubts about the
differences between the Proxy and the Decorator patterns. These two patterns are
indeed very similar and they can sometimes be used interchangeably.

In its classic incarnation, the Decorator pattern is defined as a mechanism that allows
us to enhance an existing object with new behavior, while the Proxy pattern is used
to control access to a concrete or virtual object.

There is a conceptual difference between the two patterns, and it's mostly based on
the way they are used at runtime.

You can look at the Decorator pattern as a wrapper; you can take different types of
objects and decide to wrap them with a decorator to enhance their capabilities with
extra functionality. A proxy, instead, is used to control the access to an object and it
does not change the original interface. For this reason, once you have created a proxy
instance, you can pass it over to a context that expects the original object.

When it comes to implementation, these differences are generally much more
obvious with strongly typed languages where the type of the objects you pass
around is checked at compile time. In the Node.js ecosystem, given the dynamic
nature of the JavaScript language, the line between the Proxy and the Decorator
patterns is quite blurry, and often the two names are used interchangeably. We have
also seen how the same techniques can be used to implement both patterns.

When dealing with JavaScript and Node.js, our advice is to avoid getting bogged
down with the nomenclature and the canonical definition of these two patterns.
We encourage you to look at the class of problems that proxy and decorator
solve as a whole and treat these two patterns as complementary and sometimes
interchangeable tools.

Adapter
The Adapter pattern allows us to access the functionality of an object using a
different interface.

A real-life example of an adapter would be a device that allows you to plug a USB
Type-A cable into a USB Type-C port. In a generic sense, an adapter converts an
object with a given interface so that it can be used in a context where a different
interface is expected.

Chapter 8

[295]

In software, the Adapter pattern is used to take the interface of an object (the
adaptee) and make it compatible with another interface that is expected by a given
client. Let's have a look at Figure 8.3 to clarify this idea:

Figure 8.3: Adapter pattern schematic

In Figure 8.3, we can see how the adapter is essentially a wrapper for the adaptee,
exposing a different interface. The diagram also highlights the fact that the
operations of the adapter can also be a composition of one or more method
invocations on the adaptee. From an implementation perspective, the most common
technique is composition, where the methods of the adapter provide a bridge to the
methods of the adaptee. This pattern is pretty straightforward, so let's immediately
work on an example.

Using LevelUP through the filesystem API
We are now going to build an adapter around the LevelUP API, transforming it
into an interface that is compatible with the core fs module. In particular, we will
make sure that every call to readFile() and writeFile() will translate into calls
to db.get() and db.put(). This way we will be able to use a LevelUP database
as a storage backend for simple filesystem operations.

Let's start by creating a new module named fs-adapter.js. We will begin by loading
the dependencies and exporting the createFsAdapter() factory that we are going to
use to build the adapter:

import { resolve } from 'path'

export function createFSAdapter (db) {
 return ({
 readFile (filename, options, callback) {
 // ...
 },
 writeFile (filename, contents, options, callback) {
 // ...
 }
 })
}

Structural Design Patterns

[296]

Next, we will implement the readFile() function inside the factory and ensure that
its interface is compatible with the one of the original function from the fs module:

 readFile (filename, options, callback) {
 if (typeof options === 'function') {
 callback = options
 options = {}
 } else if (typeof options === 'string') {
 options = { encoding: options }
 }

 db.get(resolve(filename), { // (1)
 valueEncoding: options.encoding
 },
 (err, value) => {
 if (err) {
 if (err.type === 'NotFoundError') { // (2)
 err = new Error(`ENOENT, open "${filename}"`)
 err.code = 'ENOENT'
 err.errno = 34
 err.path = filename
 }
 return callback && callback(err)
 }
 callback && callback(null, value) // (3)
 })
 }

In the preceding code, we had to do some extra work to make sure that the behavior
of our new function is as close as possible to the original fs.readFile() function. The
steps performed by the function are described as follows:

1. To retrieve a file from the db instance, we invoke db.get(), using filename
as a key, by making sure to always use its full path (using resolve()). We
set the value of the valueEncoding option used by the database to be equal to
any eventual encoding option received as an input.

2. If the key is not found in the database, we create an error with ENOENT as the
error code, which is the code used by the original fs module to indicate a
missing file. Any other type of error is forwarded to callback (for the scope
of this example, we are adapting only the most common error condition).

3. If the key-value pair is retrieved successfully from the database, we will
return the value to the caller using the callback.

Chapter 8

[297]

The function that we created does not want to be a perfect replacement for the
fs.readFile() function, but it definitely does its job in the most common situations.

To complete our small adapter, let's now see how to implement the writeFile()
function:

 writeFile (filename, contents, options, callback) {
 if (typeof options === 'function') {
 callback = options
 options = {}
 } else if (typeof options === 'string') {
 options = { encoding: options }
 }

 db.put(resolve(filename), contents, {
 valueEncoding: options.encoding
 }, callback)
 }

As we can see, we don't have a perfect wrapper in this case either. We are ignoring
some options such as file permissions (options.mode), and we are forwarding any
error that we receive from the database as is.

Our new adapter is now ready. If we now write a small test module, we can try to
use it:

import fs from 'fs'

fs.writeFile('file.txt', 'Hello!', () => {
 fs.readFile('file.txt', { encoding: 'utf8' }, (err, res) => {
 if (err) {
 return console.error(err)
 }
 console.log(res)
 })
})

// try to read a missing file
fs.readFile('missing.txt', { encoding: 'utf8' }, (err, res) => {
 console.error(err)
})

Structural Design Patterns

[298]

The preceding code uses the original fs API to perform a few read and write
operations on the filesystem, and should print something like the following to
the console:

Error: ENOENT, open "missing.txt"
Hello!

Now, we can try to replace the fs module with our adapter, as follows:

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import level from 'level'
import { createFSAdapter } from './fs-adapter.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const db = level(join(__dirname, 'db'), {
 valueEncoding: 'binary'
})
const fs = createFSAdapter(db)
// ...

Running our program again should produce the same output, except for the fact
that no parts of the file that we specified are read or written using the filesystem API
directly. Instead, any operation performed using our adapter will be converted into
an operation performed on a LevelUP database.

The adapter that we just created might look silly; what's the purpose of using a
database in place of the real filesystem? However, we should remember that LevelUP
itself has adapters that enable the database to also run in the browser. One of these
adapters is level-js (nodejsdp.link/level-js). Now our adapter makes perfect
sense. We could use something similar to allow code leveraging the fs module to run
on both Node.js and a browser. We will soon realize that Adapter is an extremely
important pattern when it comes to sharing code with the browser, as we will see in
more detail in Chapter 10, Universal JavaScript for Web Applications.

In the wild
There are plenty of real-world examples of the Adapter pattern. We've listed some of
the most notable examples here for you to explore and analyze:

http://nodejsdp.link/level-js

Chapter 8

[299]

• We already know that LevelUP is able to run with different storage
backends, from the default LevelDB to IndexedDB in the browser. This
is made possible by the various adapters that are created to replicate the
internal (private) LevelUP API. Take a look at some of them to see how they
are implemented at nodejsdp.link/level-stores.

• JugglingDB is a multi-database ORM and of course, multiple adapters are
used to make it compatible with different databases. Take a look at some of
them at nodejsdp.link/jugglingdb-adapters.

• nanoSQL (nodejsdp.link/nanosql) is a modern multi-model database
abstraction library that makes heavy usage of the Adapter pattern to support
a significant variety of databases.

• The perfect complement to the example that we created is level-filesystem
(nodejsdp.link/level-filesystem), which is the proper implementation of
the fs API on top of LevelUP.

Summary
Structural design patterns are definitely some of the most widely adopted design
patterns in software engineering and it is important to be confident with them. In
this chapter, we explored the Proxy, the Decorator, and the Adapter patterns and
we discussed different ways to implement these in the context of Node.js.

We saw how the Proxy pattern can be a very valuable tool to control access to
existing objects. In this chapter, we also mentioned how the Proxy pattern can enable
different programming paradigms such as reactive programming using the Change
Observer pattern.

In the second part of the chapter, we found out that the Decorator pattern is an
invaluable tool to be able to add additional functionality to existing objects. We saw
that its implementation doesn't differ much from the Proxy pattern and we explored
some examples built around the LevelDB ecosystem.

Finally, we discussed the Adapter pattern, which allows us to wrap an existing
object and expose its functionality through a different interface. We saw that this
pattern can be useful to expose a piece of existing functionality to a component
that expects a different interface. In our examples, we saw how this pattern can be
used to implement an alternative storage layer that is compatible with the interface
provided by the fs module to interact with files.

http://nodejsdp.link/level-stores
http://nodejsdp.link/jugglingdb-adapters
http://nodejsdp.link/nanosql
http://nodejsdp.link/level-filesystem

Structural Design Patterns

[300]

Proxy, decorator and adapter are very similar, the difference between them can
be appreciated from the perspective of the interface consumer: proxy provides the
same interface as the wrapped object, decorator provides an enhanced interface, and
adapter provides a different interface.

In the next chapter, we will complete our journey through traditional design patterns
in Node.js by exploring the category of behavioral design patterns. This category
includes important patterns such as the Strategy pattern, the Middleware pattern,
and the Iterator pattern. Are you ready to discover behavioral design patterns?

Exercises
• 8.1 HTTP client cache: Write a proxy for your favorite HTTP client library

that caches the response of a given HTTP request, so that if you make
the same request again, the response is immediately returned from the
local cache, rather than being fetched from the remote URL. If you need
inspiration, you can check out the superagent-cache module (nodejsdp.
link/superagent-cache).

• 8.2 Timestamped logs: Create a proxy for the console object that enhances
every logging function (log(), error(), debug(), and info()) by prepending
the current timestamp to the message you want to print in the logs. For
instance, executing consoleProxy.log('hello') should print something like
2020-02-18T15:59:30.699Z hello in the console.

• 8.3 Colored console output: Write a decorator for the console that adds
the red(message), yellow(message), and green(message) methods. These
methods will have to behave like console.log(message) except they will
print the message in red, yellow, or green, respectively. In one of the
exercises from the previous chapter, we already pointed you to some useful
packages to to create colored console output. If you want to try something
different this time, have a look at ansi-styles (nodejsdp.link/ansi-styles).

• 8.4 Virtual filesystem: Modify our LevelDB filesystem adapter example to
write the file data in memory rather than in LevelDB. You can use an object
or a Map instance to store the key-value pairs of filenames and the associated
data.

• 8.5 The lazy buffer: Can you implement createLazyBuffer(size), a factory
function that generates a virtual proxy for a Buffer of the given size? The
proxy instance should instantiate a Buffer object (effectively allocating
the given amount of memory) only when write() is being invoked for the
first time. If no attempt to write into the buffer is made, no Buffer instance
should be created.

http://nodejsdp.link/superagent-cache
http://nodejsdp.link/superagent-cache
http://nodejsdp.link/ansi-styles

[301]

9
Behavioral Design Patterns

In the last two chapters, we have learned patterns that aid us in the creation of
objects and with building complex object structures. Now it's time to move onto
another aspect of software design, which concerns the behavior of components.
In this chapter, we will learn how to combine objects and how to define the
way they communicate so that the behavior of the resulting structure becomes
extensible, modular, reusable, and adaptable. Problems such as "How do I change
parts of an algorithm at runtime?", "How can I change the behavior of an object
based on its state?", and "How can I iterate over a collection without knowing its
implementation?" are the typical kinds of problems solved by the patterns presented
in this chapter.

You've already met a notable member of this category of patterns, and that is
the Observer pattern, which we presented in Chapter 3, Callbacks and Events. The
Observer pattern is one of the foundational patterns of the Node.js platform as
it provides us with a simple interface for dealing with events and subscriptions,
which are the life force of Node's event-driven architecture.

If you are already familiar with the Gang of Four (GoF) design patterns, in this
chapter, you will witness once again how the implementation of some of those
patterns can be radically different in JavaScript compared to a purer object-oriented
approach. A great example of this thesis can be found in the Iterator pattern, which
you will meet later in the chapter. To implement the Iterator pattern, in fact, we
won't need to extend any class or build any complex hierarchy. Instead, we will
just need to add a special method to a class. Moreover, one particular pattern in this
chapter, Middleware, tightly resembles another popular GoF pattern, which is the
Chain of Responsibility pattern, but its implementation in Node.js has become such
a standard that it can be considered a pattern of its own.

Behavioral Design Patterns

[302]

Now, it's time to roll up your sleeves and get your hands dirty with some behavioral
design patterns. In this chapter, you will learn about the following:

• The Strategy pattern, which helps us change parts of a component to adapt it
to specific needs

• The State pattern, which allows us to change the behavior of a component
based on its state

• The Template pattern, which allows us to reuse the structure of a component
to define new ones

• The Iterator pattern, which provides us with a common interface to iterate
over a collection

• The Middleware pattern, which allows us to define a modular chain of
processing steps

• The Command pattern, which materializes the information required to
execute a routine, allowing such information to be easily transferred, stored,
and processed

Strategy
The Strategy pattern enables an object, called the context, to support variations
in its logic by extracting the variable parts into separate, interchangeable objects
called strategies. The context implements the common logic of a family of
algorithms, while a strategy implements the mutable parts, allowing the context to
adapt its behavior depending on different factors, such as an input value, a system
configuration, or user preferences.

Strategies are usually part of a family of solutions and all of them implement the
same interface expected by the context. The following figure shows the situation
we just described:

Chapter 9

[303]

Figure 9.1: General structure of the Strategy pattern

Figure 9.1 shows you how the context object can plug different strategies into its
structure as if they were replaceable parts of a piece of machinery. Imagine a car; its
tires can be considered its strategy for adapting to different road conditions. We can
fit winter tires to go on snowy roads thanks to their studs, while we can decide to fit
high-performance tires for traveling mainly on motorways for a long trip. On the one
hand, we don't want to change the entire car for this to be possible, and on the other,
we don't want a car with eight wheels so that it can go on every possible road.

We quickly understand how powerful this pattern is. Not only does it help with
separating the concerns within a given problem, but it also enables our solution to
have better flexibility and adapt to different variations of the same problem.

The Strategy pattern is particularly useful in all those situations where supporting
variations in the behavior of a component requires complex conditional logic
(lots of if...else or switch statements) or mixing different components of the
same family. Imagine an object called Order that represents an online order on an
e-commerce website. The object has a method called pay() that, as it says, finalizes
the order and transfers the funds from the user to the online store.

To support different payment systems, we have a couple of options:

• Use an if...else statement in the pay() method to complete the operation
based on the chosen payment option

• Delegate the logic of the payment to a strategy object that implements the
logic for the specific payment gateway selected by the user

Behavioral Design Patterns

[304]

In the first solution, our Order object cannot support other payment methods unless
its code is modified. Also, this can become quite complex when the number of
payment options grows. Instead, using the Strategy pattern enables the Order object
to support a virtually unlimited number of payment methods and keeps its scope
limited to only managing the details of the user, the purchased items, and the
relative price while delegating the job of completing the payment to another object.

Let's now demonstrate this pattern with a simple, realistic example.

Multi-format configuration objects
Let's consider an object called Config that holds a set of configuration parameters
used by an application, such as the database URL, the listening port of the server,
and so on. The Config object should be able to provide a simple interface to access
these parameters, but also a way to import and export the configuration using
persistent storage, such as a file. We want to be able to support different formats
to store the configuration, for example, JSON, INI, or YAML.

By applying what we learned about the Strategy pattern, we can immediately
identify the variable part of the Config object, which is the functionality that allows
us to serialize and deserialize the configuration. This is going to be implemented by
our strategies.

Let's create a new module called config.js, and let's define the generic part of our
configuration manager:

import { promises as fs } from 'fs'
import objectPath from 'object-path'

export class Config {
 constructor (formatStrategy) { // (1)
 this.data = {}
 this.formatStrategy = formatStrategy
 }

 get (configPath) { // (2)
 return objectPath.get(this.data, configPath)
 }

 set (configPath, value) { // (2)

Chapter 9

[305]

 return objectPath.set(this.data, configPath, value)
 }
 async load (filePath) { // (3)
 console.log(`Deserializing from ${filePath}`)
 this.data = this.formatStrategy.deserialize(
 await fs.readFile(filePath, 'utf-8')
)
 }

 async save (filePath) { // (3)
 console.log(`Serializing to ${filePath}`)
 await fs.writeFile(filePath,
 this.formatStrategy.serialize(this.data))
 }
}

This is what's happening in the preceding code:

1. In the constructor, we create an instance variable called data to hold the
configuration data. Then we also store formatStrategy, which represents
the component that we will use to parse and serialize the data.

2. We provide two methods, set() and get(), to access the configuration
properties using a dotted path notation (for example, property.subProperty)
by leveraging a library called object-path (nodejsdp.link/object-path).

3. The load() and save() methods are where we delegate, respectively, the
deserialization and serialization of the data to our strategy. This is where the
logic of the Config class is altered based on the formatStrategy passed as an
input in the constructor.

As we can see, this very simple and neat design allows the Config object to
seamlessly support different file formats when loading and saving its data. The best
part is that the logic to support those various formats is not hardcoded anywhere,
so the Config class can adapt without any modification to virtually any file format,
given the right strategy.

To demonstrate this characteristic, let's now create a couple of format strategies in a
file called strategies.js. Let's start with a strategy for parsing and serializing data
using the INI file format, which is a widely used configuration format (more info
about it here: nodejsdp.link/ini-format).

http://nodejsdp.link/object-path
http://nodejsdp.link/ini-format

Behavioral Design Patterns

[306]

For the task, we will use an npm package called ini (nodejsdp.link/ini):

import ini from 'ini'

export const iniStrategy = {
 deserialize: data => ini.parse(data),
 serialize: data => ini.stringify(data)
}

Nothing really complicated! Our strategy simply implements the agreed interface, so
that it can be used by the Config object.

Similarly, the next strategy that we are going to create allows us to support the JSON
file format, widely used in JavaScript and in the web development ecosystem in
general:

export const jsonStrategy = {
 deserialize: data => JSON.parse(data),
 serialize: data => JSON.stringify(data, null, ' ')
}

Now, to show you how everything comes together, let's create a file named index.js,
and let's try to load and save a sample configuration using different formats:

import { Config } from './config.js'
import { jsonStrategy, iniStrategy } from './strategies.js'

async function main () {
 const iniConfig = new Config(iniStrategy)
 await iniConfig.load('samples/conf.ini')
 iniConfig.set('book.nodejs', 'design patterns')
 await iniConfig.save('samples/conf_mod.ini')

 const jsonConfig = new Config(jsonStrategy)
 await jsonConfig.load('samples/conf.json')
 jsonConfig.set('book.nodejs', 'design patterns')
 await jsonConfig.save('samples/conf_mod.json')
}

main()

http://nodejsdp.link/ini

Chapter 9

[307]

Our test module reveals the core properties of the Strategy pattern. We defined only
one Config class, which implements the common parts of our configuration manager,
then, by using different strategies for serializing and deserializing data, we created
different Config class instances supporting different file formats.

The example we've just seen showed us only one of the possible alternatives that we
had for selecting a strategy. Other valid approaches might have been the following:

• Creating two different strategy families: One for the deserialization and the
other for the serialization. This would have allowed reading from a format
and saving to another.

• Dynamically selecting the strategy: Depending on the extension of the
file provided, the Config object could have maintained a map extension →
strategy and used it to select the right algorithm for the given extension.

As we can see, we have several options for selecting the strategy to use, and the right
one only depends on your requirements and the tradeoff in terms of features and the
simplicity you want to obtain.

Furthermore, the implementation of the pattern itself can vary a lot as well. For
example, in its simplest form, the context and the strategy can both be simple
functions:

function context(strategy) {...}

Even though this may seem insignificant, it should not be underestimated in a
programming language such as JavaScript, where functions are first-class citizens
and used as much as fully-fledged objects.

Between all these variations, though, what does not change is the idea behind the
pattern; as always, the implementation can slightly change but the core concepts
that drive the pattern are always the same.

The structure of the Strategy pattern may look similar to that of
the Adapter pattern. However, there is a substantial difference
between the two. The adapter object does not add any behavior to
the adaptee; it just makes it available under another interface. This
can also require some extra logic to be implemented to convert
one interface into another, but this logic is limited to this task only.
In the Strategy pattern, however, the context and the strategy
implement two different parts of an algorithm and therefore both
implement some kind of logic and both are essential to build the
final algorithm (when combined together).

Behavioral Design Patterns

[308]

In the wild
Passport (nodejsdp.link/passportjs) is an authentication framework for
Node.js, which allows a web server to support different authentication schemes.
With Passport, we can provide a login with Facebook or login with Twitter functionality
to our web application with minimal effort. Passport uses the Strategy pattern
to separate the common logic used during an authentication process from the
parts that can change, namely the actual authentication step. For example,
we might want to use OAuth in order to obtain an access token to access a
Facebook or Twitter profile, or simply use a local database to verify a username/
password pair. For Passport, these are all different strategies for completing the
authentication process and, as we can imagine, this allows the library to support a
virtually unlimited number of authentication services. Take a look at the number
of different authentication providers supported at nodejsdp.link/passport-
strategies to get an idea of what the Strategy pattern can do.

State
The State pattern is a specialization of the Strategy pattern where the strategy
changes depending on the state of the context.

We have seen in the previous section how a strategy can be selected based on
different variables such as a configuration property or an input parameter, and once
this selection is done, the strategy remains unchanged for the rest of the lifespan of
the context object. In the State pattern, instead, the strategy (also called the state in
this circumstance) is dynamic and can change during the lifetime of the context, thus
allowing its behavior to adapt depending on its internal state.

The following figure shows us a representation of the pattern:

Figure 9.2: The State pattern

Figure 9.2 shows how a context object transitions through three states (A, B, and C).
With the State pattern, at each different context state, we select a different strategy.
This means that the context object will adopt a different behavior based on the state
it's in.

http://nodejsdp.link/passportjs
http://nodejsdp.link/passport-strategies
http://nodejsdp.link/passport-strategies

Chapter 9

[309]

To make this easier to understand, let's consider an example: imagine we have
a hotel booking system and an object called Reservation that models a room
reservation. This is a typical situation where we have to adapt the behavior of
an object based on its state.

Consider the following series of events:

• When the reservation is initially created, the user can confirm (using a
method called confirm()) the reservation. Of course, they cannot cancel it
(using cancel()), because it's still not confirmed (the caller would receive an
exception, for example). They can, however, delete it (using delete()) if they
change their mind before buying.

• Once the reservation is confirmed, using the confirm() method again
does not make any sense; however, now it should be possible to cancel the
reservation but no longer delete it, because it has to be kept for the records.

• On the day before the reservation date, it should not be possible to cancel the
reservation anymore; it's too late for that.

Now, imagine that we have to implement the reservation system that we
just described in one monolithic object. We can already picture all the if...
else or switch statements that we would have to write to enable/disable
each action depending on the state of the reservation.

Figure 9.3: An example application of the State pattern

As illustrated in Figure 9.3, the State pattern is, instead, perfect in this situation:
there would be three strategies, all implementing the three methods described
(confirm(), cancel(), and delete()) and each one implementing only one
behavior—the one corresponding to the modeled state. By using this pattern, it
should be very easy for the Reservation object to switch from one behavior to
another; this would simply require the activation of a different strategy (state object)
on each state change.

Behavioral Design Patterns

[310]

Let's now work on a more concrete example so that we can apply what we learned
about the State pattern.

Implementing a basic failsafe socket
Let's build a TCP client socket that does not fail when the connection with the
server is lost; instead, we want to queue all the data sent during the time in which
the server is offline and then try to send it again as soon as the connection is
reestablished. We want to leverage this socket in the context of a simple monitoring
system, where a set of machines sends some statistics about their resource utilization
at regular intervals. If the server that collects these resources goes down, our socket
will continue to queue the data locally until the server comes back online.

Let's start by creating a new module called failsafeSocket.js that defines our
context object:

import { OfflineState } from './offlineState.js'
import { OnlineState } from './onlineState.js'

export class FailsafeSocket {
 constructor (options) { // (1)
 this.options = options
 this.queue = []
 this.currentState = null
 this.socket = null
 this.states = {
 offline: new OfflineState(this),
 online: new OnlineState(this)
 }
 this.changeState('offline')
 }
 changeState (state) { // (2)
 console.log(`Activating state: ${state}`)
 this.currentState = this.states[state]
 this.currentState.activate()
 }

The state transition can be initiated and controlled by the context
object, by the client code, or by the state objects themselves. This
last option usually provides the best results in terms of flexibility
and decoupling, as the context does not have to know about all the
possible states and how to transition between them.

Chapter 9

[311]

 send (data) { // (3)
 this.currentState.send(data)
 }
}

The FailsafeSocket class is made of three main elements:

1. The constructor initializes various data structures, including the queue that
will contain any data sent while the socket is offline. Also, it creates a set of
two states: one for implementing the behavior of the socket while it's offline,
and another one when the socket is online.

2. The changeState() method is responsible for transitioning from one state
to another. It simply updates the currentState instance variable and
calls activate() on the target state.

3. The send() method contains the main functionality of the FailsafeSocket
class. This is where we want to have a different behavior based on the
offline/online state. As we can see, this is done by delegating the operation
to the currently active state.

Let's now see what the two states look like, starting from the offlineState.js
module:

import jsonOverTcp from 'json-over-tcp-2' // (1)

export class OfflineState {
 constructor (failsafeSocket) {
 this.failsafeSocket = failsafeSocket
 }

 send (data) { // (2)
 this.failsafeSocket.queue.push(data)
 }
 activate () { // (3)
 const retry = () => {
 setTimeout(() => this.activate(), 1000)
 }

 console.log('Trying to connect...')
 this.failsafeSocket.socket = jsonOverTcp.connect(
 this.failsafeSocket.options,
 () => {
 console.log('Connection established')

Behavioral Design Patterns

[312]

 this.failsafeSocket.socket.removeListener('error', retry)
 this.failsafeSocket.changeState('online')
 }
)
 this.failsafeSocket.socket.once('error', retry)
 }
}

The module that we just created is responsible for managing the behavior of the
socket while it's offline. This is how it works:

1. Instead of using a raw TCP socket, we will use a little library called json-
over-tcp-2 (nodejsdp.link/json-over-tcp-2). This will greatly simplify our
work since the library will take care of all the parsing and formatting of the
data going through the socket into JSON objects.

2. The send() method is only responsible for queuing any data it receives. We
are assuming that we are offline, so we'll save those data objects for later.
That's all we need to do here.

3. The activate() method tries to establish a connection with the server using
the json-over-tcp-2 socket. If the operation fails, it tries again after one
second. It continues trying until a valid connection is established, in which
case the state of failsafeSocket is transitioned to online.

Next, let's create the onlineState.js module, which is where we will implement the
OnlineState class:

export class OnlineState {
 constructor (failsafeSocket) {
 this.failsafeSocket = failsafeSocket
 this.hasDisconnected = false
 }
 send (data) { // (1)
 this.failsafeSocket.queue.push(data)
 this._safeWrite(data)
 }
 _safeWrite (data) { // (2)
 this.failsafeSocket.socket.write(data, (err) => {
 if (!this.hasDisconnected && !err) {
 this.failsafeSocket.queue.shift()
 }
 })
 }

http://nodejsdp.link/json-over-tcp-2

Chapter 9

[313]

 activate () { // (3)
 this.hasDisconnected = false
 for (const data of this.failsafeSocket.queue) {
 this._safeWrite(data)
 }

 this.failsafeSocket.socket.once('error', () => {
 this.hasDisconnected = true
 this.failsafeSocket.changeState('offline')
 })
 }
}

The OnlineState class models the behavior of the FailsafeSocket when there is an
active connection with the server. This is how it works:

1. The send() method queues the data and then immediately tries to write it
directly into the socket, as we assume that we are online. It'll use the internal
_safeWrite() method to do that.

2. The _safeWrite() method tries to write the data into the socket writable
stream (see the official docs at nodejsdp.link/writable-write) and it waits
for the data to be written into the underlying resource. If no errors are
returned and if the socket didn't disconnect in the meantime, it means that
the data was sent successfully and therefore we remove it from the queue.

3. The activate() method flushes any data that was queued while the socket
was offline and it also starts listening for any error event; we will take this as
a symptom that the socket went offline (for simplicity). When this happens,
we transition to the offline state.

That's it for our FailsafeSocket. Now we are ready to build a sample client and
a server to try it out. Let's put the server code in a module named server.js:

import jsonOverTcp from 'json-over-tcp-2'

const server = jsonOverTcp.createServer({ port: 5000 })
server.on('connection', socket => {
 socket.on('data', data => {
 console.log('Client data', data)
 })
})

http://nodejsdp.link/writable-write

Behavioral Design Patterns

[314]

server.listen(5000, () => console.log('Server started'))

Then, the client-side code, which is what we are really interested in, goes
into client.js:

import { FailsafeSocket } from './failsafeSocket.js'

const failsafeSocket = new FailsafeSocket({ port: 5000 })

setInterval(() => {
 // send current memory usage
 failsafeSocket.send(process.memoryUsage())
}, 1000)

Our server simply prints to the console any JSON message it receives, while our
clients are sending a measurement of their memory utilization every second,
leveraging a FailsafeSocket object.

To try the small system that we built, we should run both the client and
the server, then we can test the features of failsafeSocket by stopping and
then restarting the server. We should see that the state of the client changes
between online and offline and that any memory measurement collected while the
server is offline is queued and then resent as soon as the server goes back online.

This sample should be a clear demonstration of how the State pattern can help
increase the modularity and readability of a component that has to adapt its
behavior depending on its state.

The FailsafeSocket class that we built in this section is only for
demonstrating the State pattern and doesn't want to be a complete
and 100% reliable solution for handling connectivity issues with
TCP sockets. For example, we are not verifying that all the data
written into the socket stream is received by the server, which
would require some more code not strictly related to the pattern
that we wanted to describe. For a production alternative, you can
count on ZeroMQ (nodejsdp.link/zeromq). We'll talk about
some patterns using ZeroMQ later in the book in Chapter 13,
Messaging and Integration Patterns.

http://nodejsdp.link/zeromq

Chapter 9

[315]

Template
The next pattern that we are going to analyze is called Template and it has a lot in
common with the Strategy pattern. The Template pattern defines an abstract class
that implements the skeleton (representing the common parts) of a component,
where some of its steps are left undefined. Subclasses can then fill the gaps in the
component by implementing the missing parts, called template methods. The intent
of this pattern is to make it possible to define a family of classes that are all variations
of a family of components. The following UML diagram shows the structure that we
just described:

Figure 9.4: UML diagram of the Template pattern

The three concrete classes shown in Figure 9.4, extend the template class and provide
an implementation for templateMethod(), which is abstract or pure virtual, to use C++
terminology. In JavaScript, we don't have a formal way to define abstract classes,
so all we can do is leave the method undefined or assign it to a function that always
throws an exception, indicating that the method has to be implemented. The Template
pattern can be considered a more traditionally object-oriented pattern than the other
patterns we have seen so far, because inheritance is a core part of its implementation.

The purpose of Template and Strategy is very similar, but the main difference
between the two lies in their structure and implementation. Both allow us to change
the variable parts of a component while reusing the common parts. However, while
Strategy allows us to do it dynamically at runtime, with Template, the complete
component is determined the moment the concrete class is defined. Under these
assumptions, the Template pattern might be more suitable in those circumstances
where we want to create prepackaged variations of a component. As always, the
choice between one pattern and the other is up to the developer, who has to consider
the various pros and cons for each use case.

Let's now work on an example.

Behavioral Design Patterns

[316]

A configuration manager template
To have a better idea of the differences between Strategy and Template, let's now
reimplement the Config object that we defined in the Strategy pattern section, but
this time using Template. As in the previous version of the Config object, we want to
have the ability to load and save a set of configuration properties using different file
formats.

Let's start by defining the template class. We will call it ConfigTemplate:

import { promises as fsPromises } from 'fs'
import objectPath from 'object-path'

export class ConfigTemplate {
 async load (file) {
 console.log(`Deserializing from ${file}`)
 this.data = this._deserialize(
 await fsPromises.readFile(file, 'utf-8'))
 }

 async save (file) {
 console.log(`Serializing to ${file}`)
 await fsPromises.writeFile(file, this._serialize(this.data))
 }

 get (path) {
 return objectPath.get(this.data, path)
 }

 set (path, value) {
 return objectPath.set(this.data, path, value)
 }

 _serialize () {
 throw new Error('_serialize() must be implemented')
 }

 _deserialize () {
 throw new Error('_deserialize() must be implemented')
 }
}

Chapter 9

[317]

The ConfigTemplate class implements the common parts of the configuration
management logic, namely setting and getting properties, plus loading and
saving it to the disk. However, it leaves the implementation of _serialize() and
_deserialize() open; those are in fact our template methods, which will allow the
creation of concrete Config classes supporting specific configuration formats. The
underscore at the beginning of the template methods' names indicates that they are
for internal use only, an easy way to flag protected methods. Since in JavaScript we
cannot declare a method as abstract, we simply define them as stubs, throwing an
error if they are invoked (in other words, if they are not overridden by a concrete
subclass).

Let's now create a concrete class using our template, for example, one that allows us
to load and save the configuration using the JSON format:

import { ConfigTemplate } from './configTemplate.js'

export class JsonConfig extends ConfigTemplate {
 _deserialize (data) {
 return JSON.parse(data)
 }

 _serialize (data) {
 return JSON.stringify(data, null, ' ')
 }
}

The JsonConfig class extends our template class, ConfigTemplate, and provides
a concrete implementation for the _deserialize() and _serialize() methods.

Similarly, we can implement an IniConfig class supporting the .ini file format
using the same template class:

import { ConfigTemplate } from './configTemplate.js'
import ini from 'ini'

export class IniConfig extends ConfigTemplate {
 _deserialize (data) {
 return ini.parse(data)
 }

 _serialize (data) {
 return ini.stringify(data)
 }
}

Behavioral Design Patterns

[318]

Now we can use our concrete configuration manager classes to load and save some
configuration data:

import { JsonConfig } from './jsonConfig.js'
import { IniConfig } from './iniConfig.js'

async function main () {
 const jsonConfig = new JsonConfig()
 await jsonConfig.load('samples/conf.json')
 jsonConfig.set('nodejs', 'design patterns')
 await jsonConfig.save('samples/conf_mod.json')

 const iniConfig = new IniConfig()
 await iniConfig.load('samples/conf.ini')
 iniConfig.set('nodejs', 'design patterns')
 await iniConfig.save('samples/conf_mod.ini')
}

main()

Note the difference with the Strategy pattern: the logic for formatting and parsing the
configuration data is baked into the class itself, rather than being chosen at runtime.

With minimal effort, the Template pattern allowed us to obtain a new, fully working
configuration manager by reusing the logic and the interface inherited from the
parent template class and providing only the implementation of a few abstract
methods.

In the wild
This pattern should not look entirely new to us. We already encountered it in
Chapter 6, Coding with Streams, when we were extending the different stream classes
to implement our custom streams. In that context, the template methods were the _
write(), _read(), _transform(), or _flush() methods, depending on the stream class
that we wanted to implement. To create a new custom stream, we needed to inherit
from a specific abstract stream class, providing an implementation for the template
methods.

Next, we are going to learn about a very important and ubiquitous pattern that is
also built into the JavaScript language itself, which is the Iterator pattern.

Chapter 9

[319]

Iterator
The Iterator pattern is a fundamental pattern and it's so important and commonly
used that it's usually built into the programming language itself. All major
programming languages implement the pattern in one way or another, including,
of course, JavaScript (starting from the ECMAScript2015 specification).

The Iterator pattern defines a common interface or protocol for iterating the elements
of a container, such as an array or a tree data structure. Usually, the algorithm
for iterating over the elements of a container is different depending on the actual
structure of the data. Think about iterating over an array versus traversing a tree:
in the first situation, we need just a simple loop; in the second, a more complex tree
traversal algorithm is required (nodejsdp.link/tree-traversal). With the Iterator
pattern, we hide the details about the algorithm being used or the structure of
the data and provide a common interface for iterating over any type of container.
In essence, the Iterator pattern allows us to decouple the implementation of the
traversal algorithm from the way we consume the results (the elements) of the
traversal operation.

In JavaScript, however, iterators work great even with other types of constructs,
which are not necessarily containers, such as event emitters and streams. Therefore,
we can say in more general terms that the Iterator pattern defines an interface to
iterate over elements produced or retrieved in sequence.

The iterator protocol
In JavaScript, the Iterator pattern is implemented through protocols rather than
through formal constructs, such as inheritance. This essentially means that the
interaction between the implementer and the consumer of the Iterator pattern will
communicate using interfaces and objects whose shape is agreed in advance.

The starting point for implementing the Iterator pattern in JavaScript is the iterator
protocol, which defines an interface for producing a sequence of values. So, we'll
call iterator an object implementing a next() method having the following behavior:
each time the method is called, the function returns the next element in the iteration
through an object, called the iterator result, having two properties—done and value:

• done is set to true when the iteration is complete, or in other words, when
there are no more elements to return. Otherwise, done will be undefined
or false.

http://nodejsdp.link/tree-traversal

Behavioral Design Patterns

[320]

• value contains the current element of the iteration and it can be left
undefined if done is true. If value is set even when done is true, then it is said
that value contains the return value of the iteration, a value which is not part
of the elements being iterated, but it's related to the iteration itself as a whole
(for example, the time spent iterating all the elements or the average of all the
elements iterated if the elements are numbers).

Let's use a quick example to demonstrate how to implement the iterator protocol.
Let's implement a factory function called createAlphabetIterator(), which creates
an iterator that allows us to traverse all the letters of the English alphabet. Such a
function would look like this:

const A_CHAR_CODE = 65
const Z_CHAR_CODE = 90

function createAlphabetIterator () {
 let currCode = A_CHAR_CODE

 return {
 next () {
 const currChar = String.fromCodePoint(currCode)
 if (currCode > Z_CHAR_CODE) {
 return { done: true }
 }

 currCode++
 return { value: currChar, done: false }
 }
 }
}

The logic of the iteration is actually very straightforward; at each invocation of the
next() method, we simply increment a number representing the letter's character
code, convert it to a character, and then return it using the object shape defined by
the iterator protocol.

Nothing prevents us from adding extra properties to the object
returned by an iterator. However, those properties will be simply
ignored by the built-in constructs or APIs consuming the iterator
(we'll meet those in a moment).

Chapter 9

[321]

The important aspect to note is that an iterator is very often a stateful object since we
have to keep track in some way of the current position of the iteration. In the previous
example, we managed to keep the state in a closure (the currCode variable) but this
is just one of the ways we can do so. We could have, for example, kept the state in an
instance variable. This is usually better in terms of debuggability since we can read
the status of the iteration from the iterator itself at any time, but on the other side,
it does not prevent external code from modifying the instance variable and hence
tampering with the status of the iteration. It's up to you to decide the pros and cons
of each option.

Iterators can indeed be fully stateless as well. Examples are iterators returning
random elements and either completing randomly or never completing, and iterators
stopping at the first iteration.

Now, let's see how we can use the iterator we just built. Consider the following code
fragment:

const iterator = createAlphabetIterator()

let iterationResult = iterator.next()
while (!iterationResult.done) {
 console.log(iterationResult.value)
 iterationResult = iterator.next()
}

As we can see from the previous code, the code that consumes an iterator can be
considered a pattern itself. However, as we will see later in this section, it's not
the only way we have to consume an iterator. JavaScript has, in fact, much more
convenient and elegant ways to use iterators.

It's not a requirement for an iterator to ever return done: true.
In fact, there can be many situations in which an iterator is
infinite. An example is an iterator that returns a random number
at each iteration. Another example is an iterator that calculates a
mathematical series, such as the Fibonacci series or the digits of the
constant pi (as an exercise, you can try to convert the following
algorithm to use iterators: nodejsdp.link/pi-js). Note that even
if an iterator is theoretically infinite, it doesn't mean that it won't
have computational or spatial limits. For example, the number
returned by the Fibonacci sequence will get very big very soon.

http://nodejsdp.link/pi-js

Behavioral Design Patterns

[322]

The iterable protocol
The iterable protocol defines a standardized means for an object to return an
iterator. Such objects are called iterables. Usually, an iterable is a container of
elements, such as a data structure, but it can also be an object virtually representing a
set of elements, such as a Directory object, which would allow us to iterate over the
files in a directory.

In JavaScript, we can define an iterable by making sure it implements the @@iterator
method, or in other words, a method accessible through the built-in symbol
Symbol.iterator.

Such an @@iterator method should return an iterator object, which can be used to
iterate over the elements represented by the iterable. For example, if our iterable is a
class, we would have something like the following:

class MyIterable {
 // other methods...
 [Symbol.iterator] () {
 // return an iterator
 }
}

To show how this works in practice, let's build a class to manage information
organized in a bidimensional matrix structure. We want this class to be
implementing the iterable protocol, so that we can scan all the elements in the matrix
using an iterator. Let's create a file called matrix.js containing the following content:

export class Matrix {
 constructor (inMatrix) {
 this.data = inMatrix

Iterators can optionally specify two additional methods:
return([value]) and throw(error). The first is by convention
used to signal to the iterator that the consumer has stopped
the iteration before its completion, while the second is used to
communicate to the iterator that an error condition has occurred.
Both methods are rarely used by built-in iterators.

The @@name convention indicates a well-known symbol according
to the ES6 specification. To find out more, you can check out the
relative section of the ES6 specification at nodejsdp.link/es6-
well-known-symbols.

http://nodejsdp.link/es6-well-known-symbols
http://nodejsdp.link/es6-well-known-symbols

Chapter 9

[323]

 }

 get (row, column) {
 if (row >= this.data.length ||
 column >= this.data[row].length) {
 throw new RangeError('Out of bounds')
 }
 return this.data[row][column]
 }

 set (row, column, value) {
 if (row >= this.data.length ||
 column >= this.data[row].length) {
 throw new RangeError('Out of bounds')
 }
 this.data[row][column] = value
 }

 [Symbol.iterator] () {
 let nextRow = 0
 let nextCol = 0

 return {
 next: () => {
 if (nextRow === this.data.length) {
 return { done: true }
 }

 const currVal = this.data[nextRow][nextCol]

 if (nextCol === this.data[nextRow].length - 1) {
 nextRow++
 nextCol = 0
 } else {
 nextCol++
 }

 return { value: currVal }
 }
 }
 }
}

Behavioral Design Patterns

[324]

As we can see, the class contains the basic methods for getting and setting values in
the matrix, as well as the @@iterator method, implementing our iterable protocol.
The @@iterator method will return an iterator, as specified by the iterable protocol
and such an iterator adheres to the iterator protocol. The logic of the iterator is very
straightforward: we are simply traversing the matrix's cells from the top left to the
bottom right, by scanning each column of each row; we are doing that by leveraging
two indexes, nextRow and nextCol.

Now, it's time to try out our iterable Matrix class. We can do that in a file called
index.js:

import { Matrix } from './matrix.js'

const matrix2x2 = new Matrix([
 ['11', '12'],
 ['21', '22']
])

const iterator = matrix2x2[Symbol.iterator]()
let iterationResult = iterator.next()
while (!iterationResult.done) {
 console.log(iterationResult.value)
 iterationResult = iterator.next()
}

All we are doing in the previous code is creating a sample Matrix instance and then
obtaining an iterator using the @@iterator method. What comes next, as we already
know, is just boilerplate code that iterates over the elements returned by the iterator.
The output of the iteration should be '11', '12', '21', '22'.

Iterators and iterables as a native JavaScript
interface
At this point, you may ask: "what's the point of having all these protocols for
defining iterators and iterables?" Well, having a standardized interface allows third
party code as well as the language itself to be modeled around the two protocols
we've just seen. This way, we can have APIs (even native) as well as syntax
constructs accepting iterables as an input.

Chapter 9

[325]

For example, the most obvious syntax construct accepting an iterable is the for...of
loop. We've just seen in the last code sample that iterating over a JavaScript iterator
is a pretty standard operation, and its code is mostly boilerplate. In fact, we'll always
have an invocation to next() to retrieve the next element and a check to verify if
the done property of the iteration result is set to true, which indicates the end of
the iteration. But, worry not, simply pass an iterable to the for...of instruction to
seamlessly loop over the elements returned by its iterator. This allows us to process
the iteration with an intuitive and compact syntax:

for (const element of matrix2x2) {
 console.log(element)
}

Another construct compatible with iterables is the spread operator:

const flattenedMatrix = [...matrix2x2]
console.log(flattenedMatrix)

Similarly, we can use an iterable with the destructuring assignment operation:

const [oneOne, oneTwo, twoOne, twoTwo] = matrix2x2
console.log(oneOne, oneTwo, twoOne, twoTwo)

The following are some JavaScript built-in APIs accepting iterables:

• Map([iterable]): nodejsdp.link/map-constructor
• WeakMap([iterable]): nodejsdp.link/weakmap-constructor
• Set([iterable]): nodejsdp.link/set-constructor
• WeakSet([iterable]): nodejsdp.link/weakset-constructor
• Promise.all(iterable): nodejsdp.link/promise-all
• Promise.race(iterable): nodejsdp.link/promise-race
• Array.from(iterable): nodejsdp.link/array-from

On the Node.js side, one notable API accepting an iterable is stream.Readable.
from(iterable, [options]) (nodejsdp.link/readable-from), which creates a
readable stream out of an iterable object.

http://nodejsdp.link/map-constructor
http://nodejsdp.link/weakmap-constructor
http://nodejsdp.link/set-constructor
http://nodejsdp.link/weakset-constructor
http://nodejsdp.link/promise-all
http://nodejsdp.link/promise-race
http://nodejsdp.link/array-from
http://nodejsdp.link/readable-from

Behavioral Design Patterns

[326]

JavaScript itself defines many iterables that can be used with the APIs and constructs
we've just seen. The most notable iterable is Array, but also other data structures,
such as Map and Set, and even String all implement the @@iterable method. In
Node.js land, Buffer is probably the most notable iterable.

Generators
The ES2015 specification introduced a syntax construct that is closely related to
iterators. We are talking about generators, also known as semicoroutines. They
are a generalization of standard functions, in which there can be different entry
points. In a standard function, we can have only one entry point, which corresponds
to the invocation of the function itself, but a generator can be suspended (using
the yield statement) and then resumed at a later time. Among other things,
generators are very well suited to implement iterators, in fact, as we will see in a bit,
the generator object returned by a generator function is indeed both an iterator and
an iterable.

Note that all the APIs and syntax constructs we've just seen
accept as input an iterable and not an iterator. But, what can we
do if we have a function returning an iterator, such as in our
createAlphabetIterator() example? How can we leverage
all the built-in APIs and syntax constructs? A possible solution is
implementing the @@iterator method in the iterator object itself,
which will simply return the iterator object itself. This way we'll be
able to write something such as the following:

for (const letter of createAlphabetIterator()) {
 //...
}

A trick to make sure that an array doesn't contain duplicate
elements is the following: const uniqArray = Array.from(new
Set(arrayWithDuplicates)). This also shows us how iterables
offer a way for different components to talk to each other using a
shared interface.

Chapter 9

[327]

Generators in theory
To define a generator function, we need to use the function* declaration (the
function keyword followed by an asterisk):

function * myGenerator () {
 // generator body
}

Invoking a generator function will not execute its body immediately. Rather, it will
return a generator object, which, as we already mentioned, is both an iterator and
an iterable. But it doesn't end here; invoking next() on the generator object will
start or resume the execution of the generator until the yield instruction is invoked
or the generator returns (either implicitly or explicitly with a return instruction).
Within the generator, using the keyword yield followed by a value x is equivalent
to returning {done: false, value: x} from the iterator, while returning a value x is
equivalent to returning {done: true, value: x}.

A simple generator function
To demonstrate what we just learned, let's see a simple generator called
fruitGenerator(), which will yield two names of fruits and return their ripening
season:

function * fruitGenerator () {
 yield 'peach'
 yield 'watermelon'
 return 'summer'
}

const fruitGeneratorObj = fruitGenerator()
console.log(fruitGeneratorObj.next()) // (1)
console.log(fruitGeneratorObj.next()) // (2)
console.log(fruitGeneratorObj.next()) // (3)

The preceding code will print the following text:

 { value: 'peach', done: false }
 { value: 'watermelon', done: false }
 { value: 'summer', done: true }

Behavioral Design Patterns

[328]

This is a short explanation of what happened:

1. The first time fruitGeneratorObj.next() was invoked, the generator started
its execution until it reached the first yield command, which put the
generator on pause and returned the value 'peach' to the caller.

2. At the second invocation of fruitGeneratorObj.next(), the generator
resumed, starting from the second yield command, which in turn put the
execution on pause again, while returning the value 'watermelon' to the
caller.

3. The last invocation of fruitGeneratorObj.next() caused the execution
of the generator to resume from its last instruction, a return statement,
which terminates the generator, returns the value 'summer', and sets
the done property to true in the result object.

Since a generator object is also an iterable, we can use it in a for...of loop. For
example:

for (const fruit of fruitGenerator()) {
 console.log(fruit)
}

The preceding loop will print:

peach
watermelon

Controlling a generator iterator
Generator objects are more than standard iterators, in fact, their next() method
optionally accepts an argument (whereas, as specified by the iterator protocol, it does
not need to accept one). Such an argument is passed as the return value of the yield
instruction. To show this, let's create a new simple generator:

function * twoWayGenerator () {
 const what = yield null
 yield 'Hello ' + what
}

Why is summer not being printed? Well, summer is not yielded
by our generator, but instead, it is returned, which indicates that
the iteration is complete with summer as a return value (not as an
element).

Chapter 9

[329]

const twoWay = twoWayGenerator()
twoWay.next()
console.log(twoWay.next('world'))

When executed, the preceding code prints Hello world. This means that the
following has happened:

1. The first time the next() method is invoked, the generator reaches the
first yield statement and is then put on pause.

2. When next('world') is invoked, the generator resumes from the point where
it was put on pause, which is on the yield instruction, but this time we have
a value that is passed back to the generator. This value will then be set to
the what variable. The generator then appends the what variable to the string
'Hello ' and yields the result.

Two other extra features provided by generator objects are the optional throw() and
return() iterator methods. The first behaves like next() but it will also throw an
exception within the generator as if it was thrown at the point of the last yield, and
returns the canonical iterator object with the done and value properties. The second,
the return() method, forces the generator to terminate and returns an object such as
the following: {done: true, value: returnArgument} where returnArgument is the
argument passed to the return() method.

The following code shows a demonstration of these two methods:

function * twoWayGenerator () {
 try {
 const what = yield null
 yield 'Hello ' + what
 } catch (err) {
 yield 'Hello error: ' + err.message
 }
}

console.log('Using throw():')
const twoWayException = twoWayGenerator()
twoWayException.next()
console.log(twoWayException.throw(new Error('Boom!')))

console.log('Using return():')
const twoWayReturn = twoWayGenerator()
console.log(twoWayReturn.return('myReturnValue'))

Behavioral Design Patterns

[330]

Running the previous code will print the following to the console:

Using throw():
{ value: 'Hello error: Boom!', done: false }
Using return():
{ value: 'myReturnValue', done: true }

As we can see, the twoWayGenerator() function will receive an exception as soon as
the first yield instruction returns. This works exactly as if an exception was thrown
from inside the generator, and this means that it can be caught and handled like
any other exception using a try...catch block. The return() method, instead, will
simply stop the execution of the generator causing the given value to be provided as
a return value by the generator.

How to use generators in place of iterators
Generator objects are also iterators. This means that generator functions can be
used to implement the @@iterator method of iterable objects. To demonstrate this,
let's convert our previous Matrix iteration example to generators. Let's update our
matrix.js file as follows:

export class Matrix {
 // ...rest of the methods (stay unchanged)

 * [Symbol.iterator] () { // (1)
 let nextRow = 0 // (2)
 let nextCol = 0

 while (nextRow !== this.data.length) { // (3)
 yield this.data[nextRow][nextCol]

 if (nextCol === this.data[nextRow].length - 1) {
 nextRow++
 nextCol = 0
 } else {
 nextCol++
 }
 }
 }
}

Chapter 9

[331]

There are a few interesting aspects in the code fragment we've just seen. Let's analyze
them in more detail:

1. The first thing to notice is that the @@iterator method is now a generator
(note the asterisk * before the method name).

2. The variables we use to maintain the state of the iteration are now just local
variables for the generator, while in the previous version of the Matrix class,
those two variables were part of a closure. This is possible because when a
generator is invoked, its local state is preserved between reentries.

3. We are using a standard loop to iterate over the elements of the matrix. This
is certainly more intuitive than trying to imagine a loop that invokes the
next() method of an iterator.

As we can see, generators are an excellent alternative to writing iterators from
scratch. They will improve the readability of our iteration routine and will offer the
same level of functionality (or even better).

Async iterators
The iterators we've seen so far return a value synchronously from their next()
method. However, in JavaScript and especially in Node.js, it's very common to have
iterations over items that require an asynchronous operation to be produced.

Imagine, for example, to iterate over the requests received by an HTTP server, or
over the results of an SQL query, or over the elements of a paginated REST API. In
all those situations, it would be handy to be able to return a promise from the next()
method of an iterator, or even better, use the async/await construct.

Well, that's exactly what async iterators are; they are iterators returning a promise,
and since that's the only extra requirement, it means that we can also use an async
function to define the next() method of the iterator. Similarly, async iterables are
objects that implement an @@asyncIterator method, or in other words, a method
accessible through the Symbol.asyncIterator key, which returns (synchronously)
an async iterator.

The generator delegation instruction, yield * iterable,
is another example of a JavaScript built-in syntax accepting
an iterable as an argument. The instruction will loop over the
elements of the iterable and yield each element one by one.

Behavioral Design Patterns

[332]

Async iterables can be looped over using the for await...of syntax, which can only
be used inside an async function. With the for await...of syntax, we are essentially
implementing a sequential asynchronous execution flow on top of the Iterator
pattern. Essentially, it's just syntactic sugar for the following loop:

const asyncIterator = iterable[Symbol.asyncIterator]()
let iterationResult = await asyncIterator.next()
while (!iterationResult.done) {
 console.log(iterationResult.value)
 iterationResult = await asyncIterator.next()
}

This means that the for await...of syntax can also be used to iterate over a simple
iterable (not just async iterables) as, for example, over an array of promises. It will
work even if not all the elements (or none) of the iterator are promises.

To quickly demonstrate this, let's build a class that takes a list of URLs as input
and allows us to iterate over their availability status (up/down). Let's call the class
CheckUrls:

import superagent from 'superagent'

export class CheckUrls {
 constructor (urls) { // (1)
 this.urls = urls
 }

 [Symbol.asyncIterator] () {
 const urlsIterator = this.urls[Symbol.iterator]() // (2)

 return {
 async next () { // (3)
 const iteratorResult = urlsIterator.next() // (4)
 if (iteratorResult.done) {
 return { done: true }
 }

 const url = iteratorResult.value
 try {
 const checkResult = await superagent // (5)
 .head(url)
 .redirects(2)
 return {

Chapter 9

[333]

 done: false,
 value: `${url} is up, status: ${checkResult.status}`
 }
 } catch (err) {
 return {
 done: false,
 value: `${url} is down, error: ${err.message}`
 }
 }
 }
 }
 }
}

Let's analyze the previous code's most important parts:

1. The CheckUrls class constructor takes as input a list of URLs. Since we now
know how to use iterators and iterables, we can say that this list of URLs can
be just any iterable.

2. In our @@asyncIterator method, we obtain an iterator from the this.urls
object, which, as we just said, should be an iterable. We can do that by simply
invoking its @@iterable method.

3. Note how the next() method is now an async function. This means that it
will always return a promise, as requested by the async iterable protocol.

4. In the next() method, we use the urlsIterator to get the next URL in the
list, unless there are no more, in which case we simply return {done: true}.

5. Note how we can now use the await instruction to asynchronously get the
result of the HEAD request sent to the current URL.

Now, let's use the for await...of syntax we mentioned earlier to iterate over a
CheckUrls object:

import { CheckUrls } from './checkUrls.js'

async function main () {
 const checkUrls = new CheckUrls([
 'https://nodejsdesignpatterns.com',
 'https://example.com',
 'https://mustbedownforsurehopefully.com'
])

 for await (const status of checkUrls) {

Behavioral Design Patterns

[334]

 console.log(status)
 }
}

main()

As we can see, the for await...of syntax is a very intuitive way to iterate over an
async iterable and, as we will see in a while, it can be used in conjunction with some
interesting built-in iterables to obtain alternative new ways to access asynchronous
information.

Async generators
As well as async iterators, we can also have async generators. To define an async
generator function, simply prepend the keyword async to the function definition:

async function * generatorFunction() {
 // ...generator body
}

As you can well imagine, async generators allow the use of the await instruction
within their body and the return value of their next() method is a promise that
resolves to an object having the canonical done and value properties. This way, async
generator objects are also valid async iterators. They are also valid async iterables, so
they can be used in for await...of loops.

To demonstrate how async generators can simplify the implementation of async
iterators, let's convert the CheckUrls class we saw in the previous example to use an
async generator:

export class CheckUrls {
 constructor (urls) {
 this.urls = urls
 }

 async * [Symbol.asyncIterator] () {
 for (const url of this.urls) {

The for await...of loop (as well as its synchronous version) will
call the optional return() method of the iterator if it's prematurely
interrupted with a break, a return, or an exception. This can be
used to immediately perform any cleanup task that would usually
be performed when the iteration completes.

Chapter 9

[335]

 try {
 const checkResult = await superagent
 .head(url)
 .redirects(2)
 yield `${url} is up, status: ${checkResult.status}`
 } catch (err) {
 yield `${url} is down, error: ${err.message}`
 }
 }
 }
}

Interestingly, using an async generator in place of a bare async iterator allowed us to
save a few lines of code and the resulting logic is also more readable and explicit.

Async iterators and Node.js streams
If we stop for a second and think about the relationship between async iterators and
Node.js readable streams, we would be surprised by how similar they are in both
purpose and behavior. In fact, we can say that async iterators are indeed a stream
construct, as they can be used to process the data of an asynchronous resource piece
by piece, exactly as it happens for readable streams.

It's not a coincidence that stream.Readable implements the @@asyncIterator method,
making it an async iterable. This provides us with an additional, and probably even
more intuitive, mechanism to read data from a readable stream, thanks to the for
await...of construct.

To quickly demonstrate this, consider the following example where we take the
stdin stream of the current process and we pipe it into the split() transform stream,
which will emit a new chunk when it finds a newline character. Then, we iterate over
each line using the for await...of loop:

import split from 'split2'

async function main () {
 const stream = process.stdin.pipe(split())
 for await (const line of stream) {
 console.log(`You wrote: ${line}`)
 }
}

main()

Behavioral Design Patterns

[336]

This sample code will print back whatever we have written to the standard input
only after we have pressed the Return key. To quit the program, you can just press
Ctrl + C.

As we can see, this alternative way of consuming a readable stream is indeed
very intuitive and compact. The previous example also shows us how similar the
two paradigms—iterators and streams—are. They are so similar that they can
interoperate almost seamlessly. To prove this point even further, just consider that
the function stream.Readable.from(iterable, [options]) takes an iterable as an
argument, which can be both synchronous or asynchronous. The function will return
a readable stream that wraps the provided iterable, "adapting" its interface to that of
a readable stream (this is also a good example of the Adapter pattern, which we have
already met in Chapter 8, Structural Design Patterns.

So, if streams and async iterators as so closely related, which one should you actually
use? This, as always, depends on the use case and many other factors; however, to
help you with the decision, this is a list of aspects that set the two constructs apart:

• Streams are push, meaning that data is pushed into the internal buffers by
the stream and then consumed from the buffers. Async iterators are pull
by default (unless another logic is explicitly implemented by the iterator),
meaning that data is only retrieved/produced on demand by the consumer.

• Streams are better suited to process binary data since they natively provide
internal buffering and backpressure.

• Streams can be composed using a well-known and streamlined API, pipe(),
while async iterators do not offer any standardized composition method.

In the wild
Iterators and, in particular, async iterators are quickly gaining popularity in the
Node.js ecosystem. In fact, in many circumstances, they are becoming a preferred
alternative to streams and are replacing custom-built iteration mechanisms.

For example, the packages @databases/pg, @databases/mysql and @databases/
sqlite are popular libraries for accessing Postgres, MySQL, and SQLite databases
respectively (more at nodejsdp.link/atdatabases).

We can iterate an EventEmitter as well. Using the
events.on(emitter, eventName) utility function, we can in
fact get an async iterable whose iterator will return all the events
matching the specified eventName.

http://nodejsdp.link/atdatabases

Chapter 9

[337]

They all expose a function called queryStream(), which returns an async iterable,
which can be used to easily iterate over the results of a query. For example:

for await (const record of db.queryStream(sql`SELECT * FROM my_table`))
{
 // do something with record
}

Internally, the iterator will automatically handle the cursor for a query result, so all
we have to do is simply loop with the for await...of construct.

Another example of a library heavily relying on iterators for its API is the zeromq
package (nodejsdp.link/npm-zeromq). We'll see a detailed example of it in the next
section, about the Middleware pattern, as we move on to other behavioral patterns.

Middleware
One of the most distinctive patterns in Node.js is definitely Middleware.
Unfortunately, it's also one of the most confusing for the inexperienced, especially
for developers coming from the enterprise programming world. The reason for
the disorientation is probably connected to the traditional meaning of the term
middleware, which in enterprise architecture jargon represents the various software
suites that help to abstract lower-level mechanisms such as OS APIs, network
communications, memory management, and so on, allowing the developer to focus
only on the business case of the application. In this context, the term middleware
recalls topics such as CORBA, enterprise service bus, Spring, JBoss, and WebSphere,
but in its more generic meaning, it can also define any kind of software layer that
acts as glue between lower-level services and the application (literally, the software in
the middle).

Middleware in Express
Express (nodejsdp.link/express) popularized the term middleware in the Node.js
world, binding it to a very specific design pattern. In Express, in fact, middleware
represents a set of services, typically functions, that are organized in a pipeline and
are responsible for processing incoming HTTP requests and relative responses.

Express is famous for being a very non-opinionated and minimalist web framework
and the Middleware pattern is the main reason for that. Express middleware is, in
fact, an effective strategy for allowing developers to easily create and distribute new
features that can be easily added to an application, without the need to grow the
minimalistic core of the framework.

http://nodejsdp.link/npm-zeromq
http://nodejsdp.link/express

Behavioral Design Patterns

[338]

An Express middleware has the following signature:

function (req, res, next) { ... }

Here, req is the incoming HTTP request, res is the response, and next is the callback
to be invoked when the current middleware has completed its tasks, and that in turn
triggers the next middleware in the pipeline.

Examples of the tasks carried out by Express middleware include the following:

• Parsing the body of the request
• Compressing/decompressing requests and responses
• Producing access logs
• Managing sessions
• Managing encrypted cookies
• Providing Cross-Site Request Forgery (CSRF) protection

If we think about it, these are all tasks that are not strictly related to the main
business logic of an application, nor are they essential parts of the minimal core of
a web server. They are accessories, components providing support to the rest of the
application and allowing the actual request handlers to focus only on their main
business logic. Essentially, those tasks are "software in the middle."

Middleware as a pattern
The technique used to implement middleware in Express is not new, in fact, it
can be considered the Node.js incarnation of the Intercepting Filter pattern and
the Chain of Responsibility pattern. In more generic terms, it also represents a
processing pipeline, which reminds us of streams. Today, in Node.js, the word
middleware is used well beyond the boundaries of the Express framework, and
indicates a particular pattern whereby a set of processing units, filters, and handlers,
under the form of functions, are connected to form an asynchronous sequence in
order to perform the preprocessing and postprocessing of any kind of data. The main
advantage of this pattern is flexibility. In fact, the Middleware pattern allows us to
obtain a plugin infrastructure with incredibly little effort, providing an unobtrusive
way to extend a system with new filters and handlers.

If you want to know more about the Intercepting Filter pattern, the
following article is a good starting point: nodejsdp.link/
intercepting-filter. Similarly, a nice overview of the Chain of
Responsibility pattern is available at this URL: nodejsdp.link/
chain-of-responsibility.

http://nodejsdp.link/intercepting-filter
http://nodejsdp.link/intercepting-filter
http://nodejsdp.link/chain-of-responsibility
http://nodejsdp.link/chain-of-responsibility

Chapter 9

[339]

The following diagram shows the components of the Middleware pattern:

Figure 9.5: The structure of the Middleware pattern

The essential component of the pattern is the Middleware Manager, which is
responsible for organizing and executing the middleware functions. The most
important implementation details of the pattern are as follows:

• New middleware can be registered by invoking the use() function (the
name of this function is a common convention in many implementations
of the Middleware pattern, but we can choose any name). Usually, new
middleware can only be appended at the end of the pipeline, but this is not a
strict rule.

• When new data is received for processing, the registered middleware is
invoked in an asynchronous sequential execution flow. Each unit in the
pipeline receives the result of the execution of the previous unit as input.

• Each piece of middleware can decide to stop further processing of the data.
This can be done by invoking a special function, by not invoking the callback
(in case the middleware uses callbacks), or by propagating an error. An error
situation usually triggers the execution of another sequence of middleware
that is specifically dedicated to handling errors.

There is no strict rule on how the data is processed and propagated in the pipeline.
The strategies for propagating the data modifications in the pipeline include:

• Augmenting the data received as input with additional properties or
functions

• Maintaining the immutability of the data and always return fresh copies as
the result of the processing

The right approach depends on the way the Middleware Manager is implemented
and on the type of processing carried out by the middleware itself.

Behavioral Design Patterns

[340]

Creating a middleware framework for ZeroMQ
Let's now demonstrate the pattern by building a middleware framework around
the ZeroMQ (nodejsdp.link/zeromq) messaging library. ZeroMQ (also known as
ZMQ, or ØMQ) provides a simple interface for exchanging atomic messages across
the network using a variety of protocols. It shines for its performance, and its basic
set of abstractions are specifically built to facilitate the implementation of custom
messaging architectures. For this reason, ZeroMQ is often chosen to build complex
distributed systems.

The interface of ZeroMQ is pretty low-level as it only allows us to use strings and
binary buffers for messages. So, any encoding or custom formatting of data has to be
implemented by the users of the library.

In the next example, we are going to build a middleware infrastructure to abstract
the preprocessing and postprocessing of the data passing through a ZeroMQ socket,
so that we can transparently work with JSON objects, but also seamlessly compress
messages traveling over the wire.

The Middleware Manager
The first step toward building a middleware infrastructure around ZeroMQ is to
create a component that is responsible for executing the middleware pipeline when
a new message is received or sent. For this purpose, let's create a new module
called zmqMiddlewareManager.js and let's define it:

export class ZmqMiddlewareManager {
 constructor (socket) { // (1)
 this.socket = socket
 this.inboundMiddleware = []
 this.outboundMiddleware = []

 this.handleIncomingMessages()
 .catch(err => console.error(err))
 }

 async handleIncomingMessages () { // (2)
 for await (const [message] of this.socket) {

In Chapter 13, Messaging and Integration Patterns, we will have the
chance to analyze the features of ZeroMQ in more detail.

http://nodejsdp.link/zeromq

Chapter 9

[341]

 await this
 .executeMiddleware(this.inboundMiddleware, message)
 .catch(err => {
 console.error('Error while processing the message', err)
 })
 }
 }

 async send (message) { // (3)
 const finalMessage = await this
 .executeMiddleware(this.outboundMiddleware, message)
 return this.socket.send(finalMessage)
 }

 use (middleware) { // (4)
 if (middleware.inbound) {
 this.inboundMiddleware.push(middleware.inbound)
 }
 if (middleware.outbound) {
 this.outboundMiddleware.unshift(middleware.outbound)
 }
 }

 async executeMiddleware (middlewares, initialMessage) { // (5)
 let message = initialMessage
 for await (const middlewareFunc of middlewares) {
 message = await middlewareFunc.call(this, message)
 }
 return message
 }
}

Let's discuss in detail how we implemented our ZmqMiddlewareManager:

1. In the first part of the class, we define the constructor that accepts
a ZeroMQ socket as an argument. In the constructor, we create two
empty lists that will contain our middleware functions, one for inbound
messages and another one for outbound messages. Next, we immediately
start processing the messages coming from the socket. We do that in the
handleIncomingMessages() method.

2. In the handleIncomingMessages() method, we use the ZeroMQ socket as an
async iterable and with a for await...of loop, we process any incoming
message and we pass it down the inboundMiddleware list of middlewares.

Behavioral Design Patterns

[342]

3. Similarly to handleIncomingMessages(), the send() method will pass the
message received as an argument down the outboundMiddleware pipeline. The
result of the processing is stored in the finalMessage variable and then sent
through the socket.

4. The use() method is used for appending new middleware functions to
our internal pipelines. In our implementation, each middleware comes
in pairs; it's an object that contains two properties, inbound and outbound.
Each property can be used to define the middleware function to be added
to the respective list. It's important to observe here that the inbound
middleware is pushed to the end of the inboundMiddleware list, while the
outbound middleware is inserted (using unshift()) at the beginning of the
outboundMiddleware list. This is because complementary inbound/outbound
middleware functions usually need to be executed in inverted order. For
example, if we want to decompress and then deserialize an inbound message
using JSON, it means that for the outbound, we should instead first serialize
and then compress. This convention for organizing the middleware in pairs
is not strictly part of the general pattern, but only an implementation detail of
our specific example.

5. The last method, executeMiddleware(), represents the core of our component
as it's the part responsible for executing the middleware functions. Each
function in the middleware array received as input is executed one after the
other, and the result of the execution of a middleware function is passed to
the next. Note that we are using the await instruction on each result returned
by each middleware function; this allows the middleware function to return
a value synchronously as well as asynchronously using a promise. Finally,
the result of the last middleware function is returned back to the caller.

Implementing the middleware to process messages
Now that we have implemented our Middleware Manager, we can create our first
pair of middleware functions to demonstrate how to process inbound and outbound
messages. As we said, one of the goals of our middleware infrastructure is to
have a filter that serializes and deserializes JSON messages. So, let's create a new
middleware to take care of this. In a new module called jsonMiddleware.js, let's
include the following code:

For brevity, we are not supporting an error middleware pipeline.
Normally, when a middleware function propagates an error,
another set of middleware functions specifically dedicated to
handling errors is executed. This can be easily implemented using
the same technique that we are demonstrating here. For instance,
we could accept an extra (optional) errorMiddleware function in
addition to inboundMiddleware and outboundMiddleware.

Chapter 9

[343]

export const jsonMiddleware = function () {
 return {
 inbound (message) {
 return JSON.parse(message.toString())
 },
 outbound (message) {
 return Buffer.from(JSON.stringify(message))
 }
 }
}

The inbound part of our middleware deserializes the message received as input,
while the outbound part serializes the data into a string, which is then converted into
a buffer.

In a similar way, we can implement a pair of middleware functions in a file called
zlibMiddleware.js, to inflate/deflate the message using the zlib core module
(nodejsdp.link/zlib):

import { inflateRaw, deflateRaw } from 'zlib'
import { promisify } from 'util'

const inflateRawAsync = promisify(inflateRaw)
const deflateRawAsync = promisify(deflateRaw)

export const zlibMiddleware = function () {
 return {
 inbound (message) {
 return inflateRawAsync(Buffer.from(message))
 },
 outbound (message) {
 return deflateRawAsync(message)
 }
 }
}

Compared to the JSON middleware, our zlib middleware functions are asynchronous
and return a promise as a result. As we already know, this is perfectly supported by
our Middleware Manager.

You can note how the middleware used by our framework is quite different from the
one used in Express. This is totally normal and a perfect demonstration of how we
can adapt this pattern to fit our specific needs.

http://nodejsdp.link/zlib

Behavioral Design Patterns

[344]

Using the ZeroMQ middleware framework
We are now ready to use the middleware infrastructure that we just created. To do
that, we are going to build a very simple application, with a client sending a ping to a
server at regular intervals and the server echoing back the message received.

From an implementation perspective, we are going to rely on a Request/Reply
messaging pattern using the req/rep socket pair provided by ZeroMQ (nodejsdp.
link/zmq-req-rep). We will then wrap the sockets with our ZmqMiddlewareManager to
get all the advantages from the middleware infrastructure that we built, including
the middleware for serializing/deserializing JSON messages.

The server
Let's start by creating the server-side of our application in a file called server.js:

import zeromq from 'zeromq' // (1)
import { ZmqMiddlewareManager } from './zmqMiddlewareManager.js'
import { jsonMiddleware } from './jsonMiddleware.js'
import { zlibMiddleware } from './zlibMiddleware.js'

async function main () {
 const socket = new zeromq.Reply() // (2)
 await socket.bind('tcp://127.0.0.1:5000')

 const zmqm = new ZmqMiddlewareManager(socket) // (3)
 zmqm.use(zlibMiddleware())
 zmqm.use(jsonMiddleware())
 zmqm.use({ // (4)
 async inbound (message) {
 console.log('Received', message)
 if (message.action === 'ping') {
 await this.send({ action: 'pong', echo: message.echo })
 }
 return message
 }
 })

We'll analyze the Request/Reply pattern and other messaging
patterns in Chapter 13, Messaging and Integration Patterns.

http://nodejsdp.link/zmq-req-rep
http://nodejsdp.link/zmq-req-rep

Chapter 9

[345]

 console.log('Server started')
}

main()

The server-side of our application works as follows:

1. We first load the necessary dependencies. The zeromq package is essentially
a JavaScript interface over the native ZeroMQ library. See nodejsdp.link/
npm-zeromq.

2. Next, in the main() function, we create a new ZeroMQ Reply socket and bind
it to port 5000 on localhost.

3. Then comes the part where we wrap ZeroMQ with our middleware manager
and then add the zlib and JSON middlewares.

4. Finally, we are ready to handle a request coming from the client. We will
do this by simply adding another middleware, this time using it as a request
handler.

Since our request handler comes after the zlib and JSON middlewares, we will
receive a decompressed and deserialized version of the received message. On
the other hand, any data passed to send() will be processed by the outbound
middleware, which in our case will serialize and then compress the data.

The client
On the client-side of our little application, in a file called client.js, we will have the
following code:

import zeromq from 'zeromq'
import { ZmqMiddlewareManager } from './zmqMiddlewareManager.js'
import { jsonMiddleware } from './jsonMiddleware.js'
import { zlibMiddleware } from './zlibMiddleware.js'

async function main () {
 const socket = new zeromq.Request() // (1)
 await socket.connect('tcp://127.0.0.1:5000')

 const zmqm = new ZmqMiddlewareManager(socket)
 zmqm.use(zlibMiddleware())
 zmqm.use(jsonMiddleware())
 zmqm.use({
 inbound (message) {
 console.log('Echoed back', message)

http://nodejsdp.link/npm-zeromq
http://nodejsdp.link/npm-zeromq

Behavioral Design Patterns

[346]

 return message
 }
 })

 setInterval(() => { // (2)
 zmqm.send({ action: 'ping', echo: Date.now() })
 .catch(err => console.error(err))
 }, 1000)

 console.log('Client connected')
}

main()

Most of the code of the client application is very similar to that of the server. The
notable differences are:

1. We create a Request socket, rather than a Reply socket, and we connect it to
a remote (or local) host rather than binding it on a local port. The rest of the
middleware setup is exactly the same as in the server, except for the fact that
our request handler now just prints any message it receives. Those messages
should be the pong reply to our ping requests.

2. The core logic of the client application is a timer that sends a ping message
every second.

Now, we're ready to try our client/server pair and see the application in action. First,
start the server:

node server.js

We can then start the client in another terminal with the following command:

node client.js

At this point, we should see the client sending messages and the server echoing
them back.

Our middleware framework did its job. It allowed us to decompress/compress and
deserialize/serialize our messages transparently, leaving the handlers free to focus
on their business logic.

Chapter 9

[347]

In the wild
We opened this section by saying that the library that popularized the Middleware
pattern in Node.js is Express (nodejsdp.link/express). So, we can easily say that
Express is also the most notable example of the Middleware pattern out there.

Two other interesting examples are:

• Koa (nodejsdp.link/koa), which is known as the successor of Express. It was
created by the same team behind Express and it shares with it its philosophy
and main design principles. Koa's middleware is slightly different than that
of Express since it uses modern programming techniques such as async/
await instead of callbacks.

• Middy (nodejsdp.link/middy) is a classic example of the Middleware pattern
applied to something different than a web framework. Middy is, in fact, a
middleware engine for AWS Lambda functions.

Next, we are going to explore the Command pattern, which, as we will see shortly, is
a very flexible and multiform pattern.

Command
Another design pattern with huge importance in Node.js is Command. In its most
generic definition, we can consider a command any object that encapsulates all the
information necessary to perform an action at a later time. So, instead of invoking
a method or a function directly, we create an object representing the intention to
perform such an invocation. It will then be the responsibility of another component
to materialize the intent, transforming it into an actual action. Traditionally, this
pattern is built around four major components, as shown in Figure 9.6:

Figure 9.6: The components of the Command pattern

http://nodejsdp.link/express
http://nodejsdp.link/koa
http://nodejsdp.link/middy

Behavioral Design Patterns

[348]

The typical configuration of the Command pattern can be described as follows:

• Command is the object encapsulating the information necessary to invoke
a method or function.

• Client is the component that creates the command and provides it to the
invoker.

• Invoker is the component responsible for executing the command on the
target.

• Target (or receiver) is the subject of the invocation. It can be a lone function
or a method of an object.

As we will see, these four components can vary a lot depending on the way we want
to implement the pattern. This should not sound new at this point.

Using the Command pattern instead of directly executing an operation has several
applications:

• A command can be scheduled for execution at a later time.
• A command can be easily serialized and sent over the network. This simple

property allows us to distribute jobs across remote machines, transmit
commands from the browser to the server, create remote procedure call
(RPC) systems, and so on.

• Commands make it easy to keep a history of all the operations executed on a
system.

• Commands are an important part of some algorithms for data
synchronization and conflict resolution.

• A command scheduled for execution can be canceled if it's not yet executed.
It can also be reverted (undone), bringing the state of the application to the
point before the command was executed.

• Several commands can be grouped together. This can be used to create
atomic transactions or to implement a mechanism whereby all the operations
in the group are executed at once.

• Different kinds of transformation can be performed on a set of commands,
such as duplicate removal, joining and splitting, or applying more complex
algorithms such as operational transformation (OT), which is the base for most
of today's real-time collaborative software, such as collaborative text editing.

A great explanation of how OT works can be found at nodejsdp.
link/operational-transformation.

http://nodejsdp.link/operational-transformation
http://nodejsdp.link/operational-transformation

Chapter 9

[349]

The preceding list clearly shows us how important this pattern is, especially on
a platform such as Node.js where networking and asynchronous execution are
essential players.

Now, we are going to explore in more detail a couple of different implementations
of the Command pattern, just to give you an idea of its scope.

The Task pattern
We can start off with the most basic and trivial implementation of the Command
pattern: the Task pattern. The easiest way in JavaScript to create an object
representing an invocation is, of course, by creating a closure around a function
definition or a bound function:

function createTask(target, ...args) {
 return () => {
 target(...args)
 }
}

This is (mostly) equivalent to doing:

const task = target.bind(null, ...args)

This should not look new at all. In fact, we have used this pattern already so many
times throughout the book, and in particular in Chapter 4, Asynchronous Control Flow
Patterns with Callbacks. This technique allowed us to use a separate component to
control and schedule the execution of our tasks, which is essentially equivalent to
the invoker of the Command pattern.

A more complex command
Let's now work on a more articulated example leveraging the Command pattern.
This time, we want to support undo and serialization. Let's start with the target of
our commands, a little object that is responsible for sending status updates to a
Twitter-like service. We will use a mockup of such a service for simplicity (the
statusUpdateService.js file):

const statusUpdates = new Map()

// The Target
export const statusUpdateService = {
 postUpdate (status) {

Behavioral Design Patterns

[350]

 const id = Math.floor(Math.random() * 1000000)
 statusUpdates.set(id, status)
 console.log(`Status posted: ${status}`)
 return id
 },

 destroyUpdate (id) => {
 statusUpdates.delete(id)
 console.log(`Status removed: ${id}`)
 }
}

The statusUpdateService we just created represents the target of our Command
pattern. Now, let's implement a factory function that creates a command to
represent the posting of a new status update. We'll do that in a file called
createPostStatusCmd.js:

export function createPostStatusCmd (service, status) {
 let postId = null

 // The Command
 return {
 run () {
 postId = service.postUpdate(status)
 },
 undo () {
 if (postId) {
 service.destroyUpdate(postId)
 postId = null
 }
 },
 serialize () {
 return { type: 'status', action: 'post', status: status }
 }
 }
}

The preceding function is a factory that produces commands to model "post status"
intentions. Each command implements the following three functionalities:

• A run() method that, when invoked, will trigger the action. In other words, it
implements the Task pattern that we have seen before. The command, when
executed, will post a new status update using the methods of the target service.

Chapter 9

[351]

• An undo() method that reverts the effects of the post operation. In our case,
we are simply invoking the destroyUpdate() method on the target service.

• A serialize() method that builds a JSON object that contains all the
necessary information to reconstruct the same command object.

After this, we can build an invoker. We can start by implementing its constructor and
its run() method (the invoker.js file):

import superagent from 'superagent'

// The Invoker
export class Invoker {
 constructor () {
 this.history = []
 }

 run (cmd) {
 this.history.push(cmd)
 cmd.run()
 console.log('Command executed', cmd.serialize())
 }

 // ...rest of the class

The run() method is the basic functionality of our Invoker. It is responsible for
saving the command into the history instance variable and then triggering the
execution of the command itself.

Next, we can add to the Invoker a new method that delays the execution of a
command:

delay (cmd, delay) {
 setTimeout(() => {
 console.log('Executing delayed command', cmd.serialize())
 this.run(cmd)
 }, delay)
}

Then, we can implement an undo() method that reverts the last command:
undo () {
 const cmd = this.history.pop()
 cmd.undo()
 console.log('Command undone', cmd.serialize())
}

Behavioral Design Patterns

[352]

Finally, we also want to be able to run a command on a remote server, by serializing
and then transferring it over the network using a web service:

async runRemotely (cmd) {
 await superagent
 .post('http://localhost:3000/cmd')
 .send({ json: cmd.serialize() })

 console.log('Command executed remotely', cmd.serialize())
}

Now that we have the command, the invoker, and the target, the only component
missing is the client, which we will implement in a file called client.js. Let's start
by importing all the necessary dependencies and by instantiating Invoker:

import { createPostStatusCmd } from './createPostStatusCmd.js'
import { statusUpdateService } from './statusUpdateService.js'
import { Invoker } from './invoker.js'

const invoker = new Invoker()

Then, we can create a command using the following line of code:

const command = createPostStatusCmd(statusUpdateService, 'HI!')

We now have a command representing the posting of a status message. We can then
decide to dispatch it immediately:

invoker.run(command)

Oops, we made a mistake, let's revert our timeline to the state it was before posting
the last message:

invoker.undo()

We can also decide to schedule the message to be sent in 3 seconds from now:

invoker.delay(command, 1000 * 3)

Alternatively, we can distribute the load of the application by migrating the task to
another machine:

invoker.runRemotely(command)

Chapter 9

[353]

The little example that we have just implemented shows how wrapping an operation
in a command can open a world of possibilities, and that's just the tip of the iceberg.

As the last remarks, it is worth noting that a fully-fledged Command pattern should
be used only when strictly necessary. We saw, in fact, how much additional code we
had to write to simply invoke a method of the statusUpdateService. If all that we
need is only an invocation, then a complex command would be overkill. If, however,
we need to schedule the execution of a task or run an asynchronous operation,
then the simpler Task pattern offers the best compromise. If instead, we need more
advanced features such as undo support, transformations, conflict resolution, or one
of the other fancy use cases that we described previously, using a more complex
representation for the command is almost necessary.

Summary
We opened this chapter with three closely related patterns, which are Strategy, State,
and Template.

Strategy allows us to extract the common parts of a family of closely related
components into a component called the context and allows us to define strategy
objects that the context can use to implement specific behaviors. The State pattern is a
variation of the Strategy pattern where the strategies are used to model the behavior
of a component when under different states. The Template pattern, instead, can be
considered the "static" version of the Strategy pattern, where the different specific
behaviors are implemented as subclasses of the template class, which models the
common parts of the component.

Next, we learned about what has now become a core pattern in Node.js, which is
Iterator. We learned how JavaScript offers native support for the pattern (with the
iterator and iterable protocols), and how async iterators can be used as an alternative
to complex async iteration patterns and even to Node.js streams.

Then, we examined Middleware, which is a very distinctive pattern born from
within the Node.js ecosystem. We learned how it can be used to preprocess and
postprocess data and requests.

Finally, we had a taste of the possibilities offered by the Command pattern, which
can be used to implement a myriad of functionality, from simple undo/redo and
serialization, to more complex operational transformation algorithms.

We have now arrived at the end of the last chapter dedicated to "traditional" design
patterns. By now, you should have added to your toolbelt a series of patterns that
will be enormously useful in your everyday programming endeavors.

Behavioral Design Patterns

[354]

In the next chapter, we'll shift our attention to a topic that goes beyond the
boundaries of server-side development. Thanks to Node.js, in fact, we can create
"Universal" JavaScript applications, or in other words, applications that can run as
seamlessly on the server as they run on the browser. Stay tuned, then, to learn about
the most useful Universal JavaScript patterns.

Exercises
• Exercise 9.1 Logging with Strategy: Implement a logging component having

at least the following methods: debug(), info(), warn(), and error(). The
logging component should also accept a strategy that defines where the log
messages are sent. For example, we might have a ConsoleStrategy to send
the messages to the console, or a FileStrategy to save the log messages
to a file.

• Exercise 9.2 Logging with Template: Implement the same logging
component we defined in the previous exercise, but this time using the
Template pattern. We would then obtain a ConsoleLogger class to log to
the console or FileLogger class to log to a file. Appreciate the differences
between the Template and the Strategy approaches.

• Exercise 9.3 Warehouse item: Imagine we are working on a warehouse
management program. Our next task is to create a class to model a
warehouse item and help track it. Such a WarehouseItem class has a
constructor, which accepts an id and the initial state of the item (which can
be one of arriving, stored, or delivered). It has three public methods:

• store(locationId) moves the item into the stored state and records
the locationId where it's stored.

• deliver(address) changes the state of the item to delivered, sets the
delivery address, and clears the locationId.

• describe() returns a string representation of the current state of the
item (for example, "Item 5821 is on its way to the warehouse," or
"Item 3647 is stored in location 1ZH3," or "Item 3452 was delivered to
John Smith, 1st Avenue, New York."

The arriving state can be set only when the object is created as it cannot be
transitioned to from the other states. An item can't move back to the arriving
state once it's stored or delivered, it cannot be moved back to stored once
it's delivered, and it cannot be delivered if it's not stored first. Use the State
pattern to implement the WarehouseItem class.

Chapter 9

[355]

• Exercise 9.4 Logging with Middleware: Rewrite the logging component
you implemented for exercises 9.1 and 9.2, but this time use the Middleware
pattern to postprocess each log message allowing different middlewares to
customize how to handle the messages and how to output them. We could,
for example, add a serialize() middleware to convert the log messages to
a string representation ready to be sent over the wire or saved somewhere.
Then, we could add a saveToFile() middleware that saves each message
to a file. This exercise should highlight the flexibility and universality of
the Middleware pattern.

• Exercise 9.5 Queues with iterators: Implement an AsyncQueue class similar
to one of the TaskQueue classes we defined in Chapter 5, Asynchronous
Control Flow Patterns with Promises and Async/Await, but with a slightly
different behavior and interface. Such an AsyncQueue class will have a
method called enqueue() to append new items to the queue and then expose
an @@asyncIterable method, which should provide the ability to process the
elements of the queue asynchronously, one at a time (so, with a concurrency
of 1). The async iterator returned from AsyncQueue should terminate only
after the done() method of AsyncQueue is invoked and only after all items
in the queue are consumed. Consider that the @@asyncIterable method
could be invoked in more than one place, thus returning an additional
async iterator, which would allow you to increase the concurrency with
which the queue is consumed.

[357]

10
Universal JavaScript for

Web Applications
JavaScript was born with the goal of giving web developers the power to execute
code directly on the browser and build dynamic and interactive websites.

Since its inception, JavaScript has grown up a lot. If, at the very beginning, JavaScript
was a very simple and limited language, today, it can be considered a complete
general-purpose language that can be used even outside the browser to build almost
any kind of application. In fact, JavaScript now powers frontend applications, web
servers, and mobile applications, as well as embedded devices such as wearable
devices, thermostats, and flying drones.

The language's availability across platforms and devices is fostering a new trend
among JavaScript developers: being able to simplify code reuse across different
environments in the same project. With Node.js, developers have the opportunity
to build web applications where it is easy to share code between the server (backend)
and the browser (frontend). This quest for code reuse was originally identified with
the term Isomorphic JavaScript, but today, it's mostly recognized as Universal
JavaScript.

In this chapter, we are going to explore the wonders of Universal JavaScript,
specifically in the field of web development, and discover many tools and techniques
we can use to share code between the server and the browser.

Universal JavaScript for Web Applications

[358]

We will explore what a module bundler is and why we need one. We will then learn
how module bundlers work and we will practice with one of the most popular,
webpack. Then, we will discuss some generic patterns that can help us with code
reuse across platforms.

Finally, we will learn the basic functionalities of React and we will use it to build
a complete Universal JavaScript application that features universal rendering,
universal routing, and universal data loading.

To summarize, here's a list of topics we will be covering in this chapter:

• How to share code between the browser and Node.js
• Fundamentals of cross-platform development (code branching, module

swapping, and other useful patterns)
• A brief introduction to React
• How to build a complete Universal JavaScript application using React and

Node.js

Sit tight, this is going to be an exciting chapter!

Sharing code with the browser
One of the main selling points of Node.js is the fact that it's based on JavaScript
and runs on V8, a JavaScript engine that actually powers some of the most popular
browsers: Google Chrome and Microsoft Edge. We might think that sharing the same
JavaScript engine is enough to make sharing code between Node.js and the browser
an easy task; however, as we will see in this chapter, this is not always true, unless
we want to share only simple, self-contained, and generic fragments of code.

Developing code for both the client and the server requires a non-negligible level of
effort in making sure that the same code can run properly in two environments that
are intrinsically different. For example, in Node.js, we don't have the DOM or long-
living views, while on the browser, we surely don't have the filesystem and many
other interfaces to interact with the underlying operating system.

Another contention point is the level of support for modern JavaScript features.
When we target Node.js, we can safely adopt modern language features because we
know which Node.js version runs on our servers. For instance, for our server code,
we can safely decide to adopt async/await if we know it will run on Node.js version
8 (or on a more recent version). Unfortunately, we can't have the same confidence
when writing JavaScript code for the browser.

Chapter 10

[359]

This is because different users will have different browsers with different levels of
compatibility with the latest language features. Some users might be using a modern
browser with full support for async/await, while other users might still be using an
old device with an old browser that does not support async/await.

So, most of the effort required when developing for both platforms is to make
sure to reduce those differences to a minimum. This can be done with the help of
abstractions, patterns, and tools that enable the application to switch, dynamically
or at build time, between browser-compatible code and Node.js code.

Luckily, with the rising interest in this new mind-blowing possibility, many libraries
and frameworks in the ecosystem have started to support both environments. This
evolution is also backed by a growing number of tools supporting this new kind of
workflow, which, over the years, have been refined and perfected. This means that if
we are using an npm package on Node.js, there is a good probability that it will work
seamlessly on the browser as well. However, this is often not enough to guarantee
that our application can run without problems on both the browser and Node.js. As
we will see, a careful design is always needed when developing cross-platform code.

In this section, we are going to explore the fundamental problems we might
encounter when writing code for both Node.js and the browser, and we are going
to propose some tools and patterns that can help us with tackling this new and
exciting challenge.

JavaScript modules in a cross-platform
context
The first wall we hit when we want to share some code between the browser and
the server is the mismatch between the module system used by Node.js and the
heterogeneous landscape of the module systems used on the browser. Another
problem is that on the browser, we don't have a require() function or the filesystem
from which we can resolve modules. Most modern browsers support import and
ES modules, but again, some of the users visiting our website might not have already
adopted one of those modern browsers.

In addition to these problems, we have to take into account the differences in
distributing code for the server and the browser. On the server, modules are loaded
directly from the filesystem. This is generally a performant operation and therefore
developers are encouraged to split their code into small modules to keep the
different logic units small and organized.

Universal JavaScript for Web Applications

[360]

On the browser, the script loading model is totally different. The process generally
starts with the browser downloading an HTML page from a remote endpoint. The
HTML code is parsed by the browser, which might find references to script files that
need to be downloaded and executed. If we are dealing with a large application,
there might be many scripts to download, so the browser will have to issue a
significant number of HTTP requests and download and parse multiple script files
before the application can be fully initialized. The higher the number of script files,
the larger the performance penalty that we will have to pay to run an application on
the browser, especially on slow networks. Even though some of this performance
penalty can be mitigated with the adoption of HTTP/2 Server Push (nodejsdp.
link/http2-server-push), client-side caching, preloading, or similar techniques, the
underlying problem still stands: having to receive and parse a large number of files is
generally worse than having to deal with a few optimized files.

A common practice to address this problem is to "build" packages (or bundles) for
the browser. A typical build process will collate all the source files into a very small
number of bundles (for instance, one JavaScript file per page) so that the browser
won't have to download a huge number of scripts for each page visit. A build
process is not limited to just reducing the number of files, in fact, it can perform other
interesting optimizations. Another common optimization is code minification, which
allows us to reduce the number of characters to a minimum without altering the
functionality. This is generally done by removing comments, removing unused code,
and renaming function and variable names.

Module bundlers
If we want to write large portions of code that can work as seamlessly as possible
both on the server and on the browser, we need a tool to help us with "bundling"
all the dependencies together at build time. These tools are generally called module
bundlers. Let's visualize this with an example of how shared code can be loaded on
to the server and the client using a module bundler:

http://nodejsdp.link/http2-server-push
http://nodejsdp.link/http2-server-push

Chapter 10

[361]

Figure 10.1: Loading shared modules on the server and on the browser (using a module bundler)

Universal JavaScript for Web Applications

[362]

By looking at Figure 10.1, we can see that the code is processed and loaded differently
on the server side and on the browser:

• On the server side: Node.js can directly execute our serverApp.js, which, in
turn, will import the modules moduleA.js, moduleB.js, and moduleC.js.

• On the browser: We have browserApp.js, which also imports moduleA.js,
moduleB.js, and moduleC.js. If our index file were to include browserApp.js
directly, we would have to download a total of five files (index.html,
browserApp.js, and the three dependency modules) before the app would be
fully initialized. The module bundler allows us to reduce the total number
of files to only two by preprocessing browserApp.js and all its dependencies
and producing a single equivalent bundle called main.js, which is then
referenced by index.html and therefore loaded by the browser.

To summarize, on the browser, we generally have to deal with two logical phases,
build and runtime, while on the server, we generally don't need a build phase and
we can execute our source code directly.

When it comes to picking a module bundler, the most popular option is probably
webpack (nodejsdp.link/webpack). Webpack is one of the most complete and
mature module bundlers currently available and it is the one we are going to use
in this chapter. It's worth mentioning, though, that there is a quite prosperous
ecosystem full of alternatives, each one with its own strengths. If you are curious,
here are some of the most well-known alternatives to webpack:

• Parcel (nodejsdp.link/parcel): Aims to be fast and to work "auto-magically"
without any configuration.

• Rollup (nodejsdp.link/rollup): One of the first module bundlers to fully
support ESM and to offer a number of optimizations like tree shaking and
dead code elimination.

• Browserify (nodejsdp.link/browserify): The first module bundler with
support for CommonJS and is still widely adopted.

Other trending module bundlers are FuseBox (nodejsdp.link/fusebox), Brunch
(nodejsdp.link/brunch), and Microbundle (nodejsdp.link/microbundle).

In the next section, we will discuss in greater detail how a module bundler works.

http://nodejsdp.link/webpack
http://nodejsdp.link/parcel
http://nodejsdp.link/rollup
http://nodejsdp.link/browserify
http://nodejsdp.link/fusebox
http://nodejsdp.link/brunch
http://nodejsdp.link/microbundle

Chapter 10

[363]

How a module bundler works
We can define a module bundler as a tool that takes the source code of an application
(in the form of an entry module and its dependencies) and produces one or more
bundle files. The bundling process doesn't change the business logic of the app; it
just creates files that are optimized to run on the browser. In a way, we can think of a
bundler as a compiler for the browser.

In the previous section, we saw how a bundler can help to reduce the total number of
files that the browser will need to load, but in reality, a bundler can do so much more
than that. For instance, it can use a transpiler like Babel (nodejsdp.link/babel).
A transpiler is a tool that processes the source code and makes sure that modern
JavaScript syntax is converted into equivalent ECMAScript 5 syntax so that a large
variety of browsers (including older ones) can run the application correctly. Some
module bundlers allow us to preprocess and optimize not just JavaScript code but
also other assets such as images and stylesheets.

In this section, we will provide a simplified view of how a module bundler works
and how it navigates the code of a given application to produce an equivalent bundle
optimized for the browser. The work of a module bundler can be divided into two
steps that we will call dependency resolution and packing.

Dependency resolution
The dependency resolution step has the goal of traversing the codebase, starting
from the main module (also called the entry point), and discovering all the
dependencies. The way a bundler can do this is by representing dependencies as an
acyclic direct graph, known as a dependency graph.

Let's explore this concept with an example: a fictional calculator application. The
implementation is intentionally incomplete as we only want to focus on the module
structure, how the different modules depend on each other, and how the module
bundler can build the dependency graph of this application:

// app.js (1)
import { calculator } from './calculator.js'
import { display } from './display.js'
display(calculator('2 + 2 / 4'))

http://nodejsdp.link/babel

Universal JavaScript for Web Applications

[364]

// display.js (5)
export function display () {
 // ...
}

// calculator.js (2)
import { parser } from './parser.js'
import { resolver } from './resolver.js'
export function calculator (expr) {
 return resolver(parser(expr))
}

// parser.js (3)
export function parser (expr) {
 // ...
}

// resolver.js (4)
export function resolver (tokens) {
 // ...
}

Let's see how the module bundler will walk through this code to figure out the
dependency graph:

1. The module bundler starts its analysis from the entry point of the
application, the module app.js. In this phase, the module bundler will
discover dependencies by looking at import statements. The bundler starts
to scan the code of the entry point and the first import it finds references the
calculator.js module. Now, the bundler suspends the analysis of app.js
and jumps immediately into calculator.js. The bundler will keep tabs
on the open files: it will remember that the first line of app.js was already
scanned so that when it eventually restarts processing this file, it will
continue from the second line.

2. In calculator.js, the bundler immediately finds a new import for parser.js
so that the processing of calculator.js is interrupted to move into parser.js.

3. In parser.js, there's no import statement, so after the file has been scanned
entirely, the bundler goes back into calculator.js, where the next import
statement refers to resolver.js. Again, the analysis of calculator.js is
suspended and the bundler jumps immediately into resolver.js.

Chapter 10

[365]

4. The module resolver.js does not contain any imports, so the control goes
back to calculator.js. The calculator.js module does not contain other
imports, so the control goes back to app.js. In app.js, the next import is
display.js and the bundler jumps straight into it.

5. display.js does not contain any imports. So, again the control goes back
to app.js. There are no more imports in app.js, so the code has been fully
explored, and the dependency graph has been fully constructed.

Every time the module bundler jumps from one file to another, it means we are
discovering a new dependency and adding a new node to the dependency graph.
A visual representation of the steps described in the preceding list can be found in
Figure 10.2:

Figure 10.2: Dependency graph resolution

This way of resolving dependencies also works with cyclic dependencies. In fact, if
the bundler encounters the same dependency for a second time, the dependency will
be skipped because it's already present in the dependency graph.

Universal JavaScript for Web Applications

[366]

During the dependency resolution phase, the module bundler builds a data structure
called modules map. This data structure is a hash map that has unique module
identifiers (for example, file paths) as keys and a representation of the module source
code as values. In our example, a simplified representation of the modules map
might look like this:

{
 'app.js': (module, require) => {/* ... */},
 'calculator.js': (module, require) => {/* ... */},
 'display.js': (module, require) => {/* ... */},
 'parser.js': (module, require) => {/* ... */},
 'resolver.js': (module, require) => {/* ... */}
}

Every module in the modules map is a factory function that accepts two arguments:
module and require. We will see in more detail what those arguments are in the
next section. What is important to understand now is that every module here is a
complete representation of the code in the original source module. If we take, for
example, the code for the calculator.js module, it might be represented as follows:

(module, require) => {
 const { parser } = require('parser.js')
 const { resolver } = require('resolver.js')
 module.exports.calculator = function (expr) {
 return resolver(parser(expr))
 }
}

Tree shaking

It's worth noting that if we have entities (for example, functions,
classes, or variables) in our project modules that are never
imported, then these won't appear in this dependency graph, so
they won't be included in the final bundle.

A more advanced module bundler could also keep track of the
entities imported from every module and the exported entities
found in the dependency graph. This allows the bundle to figure
out if there are exported functionalities that are never used in the
application so that they can be pruned from the final bundle. This
optimization technique is called tree shaking (nodejsdp.link/
tree-shaking).

http://nodejsdp.link/tree-shaking
http://nodejsdp.link/tree-shaking

Chapter 10

[367]

Packing
The modules map is the final output of the dependency resolution phase. In the
packing phase, the module bundler takes the modules map and converts it into an
executable bundle: a single JavaScript file that contains all the business logic of the
original application.

The idea is simple: we already have a representation of the original codebase of
our application inside the modules map; we have to find a way to convert it into
something that the browser can execute correctly and save it into the resulting
bundle file.

Given the structure of our modules map, this can actually be done with just a few
lines of code wrapping the modules map:

((modulesMap) => { // (1)
 const require = (name) => { // (2)
 const module = { exports: {} } // (3)
 modulesMap[name](module, require) // (4)
 return module.exports // (5)
 }
 require('app.js') // (6)
})(
 {
 'app.js': (module, require) => {/* ... */},
 'calculator.js': (module, require) => {/* ... */},
 'display.js': (module, require) => {/* ... */},
 'parser.js': (module, require) => {/* ... */},
 'resolver.js': (module, require) => {/* ... */},
 }
)

Note how the ESM syntax has been converted into something that
resembles the syntax of the CommonJS module system. Remember
that the browser does not support CommonJS and that these
variables are not global, so there is no risk of a naming collision
here. In this simplified implementation, we decided to use exactly
the same identifiers as in CommonJS (module, require, and
module.exports) to make the similarity with CommonJS look
more apparent. In reality, every module bundler will use its own
unique identifiers. For instance, webpack uses identifiers such as
__webpack_require__ and __webpack_exports__.

Universal JavaScript for Web Applications

[368]

This is not a lot of code, but there's a lot happening here, so let's go through it
together, step by step:

1. In this code snippet, we have an Immediately Invoked Function Expression
(IIFE) that receives the entire modules map as an argument.

2. When the function is executed, it defines a custom require function. This
function receives a module name as input and it will load and execute the
corresponding module from modulesMap.

3. In the require function, a module object is initialized. This object has only one
property called exports, which is an object with no attributes.

4. At this point, the factory function of the given module is invoked and we
pass to it the module object we just created and a reference to the require
function itself. Note that this is essentially an implementation of the Service
Locator pattern (nodejsdp.link/service-locator-pattern). Here, the
factory function, once executed, modifies the module object by attaching to
it the functionality that the module exports. The factory function can also
recursively require other modules by using the require function passed as an
argument.

5. Finally, the require function returns the module.exports object, which was
populated by the factory function that was invoked in the previous step.

6. The last step is to require the entry point of our dependency graph, which
in our case is the module app.js. This last step is what actually bootstraps
the entire application. In fact, by loading the entry point, it will, in turn, load
and execute all its dependencies in the right order and then execute its own
business logic.

With this process, we essentially created a self-sufficient module system that is
capable of loading modules that have been properly organized within the same file.
In other words, we managed to convert an app originally organized in multiple files
into an equivalent app where all the code has been moved into a single file. This is
the resulting bundle file.

Note that the preceding code has been intentionally simplified
just to illustrate how module bundlers work. There are many edge
cases that we did not take into account. For instance, what happens
if we require a module that does not exist in the modules map?

http://nodejsdp.link/service-locator-pattern

Chapter 10

[369]

Using webpack
Now that we know how a module bundler works, let's build a simple application
that can work both on Node.js and on the browser. Throughout this exercise, we
will learn how to write a simple library that can be used without changes from the
browser app and the server app. We will be using webpack to build the browser
bundle.

To keep things simple, our application will be nothing more than a simple "hello
world" for now, but don't worry, we will be building a more realistic application
in the Creating a Universal JavaScript app section, later in this chapter.

Let's start by installing the webpack CLI in our system with:

npm install --global webpack-cli

Let's now initialize a new project in a new folder with:

npm init

Once the guided project initialization is complete, since we want to use ESM in
Node.js, we need to add the property "type": "module" to our package.json.

Now, we can run:

webpack-cli init

This guided procedure will install webpack in your project and it will help you to
automatically generate a webpack configuration file. At the time of writing, using
webpack 4, the guided procedure does not realize that we want to use ESM in
Node.js, so we have to apply two small changes to the generated files:

• Rename webpack.config.js to webpack.config.cjs
• Change the following npm scripts in package.json:

"build": "webpack --config webpack.config.cjs"
"start": "webpack-dev-server --config webpack.config.cjs"

Now, we are ready to start writing our application.

Universal JavaScript for Web Applications

[370]

Let's first write the module we want to share in src/say-hello.js:

import nunjucks from 'nunjucks'

const template = '<h1>Hello <i>{{ name }}</i></h1>'

export function sayHello (name) {
 return nunjucks.renderString(template, { name })
}

In this code, we are using the nunjucks template library (nodejsdp.link/nunjucks),
which must be installed with npm. This module is exporting a simple sayHello function
that accepts a name as the only argument and uses it to construct an HTML string.

Let's now write the browser application that will use this module (src/index.js):

import { sayHello } from './say-hello.js'

const body = document.getElementsByTagName('body')[0]
body.innerHTML = sayHello('Browser')

This code uses the sayHello function to build an HTML fragment saying Hello
Browser and then inserts it into the body section of the current HTML page.

If you want to preview this application, you can run npm start in your terminal. This
should open your default browser and you should see the application running.

If you want to generate a static version of the application, you can run:

npm run build

This will generate a folder called dist containing two files: an index.html and our
bundle file (whose name will look like main.12345678901234567890.js).

The file name of the bundle is generated by using a hash of the
file content. This way, every time our source code changes, we
will obtain a new bundle with a different name. This is a useful
optimization technique, called cache busting, that webpack adopts
by default and it is particularly convenient when deploying our
assets to a content delivery network (CDN). With CDNs, it is
generally quite expensive to override files that are geographically
distributed across multiple servers and already cached in multiple
layers, possibly including our users' browsers. By generating new
files with every change, we avoid cache invalidation entirely.

http://nodejsdp.link/nunjucks

Chapter 10

[371]

You can open the index.html file with your browser to see a preview of your
application.

If you are curious, you can have a look at the generated bundle file. You will notice
that it is a bit more convoluted and verbose than the sample bundle we illustrated
in the previous section. However, you should be able to recognize the structure
and notice that the entire nunjucks library, as well as our sayHello module, have
been embedded in the bundle code.

Now, what if we want to build an equivalent application that runs in Node.js? For
instance, we could use the sayHello function and display the resulting code in the
terminal:

// src/server.js
import { sayHello } from './say-hello.js'
console.log(sayHello('Node.js'))

That's it!

If we run this code with:

node src/server.js

We will see the following output:

<h1>Hello <i>Node.js</i></h1>

Yes, displaying HTML in the terminal is not particularly useful, but right now we
achieved our goal of being able to use a library from both the browser and the server
without any changes in the library codebase.

In the next sections, we will discuss some patterns that allow us to actually change
the code where necessary if we want to provide more specialized behaviors on the
browser or Node.js.

Fundamentals of cross-platform
development
When developing for different platforms, the most common problem we face is how
can we reuse as much code as possible and, at the same time, provide specialized
implementations for details that are platform-specific. We will now explore some
of the principles and the patterns to use when facing this challenge, such as code
branching and module swapping.

Universal JavaScript for Web Applications

[372]

Runtime code branching
The most simple and intuitive technique for providing different implementations
based on the host platform is to dynamically branch our code. This requires that we
have a mechanism to recognize the host platform at runtime and then dynamically
switch the implementation with an if...else statement. Some generic approaches
involve checking global variables that are available only on Node.js or only on
the browser.

For example, we can check the existence of the window global variable. Let's modify
our say-hello.js module to use this technique to provide a slightly different
functionality depending on whether the module is running on the browser or on the
server:

import nunjucks from 'nunjucks'

const template = '<h1>Hello <i>{{ name }}</i></h1>'

export function sayHello (name) {
 if (typeof window !== 'undefined' && window.document) {
 // client-side code
 return nunjucks.renderString(template, { name })
 }

 // Node.js code
 return `Hello \u001b[1m${name}\u001b[0m`
}

Try again to run our application on Node.js and on the browser and see the
differences! If you do that, you will not see HTML code on the terminal when
running the Node.js application. Instead, you will see a string with proper terminal
formatting. The frontend application on the browser remains unchanged.

The escape sequence \u001b[1m is a special terminal formatting
indicator that sets the text to bold. The sequence \u001b[0m
instead resets the formatting to normal. If you are curious to find
out more about escape sequences and their history, check out ANSI
escape sequences: nodejsdp.link/ansi-escape-sequences.

http://nodejsdp.link/ansi-escape-sequences

Chapter 10

[373]

Challenges of runtime code branching
Using a runtime branching approach for switching between Node.js and the browser
is definitely the most intuitive and simple pattern we can use for this purpose;
however, there are some inconveniences:

• The code for both platforms is included in the same module and therefore
in the final bundle. This increases the bundle size, adding unreachable and
unnecessary code. It is also possible that the unreachable code contains
sensitive information like encryption keys or API keys that are not meant
to be sent to a user's browser. In this case, this approach might also raise
significant security concerns.

• If used too extensively, it can considerably reduce the readability of the code,
as the business logic would be mixed with logic meant only to add cross-
platform compatibility.

• Using dynamic branching to load a different module, depending on the
platform, will result in all the modules being added to the final bundle,
regardless of their target platform. For example, if we consider the following
code fragment, both clientModule and serverModule will be included in a
bundle generated with webpack, unless we explicitly exclude one of them
from the build:

import { clientFunctionality } from 'clientModule'
import { serverFunctionality } from 'serverModule'
if (typeof window !== 'undefined' && window.document) {
 clientFunctionality()
} else {
 serverFunctionality()
}

This last inconvenience happens because of the following reasons:

• Bundlers have no sure way of knowing the value of a runtime variable at
build time (unless the variable is a constant), so, in the preceding example,
both branches of the if...else statement are always included in the final
bundle, even though it is obvious that the browser will always execute only
one of them.

• ES module imports are always defined declaratively at the top of the file and
we don't have a way to filter the imports based on the current environment.
The bundler will not try to understand whether you are conditionally using
only a subset of the imported feature and it will include all the imported
code anyway.

Universal JavaScript for Web Applications

[374]

A consequence of this last property is that modules imported dynamically using
variables are not included in the bundle. For example, from the following code, no
module will be bundled:

moduleList.forEach(function(module) {
 import(module)
})

It's worth underlining that webpack overcomes some of these limitations and, under
certain specific circumstances, it is able to guess all the possible values for a dynamic
requirement. For instance, if you have a snippet of code like the following:

function getControllerModule (controllerName) {
 return import(`./controller/${controllerName}`)
}

Webpack will include all the modules available in the controller folder in the final
bundle.

It's highly recommended to have a look at the official documentation to understand
all the supported cases (nodejsdp.link/webpack-dynamic-imports).

Build-time code branching
In this section, we are going to see how to use webpack plugins to remove, at build
time, all parts of the code that we want to run only on the server. This allows us
to obtain lighter bundle files and to avoid accidentally exposing code containing
sensible information (for instance, secrets, passwords, or API keys) that should only
live on the server.

Webpack offers support for plugins, which allows us to extend webpack's
capabilities and add new processing steps that can be used to produce the bundle
file. To perform build-time code branching, we can leverage a built-in plugin called
DefinePlugin and a third-party plugin called terser-webpack-plugin (nodejsdp.
link/terser-webpack).

DefinePlugin can be used to replace specific code occurrences in our source files
with custom code or variables. terser-webpack-plugin allows us to compress the
resulting code and remove unreachable statements (dead code elimination).

Let's start by rewriting our say-hello.js module to explore these concepts:

import nunjucks from 'nunjucks'
export function sayHello (name) {
 if (typeof __BROWSER__ !== 'undefined') {

http://nodejsdp.link/webpack-dynamic-imports
http://nodejsdp.link/terser-webpack
http://nodejsdp.link/terser-webpack

Chapter 10

[375]

 // client-side code
 const template = '<h1>Hello <i>{{ name }}</i></h1>'
 return nunjucks.renderString(template, { name })
 }
 // Node.js code
 return `Hello \u001b[1m${name}\u001b[0m`
}

Note that we are checking for the existence of a generic variable called __BROWSER__
to enable the browser code. This is the variable that we will replace at build time
using DefinePlugin.

Now, let's install terser-webpack-plugin with:

npm install --save-dev terser-webpack-plugin

Finally, let's update our webpack.config.cjs file:

// ...
const TerserPlugin = require('terser-webpack-plugin')
module.exports = {
 mode: 'production',
 // ...
 plugins: [
 // ...
 new webpack.DefinePlugin({
 __BROWSER__: true
 })
],
 // ...
 optimization: {
 // ...
 minimize: true,
 minimizer: [new TerserPlugin()]
 }
}

The first change here is to set the option mode to production. This option will
enable optimizations such as code minification (or minimization). Optimization
options are defined in the dedicated optimization object. Here, we are enabling
minification by setting minimize to true and we are providing a new instance
of terser-webpack-plugin as the minimizer. Finally, we are also adding
webpack.DefinePlugin and configuring it to replace the string __BROWSER__ with the
value true.

Universal JavaScript for Web Applications

[376]

Every value in the configuration object of DefinePlugin represents a piece of
code that will be evaluated by webpack at build time and then used to replace
the currently matched snippet of code. This allows us to add external dynamic
values containing, for instance, the content of an environment variable, the current
timestamp, or the hash of the last git commit to the bundle.

With this configuration, when we build a new bundle, every occurrence of
__BROWSER__ is replaced with true. The first if statement will internally look like
if (true !== 'undefined'), but webpack is smart enough to understand that this
expression will always be evaluated as true, so it transforms the resulting code again
into if (true).

Once webpack has finished processing all the code, it will invoke terser-webpack-plugin
to minimize the resulting code. terser-webpack-plugin is a wrapper around Terser
(nodejsdp.link/terser), a modern JavaScript minifier. Terser is capable of removing
dead code as part of its minimization algorithm, so given that, at this stage, our code will
look like this:

if (true) {
 const template = '<h1>Hello <i>{{ name }}</i></h1>'
 return nunjucks.renderString(template, { name })
}
return `Hello \u001b[1m${name}\u001b[0m`

Terser will reduce it to:

const template = '<h1>Hello <i>{{ name }}</i></h1>'
return nunjucks.renderString(template, { name })

This way, we got rid of all the server-side code in our browser bundle.

Even if build-time code branching is way better than runtime code branching
because it produces much leaner bundle files, it can still make our source code
cumbersome when abused. In fact, if you overuse this technique, you will end up
with code that contains too many if statements, which will be hard to understand
and debug.

When this happens, it is generally better to move all the platform-specific code into
dedicated modules. We will discuss this alternative approach in the next section.

http://nodejsdp.link/terser

Chapter 10

[377]

Module swapping
Most of the time, we already know at build time what code has to be included in the
client bundle and what shouldn't. This means that we can take this decision upfront
and instruct the bundler to replace the implementation of an entire module at build
time. This often results in a leaner bundle, as we are excluding unnecessary modules,
and more readable code because we don't have all the if...else statements required
by runtime and build-time branching.

Let's find out how to adopt module swapping with webpack by updating our example.

The main idea is that we want to have two separate implementations of our sayHello
functionality: one optimized for the server (say-hello.js) and one optimized for the
browser (say-hello-browser.js). We will then tell webpack to replace any import of
say-hello.js with say-hello-browser.js. Let's see what our new implementation
looks like now:

// src/say-hello.js
import chalk from 'chalk'
export function sayHello (name) {
 return `Hello ${chalk.green(name)}`
}

// src/say-hello-browser.js
import nunjucks from 'nunjucks'
const template = '<h1>Hello <i>{{ name }}</i></h1>'
export function sayHello (name) {
 return nunjucks.renderString(template, { name })
}

Note that, on the server-side version, we introduced a new dependency, chalk
(nodejsdp.link/chalk), a utility library that allows us to format text for the terminal.
This is to demonstrate one of the main advantages of this approach. Now that we've
separated our server-side code from the client-side code, we can introduce new
functionalities and libraries without worrying about the impact that those might
have on the frontend-only bundle. At this point, in order to tell webpack to swap the
modules at build time, we have to replace webpack.DefinePlugin with a new plugin
in our webpack.config.cjs, as follows:

plugins: [
 // ...
 new webpack.NormalModuleReplacementPlugin(
 /src\/say-hello\.js$/,
 path.resolve(__dirname, 'src', 'say-hello-browser.js')
)
]

http://nodejsdp.link/chalk

Universal JavaScript for Web Applications

[378]

We are using webpack.NormalModuleReplacementPlugin, which accepts two
arguments. The first argument is a regular expression and the second one is a string
representing a path to a resource. At build time, if a module path matches the given
regular expression, it is replaced with the one provided in the second argument.

Note that this technique is not limited to our internal modules, but it can also be used
with external libraries in our node_modules folder.

Thanks to webpack and the module replacement plugin, we can easily deal with
structural differences between platforms. We can focus on writing separate modules
that are meant to provide platform-specific code and we can then swap Node.js-only
modules with browser-specific ones in the final bundle.

Design patterns for cross-platform
development
Let's now revise some of the design patterns we discussed in the previous chapters
to see how we can leverage those for cross-platform development:

• Strategy and template: These two are probably the most useful patterns
when sharing code with the browser. Their intent is, in fact, to define the
common steps of an algorithm, allowing some of its parts to be replaced,
which is exactly what we need! In cross-platform development, these
patterns allow us to share the platform-agnostic part of our components,
while allowing their platform-specific parts to be changed using a different
strategy or template method (which can be changed using code branching
(runtime or build-time) or module swapping).

• Adapter: This pattern is probably the most useful when we need to swap
an entire component. We have already seen several examples in Chapter 8,
Structural Design Patterns. If your server application is using a database like
SQLite, you could use the Adapter pattern to provide an alternative data
storage implementation that works in the browser. For instance you could
use the localStorage API (nodejsdp.link/localstorage) or the IndexedDB
API (nodejsdp.link/indexdb).

• Proxy: When code meant to run on the server runs on the browser, we often
need functionality that is used on the server to be available on the browser as
well. This is where the remote Proxy pattern is useful. Imagine if we wanted
to access the filesystem of the server from the browser: we could think of
creating an fs object on the client that proxies every call to the fs module
living on the server, using Ajax or WebSockets as a way of exchanging
commands and return values.

http://nodejsdp.link/localstorage
http://nodejsdp.link/indexdb

Chapter 10

[379]

• Dependency injection and service locator: Both dependency injection and
service locator can be useful to replace the implementation of a module at the
moment of its injection. When we introduced the concept of modules maps,
in the Packing section, we also saw how the Service Locator pattern was
intrinsically used by module bundlers to collate all the code from different
modules into one file.

As we can see, the arsenal of patterns at our disposal is quite powerful, but the most
powerful weapon is still the ability of the developer to choose the best approach and
adapt it to the specific problem at hand.

Now that we understand the fundamentals of module bundlers and we have learned
a number of useful patterns to write cross-platform code, we are ready to move into
the second part of this chapter, where we will learn about React and write our first
universal JavaScript application.

A brief introduction to React
React is a popular JavaScript library created and maintained by Facebook. React is
focused on providing a comprehensive set of functions and tools to build the view
layer in web applications. React offers a view abstraction focused on the concept of
a component. A component could be a button, a form input, a simple container such
as an HTML div, or any other element in your user interface. The idea is that you
should be able to construct the user interface of your application by just defining
and composing highly reusable components with specific responsibilities.

What makes React different from other view libraries for the web is that it is not
bound to the DOM by design. In fact, it provides a high-level abstraction called the
virtual DOM (nodejsdp.link/virtual-dom) that fits very well with the web but that
can also be used in other contexts, for example, for building mobile apps, modeling
3D environments, or even defining the interaction between hardware components.
In simple terms, the virtual DOM can be seen as an efficient way to re-render data
organized in a tree-like structure.

"Learn it once, use it everywhere."
—Facebook

http://nodejsdp.link/virtual-dom

Universal JavaScript for Web Applications

[380]

This is the motto used by Facebook to introduce React. It intentionally mocks the
famous Java motto Write it once, run it everywhere with the clear intention to underline
a fundamental shift from the Java philosophy. The original design goal of Java was
to allow developers to write applications once and run them on as many platforms
as possible without changes. Conversely, the React philosophy acknowledges that
every platform is inherently different and therefore encourages developers to write
different applications that are optimized for the related target platform. React, as a
library, shifts its focus on providing convenient design and architecture principles and
tools that, once mastered, can be easily used to write platform-specific code.

The main reason why React is so interesting in the context of Universal JavaScript
development is because it allows us to render React components both on the client
and on the server using almost the same code. To put it another way, with React, we
are able to render the HTML code that is required to display the page directly from
Node.js. Then, when the page is loaded on the browser, React will perform a process
called hydration (nodejsdp.link/hydration), which will add all the frontend-only
side effects like click handlers, animations, additional asynchronous data fetching,
dynamic routing, and so on. Hydration converts a static markup into a fully
interactive experience.

This approach allows us to build single-page applications (SPAs), where the first
render happens mostly on the server, but then, once the page is loaded on the
browser and the user starts to click around, only the parts of the page that need to be
changed are dynamically refreshed, without requiring a full page reload.

This design offers two main advantages:

• Better search engine optimization (SEO): Since the page markup is pre-
rendered by the server, various search engines can make sense of the content
of the page by just looking at the HTML returned by the server. They won't
need to simulate a browser environment and wait for the page to be fully
loaded to see what a given page is about.

If you are curious to learn about the applications of React in
contexts not strictly related to the field of web development,
you can have a look at the following projects: React Native for
mobile apps (nodejsdp.link/react-native), React PIXI for 2D
rendering with OpenGL (nodejsdp.link/react-pixi), react-
three-fiber to create 3D scenes (nodejsdp.link/react-three-
fiber), and React Hardware (nodejsdp.link/react-hardware).

http://nodejsdp.link/hydration
http://nodejsdp.link/react-native
http://nodejsdp.link/react-pixi
http://nodejsdp.link/react-three-fiber
http://nodejsdp.link/react-three-fiber
http://nodejsdp.link/react-hardware

Chapter 10

[381]

• Better performance: Since we are pre-rendering the markup, this will be
already available and visible on the browser, even while the browser is still
downloading, parsing, and executing the JavaScript code included with
the page. This approach can lead to a better user experience as the content
is perceived to load faster and there are less browser "flashes" during
rendering.

Now that we know what React is, in the next section, we will write our first React
component!

Hello React
Without further ado, let's start to use React and jump to a concrete example. This will
be a "Hello World" type of example but it will help us to illustrate the main ideas
behind React, before we move onto more realistic examples.

Let's start by creating a new webpack project in a new folder with:

npm init -y
npm install --save-dev webpack webpack-cli
node_modules/.bin/webpack init

Then, follow the guided instructions. Now, let's install React:

npm install --save react react-dom

Now, let's create a file, src/index.js, with the following content:

import react from 'react'
import ReactDOM from 'react-dom'

const h = react.createElement // (1)

class Hello extends react.Component { // (2)
 render () { // (3)

It is worth mentioning that the React virtual DOM is capable of
optimizing the way changes are rendered. This means that the
DOM is not rendered in full after every change, but instead React
uses a smart in-memory diffing algorithm that is able to pre-
calculate the minimum number of changes to apply to the DOM in
order to update the view. This results in a very efficient mechanism
for fast browser rendering.

Universal JavaScript for Web Applications

[382]

 return h('h1', null, [// (4)
 'Hello ',
 this.props.name || 'World' // (5)
])
 }
}

ReactDOM.render(// (6)
 h(Hello, { name: 'React' }),
 document.getElementsByTagName('body')[0]
)

Let's review what's happening with this code:

1. The first thing that we do is to create a handy alias for the
react.createElement function. We will be using this function a couple of
times in this example to create React elements. These could be plain DOM
nodes (regular HTML tags) or instances of React components.

2. Now, we define our Hello component, which has to extend the
react.Component class.

3. Every React component has to implement a render() method. This method
defines how the component will be displayed on the screen when it is
rendered on the DOM and it has to return a React element.

4. We are using the react.createElement function to create an h1 DOM
element. This method expects three or more arguments. The first argument is
the tag name (as a string) or a React component class. The second argument
is an object used to pass attributes (or props) to the component (or null if we
don't need to specify any attribute). Finally, the third argument is an array
(or you can pass multiple arguments as well) of children elements. Elements
can also be text (text nodes), as in our current example.

5. Here, we are using this.props to access the attributes that are passed to
this component at runtime. In this specific case, we are looking for the name
attribute. If this is passed, we use it to construct a text node; otherwise, we
default to the string "World".

6. In this last block of code, we use ReactDOM.render() to initialize our
application. This function is responsible for attaching a React application to
the existing page. An application is nothing more than an instance of a React
component. Here, we are instantiating our Hello component and passing the
string "React" for the name attribute. Finally, as the last argument, we have
to specify which DOM node in the page will be the parent element of our
application. In this case, we are using the body element of the page, but you
can target any existing DOM element in the page.

Chapter 10

[383]

Now, you can see a preview of your application by running:

npm start

You should now see "Hello React" in your browser window. Congratulations, you
have built your first React application!

Alternatives to react.createElement
Repeated usage of react.createElement() might compromise the readability of our
React components. In fact, nesting many invocations of react.createElement(), even
with our h() alias, will make it hard to understand the HTML structure we want our
components to render.

For this reason, it is not very common to use react.createElement() directly. To
address this problem, the React team offers and encourages an alternative syntax
called JSX (nodejsdp.link/jsx).

JSX is a superset of JavaScript that allows you to embed HTML-like code into
JavaScript code. JSX makes the creation of React elements similar to writing HTML
code. With JSX, React components are generally more readable and easier to write. It
is easier to see what we mean here by looking at a concrete example, so let's rewrite
our "Hello React" application using JSX:

import react from 'react'
import ReactDOM from 'react-dom'

class Hello extends react.Component {
 render () {
 return <h1>Hello {this.props.name || 'World'}</h1>
 }
}

ReactDOM.render(
 <Hello name="React"/>,
 document.getElementsByTagName('body')[0]
)

Much more readable, isn't it?

http://nodejsdp.link/jsx

Universal JavaScript for Web Applications

[384]

Unfortunately, since JSX is not a standard JavaScript feature, adopting JSX would
require us to "compile" JSX code into standard equivalent JavaScript code. In the
context of Universal JavaScript applications, we would have to do this both on the
client-side code and the server-side code, so, for the sake of simplicity, we are not
going to use JSX throughout the rest of this chapter.

There are some relatively new JSX alternatives that rely on standard JavaScript
tagged template literals (you can read more about JavaScript tagged template literals
at nodejsdp.link/template-literals). Using template literals seems to be a good
compromise between code that is still quite easy to read and write and not having to
perform an intermediate compilation process. Two of the most promising libraries
providing this functionality are htm (nodejsdp.link/htm) and esx (nodejsdp.link/esx).

In the rest of this chapter, we will be using htm, so let's rewrite once more our "Hello
React" example, this time using htm:

import react from 'react'
import ReactDOM from 'react-dom'
import htm from 'htm'

const html = htm.bind(react.createElement) // (1)
class Hello extends react.Component {
 render () { // (2)
 return html`<h1>
 Hello ${this.props.name || 'World'}
 </h1>`
 }
}

ReactDOM.render(
 html`<${Hello} name="React"/>`, // (3)
 document.getElementsByTagName('body')[0]
)

This code looks quite readable, but let's quickly clarify how we are using htm here:

1. The first thing that we have to do is create the template tag function html.
This function allows us to use template literals to generate React elements. At
runtime, this template tag function will be calling react.createElement() for
us when needed.

http://nodejsdp.link/template-literals
http://nodejsdp.link/htm
http://nodejsdp.link/esx

Chapter 10

[385]

2. Here, we use a tagged template literal with the html tag function to create an
h1 tag. Note that, as this is a standard tagged template literal, we can use the
regular placeholder syntax (${expression}) to insert dynamic expressions
into the string. Remember that template literals and tagged template literals
use backticks (`) instead of single quotes (') to delimit the template string.

3. Similarly, we can use the placeholder syntax to create instances of React
components (<${ComponentClass}>). Note that, if a component instance
contains children elements, we can use the special </> tag to indicate the end
of the component (for example, <${Component}><child/></>). Finally, we can
pass props to the component as normal HTML attributes.

At this point, we should be able to understand the basic structure of a simple "Hello
World" React component. In the next section, we will show you how to manage
states in a React component, an important concept for most real-world applications.

Stateful components
In the previous example, we saw how to build a stateless React component. By
stateless, we mean that the component only receives input from the outside (in our
example, it was receiving a name property) and it doesn't need to calculate or manage
any internal information to be able to render itself to the DOM.

While it's great to have stateless components, sometimes, you have to manage some
kind of state. React allows us to do that, so let's learn how with an example.

Let's build a React application that displays a list of projects that have been recently
updated on GitHub.

We can encapsulate all the logic for asynchronously fetching the data from GitHub
and displaying it on a dedicated component: the RecentGithubProjects component.
This component is configurable through the query prop, which allows us to filter the
projects on GitHub. The query prop will receive a keyword such as "javascript" or
"react", and this value will be used to construct the API call to GitHub.

Let's finally have a look at the code of the RecentGithubProjects component:

// src/RecentGithubProjects.js
import react from 'react'
import htm from 'htm'

const html = htm.bind(react.createElement)

function createRequestUri (query) {
 return `https://api.github.com/search/repositories?q=${

Universal JavaScript for Web Applications

[386]

 encodeURIComponent(query)
 }&sort=updated`
}

export class RecentGithubProjects extends react.Component {
 constructor (props) { // (1)
 super(props) // (2)
 this.state = { // (3)
 loading: true,
 projects: []
 }
 }

 async loadData () { // (4)
 this.setState({ loading: true, projects: [] })
 const response = await fetch(
 createRequestUri(this.props.query),
 { mode: 'cors' }
)
 const responseBody = await response.json()
 this.setState({
 projects: responseBody.items,
 loading: false
 })
 }

 componentDidMount () { // (5)
 this.loadData()
 }

 componentDidUpdate (prevProps) { // (6)
 if (this.props.query !== prevProps.query) {
 this.loadData()
 }
 }

 render () { // (7)
 if (this.state.loading) {
 return 'Loading ...'
 }
 // (8)
 return html`

Chapter 10

[387]

 ${this.state.projects.map(project => html`
 <li key=${project.id}>
 ${project.full_name}:
 ${' '}${project.description}

 `)}
 `
 }
}

There are some new React concepts in this component, so let's discuss the main
details here:

1. In this new component, we are overriding the default constructor. A
constructor accepts the props passed to the component as an argument.

2. The first thing we have to do is call the original constructor and propagate
the props so that the component can be initialized correctly by React.

3. Now, we can define the initial component state. Our final state is going to
be a list of GitHub projects, but those won't be available immediately as we
will need to load them dynamically. Therefore, we define the initial state as
a boolean flag, indicating that we are loading the data and the list of projects
as an empty array.

4. The function loadData() is the function that is responsible for making the
API request, fetching the necessary data, and updating the internal state
using this.setState(). Note that this.setState() is called twice: before we
issue the HTTP request (to activate the loading state) and when the request is
completed (to unset the loading flag and populate the list of projects). React
will re-render the component automatically when the state changes.

5. Here, we are introducing another new concept: the componentDidMount
lifecycle function. This function is automatically invoked by React once the
component has been successfully instantiated and attached (or mounted) to
the DOM. This is the perfect place to load our data for the first time.

6. The function componentDidUpdate is another React lifecycle function and it is
automatically invoked every time the component is updated (for instance, if
new props have been passed to the component). Here, we check if the query
prop has changed since the last update. If that's the case, then we need to
reload the list of projects.

Universal JavaScript for Web Applications

[388]

7. Finally, let's see what happens in our render() function. The main thing to
note is that here we have to handle the two different states of the component:
the loading state and the state where we have the list of projects available for
display. Since React will invoke the render() function every time the state
or the props change, just having an if statement here will be enough. This
technique is often called conditional rendering.

8. In this final step, we are rendering a list of elements using Array.map() to
create a list element for every project fetched using the GitHub API. Note
that every list element receives a value for the key prop. The key prop is
a special prop that is recommended whenever you are rendering an array
of elements. Every element should provide a unique key. This prop helps
the virtual DOM optimize every rendering pass (If you are curious to
understand in detail what React does in this situation you can have a look
at nodejsdp.link/react-reconciliation).

Let's now write the main application component. Here, we want to display a
navigation menu where the user can select different queries ("JavaScript", "Node.js",
and "React") to filter for different types of GitHub projects:

// src/App.js
import react from 'react'
import htm from 'htm'
import { RecentGithubProjects } from './RecentGithubProjects.js'

const html = htm.bind(react.createElement)

export class App extends react.Component {
 constructor (props) {
 super(props)
 this.state = {
 query: 'javascript',
 label: 'JavaScript'
 }
 this.setQuery = this.setQuery.bind(this)
 }

You might have noticed that we are not handling potential errors
while fetching the data. There are several ways we can do this
in React. The most elegant solution is probably implementing an
ErrorBoundary component (nodejsdp.link/error-boundary),
but we will leave that as an exercise for you.

http://nodejsdp.link/react-reconciliation
http://nodejsdp.link/error-boundary

Chapter 10

[389]

 setQuery (e) {
 e.preventDefault()
 const label = e.currentTarget.text
 this.setState({ label, query: label.toLowerCase() })
 }

 render () {
 return html`<div>
 <nav>
 JavaScript
 ${' '}
 Node.js
 ${' '}
 React
 </nav>
 <h1>Recently updated ${this.state.label} projects</h1>
 <${RecentGithubProjects} query=${this.state.query}/>
 </div>`
 }
}

This component is using its internal state to track the currently selected query.
Initially, the "javascript" query is set and passed down to the RecentGithubProjects
component. Then, every time a keyword in the navigation menu is clicked, we
update the state with the new selected keyword. When this happens, the render()
method will be automatically invoked and it will pass the new value for the query
prop to RecentGithubProjects. In turn, RecentGithubProjects will be marked as
updated, and it will internally reload and eventually update the list of projects for the
new query.

One interesting detail to underline is that, in the constructor, we are explicitly
binding the setQuery() function to the current component instance. The reason why
we do this is because this function is used directly as an event handler for the click
event. In this case, the reference to this would be undefined without the bind and it
would not be possible to call this.setState() from the handler.

At this point, we only need to attach the App component to the DOM to run our
application. Let's do this:

// src/index.js
import react from 'react'
import ReactDOM from 'react-dom'
import htm from 'htm'

Universal JavaScript for Web Applications

[390]

import { App } from './App.js'

const html = htm.bind(react.createElement)

ReactDOM.render(
 html`<${App}/>`,
 document.getElementsByTagName('body')[0]
)

Finally, let's just run the application with npm start and test it on the browser.

Try to refresh the page and click on the various keywords on the navigation menu.
After a few seconds, you should see the list of projects being refreshed.

At this point, it should be quite clear to you how React works, how to compose
components together, and how to take advantage of state and props. Hopefully, this
simple exercise will also help you to find new, interesting, open source JavaScript
projects that you might want to contribute to!

We are finally ready to take what we learned about webpack and React to create a
simple, yet complete, universal JavaScript application.

Note that since we used async/await in our application, the
default configuration generated by webpack might not work
straight away. If you have any issues, compare your configuration
file with the one in the code examples provided with this book
(nodejsdp.link/wpconf).

We've covered just enough ground for us to be able to build
our first Universal React application. But if you want to be
proficient with React, we recommend that you read the official
React documentation (nodejsdp.link/react-docs) for a more
exhaustive overview of the library.

http://nodejsdp.link/wpconf
http://nodejsdp.link/react-docs

Chapter 10

[391]

Creating a Universal JavaScript app
Now that we've covered the basics, let's start to build a more complete Universal
JavaScript application. We are going to build a simple "book library" application
where we can list different authors and see their biography and some of their
masterpieces. Although this is going to be a very simple application, it will allow
us to cover more advanced topics such as universal routing, universal rendering,
and universal data fetching. The idea is that you can later use this application as
a scaffold for a real project and build on top of it your next universal JavaScript
application.

In this experiment, we are going to use the following technologies:

• React (nodejsdp.link/react), which we just introduced
• React Router (nodejsdp.link/react-router), a companion routing layer for

React
• Fastify (nodejsdp.link/fastify), a fast and ergonomic framework to build

web servers in Node.js
• Webpack as the module bundler

For practical reasons, we selected a very specific set of technologies for this exercise,
but we will try to focus as much as possible on the design principles and patterns
rather than the technologies themselves. As you learn these patterns, you should be
able to use the acquired knowledge with any other combination of technologies and
achieve similar results.

In order to keep things simple, we will be using webpack only
to process the frontend code and we will leave the backend code
unchanged, leveraging the native Node.js support for ESM.

At the time of writing, there are some subtle discrepancies
between how webpack interprets the semantics of ESM imports
as opposed to how Node.js does it, especially when importing
modules written using the CommonJS syntax. For this reason, we
recommend running the examples in the rest of this chapter using
esm (nodejsdp.link/esm), a Node.js library that will preprocess
ESM imports in a way that minimizes those differences. Once you
have installed the esm module in your project, you can run a script
with esm as follows:

node –r esm script.js

http://nodejsdp.link/react
http://nodejsdp.link/react-router
http://nodejsdp.link/fastify
http://nodejsdp.link/esm

Universal JavaScript for Web Applications

[392]

Frontend-only app
In this section, we are going to focus on building our app on the frontend only, using
webpack as a development web server. In the next sections, we will expand and
update this basic app to convert it to a full Universal JavaScript application.

This time, we will be using a custom webpack configuration, so let's start by creating
a new folder and copying the package.json and webpack.config.cjs files from the
code repository provided with this book (nodejsdp.link/frontend-only-app), then
install all the necessary dependencies with:

npm install

The data we will be using is stored in a JavaScript file (as a simple substitute for a
database), so make sure you copy the file data/authors.js into your project as well.
This file contains some sample data in the following format:

export const authors = [
 {
 id: 'author\'s unique id',
 name: 'author\'s name',
 bio: 'author\'s biography',
 books: [// author's books
 {
 id: 'book unique id',
 title: 'book title',
 year: 1914 // book publishing year
 },
 // ... more books
]
 },
 // ... more authors
]

Of course, feel free to change the data in this file if you want to add your favorite
authors and books!

Now that we have all the configuration in place, let's quickly discuss what we want
our application to look like.

http://nodejsdp.link/frontend-only-app

Chapter 10

[393]

Figure 10.3: Application mockup

Figure 10.3 shows that our application will have two different types of page: an index
page, where we list all the authors available in our data store, and then a page to
visualize the details of a given author, where we will see their biography and some
of their books.

These two types of page will only have a header in common. This will allow us to go
back to the index page at any time.

We will be exposing the index page at the root path of our server (/), while we will
be using the path /author/:authorId for the author's page.

Finally, we will also have a 404 page.

In terms of file structure, we will organize our project as follows:

src
├── data
│ └── authors.js – data file
└── frontend
 ├── App.js – application component
 ├── components
 │ ├── Header.js – header component
 │ └── pages
 │ ├── Author.js – author page
 │ ├── AuthorsIndex.js – index page
 │ └── FourOhFour.js – 404 page
 └── index.js – project entry point

Universal JavaScript for Web Applications

[394]

Let's start by writing the index.js module, which will serve as the entry point for
loading our frontend application and attaching it to the DOM:

import react from 'react'
import reactDOM from 'react-dom'
import htm from 'htm'
import { BrowserRouter } from 'react-router-dom'
import { App } from './App.js'

const html = htm.bind(react.createElement)

reactDOM.render(
 html`<${BrowserRouter}><${App}/></>`,
 document.getElementById('root')
)

This code is quite simple as we are mainly importing the App component and
attaching it to the DOM in an element with the ID equal to root. The only detail that
stands out is that we are wrapping the application into a BrowserRouter component.
This component comes from the react-router-dom library and it provides our app
with client-side routing capabilities. Some of the components we will be writing next
will showcase how to fully take advantage of these routing capabilities and how to
connect different pages together using links. Later on, we will revisit this routing
configuration to make it available on the server side as well.

Right now, let's focus on the source code for App.js:

import react from 'react'
import htm from 'htm'
import { Switch, Route } from 'react-router-dom'
import { AuthorsIndex } from './components/pages/AuthorsIndex.js'
import { Author } from './components/pages/Author.js'
import { FourOhFour } from './components/pages/FourOhFour.js'

const html = htm.bind(react.createElement)

export class App extends react.Component {
 render () {
 return html`
 <${Switch}>
 <${Route}
 path="/"
 exact=${true}

Chapter 10

[395]

 component=${AuthorsIndex}
 />
 <${Route}
 path="/author/:authorId"
 component=${Author}
 />
 <${Route}
 path="*"
 component=${FourOhFour}
 />
 </>
 `
 }
}

As you can tell from this code, the App component is responsible for loading all the
page components and configuring the routing for them.

Here, we are using the Switch component from react-router-dom. This component
allows us to define Route components. Every Route component needs to have a
path and a component prop associated with it. At render time, Switch will check
the current URL against the paths defined by the routes, and it will render the
component associated to the first Route component that matches.

As in a JavaScript switch statement, where the order of case statements is important,
here, the order of the Route components is important too. Our last route is a catch-all
route, which will always match if none of the previous routes matches..

Note also that we are setting the prop exact for the first Route. This is needed
because react-router-dom will match based on prefixes, so a plain / will match any
URL. By specifying exact: true, we are telling the router to only match this path if it
is exactly / (and not if it just starts with /).

Let's now have a quick look at our Header component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'

const html = htm.bind(react.createElement)

export class Header extends react.Component {
 render () {
 return html`<header>

Universal JavaScript for Web Applications

[396]

 <h1>
 <${Link} to="/">My library</>
 </h1>
 </header>`
 }
}

This is a very simple component that just renders an h1 title containing "My
library." The only detail worth discussing here is that the title is wrapped by a Link
component from the react-router-dom library. This component is responsible for
rendering a clickable link that can interact with the application router to switch to a
new route dynamically, without refreshing the entire page.

Now, we have to write, one by one, our page components. Let's start with the
AuthorsIndex component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import { Header } from '../Header.js'
import { authors } from '../../../data/authors.js'

const html = htm.bind(react.createElement)

export class AuthorsIndex extends react.Component {
 render () {
 return html`<div>
 <${Header}/>
 <div>${authors.map((author) =>
 html`<div key=${author.id}>
 <p>
 <${Link} to="${`/author/${author.id}`}">
 ${author.name}
 </>
 </p>
 </div>`)}
 </div>
 </div>`
 }
}

Chapter 10

[397]

Yet another very simple component. Here, we are rendering some markup
dynamically based on the list of authors available in our data file. Note that we are
using, once again, the Link component from react-router-dom to create dynamic
links to the author page.

Now, let's have a look at the Author component code:

import react from 'react'
import htm from 'htm'
import { FourOhFour } from './FourOhFour.js'
import { Header } from '../Header.js'
import { authors } from '../../../data/authors.js'

const html = htm.bind(react.createElement)

export class Author extends react.Component {
 render () {
 const author = authors.find(
 author => author.id === this.props.match.params.authorId
)

 if (!author) {
 return html`<${FourOhFour} error="Author not found"/>`
 }
 return html`<div>
 <${Header}/>
 <h2>${author.name}</h2>
 <p>${author.bio}</p>
 <h3>Books</h3>

 ${author.books.map((book) =>
 html`<li key=${book.id}>${book.title} (${book.year})`
)}

 </div>`
 }
}

This component has a little bit of logic in it. In the render() method, we
filter the authors dataset to find the current author. Notice that we are using
props.match.params.authorId to get the current author ID. The match prop will be
passed to the component by the router at render time and the nested params object
will be populated if the current path has dynamic parameters.

Universal JavaScript for Web Applications

[398]

There's a chance that we are receiving an ID that doesn't match any author in our
dataset, so in this case, author will be undefined. This is clearly a 404, so instead
of rendering the author data, we delegate the render logic to the FourOhFour
component, which is responsible for rendering the 404 error page.

Finally, let's see the source code for the FourOhFour component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)
export class FourOhFour extends react.Component {
 render () {
 return html`<div>
 <${Header}/>
 <div>
 <h2>404</h2>
 <h3>${this.props.error || 'Page not found'}</h3>
 <${Link} to="/">Go back to the home page</>
 </div>
 </div>`
 }
}

This component is responsible for rendering the 404 page. Note that we made the
error message configurable through the error prop and also that we are using a Link
from the react-router-dom library to allow the user to travel back to the home page
when landing on this error page.

It is common practice to memoize (nodejsdp.link/memoization)
the result of any complex calculation performed in the render()
method. This prevents the complex calculation from running
again in case its inputs haven't changed since the last render. In
our example, a possible target for this type of optimization is
the call to authors.find(). We leave this to you as an exercise.
If you want to know more about this technique take a look at
nodejsdp.link/react-memoization.

http://nodejsdp.link/memoization
http://nodejsdp.link/react-memoization

Chapter 10

[399]

This was quite a lot of code, but we are finally ready to run our frontend-only React
application: just type npm start in your console and you should see the application
running in your browser. Pretty barebones, but if we did everything correctly,
it should work as expected and allow us to see our favorite authors and their
masterpieces.

It is worth using the app with the browser developer tools open so that we can verify
that our dynamic routing is working correctly, that is, once the first page is loaded,
transitions to other pages happen without any page refresh.

Server-side rendering
Our application works and this is great news. However, the app is running only
on the client side, which means that if we try to curl one of the pages, we will see
something like this:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>My library</title>
 </head>
 <body>
 <div id="root"></div>
 <script type="text/javascript" src="/main.js"></script></body>
</html>

No content whatsoever! There's only an empty container (the root div), which is
where our application is mounted at runtime.

In this section, we will modify our application to be able to render the content also
from the server.

For a better understanding of what happens when you interact
with a React application, you can install and use the React
Developer Tools browser extension on Chrome (nodejsdp.link/
react-dev-tools-chrome) or Firefox (nodejsdp.link/react-
dev-tools-firefox).

http://nodejsdp.link/react-dev-tools-chrome
http://nodejsdp.link/react-dev-tools-chrome
http://nodejsdp.link/react-dev-tools-firefox
http://nodejsdp.link/react-dev-tools-firefox

Universal JavaScript for Web Applications

[400]

Let's start by adding fastify and esm to our project:

npm install --save fastify fastify-static esm

Now, we can create our server application in src/server.js:

import { resolve, dirname } from 'path'
import { fileURLToPath } from 'url'
import react from 'react'
import reactServer from 'react-dom/server.js'
import htm from 'htm'
import fastify from 'fastify'
import fastifyStatic from 'fastify-static'
import { StaticRouter } from 'react-router-dom'
import { App } from './frontend/App.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const html = htm.bind(react.createElement)

// (1)
const template = ({ content }) => `<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>My library</title>
 </head>
 <body>
 <div id="root">${content}</div>
 <script type="text/javascript" src="/public/main.js"></script>
 </body>
</html>`

const server = fastify({ logger: true }) // (2)

server.register(fastifyStatic, { // (3)
 root: resolve(__dirname, '..', 'public'),
 prefix: '/public/'
})

server.get('*', async (req, reply) => { // (4)
 const location = req.raw.originalUrl
 // (5)

Chapter 10

[401]

 const serverApp = html`
 <${StaticRouter} location=${location}>
 <${App}/>
 </>
 `
 const content = reactServer.renderToString(serverApp) // (6)
 const responseHtml = template({ content })

 reply.code(200).type('text/html').send(responseHtml)
})

const port = Number.parseInt(process.env.PORT) || 3000 // (7)
const address = process.env.ADDRESS || '127.0.0.1'

server.listen(port, address, function (err) {
 if (err) {
 console.error(err)
 process.exit(1)
 }
})

There's a lot of code here, so let's discuss step by step the main concepts introduced
here:

1. Since we are not going to use the webpack dev server, we need to return
the full HTML code of the page from our server. Here, we are defining the
HTML template for all our pages using a function and a template literal. We
will be passing the result of our server-rendered React application as content
to this template to get the final HTML to return to the client.

2. Here, we create a Fastify server instance and enable logging.
3. As you might have noticed from our template code, our web application

will load the script /public/main.js. This file is the frontend bundle that is
generated by webpack. Here, we are letting the Fastify server instance serve
all static assets from the public folder using the fastify-static plugin.

4. In this line, we define a catch-all route for every GET request to the server.
The reason why we are doing a catch-all route is because the actual routing
logic is already contained in the React application. When we render the React
application, it will display the correct page component based on the current
URL.

Universal JavaScript for Web Applications

[402]

5. On the server side, we have to use an instance of StaticRouter from
react-router-dom and wrap our application component with it.
StaticRouter is a version of React Router that can be used for server-side
rendering. This router, rather than taking the current URL from the browser
window, allows us to pass the current URL directly from the server through
the location prop.

6. Here, we can finally generate the HTML code for our serverApp component
by using React's renderToString() function. The generated HTML is the
same as the one generated by the client-side application on a given URL.
In the next few lines, we wrap this code with our page layout using the
template() function and finally, we send the result to the client.

7. In the last few lines of code, we tell our Fastify server instance to listen on a
given address and port defaulting to localhost:3000.

Now, we can run npm run build to create the frontend bundle and finally, we can
run our server, as follows:

node -r esm src/server.js

Let's open our browser on http://localhost:3000/ and see if our app is still
working as expected. All good, right? Great! Now, let's try to curl our home page to
see if the server-generated code looks different:

curl http://localhost:3000/

This time, this is what we should see:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>My library</title>
 </head>
 <body>
 <div id="root"><div><header><h1>My library</h1></
header><div><h2>Authors</h2><div><div><p>James
Joyce</p></div><div><p>Herbert George
Wells</p></div><div><p>George Orwell</p></
a></div></div></div></div></div>
 <script type="text/javascript" src="/public/main.js"></script>
 </body>
</html>

Chapter 10

[403]

Great! This time, our root container is not empty: we are rendering the list of authors
directly from the server. You should also try some author pages and see that it works
correctly for those as well. Mission complete! Well, almost... what happens if we try
to render a page that does not exist? Let's have a look:

curl -i http://localhost:3000/blah

This will print:

HTTP/1.1 200 OK
content-type: text/html
content-length: 367
Date: Sun, 05 Apr 2020 18:38:47 GMT
Connection: keep-alive

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>My library</title>
 </head>
 <body>
 <div id="root"><div><header><h1>My library</h1></
header><div><h2>404</h2><h3>Page not found</h3>Go back to
the home page</div></div></div>
 <script type="text/javascript" src="/public/main.js"></script>
 </body>
</html>

At first glance, this might seem correct because we are rendering our 404 page, but
we are actually returning a 200 status code… not good!

We can actually fix this with just a little extra effort, so let's do it.

React StaticRouter allows us to pass a generic context prop that can be used to
exchange information between the React application and the server. We can leverage
this utility to allow our 404 page to inject some information into this shared context
so that on the server side, we are aware of whether we should return a 200 or a 404
status code.

Universal JavaScript for Web Applications

[404]

Let's update the catch-all route on the server side first:

server.get('*', async (req, reply) => {
 const location = req.raw.originalUrl
 const staticContext = {}
 const serverApp = html`
 <${StaticRouter}
 location=${location}
 context=${staticContext}
 >
 <${App}/>
 </>
 `
 const content = reactServer.renderToString(serverApp)
 const responseHtml = template({ content })

 let code = 200
 if (staticContext.statusCode) {
 code = staticContext.statusCode
 }

 reply.code(code).type('text/html').send(responseHtml)
})

The changes from the previous version are highlighted in bold. As you can see, we
create an empty object called staticContext and pass it to the router instance in the
context prop. Later on, after the server-side rendering is completed, we check if
staticContext.statusCode was populated during the rendering process. If it was, it
will now contain the status code that we have to return to the client, together with
the rendered HTML code.

Let's now change the FourOhFour component to actually populate this value. To do
this, we just need to update the render() function with the following code before we
return the elements to render:

if (this.props.staticContext) {
 this.props.staticContext.statusCode = 404
}

Note that the context prop passed to StaticRouter is passed only to direct children
of Route components using the prop staticContext. For this reason, if we rebuild the
frontend bundle and relaunch our server, this time, we will see a correct 404 status
for http://localhost:3000/blah, but it won't work for URLs that match the author
page such as http://localhost:3000/author/blah.

Chapter 10

[405]

In order to make this work, we also need to propagate staticContext from the
Author component into the FourOhFour component. To do this, in the Author
component's render() method, we have to apply the following change:

if (!author) {
 return html`<${FourOhFour}
 staticContext=${this.props.staticContext}
 error="Author not found"
 />`
}
// ...

Now, the 404 status code will be returned correctly from the server, even on author
pages for non-existent authors.

Great—we now have a fully functional React application that uses server-side
rendering! But don't celebrate just yet, we still have some work to do...

Asynchronous data retrieval
Now, imagine for a second that we are asked to build the website for the Library of
Trinity College in Dublin, one of the most famous libraries in the world. It has about
300 years of history and about 7 million books. Ok, now let's imagine we have to
allow the users to browse this massive collection of books. Yes, all 7 million of them...
a simple data file is not going to be a great idea here!

A better approach would be to have a dedicated API to retrieve the data about the
books and use it to dynamically fetch only the minimum amount of data needed to
render a given page. More data will be fetched as the user navigates through the
various pages of the website.

This approach is valid for most web applications, so let's try to apply the same
principle to our demo application. We will be using an API with two endpoints:

• /api/authors, to get the list of authors
• /api/author/:authorId, to get the information for a given author

For the sake of this demo application, we will keep things very simple. We only
want to demonstrate how our application is going to change as soon as we introduce
asynchronous data fetching, so we are not going to bother with using a real database
to back our API or with introducing more advanced features like pagination,
filtering, or search.

Universal JavaScript for Web Applications

[406]

Since building such an API server leveraging our existing data file is a rather trivial
exercise (one that doesn't add much value in the context of this chapter), we are
going to skip the walkthrough of the API implementation. You can get the source
code of the API server from the code repository of this book (nodejsdp.link/
authors-api-server).

We are also going to need an HTTP client that works seamlessly on both the browser
and Node.js. A good option is superagent (nodejsdp.link/superagent).

Let's install the new dependencies then:

npm install --save fastify-cors superagent

Now we are ready to run our API server:

node -r esm src/api.js

And let's try some requests with curl, for instance:

curl -i http://localhost:3001/api/authors
curl -i http://localhost:3001/api/author/joyce
curl -i http://localhost:3001/api/author/invalid

If everything worked as expected, we are now ready to update our React
components to use these new API endpoints rather than reading directly from the
authors dataset. Let's start by updating the AuthorsIndex component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import superagent from 'superagent'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

This simple API server runs independently from our backend
server, so it uses another port (or potentially even on another
domain). In order to allow the browser to make asynchronous
HTTP requests to a different port or domain, we need our
API server to support cross-origin resource sharing or CORS
(nodejsdp.link/cors), a mechanism that allows secure cross-
origin requests. Thankfully, enabling CORS with Fastify is as easy
as installing the fastify-cors (nodejsdp.link/fastify-cors)
plugin.

http://nodejsdp.link/authors-api-server
http://nodejsdp.link/authors-api-server
http://nodejsdp.link/superagent
http://nodejsdp.link/cors
http://nodejsdp.link/fastify-cors

Chapter 10

[407]

export class AuthorsIndex extends react.Component {
 constructor (props) {
 super(props)
 this.state = {
 authors: [],
 loading: true
 }
 }

 async componentDidMount () {
 const { body } = await superagent.get('http://localhost:3001/api/
authors')
 this.setState({ loading: false, authors: body })
 }

 render () {
 if (this.state.loading) {
 return html`<${Header}/><div>Loading ...</div>`
 }

 return html`<div>
 <${Header}/>
 <div>${this.state.authors.map((author) =>
 html`<div key=${author.id}>
 <p>
 <${Link} to="${`/author/${author.id}`}">
 ${author.name}
 </>
 </p>
 </div>`)}
 </div>
 </div>`
 }
}

The main changes from the previous version are highlighted in bold. Essentially,
we converted our React component into a stateful component. At construction time,
we initialized the state to an empty array of authors and we set the loading flag to
true. Then, we used the componentDidMount lifecycle method to load the authors data
using the new API endpoint. Finally, we updated the render() method to display a
loading message while the data was being loaded asynchronously.

Universal JavaScript for Web Applications

[408]

Now, we have to update our Author component:

import react from 'react'
import htm from 'htm'
import superagent from 'superagent'
import { FourOhFour } from './FourOhFour.js'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

export class Author extends react.Component {
 constructor (props) {
 super(props)
 this.state = {
 author: null,
 loading: true
 }
 }

 async loadData () {
 let author = null
 this.setState({ loading: false, author })
 try {
 const { body } = await superagent.get(
 `http://localhost:3001/api/author/${
 this.props.match.params.authorId
 }`)
 author = body
 } catch (e) {}
 this.setState({ loading: false, author })
 }

 componentDidMount () {
 this.loadData()
 }

 componentDidUpdate (prevProps) {
 if (prevProps.match.params.authorId !==
 this.props.match.params.authorId) {
 this.loadData()
 }
 }

Chapter 10

[409]

 render () {
 if (this.state.loading) {
 return html`<${Header}/><div>Loading ...</div>`
 }

 if (!this.state.author) {
 return html`<${FourOhFour}
 staticContext=${this.props.staticContext}
 error="Author not found"
 />`
 }

 return html`<div>
 <${Header}/>
 <h2>${this.state.author.name}</h2>
 <p>${this.state.author.bio}</p>
 <h3>Books</h3>

 ${this.state.author.books.map((book) =>
 html`<li key=${book.id}>
 ${book.title} (${book.year})
 `
)}

 </div>`
 }
}

The changes here are quite similar to the ones we applied to the previous
component. In this component, we also generalized the data loading operation into
the loadData() method. We did this because this component implements not just the
componentDidMount() but also the componentDidUpdate() lifecycle method. This is
necessary because if we end up passing new props to the same component instance,
we want the component to update correctly. This will happen, for instance, if we
have a link in the author page that points to another author page, something that
could happen if we implement a "related authors" feature in our application.

At this point, we are ready to try this new version of the code. Let's regenerate the
frontend bundle with npm run build and start both our backend server and our API
server, then point our browser to http://localhost:3000/.

Universal JavaScript for Web Applications

[410]

If you navigate around the various pages, everything should work as expected. You
might also notice that page content gets loaded interactively as you navigate through
the pages.

But what happens to our server-side rendering? If we try to use curl on our home
page, we should see the following HTML markup being returned:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>My library</title>
 </head>
 <body>
 <div id="root"><div><header><h1>My library</h1></
header><div>Loading ...</div></div></div>
 <script type="text/javascript" src="/public/main.js"></script>
 </body>
</html>

Did you notice that there's no content anymore, but just a quite useless "Loading …"
indicator? This is not good. Also, this is not the only problem here. If you try to use
curl on an invalid author page, you will notice that you will get the same HTML
markup with the loading indicator and no content and that the returned status code
is 200 rather than 404!

We don't see any real content on the server-side rendered markup
because the componentDidMount lifecycle method is executed
only on the browser while it's ignored by React during server-side
rendering.

Chapter 10

[411]

Furthermore, server-side rendering is a synchronous operation, so even if we
move our loading code somewhere else, we still won't be able to perform any
asynchronous data loading while rendering on the server.

In the next section of this chapter, we will explore a pattern that can help us to
achieve full universal rendering and data loading.

Universal data retrieval
Server-side rendering is a synchronous operation and this makes it tricky to preload
all the necessary data effectively. Being able to avoid the problems we underlined at
the end of the previous section is not as straightforward as you might expect.

The root of the problem is that we are keeping our routing logic within the React
application, so, on the server, we cannot know which page we are actually going
to render before we call renderToString(). This is why the server cannot establish
whether we need to preload some data for a particular page.

Universal data retrieval is still quite a nebulous area in React, and different
frameworks or libraries that facilitate React server-side rendering have come up with
different solutions to this problem.

As of today, the two patterns that we believe are worth discussing are two-pass
rendering and async pages. These two techniques have different ways of figuring
out which data needs to be preloaded. In both cases, once the data is fully loaded on
the server, the generated HTML page will provide an inline script block to inject all
the data into the global scope (the window object) so that when the application runs on
the browser, the same data already loaded on the server won't have to be reloaded
from the client.

Universal JavaScript for Web Applications

[412]

Two-pass rendering
The idea of two-pass rendering is to use the React router static context as a vector to
exchange information between React and the server. Figure 10.4 shows us how this
works:

Figure 10.4: Two-pass rendering schematic

The steps of two-pass rendering are as follows:

1. The server calls renderToString(), passing the URL received from the client
and an empty static context object to the React application.

Chapter 10

[413]

2. The React application will perform the routing process and select the
components that need to be rendered for the given URL. Every component
that requires to load some data asynchronously will need to implement some
extra logic to allow such data to be preloaded on the server as well. This can
be done by attaching a promise representing the result of the data loading
operation to the router static context. This way, at the end of the rendering
process, the server will receive an incomplete markup (representing the
current loading state) and the static context will contain a number of
promises representing data loading operations.

3. At this point, the server can look at the static context and wait for all
the promises to settle to make sure that all the data has been preloaded
completely. During this process, the server builds a new static context that
contains the results returned by the promises. This new static context is used
for a second round of rendering. This is why this technique is called two-pass
rendering.

4. Now, the ball is again on the React side of the field. The routing process
should pick the same components used during the first rendering pass,
since the URL has not changed. This time, the components that need data
preloading should see that such data is already available in the static context
and they can render the view straight away. This step produces a complete
static markup that the server can now use.

5. At this point, the server has the complete markup and it uses it to render
the final HTML page. The server can also include all the preloaded data in
a script tag so that, on the browser, the data will be already available so
there won't be any need to load it again while visiting the first page of the
application.

This technique is very powerful and has some interesting advantages. For instance,
it allows you to organize your React components tree in a very flexible way. You can
have multiple components requesting asynchronous data, and they can be placed at
any level of the components tree.

In more advanced use cases, you can also have data being loaded over multiple
rendering passes. For instance, during the second pass, a new component in the tree
might be rendered and this component might also need to load data asynchronously
so it can just add new promises to the static context. To support this particular case,
the server will have to continue the rendering loop until there are no more promises
left in the static context. This particular variation of the two-pass rendering technique
is referred to as multi-pass rendering.

The biggest disadvantage of this technique is that every call to renderToString() is
not cheap and in real-life applications, this technique might force the server to go
through multiple rendering passes, making the whole process very slow.

Universal JavaScript for Web Applications

[414]

This might lead to severe performance degradation on the entire application, which
can dramatically affect the user experience.

A simpler but potentially more performant alternative will be discussed in the next
section.

Async pages
The technique we are going to describe here, which we are going to call "async
pages," is based on a more constrained structure of the React application.

The idea is to structure the top layers of the application components tree in a very
specific way. Let's have a look at a possible structure first, then it will be easier to discuss
how this specific approach can help us with asynchronous data loading.

Figure 10.5: Async pages components tree structure

Chapter 10

[415]

In Figure 10.5, we have represented the structure that allows us to apply the
async pages technique. Let's discuss in detail the scope of every layer in the
components tree:

1. The root of the application is always a Router component (StaticRouter on
the server and BrowserRouter on the client).

2. The application component is the only child of the Router component.
3. The only child of the application component is a Switch component from the

react-router-dom package.
4. The Switch component has one or more Route components as children. These

are used to define all the possible routes and which component should be
rendered for every route.

5. This is the most interesting layer as we actually introduce the concept of
a "page component." The idea is that a page component is responsible
for the look and feel of an entire page. A page component can have an
arbitrary subtree of components used to render the current view; for
instance, a header, a body, and a footer. We can have two types of page
components: regular page components that behave as any other React
components and AsyncPage components. Async pages are special stateful
components that need to preload data for the page to be rendered both on
the server- and the client side. They implement a special static method called
preloadAsyncData() that contains the logic necessary to preload the data for
the given page.

You can see that layers 1 to 4 are responsible for the routing logic, while level 5 is
responsible for data loading and for actually rendering the current page. There are
no other nested layers for additional routing and data loading.

Now that we've discussed this more rigid structure, let's see how it can be useful to
avoid multiple rendering passes and achieve universal data retrieval.

Here's the idea: if we have our routes defined in a dedicated file as an array of paths
and components, we can easily reuse this file on the server side and determine,
before the React rendering phase, which page component we will actually end up
rendering.

Technically, there could be additional layers for routing and data
loading after level 5, but those won't be universally available as
they will be resolved only on the client side after the page has been
rendered.

Universal JavaScript for Web Applications

[416]

Then, we can see if this page component is an AsyncPage. If it is, it means we have to
preload some data on the server side before the rendering. We can do this by calling
the preloadAsyncData() method from the given component.

Once the data has been preloaded, this can be added in the static context and we can
render the entire application. During the rendering phase, the AsyncPage component
will see that its data is already preloaded and available in the static context and it
will be able to render straight away, skipping the loading state.

Once the rendering is finished, the server can add the same preloaded data in a
script tag so that, on the browser side, the user won't have to wait for the data to be
loaded again.

Implementing async pages
Now that we know how to solve our data fetching problems, let's implement the
async pages technique in our application.

Our components tree is already structured in a way that it's compliant to what's
expected by this technique. Our pages are the AuthorsIndex component, the Author
component, and the FourOhFour component. The first two require universal data
loading, so we will have to convert them into async pages.

Let's start to update our application by extrapolating the route definitions into a
dedicated file, src/frontend/routes.js:

import { AuthorsIndex } from './components/pages/AuthorsIndex.js'
import { Author } from './components/pages/Author.js'
import { FourOhFour } from './components/pages/FourOhFour.js'

export const routes = [
 {
 path: '/',
 exact: true,
 component: AuthorsIndex
 },
 {
 path: '/author/:authorId',

The Next.js framework (nodejsdp.link/nextjs) is a popular
framework for Universal JavaScript applications and adopts
a similar technique to the one described here, so it is a good
example of this pattern in the wild.

http://nodejsdp.link/nextjs

Chapter 10

[417]

 component: Author
 },
 {
 path: '*',
 component: FourOhFour
 }
]

We want this configuration file to be the source of truth for the router configuration
across the various parts of the application, so let's refactor the frontend App
component to use this file as well:

// src/frontend/App.js
import react from 'react'
import htm from 'htm'
import { Switch, Route } from 'react-router-dom'
import { routes } from './routes.js'

const html = htm.bind(react.createElement)

export class App extends react.Component {
 render () {
 return html`<${Switch}>
 ${routes.map(routeConfig =>
 html`<${Route}
 key=${routeConfig.path}
 ...${routeConfig}
 />`
)}
 </>`
 }
}

As you can see, the only change here is that, rather than defining the various
Route components inline, we build them dynamically starting from the routes
configuration array. Any change in the routes.js file will be automatically reflected
in the application as well.

At this point, we can update the server-side logic in src/server.js.

The first thing that we want to do is import a utility function from the
react-router-dom package that allows us to see if a given URL matches a given
React router path definition. We also need to import the routes array from the new
routes.js module.

Universal JavaScript for Web Applications

[418]

// ...
import { StaticRouter, matchPath } from 'react-router-dom'
import { routes } from './frontend/routes.js'
// ...

Now, let's update our server-side HTML template generation function to be able to
embed preloaded data in our page:

// ...
const template = ({ content, serverData }) => `<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>My library</title>
 </head>
 <body>
 <div id="root">${content}</div>
 ${serverData ? `<script type="text/javascript">
window.__STATIC_CONTEXT__=${JSON.stringify(serverData)}
 </script>` : ''}
 <script type="text/javascript" src="/public/main.js"></script>
 </body>
</html>`
// ...

As you can see, our template now accepts a new argument called serverData. If this
argument is passed to the template function, it will render a script tag that will
inject this data into a global variable called window.__STATIC_CONTEXT__.

Now, let's get into the meaty bit; let's rewrite the server-side rendering logic:

// ...
server.get('*', async (req, reply) => {
 const location = req.raw.originalUrl
 let component // (1)
 let match
 for (const route of routes) {
 component = route.component
 match = matchPath(location, route)
 if (match) {
 break
 }
 }

Chapter 10

[419]

 let staticData // (2)
 let staticError
 let hasStaticContext = false
 if (typeof component.preloadAsyncData === 'function') {
 hasStaticContext = true
 try {
 const data = await component.preloadAsyncData({ match })
 staticData = data
 } catch (err) {
 staticError = err
 }
 }
 const staticContext = {
 [location]: {
 data: staticData,
 err: staticError
 }
 }
 // (3)
 const serverApp = html`
 <${StaticRouter}
 location=${location}
 context=${staticContext}
 >
 <${App}/>
 </>
 `
 const content = reactServer.renderToString(serverApp)
 const serverData = hasStaticContext ? staticContext : null
 const responseHtml = template({ content, serverData })

 const code = staticContext.statusCode
 ? staticContext.statusCode
 : 200
 reply.code(code).type('text/html').send(responseHtml)
// ...

Universal JavaScript for Web Applications

[420]

There are quite some changes here. Let's discuss the main blocks one by one:

1. The first change aims to detect which page will be rendered for the current
URL. We loop through the defined routes and we use the matchPath utility
to verify if location matches the current route definition. If it does, we stop
the loop and record which component will be rendered in the component
variable. We can be sure a component will be matched here because
our last route (the 404 page) will always match. The match variable will
contain information about the match. For instance, if the route contains
some parameters, match will contain the path fragment that matched every
parameter. For instance, for the URL /author/joyce, match will have the
property params equal to { authorId: 'joyce' }. This is the same prop that
a page component will receive from the router when rendered.

2. In the second block of changes, we check if the selected component is an
AsyncPage. We do that by checking if the component has a static method
called preloadAsyncData. If that's the case, we invoke that function by
passing an object that contains the match object as an argument (this way,
we propagate any parameter that might be needed to fetch the data, such as
authorId). This function should return a promise. If the promise resolves,
we have successfully preloaded the data for this component. If it rejects, we
make sure to record the error. Finally, we create the staticContext object.
This object maps the preloaded data (or the rejection error) to the current
location. The reason why we keep the location as a key is to be sure that if,
for any reason, the browser renders another page from the one we preloaded
(because of a programmatic error or because of a user action, like hitting the
back button on the browser before the page is fully loaded), we won't end up
using preloaded data that is not relevant to the current page on the browser.

3. In the last block of changes, we invoke the renderToString() function to get
the rendered HTML of the application. Note that since we are passing a static
context containing the preloaded data, we expect that the application will be
able to completely render the page without returning a loading state view.
This does not happen magically, of course. We will need to add some logic
to our React component to check if the necessary data is already available in
the static context. Once we have the generated HTML, we use our template()
function to generate the complete page markup and we return it to the
browser. We also make sure to respect the status code. For instance, if we
ended up rendering the FourOhFour component, we will have the statusCode
property in the static context changed, so if that's the case, we use that value
for the final status code; otherwise, we default to 200.

That's it for our server-side rendering.

Chapter 10

[421]

Now, it's time to create the async page abstraction in our React application. Since
we are going to have two distinct async pages, a good way to reuse some code is
to create a base class and to use the Template pattern that we already discussed
in Chapter 9, Behavioral Design Patterns. Let's define this class in src/frontend/
components/pages/AsyncPage.js:

import react from 'react'

export class AsyncPage extends react.Component {
 static async preloadAsyncData (props) { // (1)
 throw new Error('Must be implemented by sub class')
 }

 render () {
 throw new Error('Must be implemented by sub class')
 }

 constructor (props) { // (2)
 super(props)
 const location = props.match.url
 this.hasData = false

 let staticData
 let staticError

 const staticContext = typeof window !== 'undefined'
 ? window.__STATIC_CONTEXT__ // client-side
 : this.props.staticContext // server-side

 if (staticContext && staticContext[location]) {
 const { data, err } = staticContext[location]
 staticData = data
 staticError = err
 this.hasStaticData = true

 typeof window !== 'undefined' &&
 delete staticContext[location]
 }

 this.state = {
 ...staticData,
 staticError,
 loading: !this.hasStaticData

Universal JavaScript for Web Applications

[422]

 }
 }

 async componentDidMount () { // (3)
 if (!this.hasStaticData) {
 let staticData
 let staticError
 try {
 const data = await this.constructor.preloadAsyncData(
 this.props
)
 staticData = data
 } catch (err) {
 staticError = err
 }
 this.setState({
 ...staticData,
 loading: false,
 staticError
 })
 }
 }
}

This class provides helper code for building a stateful component that can handle
three possible scenarios:

• We are rendering on the server and we already have the data preloaded (no
need to load the data).

• We are rendering on the client and the data is already available in the page
through the __STATIC_CONTEXT__ variable (no need to load the data).

• We are rendering on the client and the data is not available (for instance, if
this page was not rendered by the server, but a page the user navigated to
after the first load). In this case, the data has to be dynamically loaded from
the client when the component is mounted.

Let's review the main points of this implementation together:

1. This component class should not be instantiated directly but only extended
when implementing async pages. When this class is extended, the async
page component will need to implement the methods static async
preloadAsyncData(props) and render().

Chapter 10

[423]

2. In the constructor, we have to initialize the component state. There are two
possible outcomes here: the data is already available (so we can set it in the
state) or the data is not available (so we need to set the state to "loading" and
let the component load the data once it's mounted on the page). If we are on
the browser and we load the data from the static context, we also make sure
to delete this data from the context. This will allow the user to see fresh data
if they happen to go back to this page during the navigation.

3. The method componentDidMount() is executed by React only on the browser.
Here, we handle the case where the data was not preloaded and we have to
dynamically load it at runtime.

Now that we have this useful abstraction in place, we can rewrite our AuthorsIndex
and Author components and convert them into async pages. Let's start with
AuthorsIndex:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import superagent from 'superagent'
import { AsyncPage } from './AsyncPage.js'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

export class AuthorsIndex extends AsyncPage {
 static async preloadAsyncData (props) {
 const { body } = await superagent.get(
 'http://localhost:3001/api/authors'
)
 return { authors: body }
 }

 render () {
 // unchanged...
 }
}

As you can see here, our AuthorsIndex component now extends AsyncPage. Since the
AsyncPage template will take care of all the state management in its constructor, we
don't need a constructor here anymore; we just need to specify the business logic to
load the data in the preloadAsyncData() method.

Universal JavaScript for Web Applications

[424]

If you compare this implementation with the previous one, you might notice
that the logic of this method is almost the same as what we had previously in
componentDidMount(). The method componentDidMount() has been removed from here
because the one we inherit from AsyncPage will suffice. The only difference between
the previous version of componentDidMount() and preloadAsyncData() is that in
preloadAsyncData(), we don't set the internal state directly; we just need to return the
data. The underlying code in AsyncPage will update the state as needed for us.

Let's now rewrite the Author component:

import react from 'react'
import htm from 'htm'
import superagent from 'superagent'
import { AsyncPage } from './AsyncPage.js'
import { FourOhFour } from './FourOhFour.js'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

export class Author extends AsyncPage {
 static async preloadAsyncData (props) {
 const { body } = await superagent.get(
 `http://localhost:3001/api/author/${
 props.match.params.authorId
 }`
)
 return { author: body }
 }

 render () {
 // unchanged...
 }
}

The changes here are perfectly in line with the changes we made for the
AuthorsIndex component. We are only moving the data loading logic into
preloadAsyncData() and letting the underlying abstraction manage the state
transition for us.

Chapter 10

[425]

Now, we can apply just a last small optimization in our src/frontend/index.js file.
We can swap the reactDOM.render() function call with reactDOM.hydrate(). Since
we will produce exactly the same markup from both the server side and the client
side, this will make React a bit faster to initialize during the first browser load.

We are finally ready to try all these changes. Make sure to rebuild the frontend
bundle and relaunch the server. Have a look at the application and the code that is
generated by the server; it should contain all the preloaded data for every page. Also,
404 errors should be reported correctly for every 404 page, including the ones for
missing authors.

Great! We finally managed to build an application that efficiently shares code, logic,
and data between the client and the server: a true Universal JavaScript application!

Summary
In this chapter, we explored the innovative and fast-moving world of Universal
JavaScript. Universal JavaScript opens up a lot of new opportunities in the field of
web development and it can help you build single-page applications that load fast,
are accessible, and are optimized for search engines.

In this chapter, we focused on introducing all the basics of this subject. We started
from exploring module bundlers, why we need them, and how they work. We
learned how to use webpack, and then we introduced React and discussed some of
its functionality. We learned how to build component-oriented user interfaces and
then started to build an application from scratch to explore universal rendering,
universal routing, and universal data retrieval.

Even though we discussed a lot of topics, we barely scratched the surface of this
wide topic, but you should have gained all the necessary knowledge to keep
exploring this world on your own if you are interested in knowing more. Given that
this field is still evolving quite rapidly, tools and libraries will probably change a lot
in the next few years, but all the basic concepts should stay there, so don't be afraid
to keep exploring and experimenting. Becoming an expert on this topic is now just
a matter of using the acquired knowledge to build a first real-world app with real,
business-driven use cases.

Universal JavaScript for Web Applications

[426]

It's also worth underlining that the knowledge acquired here might be useful
for projects that cross the boundaries of web development, like mobile app
development. If you are interested in this topic, React Native might be a good
starting point.

In the next chapter, we are going to take a problem-solution approach to explore
some more advanced topics. Are you ready?

Exercises
• 10.1 A matter of style: Our little library application looks very barebone.

It could look a lot better with some style and images. Why don't you try to
improve the look of the app? If you get stuck or need some inspiration, you
can check our version of this exercise on GitHub (nodejsdp.link/univ).

• 10.2 Proper data management: As we said, keeping a lot of data in a file is
not a great idea. Why don't you try to move all the data into a real database
backend of your choice? At this point, you might also want to take this
application to the next level and write some script to import data from a
big collection of books like the Open Library archive (nodejsdp.link/open-
libary-api).

• 10.3 Pagination and search: Now that you have a more significant database,
it's probably time to add some important features like search and pagination.

• 10.4 A Universal… Blog!: Build a new universal JavaScript app from scratch
that implements a blog. Then, try the same exercise using a framework like
Next.js (nodejsdp.link/nextjs) or Gatsby (nodejsdp.link/gatsby).

http://nodejsdp.link/univ
http://nodejsdp.link/open-libary-api
http://nodejsdp.link/open-libary-api
http://nodejsdp.link/nextjs
http://nodejsdp.link/gatsby

[427]

11
Advanced Recipes

In this chapter, we'll take a problem-solution approach and, like in a cookbook,
we'll present a set of ready-to-use recipes to solve some common Node.js
programming problems.

You shouldn't be surprised by the fact that most of the problems presented in
this chapter arise when we try to do things asynchronously. In fact, as we've seen
repeatedly in the previous chapters of this book, tasks that are trivial in traditional
synchronous programming can become more complicated when applied to
asynchronous programming. A typical example is trying to use a component that
requires an asynchronous initialization step. In this case, we have the inconvenience
of delaying any attempt to use the component until the initialization completes. We'll
show you how to solve this elegantly later.

But this chapter is not just about recipes involving asynchronous programming. You
will also learn the best ways to run CPU-intensive tasks in Node.js.

These are the recipes you will learn in this chapter:

• Dealing with asynchronously initialized components
• Asynchronous request batching and caching
• Canceling asynchronous operations
• Running CPU-bound tasks

Let's get started.

Advanced Recipes

[428]

Dealing with asynchronously initialized
components
One of the reasons for the existence of synchronous APIs in the Node.js core
modules and many npm packages is because they are handy to use for implementing
initialization tasks. For simple programs, using synchronous APIs at initialization
time can streamline things a lot and the drawbacks associated with their use
remain contained because they are used only once, which is when the program or a
particular component is initialized.

Unfortunately, this is not always possible. A synchronous API might not always
be available, especially for components using the network during their initialization
phase to, for example, perform handshake protocols or to retrieve configuration
parameters. This is the case for many database drivers and clients for middleware
systems such as message queues.

The issue with asynchronously initialized
components
Let's consider an example where a module called db is used to interact with a remote
database. The db module will accept API requests only after the connection and
handshake with the database server have been successfully completed. Therefore,
no queries or other commands can be sent until the initialization phase is complete.
The following is the code for such a sample module (the db.js file):

import { EventEmitter } from 'events'

class DB extends EventEmitter {
 connected = false

 connect () {
 // simulate the delay of the connection
 setTimeout(() => {
 this.connected = true
 this.emit('connected')
 }, 500)
 }

 async query (queryString) {
 if (!this.connected) {
 throw new Error('Not connected yet')

Chapter 11

[429]

 }
 console.log(`Query executed: ${queryString}`)
 }
}

export const db = new DB()

This is a typical example of an asynchronously initialized component. Under
these assumptions, we usually have two quick and easy solutions to this problem,
which we can call local initialization check and delayed startup. Let's analyze them
in more detail.

Local initialization check
The first solution makes sure that the module is initialized before any of its APIs are
invoked; otherwise, we wait for its initialization. This check has to be done every
time we want to invoke an operation on the asynchronous module:

import { once } from 'events'
import { db } from './db.js'

db.connect()

async function updateLastAccess () {
 if (!db.connected) {
 await once(db, 'connected')
 }

 await db.query(`INSERT (${Date.now()}) INTO "LastAccesses"`)
}

updateLastAccess()
setTimeout(() => {
 updateLastAccess()
}, 600)

As we already anticipated, any time we want to invoke the query() method on the
db component, we have to check if the module is initialized; otherwise, we wait for
its initialization by listening for the 'connected' event. A variation of this technique
performs the check inside the query() method itself, which shifts the burden of the
boilerplate code from the consumer to the provider of the service.

Advanced Recipes

[430]

Delayed startup
The second quick and dirty solution to the problem of asynchronously
initialized components involves delaying the execution of any code relying on
the asynchronously initialized component until the component has finished its
initialization routine. We can see an example of such a technique in the following
code fragment:

import { db } from './db.js'
import { once } from 'events'

async function initialize () {
 db.connect()
 await once(db, 'connected')
}

async function updateLastAccess () {
 await db.query(`INSERT (${Date.now()}) INTO "LastAccesses"`)
}

initialize()
 .then(() => {
 updateLastAccess()
 setTimeout(() => {
 updateLastAccess()
 }, 600)
 })

As we can see from the preceding code, we first wait for the initialization to
complete, and then we proceed with executing any routine that uses the db object.

The main disadvantage of this technique is that it requires us to know, in advance,
which components will make use of the asynchronously initialized component,
which makes our code fragile and exposed to mistakes. One solution to this problem
is delaying the startup of the entire application until all the asynchronous services
are initialized. This has the advantage of being simple and effective; however, it can
add a significant delay to the overall startup time of the application and moreover, it
won't take into account the case in which the asynchronously initialized component
has to be reinitialized.

As we will see in the next section, there is a third alternative that allows us
to transparently and efficiently delay every operation until the asynchronous
initialization step has completed.

Chapter 11

[431]

Pre-initialization queues
Another recipe to make sure that the services of a component are invoked only after
the component is initialized involves the use of queues and the Command pattern.
The idea is to queue the method invocations (only those requiring the component to
be initialized) received while the component is not yet initialized, and then execute
them as soon as all the initialization steps have been completed.

Let's see how this technique can be applied to our sample db component:

import { EventEmitter } from 'events'

class DB extends EventEmitter {
 connected = false
 commandsQueue = []

 async query (queryString) {
 if (!this.connected) {
 console.log(`Request queued: ${queryString}`)

 return new Promise((resolve, reject) => { // (1)
 const command = () => {
 this.query(queryString)
 .then(resolve, reject)
 }
 this.commandsQueue.push(command)
 })
 }

 console.log(`Query executed: ${queryString}`)
 }

 connect () {
 // simulate the delay of the connection
 setTimeout(() => {
 this.connected = true
 this.emit('connected')
 this.commandsQueue.forEach(command => command()) // (2)
 this.commandsQueue = []
 }, 500)
 }
}

export const db = new DB()

Advanced Recipes

[432]

As we already mentioned, the technique described here consists of two parts:

1. If the component has not been initialized—which, in our case, is when the
connected property is false—we create a command from the parameters
received with the current invocation and push it to the commandsQueue array.
When the command is executed, it will run the original query() method
again and forward the result to the Promise we are returning to the caller.

2. When the initialization of the component is completed—which, in our case,
means that the connection with the database server is established—we go
through the commandsQueue, executing all the commands that have been
previously queued.

With the DB class we just implemented, there is no need to check if the component
is initialized before invoking its methods. In fact, all the logic is embedded in the
component itself and any consumer can just transparently use it without worrying
about its initialization status.

We can also go a step further and try to reduce the boilerplate of the DB class we
just created and, at the same time, improve its modularity. We can achieve that by
applying the State pattern, which we learned about in Chapter 9, Behavioral Design
Patterns, with two states:

• The first state implements all the methods that require the component to be
initialized, and it's activated only when there is a successful initialization.
Each of these methods implements its own business logic without worrying
about the initialization status of the db component

• The second state is activated before the initialization has completed and it
implements the same methods as the first state, but their only role here is
to add a new command to the queue using the parameters passed to the
invocation.

Let's see how we can apply the structure we just described to our db component.
First, we create the InitializedState, which implements the actual business logic of
our component:

class InitializedState {
 async query (queryString) {
 console.log(`Query executed: ${queryString}`)
 }
}

As we can see, the only method that we need to implement in the InitializedState
class is the query() method, which will print a message to the console when it
receives a new query.

Chapter 11

[433]

Next, we implement the QueuingState, the core of our recipe. This state implements
the queuing logic:

const METHODS_REQUIRING_CONNECTION = ['query']
const deactivate = Symbol('deactivate')

class QueuingState {
 constructor (db) {
 this.db = db
 this.commandsQueue = []

 METHODS_REQUIRING_CONNECTION.forEach(methodName => {
 this[methodName] = function (...args) {
 console.log('Command queued:', methodName, args)
 return new Promise((resolve, reject) => {
 const command = () => {
 db[methodName](...args)
 .then(resolve, reject)
 }
 this.commandsQueue.push(command)
 })
 }
 })
 }

 [deactivate] () {
 this.commandsQueue.forEach(command => command())
 this.commandsQueue = []
 }
}

It's interesting to note how the QueuingState is mostly built dynamically at creation
time. For each method that requires an active connection, we create a new method
for the current instance, which queues a new command representing the function
invocation. When the command is executed at a later time, when a connection
is established, the result of the invocation of the method on the db instance is
forwarded to the caller (through the returned promise).

The other important part of this state class is [deactivate](). This method is
invoked when the state is deactivated (which is when the component is initialized)
and it executes all the commands in the queue. Note how we used a Symbol to name
the method.

Advanced Recipes

[434]

This will avoid any name clashes in the future if we add more methods to the state
(for example, what if we need to decorate a hypothetical deactivate() method of the
DB class?).

Now, it's time to reimplement the DB class using the two states we just described:

class DB extends EventEmitter {
 constructor () {
 super()
 this.state = new QueuingState(this) // (1)
 }

 async query (queryString) {
 return this.state.query(queryString) // (2)
 }

 connect () {
 // simulate the delay of the connection
 setTimeout(() => {
 this.connected = true
 this.emit('connected')
 const oldState = this.state // (3)
 this.state = new InitializedState(this)
 oldState[deactivate] && oldState[deactivate]()
 }, 500)
 }
}

export const db = new DB()

Let's further analyze the most important parts of the new DB class:

1. In the constructor, we initialize the current state of the instance. It's going
to be the QueuingState as the asynchronous initialization of the component
hasn't been completed yet.

2. The only method of our class implementing some (stub) business logic is the
query() method. Here, all we have to do is invoke the homonymous method
on the currently active state.

3. Finally, when we establish the connection with the database (initialization
complete), we switch the current state to the InitializedState and we
deactivate the old one. The effect of deactivating the QueuedState, as we've
seen previously, is that any command that had been queued is now executed.

Chapter 11

[435]

We can immediately see how this approach allows us to reduce the boilerplate and,
at the same time, create a class that is purely business logic (the InitializedState)
free from any repetitive initialization check.

The approach we've just seen will only work if we can modify the code of our
asynchronously initialized component. In all those cases in which we can't make
modifications to the component, we will need to create a wrapper or proxy, but
the technique will be mostly similar to what we've seen here.

In the wild
The pattern we just presented is used by many database drivers and ORM libraries.
The most notable is Mongoose (nodejsdp.link/mongoose), which is an ORM
for MongoDB. With Mongoose, it's not necessary to wait for the database connection
to open in order to be able to send queries. This is because each operation is queued
and then executed later when the connection with the database is fully established,
exactly as we've described in this section. This is clearly a must for any API that
wants to provide a good developer experience (DX).

Take a look at the code of Mongoose to see how every method in the native driver
is proxied to add the pre-initialization queue. This also demonstrates an alternative
way of implementing the recipe we presented in this section. You can find the
relevant code fragment at nodejsdp.link/mongoose-init-queue.

Similarly, the pg package (nodejsdp.link/pg), which is a client for the PostgreSQL
database, leverages pre-initialization queues, but in a slightly different fashion.
pg queues every query, regardless of the initialization status of the database, and
then immediately tries to execute all the commands in the queue. Take a look at the
relevant code line at nodejsdp.link/pg-queue.

Asynchronous request batching and
caching
In high-load applications, caching plays a critical role and it's used almost
everywhere on the web, from static resources such as web pages, images, and
stylesheets, to pure data such as the result of database queries. In this section, we
are going to learn how caching applies to asynchronous operations and how a high
request throughput can be turned to our advantage.

http://nodejsdp.link/mongoose
http://nodejsdp.link/mongoose-init-queue
http://nodejsdp.link/pg
http://nodejsdp.link/pg-queue

Advanced Recipes

[436]

What's asynchronous request batching?
When dealing with asynchronous operations, the most basic level of caching can
be achieved by batching together a set of invocations to the same API. The idea is
very simple: if we invoke an asynchronous function while there is still another one
pending, we can piggyback on the already running operation instead of creating a
brand new request. Take a look at the following diagram:

Figure 11.1: Two asynchronous requests with no batching

The previous diagram shows two clients invoking the same asynchronous operation
with exactly the same input. Of course, the natural way to picture this situation is with
the two clients starting two separate operations that will complete at two different
moments.

Chapter 11

[437]

Now, consider the following scenario:

Figure 11.2: Batching of two asynchronous requests

Figure 11.2 shows us how two identical requests—which invoke the same API with
the same input—can be batched, or in other words, appended to the same running
operation. By doing this, when the operation completes, both clients are notified,
even though the async operation is actually executed only once. This represents
a simple, yet extremely powerful, way to optimize the load of an application while
not having to deal with more complex caching mechanisms, which usually require
an adequate memory management and invalidation strategy.

Optimal asynchronous request caching
Request batching is less effective if the operation is fast enough or if matching
requests are spread across a longer period of time. Also, most of the time, we can
safely assume that the result of two identical API invocations will not change so
often, so simple request batching will not provide the best performance. In all these
circumstances, the best candidate to reduce the load of an application and increase
its responsiveness is definitely a more aggressive caching mechanism.

Advanced Recipes

[438]

The idea is simple: as soon as a request completes, we store its result in the cache,
which can be an in-memory variable or an item in a specialized caching server
(such as Redis). Hence, the next time the API is invoked, the result can be retrieved
immediately from the cache, instead of spawning another request.

The idea of caching should not be new to an experienced developer, but what makes
this technique different in asynchronous programming is that it should be combined
with request batching to be optimal. The reason for this is because multiple requests
might run concurrently while the cache is not set and when those requests complete,
the cache would be set multiple times.

Based on these assumptions, we can illustrate the Combined Request Batching and
Caching pattern as follows:

Figure 11.3: Combined batching and caching

The preceding figure shows the two phases of an optimal asynchronous caching
algorithm:

• The first phase is totally identical to the batching pattern. Any request
received while the cache is not set will be batched together. When the request
completes, the cache is set, once.

• When the cache is finally set, any subsequent request will be served directly
from it.

Chapter 11

[439]

Another crucial detail to consider is the Zalgo anti-pattern (as we saw in Chapter 3,
Callbacks and Events). Since we are dealing with asynchronous APIs, we must be
sure to always return the cached value asynchronously, even if accessing the cache
involves only a synchronous operation, such as in the case in which the cached value
is retrieved from an in-memory variable.

An API server without caching or batching
Before we start diving into this new challenge, let's implement a small
demo server that we will use as a reference to measure the impact of the various
techniques we are going to implement.

Let's consider an API server that manages the sales of an e-commerce company.
In particular, we want to query our server for the sum of all the transactions of a
particular type of merchandise. For this purpose, we are going to use a LevelUP
database through the level npm package (nodejsdp.link/level). The data model
that we are going to use is a simple list of transactions stored in the sales sublevel
(a subsection of the database), which is organized in the following format:

transactionId {amount, product}

The key is represented by transactionId and the value is a JSON object that contains
the amount of the sale (amount) and the product type (product).

The data to process is really basic, so let's implement a simple query over the
database that we can use for our experiments. Let's say that we want to get the
total amount of sales for a particular product. The routine would look as follows
(file totalSales.js):

import level from 'level'
import sublevel from 'subleveldown'

const db = level('example-db')
const salesDb = sublevel(db, 'sales', { valueEncoding: 'json' })

export async function totalSales (product) {
 const now = Date.now()
 let sum = 0
 for await (const transaction of salesDb.createValueStream()) {
 if (!product || transaction.product === product) {
 sum += transaction.amount
 }
 }

http://nodejsdp.link/level

Advanced Recipes

[440]

 console.log(`totalSales() took: ${Date.now() - now}ms`)

 return sum
}

The totalSales() function iterates over all the transactions of the sales sublevel
and calculates the sum of the amounts of a particular product. The algorithm is
intentionally slow as we want to highlight the effect of batching and caching later on.
In a real-world application, we would have used an index to query the transactions
by product or, even better, we could have used an incremental map/reduce
algorithm to continuously calculate the sum for every product

We can now expose the totalSales() API through a simple HTTP server (the
server.js file):

import { createServer } from 'http'
import { totalSales } from './totalSales.js'

createServer(async (req, res) => {
 const url = new URL(req.url, 'http://localhost')
 const product = url.searchParams.get('product')
 console.log(`Processing query: ${url.search}`)

 const sum = await totalSales(product)

 res.setHeader('Content-Type', 'application/json')
 res.writeHead(200)
 res.end(JSON.stringify({
 product,
 sum
 }))
}).listen(8000, () => console.log('Server started'))

Before we start the server for the first time, we need to populate the database with
some sample data. We can do this with the populateDb.js script, which can be found
in this book's code repository in the folder dedicated to this section. This script
creates 100,000 random sales transactions in the database so that our query spends
some time crunching data:

node populateDb.js

Chapter 11

[441]

Okay! Now, everything is ready. Let's start the server:

node server.js

To query the server, you can simply navigate with a browser to the following URL:

http://localhost:8000?product=book

However, to have a better idea of the performance of our server, we will need more
than one request. So, we will use a small script named loadTest.js, which sends 20
requests at intervals of 200 ms. The script can be found in the code repository of this
book and it's already configured to connect to the local URL of the server, so, to run
it, just execute the following command:

node loadTest.js

We will see that the 20 requests will take a while to complete. Take note of the
total execution time of the test. Now, we are going to apply our optimizations and
measure how much time we can save. We'll start by implementing both batching and
caching by leveraging the properties of promises.

Batching and caching with promises
Promises are a great tool for implementing asynchronous batching and caching of
requests. Let's see why.

If we recall what we learned about promises in Chapter 5, Asynchronous Control Flow
Patterns with Promises and Async/Await, there are two properties that can be exploited
to our advantage in this circumstance:

• Multiple then() listeners can be attached to the same promise.
• The then() listener is guaranteed to be invoked (only once), and it works

even if it's attached after the promise is already resolved. Moreover, then() is
guaranteed to always be invoked asynchronously.

In short, the first property is exactly what we need for batching requests, while the
second means that a promise is already a cache for the resolved value and offers a
natural mechanism for returning a cached value in a consistent, asynchronous way.
In other words, this means that batching and caching become extremely simple and
concise with promises.

Advanced Recipes

[442]

Batching requests in the total sales web server
Let's now add a batching layer on top of our totalSales API. The pattern we are
going to use is very simple: if there is another identical request pending when the
API is invoked, we will wait for that request to complete instead of launching a
new one. As we will see, this can easily be implemented with promises. In fact, all
we have to do is save the promise in a map, associating it to the specified request
parameters (the product type, in our case) every time we launch a new request. Then,
at every subsequent request, we check if there is already a promise for the specified
product and if there is one, we just return it; otherwise, we launch a new request.

Now, let's see how this translates into code. Let's create a new module
named totalSalesBatch.js. Here, we're going to implement a batching layer on top
of the original totalSales() API:

import { totalSales as totalSalesRaw } from './totalSales.js'

const runningRequests = new Map()

export function totalSales (product) {
 if (runningRequests.has(product)) { // (1)
 console.log('Batching')
 return runningRequests.get(product)
 }

 const resultPromise = totalSalesRaw(product) // (2)
 runningRequests.set(product, resultPromise)
 resultPromise.finally(() => {
 runningRequests.delete(product)
 })

 return resultPromise
}

The totalSales() function of the totalSalesBatch module is a proxy for the
original totalSales() API, and it works as follows:

1. If a promise for the given product already exists, we just return it. This is
where we piggyback on an already running request.

2. If there is no request running for the given product, we execute the
original totalSales() function and we save the resulting promise into the
runningRequests map. Next, we make sure to remove the same promise from
the runningRequests map as soon as the request completes.

Chapter 11

[443]

The behavior of the new totalSales() function is identical to that of the
original totalSales() API, with the difference that, now, multiple calls to the
API using the same input are batched, thus saving us time and resources.

Curious to know what the performance improvement compared to the
raw, non-batched version of the totalSales() API is? Let's then replace
the totalSales module used by the HTTP server with the one we just created
(the app.js file):

// import { totalSales } from './totalSales.js'
import { totalSales } from './totalSalesBatch.js'

createServer(async (req, res) => {
 // ...

If we now try to start the server again and run the load test against it, the first thing
we will see is that the requests are returned in batches. This is the effect of the recipe
we just implemented, and it's a great practical demonstration of how it works.

Besides that, we should also observe a considerable reduction in the total time
for executing the test. It should be at least four times faster than the original test
performed against the plain totalSales() API!

This result substantiates the huge performance boost that we can obtain by just
applying a simple batching layer, without all the complexity of managing a
full-fledged cache and, more importantly, without worrying about invalidation
strategies.

Let's now see how we can implement both batching and caching using a slight
variation of the technique we've just explored.

Caching requests in the total sales web server
Adding a caching layer to our batching API is straightforward, thanks to promises.
All we have to do is leave the promise in our request map, even after the request has
completed.

The Request Batching pattern reaches its best potential in high-
load applications and with slow APIs. This is because it's exactly
in these circumstances that we can batch together a high number
of requests.

Advanced Recipes

[444]

Let's implement the totalSalesCache.js module straightaway:

import { totalSales as totalSalesRaw } from './totalSales.js'

const CACHE_TTL = 30 * 1000 // 30 seconds TTL
const cache = new Map()

export function totalSales (product) {
 if (cache.has(product)) {
 console.log('Cache hit')
 return cache.get(product)
 }

 const resultPromise = totalSalesRaw(product)
 cache.set(product, resultPromise)
 resultPromise.then(() => {
 setTimeout(() => {
 cache.delete(product)
 }, CACHE_TTL)
 }, err => {
 cache.delete(product)
 throw err
 })

 return resultPromise
}

The relevant code that enables caching is highlighted. All we have to do is remove
the promise from the cache after a certain time (CACHE_TTL) after the request has
completed, or immediately if the request has failed. This is a very basic cache
invalidation technique, but it works perfectly for our demonstration.

Now, we are ready to try the totalSales() caching wrapper we just created. To do
that, we only need to update the app.js module, as follows:

// import { totalSales } from './totalSales.js'
// import { totalSales } from './totalSalesBatch.js'
import { totalSales } from './totalSalesCache.js'

createServer(async (req, res) => {
 // ...

Chapter 11

[445]

Now, the server can be started again and profiled using the loadTest.js script, as
we did in the previous examples. With the default test parameters, we should see a
10% reduction in the execution time compared to simple batching. Of course, this is
highly dependent on a lot of factors; for example, the number of requests received
and the delay between one request and the other. The advantages of using caching
over batching will be much more substantial when the number of requests is higher
and spans a longer period of time.

Notes about implementing caching mechanisms
We must remember that in real-life applications, we may want to use more advanced
cache invalidation techniques and storage mechanisms. This is necessary for the
following reasons:

• A large amount of cached values can easily consume a lot of memory. In this
case, a least recently used (LRU) or a first in first out (FIFO) policy can be
applied to maintain constant memory utilization.

• When the application is distributed across multiple processes, keeping the
cache in memory may produce different results across each server instance.
If that's undesired for the particular application we are implementing, the
solution is to use a shared store for the cache. This is also more performant
than a simple in-memory solution as the cache is shared across multiple
instances. Popular caching solutions include Redis (nodejsdp.link/redis)
and Memcached (nodejsdp.link/memcached).

• A manual cache invalidation (for example, when the related non-cached
value changes), as opposed to a timed expiry, can enable a longer-living
cache and at the same time provide more up-to-date data, but, of course, it
would be a lot more complex to manage. Let's not forget the famous quote
by Phil Karlton (principal engineer at Netscape, Silicon Graphics, and more):
"There are only two hard things in Computer Science: cache invalidation and
naming things."

With this, we conclude this section on request batching and caching. Next, we are
going to learn how to tackle a tricky business: canceling asynchronous operations.

Canceling asynchronous operations
Being able to stop a long-running operation is particularly useful if the operation
has been canceled by the user or if it has become redundant. In multithreaded
programming, we can just terminate the thread, but on a single-threaded platform
such as Node.js, things can get a little bit more complicated.

http://nodejsdp.link/redis
http://nodejsdp.link/memcached

Advanced Recipes

[446]

A basic recipe for creating cancelable
functions
Actually, in asynchronous programming, the basic principle for canceling the
execution of a function is very simple: we check if the operation has been canceled
after every asynchronous call, and if that's the case, we prematurely quit the
operation. Consider, for example, the following code:

import { asyncRoutine } from './asyncRoutine.js'
import { CancelError } from './cancelError.js'

async function cancelable (cancelObj) {
 const resA = await asyncRoutine('A')
 console.log(resA)
 if (cancelObj.cancelRequested) {
 throw new CancelError()
 }

 const resB = await asyncRoutine('B')
 console.log(resB)
 if (cancelObj.cancelRequested) {
 throw new CancelError()
 }

 const resC = await asyncRoutine('C')
 console.log(resC)
}

In this section, we'll be talking about canceling asynchronous
operations and not about canceling promises, which is a different
matter altogether. By the way, the Promises/A+ standard doesn't
include an API for canceling promises. However, you can use
a third-party promise library such as bluebird if you need such
a feature (more at nodejsdp.link/bluebird-cancelation).
Note that canceling a promise doesn't mean that the operation
the promise refers to will also be canceled; in fact, bluebird offers
an onCancel callback in the promise constructor, in addition to
resolve and reject, which can be used to cancel the underlying
async operation when the promise is canceled. This is actually
what this section is about.

http://nodejsdp.link/bluebird-cancelation

Chapter 11

[447]

The cancelable() function receives, as input, an object (cancelObj) containing
a single property called cancelRequested. In the function, we check the
cancelRequested property after every asynchronous call, and if that's true, we
throw a special CancelError exception to interrupt the execution of the function.

The asyncRoutine() function is just a demo function that prints a string to the
console and returns another string after 100 ms. You will find its full implementation,
along with that of CancelError, in the code repository for this book.

It's important to note that any code external to the cancelable() function will be
able to set the cancelRequested property only after the cancelable() function gives
back control to the event loop, which is usually when an asynchronous operation is
awaited. This is why it's worth checking the cancelRequested property only after the
completion of an asynchronous operation and not more often.

The following code demonstrates how we can cancel the cancelable() function:

const cancelObj = { cancelRequested: false }
cancelable(cancelObj)
 .catch(err => {
 if (err instanceof CancelError) {
 console.log('Function canceled')
 } else {
 console.error(err)
 }
 })

setTimeout(() => {
 cancelObj.cancelRequested = true
}, 100)

As we can see, all we have to do to cancel the function is set the
cancelObj.cancelRequested property to true. This will cause the function to stop
and throw a CancelError.

Wrapping asynchronous invocations
Creating and using a basic asynchronous cancelable function is very easy, but there
is a lot of boilerplate involved. In fact, it involves so much extra code that it becomes
hard to identify the actual business logic of the function.

We can reduce the boilerplate by including the cancelation logic inside a wrapping
function, which we can use to invoke asynchronous routines.

Advanced Recipes

[448]

Such a wrapper would look as follows (the cancelWrapper.js file):

import { CancelError } from './cancelError.js'

export function createCancelWrapper () {
 let cancelRequested = false

 function cancel () {
 cancelRequested = true
 }

 function cancelWrapper (func, ...args) {
 if (cancelRequested) {
 return Promise.reject(new CancelError())
 }
 return func(...args)
 }

 return { cancelWrapper, cancel }
}

Our wrapper is created through a factory function called createCancelWrapper().
The factory returns two functions: the wrapper function (cancelWrapper) and a
function to trigger the cancelation of the asynchronous operation (cancel). This
allows us to create a wrapper function to wrap multiple asynchronous invocations
and then use a single cancel() function to cancel all of them.

The cancelWrapper() function takes, as input, a function to invoke (func) and a
set of parameters to pass to the function (args). The wrapper simply checks if a
cancelation has been requested and if positive, it will return a promise rejected with
a CancelError object as the rejection reason; otherwise, it will invoke func.

Let's now see how our wrapper factory can greatly improve the readability and
modularity of our cancelable() function:

import { asyncRoutine } from './asyncRoutine.js'
import { createCancelWrapper } from './cancelWrapper.js'
import { CancelError } from './cancelError.js'

async function cancelable (cancelWrapper) {
 const resA = await cancelWrapper(asyncRoutine, 'A')
 console.log(resA)
 const resB = await cancelWrapper(asyncRoutine, 'B')

Chapter 11

[449]

 console.log(resB)
 const resC = await cancelWrapper(asyncRoutine, 'C')
 console.log(resC)
}

const { cancelWrapper, cancel } = createCancelWrapper()

cancelable(cancelWrapper)
 .catch(err => {
 if (err instanceof CancelError) {
 console.log('Function canceled')
 } else {
 console.error(err)
 }
 })

setTimeout(() => {
 cancel()
}, 100)

We can immediately see the benefits of using a wrapper function for implementing
our cancelation logic. In fact, the cancelable() function is now much more concise
and readable.

Cancelable async functions with generators
The cancelable wrapper function we just created is already a big step ahead
compared to embedding the cancelation logic directly in our code. However, it's
still not ideal for two reasons: it is error prone (what if we forget to wrap one
function?) and it still affects the readability of our code, which makes it not ideal
for implementing cancelable asynchronous operations that are already large and
complex.

An even neater solution involves the use of generators. In Chapter 9, Behavioral Design
Patterns, we introduced generators as a means to implement iterators. However, they
are a very versatile tool and can be used to implement all sorts of algorithms. In this
case, we will be using generators to build a supervisor to control the asynchronous
flow of a function. The result will be an asynchronous function that is transparently
cancelable, whose behavior resembles an async function in which the await
instruction is replaced by yield.

Advanced Recipes

[450]

Let's see how we can implement this cancelable function using generators (the
createAsyncCancelable.js file):

import { CancelError } from './cancelError.js'

export function createAsyncCancelable (generatorFunction) { // (1)
 return function asyncCancelable (...args) {
 const generatorObject = generatorFunction(...args) // (3)
 let cancelRequested = false

 function cancel () {
 cancelRequested = true
 }

 const promise = new Promise((resolve, reject) => {
 async function nextStep (prevResult) { // (4)
 if (cancelRequested) {
 return reject(new CancelError())
 }

 if (prevResult.done) {
 return resolve(prevResult.value)
 }

 try { // (5)
 nextStep(generatorObject.next(await prevResult.value))
 } catch (err) {
 try { // (6)
 nextStep(generatorObject.throw(err))
 } catch (err2) {
 reject(err2)
 }
 }
 }

 nextStep({})
 })

 return { promise, cancel } // (2)
 }
}

Chapter 11

[451]

The createAsyncCancelable() function may seem complex, so let's analyze it in
more detail:

1. First, we should note that the createAsyncCancelable() function takes, as
input, a generator function (the supervised function) and returns another
function (asyncCancelable()) that wraps the generator function with our
supervising logic. The asyncCancelable() function is what we will use to
invoke the asynchronous operation.

2. The asyncCancelable() function returns an object with two properties:
a. The promise property, which contains the promise representing

the eventual resolution (or rejection) of the asynchronous operation.
b. The cancel property, which is a function that can be used to cancel

the supervised asynchronous flow.
3. When invoked, the first task of asyncCancelable() is to invoke the generator

function with the arguments received as input (args) and obtain a generator
object, which we can use to control the execution flow of the running
coroutine.

4. The entire logic of the supervisor is implemented within the nextStep()
function, which is responsible for iterating over the values yielded by the
supervised coroutine (prevResult). Those can be actual values or promises.
If a cancelation is requested, we throw the usual CancelError; otherwise,
if the coroutine has been terminated (for example, prevResult.done is true),
we immediately resolve the outer promise and complete the return.

5. The core part of the nextStep() function is where we retrieve the next
value yielded by the supervised coroutine (which, let's not forget, it's a
generator). We await on that value so we can make sure we get the actual
resolution value in case we are dealing with a promise. This also makes sure
that if prevResult.value is a promise and it rejects, we end up in the catch
statement. We can end up in the catch statement even if the supervised
coroutine actually throws an exception.

6. In the catch statement, we throw the caught error inside the coroutine. This
is redundant if that error was already thrown by the coroutine, but not if it's
the result of a promise rejection. Even if not optimal, this trick can simplify
our code a bit for the sake of this demonstration. We invoke nextStep()
using whatever value is yielded next after throwing it inside the coroutine,
but if the result is another exception (for example, the exception is not caught
inside the coroutine or another one is thrown), we immediately reject the
outer promise and complete the asynchronous operation.

Advanced Recipes

[452]

As we saw, there are a lot of moving parts in the createAsyncCancelable() function.
But we should appreciate the fact that, in just a few lines of code, we were able to
create a cancelable function that doesn't require any manual cancelation logic. As
we will see now, the results are impressive.

Let's rewrite our sample asynchronous cancelable operation using the supervisor we
implemented in the createAsyncCancelable() function:

import { asyncRoutine } from './asyncRoutine.js'
import { createAsyncCancelable } from './createAsyncCancelable.js'
import { CancelError } from './cancelError.js'

const cancelable = createAsyncCancelable(function * () {
 const resA = yield asyncRoutine('A')
 console.log(resA)
 const resB = yield asyncRoutine('B')
 console.log(resB)
 const resC = yield asyncRoutine('C')
 console.log(resC)
})

const { promise, cancel } = cancelable()
promise.catch(err => {
 if (err instanceof CancelError) {
 console.log('Function canceled')
 } else {
 console.error(err)
 }
})

setTimeout(() => {
 cancel()
}, 100)

We can immediately see that the generator wrapped by createAsyncCancelable()
closely resembles an async function, but we are using yield instead of await.
Also, there is no visible cancelation logic at all. The generator function maintains
the excellent properties of async functions (for example, to make asynchronous
code look like synchronous code), but unlike the async function and thanks to the
supervisor introduced by createAsyncCancelable(), it's also possible to cancel the
operation.

Chapter 11

[453]

The second interesting aspect is that createAsyncCancelable() creates a function
(called cancelable) that can be invoked like any other function but at the same time
returns a promise representing the result of the operation and a function to cancel
the operation.

This technique of using generators represents the best option we have to implement
cancelable asynchronous operations.

Running CPU-bound tasks
The totalSales() API that we implemented in the Asynchronous request batching
and caching section was (intentionally) expensive in terms of resources and took a
few hundred milliseconds to run. Nonetheless, invoking the totalSales() function
did not affect the ability of the application to process concurrent incoming requests.
What we learned about the event loop in Chapter 1, The Node.js Platform, should
explain this behavior: invoking an asynchronous operation always causes the stack
to unwind back to the event loop, leaving it free to handle other requests.

But what happens when we run a synchronous task that takes a long time to
complete and that never gives back the control to the event loop until it has finished?
This kind of task is also known as CPU-bound, because its main characteristic is that
it is heavy on CPU utilization rather than being heavy on I/O operations.

Let's work immediately on an example to see how these types of task behave in
Node.js.

Solving the subset sum problem
Let's now choose a computationally expensive problem to use as a base for our
experiment. A good candidate is the subset sum problem, which decides whether
a set (or multiset) of integers contains a non-empty subset that has a sum equal to
zero. For example, if we had as input the set [1, 2, –4, 5, –3], the subsets satisfying the
problem are [1, 2, –3] and [2, –4, 5, –3].

For use in production, most of the time, we can rely on a widely
used package from the Node.js ecosystem such as caf (the
acronym means Cancelable Async Flows), which you can find at
nodejsdp.link/caf.

http://nodejsdp.link/caf

Advanced Recipes

[454]

The simplest algorithm is the one that checks every possible combination of subsets
of any size and has a computational cost of O(2n), or in other words, it grows
exponentially with the size of the input. This means that a set of 20 integers would
require up to 1,048,576 combinations to be checked, which is not bad for testing our
assumptions. For our example, we are going to consider the following variation of
the subset sum problem: given a set of integers, we want to calculate all the possible
combinations whose sum is equal to a given arbitrary integer, not just zero.

Now, let's work to implement such an algorithm. First, let's create a new module
called subsetSum.js. We will start by creating a class called SubsetSum:

export class SubsetSum extends EventEmitter {
 constructor (sum, set) {
 super()
 this.sum = sum
 this.set = set
 this.totalSubsets = 0
 }
//...

The SubsetSum class is extending EventEmitter. This allows us to produce an event
every time we find a new subset matching the sum received as input. As we will see,
this will give us a lot of flexibility.

Next, let's see how we can generate all the possible combinations of subsets:

_combine (set, subset) {
 for (let i = 0; i < set.length; i++) {
 const newSubset = subset.concat(set[i])
 this._combine(set.slice(i + 1), newSubset)
 this._processSubset(newSubset)
 }
}

We will not go into too much detail about the algorithm, but there are two important
things to notice:

• The _combine() method is completely synchronous. It recursively generates
every possible subset without ever giving back control to the event loop.

• Every time a new combination is generated, we provide it to
the _processSubset() method for further processing.

Chapter 11

[455]

The _processSubset() method is responsible for verifying that the sum of
the elements of the given subset is equal to the number we are looking for:

_processSubset (subset) {
 console.log('Subset', ++this.totalSubsets, subset)
 const res = subset.reduce((prev, item) => (prev + item), 0)
 if (res === this.sum) {
 this.emit('match', subset)
 }
}

Trivially, the _processSubset() method applies a reduce operation to the
subset in order to calculate the sum of its elements. Then, it emits an event of
the type match when the resulting sum is equal to the one we are interested in
finding (this.sum).

Finally, the start() method puts all the preceding pieces together:

start () {
 this._combine(this.set, [])
 this.emit('end')
}

The start() method triggers the generation of all the combinations by invoking
_combine(), and lastly, emits an end event, signaling that all the combinations
were checked and any possible match has already been emitted. This is possible
because _combine() is synchronous; therefore, the end event is emitted as soon as
the function returns, which means that all the combinations have been calculated.

Next, we have to expose the algorithm we just created over the network. As always,
we can use a simple HTTP server for this task. In particular, we want to create an
endpoint that accepts requests in the format /subsetSum?data=<Array>&sum=<Integ
er> that invokes the SubsetSum algorithm with the given array of integers and sum
to match.

Let's implement this simple server in a module named index.js:

import { createServer } from 'http'
import { SubsetSum } from './subsetSum.js'

createServer((req, res) => {
 const url = new URL(req.url, 'http://localhost')
 if (url.pathname !== '/subsetSum') {
 res.writeHead(200)

Advanced Recipes

[456]

 return res.end('I\'m alive!\n')
 }

 const data = JSON.parse(url.searchParams.get('data'))
 const sum = JSON.parse(url.searchParams.get('sum'))
 res.writeHead(200)
 const subsetSum = new SubsetSum(sum, data)
 subsetSum.on('match', match => {
 res.write(`Match: ${JSON.stringify(match)}\n`)
 })
 subsetSum.on('end', () => res.end())
 subsetSum.start()
}).listen(8000, () => console.log('Server started'))

Thanks to the fact that the SubsetSum object returns its results using events, we can
stream the matching subsets as soon as they are generated by the algorithm, in
real time. Another detail to mention is that our server responds with the text I'm
alive! every time we hit a URL different than /subsetSum. We will use this for
checking the responsiveness of our server, as we will see in a moment.

We are now ready to try our subset sum algorithm. Curious to know how our server
will handle it? Let's fire it up, then:

node index.js

As soon as the server starts, we are ready to send our first request. Let's try it with
a multiset of 17 random numbers, which will result in the generation of 131,071
combinations, a nice amount to keep our server busy for a while:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[16,
19,1,1,-16,9,1,-5,-2,17,-15,-97,19,-16,-4,-5,15]" --data-urlencode
"sum=0"

After a few seconds, we should see the results coming from the server. But if we try
the following command in another terminal while the first request is still running,
we will spot a huge problem:

curl -G http://localhost:8000

We will immediately see that this last request hangs until the subset sum algorithm
of the first request has finished: the server is unresponsive! This was actually
expected. The Node.js event loop runs in a single thread, and if this thread is blocked
by a long synchronous computation, it will be unable to execute even a single cycle
in order to respond with a simple I'm alive!

Chapter 11

[457]

We quickly understand that this behavior does not work for any kind of application
meant to process multiple concurrent requests. But don't despair. In Node.js, we can
tackle this type of situation in several ways. So, let's analyze the three most popular
methods, which are "interleaving with setImmediate," "using external processes," and
"using worker threads."

Interleaving with setImmediate
Usually, a CPU-bound algorithm is built upon a set of steps. This can be a set
of recursive invocations, a loop, or any variation/combination of these. So, a simple
solution to our problem would be to give back the control to the event loop after
each of these steps completes (or after a certain number of them). This way, any
pending I/O can still be processed by the event loop in those intervals in which the
long-running algorithm yields the CPU. A simple way to achieve this is to schedule
the next step of the algorithm to run after any pending I/O requests. This sounds like
the perfect use case for the setImmediate() function (we already introduced this API
in Chapter 3, Callbacks and Events).

Interleaving the steps of the subset sum algorithm
Let's now see how this technique applies to our subset sum algorithm. All we
have to do is slightly modify the subsetSum.js module. For convenience, we are
going to create a new module called subsetSumDefer.js, taking the code of the
original subsetSum class as a starting point.

The first change we are going to make is to add a new method called
_combineInterleaved(), which is the core of the technique we are implementing:

_combineInterleaved (set, subset) {
 this.runningCombine++
 setImmediate(() => {
 this._combine(set, subset)
 if (--this.runningCombine === 0) {
 this.emit('end')
 }
 })
}

As we can see, all we had to do is defer the invocation of the original (synchronous)
_combine() method with setImmediate(). However, now, it becomes more difficult
to know when the function has finished generating all the combinations, because the
algorithm is not synchronous anymore.

Advanced Recipes

[458]

To fix this, we have to keep track of all the running instances of the _combine()
method using a pattern very similar to the asynchronous parallel execution flow
that we saw in Chapter 4, Asynchronous Control Flow Patterns with Callbacks. When
all the instances of the _combine() method have finished running, we can emit
the end event, notifying any listener that the process has completed.

To finish refactoring the subset sum algorithm, we need to make a couple more
tweaks. First, we need to replace the recursive step in the _combine() method with
its deferred counterpart:

_combine (set, subset) {
 for (let i = 0; i < set.length; i++) {
 const newSubset = subset.concat(set[i])
 this._combineInterleaved(set.slice(i + 1), newSubset)
 this._processSubset(newSubset)
 }
}

With the preceding change, we make sure that each step of the algorithm will be
queued in the event loop using setImmediate() and, therefore, executed after any
pending I/O request instead of being run synchronously.

The other small tweak is in the start() method:

start () {
 this.runningCombine = 0
 this._combineInterleaved(this.set, [])
}

In the preceding code, we initialized the number of running instances of the
_combine() method to 0. We also replaced the call to _combine() with a call to
_combineInterleaved() and removed the emission of the end event because this is
now handled asynchronously in _combineInterleaved().

With this last change, our subset sum algorithm should now be able to run its CPU-
bound code in steps interleaved by intervals, where the event loop can run and
process any other pending request.

The last missing bit is updating the index.js module so that it can use the new
version of the SubsetSum API. This is actually a trivial change:

import { createServer } from 'http'
// import { SubsetSum } from './subsetSum.js'
import { SubsetSum } from './subsetSumDefer.js'

Chapter 11

[459]

createServer((req, res) => {
 // ...

We are now ready to try this new version of the subset sum server. Start the server
again and then try to send a request to calculate all the subsets matching a given
sum:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[16,
19,1,1,-16,9,1,-5,-2,17,-15,-97,19,-16,-4,-5,15]" --data-urlencode
"sum=0"

While the request is running, check again whether the server is responsive:

curl -G http://localhost:8000

Cool! The second request should return almost immediately, even while
the SubsetSum task is still running, confirming that our technique is working well.

Considerations on the interleaving approach
As we saw, running a CPU-bound task while preserving the responsiveness of
an application is not that complicated; it just requires the use of setImmediate() to
schedule the next step of an algorithm to run after any pending I/O. However, this
is not the best recipe in terms of efficiency. In fact, deferring a task introduces a small
overhead that, multiplied by all the steps that an algorithm has to run, can have a
significant impact on the overall running time. This is usually the last thing we want
when running a CPU-bound task. A possible solution to mitigate this problem would
be using setImmediate() only after a certain number of steps—instead of using it at
every single step—but still, this would not solve the root of the problem.

Also, this technique doesn't work very well if each step takes a long time to run.
In this case, in fact, the event loop would lose responsiveness, and the whole
application would start lagging, which is undesirable in a production environment.

Bear in mind that this does not mean that the technique we have just seen should be
avoided at all costs. In certain situations in which the synchronous task is executed
sporadically and doesn't take too long to run, using setImmediate() to interleave its
execution is sometimes the simplest and most effective way to avoid blocking the
event loop.

Advanced Recipes

[460]

Using external processes
Deferring the steps of an algorithm is not the only option we have for running
CPU-bound tasks. Another pattern for preventing the event loop from blocking is
using child processes. We already know that Node.js gives its best when running
I/O-intensive applications such as web servers, which allows us to optimize resource
utilization thanks to its asynchronous architecture. So, the best way we have to
maintain the responsiveness of an application is to not run expensive CPU-bound
tasks in the context of the main application and, instead, use separate processes. This
has three main advantages:

• The synchronous task can run at full speed, without the need to interleave
the steps of its execution.

• Working with processes in Node.js is simple, probably easier than modifying
an algorithm to use setImmediate(), and allows us to easily use multiple
processors without the need to scale the main application itself.

• If we really need maximum performance, the external process could be
created in lower-level languages, such as good old C or more modern
compiled languages like Go or Rust. Always use the best tool for the job!

Node.js has an ample toolbelt of APIs for interacting with external processes. We
can find all we need in the child_process module. Moreover, when the external
process is just another Node.js program, connecting it to the main application is
extremely easy and allows seamless communication with the local application.
This magic happens thanks to the child_process.fork() function, which creates
a new child Node.js process and also automatically creates a communication
channel with it, allowing us to exchange information using an interface very
similar to the EventEmitter. Let's see how this works by refactoring our subset
sum server again.

Note that process.nextTick() cannot be used to interleave
a long-running task. As we saw in Chapter 3, Callbacks
and Events, nextTick() schedules a task to run before
any pending I/O, and this will cause I/O starvation in
case of repeated calls. You can verify this yourself by
replacing setImmediate() with process.nextTick() in the
previous example.

Chapter 11

[461]

Delegating the subset sum task to an external
process
The goal of refactoring the SubsetSum task is to create a separate child process
responsible for handling the synchronous processing, leaving the event loop of the
main server free to handle requests coming from the network. This is the recipe we
are going to follow to make this possible:

1. We will create a new module named processPool.js that will allow us to
create a pool of running processes. Starting a new process is expensive and
requires time, so keeping them constantly running and ready to handle
requests allows us to save time and CPU cycles. Also, the pool will help us
limit the number of processes running at the same time to prevent exposing
the application to denial-of-service (DoS) attacks.

2. Next, we will create a module called subsetSumFork.js responsible for
abstracting a SubsetSum task running in a child process. Its role will be
communicating with the child process and forwarding the results of the
task as if they were coming from the current application.

3. Finally, we need a worker (our child process), a new Node.js program with
the only goal of running the subset sum algorithm and forwarding its results
to the parent process.

Implementing a process pool
Let's start by building the processPool.js module piece by piece:

import { fork } from 'child_process'

export class ProcessPool {
 constructor (file, poolMax) {
 this.file = file
 this.poolMax = poolMax
 this.pool = []
 this.active = []
 this.waiting = []
 }
//...

The purpose of a DoS attack is to make a machine unavailable to its
users. This is usually achieved by exhausting the capacity of such a
machine by exploiting a vulnerability or massively overloading it
with requests (DDoS – distributed DoS).

Advanced Recipes

[462]

In the first part of the module, we import the fork() function from the
child_process module, which we will use to create new processes. Then, we define
the ProcessPool constructor, which accepts a file parameter representing the
Node.js program to run, and the maximum number of running instances in the pool
(poolMax). We then define three instance variables:

• pool is the set of running processes ready to be used.
• active contains the list of the processes currently being used.
• waiting contains a queue of callbacks for all those requests that could not be

fulfilled immediately because of the lack of an available process.

The next piece of the ProcessPool class is the acquire() method, which is responsible
for eventually returning a process ready to be used, when one becomes available:

acquire () {
 return new Promise((resolve, reject) => {
 let worker
 if (this.pool.length > 0) { // (1)
 worker = this.pool.pop()
 this.active.push(worker)
 return resolve(worker)
 }

 if (this.active.length >= this.poolMax) { // (2)
 return this.waiting.push({ resolve, reject })
 }

 worker = fork(this.file) // (3)
 worker.once('message', message => {
 if (message === 'ready') {
 this.active.push(worker)
 return resolve(worker)
 }
 worker.kill()
 reject(new Error('Improper process start'))
 })
 worker.once('exit', code => {
 console.log(`Worker exited with code ${code}`)
 this.active = this.active.filter(w => worker !== w)
 this.pool = this.pool.filter(w => worker !== w)
 })
 })
}

Chapter 11

[463]

The logic of acquire() is very simple and is explained as follows:

1. If we have a process in the pool ready to be used, we simply move it to
the active list and then use it to fulfill the outer promise with resolve().

2. If there are no available processes in the pool and we have already reached
the maximum number of running processes, we have to wait for one to be
available. We achieve this by queuing the resolve() and reject() callbacks
of the outer promise, for later use.

3. If we haven't reached the maximum number of running processes yet, we
create a new one using child_process.fork(). Then, we wait for the ready
message coming from the newly launched process, which indicates that the
process has started and is ready to accept new jobs. This message-based
channel is automatically provided with all processes started with child_
process.fork().

The last method of the ProcessPool class is release(), whose purpose is to put a
process back into the pool once we are done with it:

release (worker) {
 if (this.waiting.length > 0) { // (1)
 const { resolve } = this.waiting.shift()
 return resolve(worker)
 }
 this.active = this.active.filter(w => worker !== w) // (2)
 this.pool.push(worker)
}

This is how the release() method works:

1. If there is a request in the waiting list, we simply reassign the worker we
are releasing by passing it to the resolve() callback at the head of
the waiting queue.

2. Otherwise, we remove the worker that we are releasing from the active list
and put it back into the pool.

As we can see, the processes are never stopped but just reassigned, allowing us to
save time by not restarting them at each request. However, it's important to observe
that this might not always be the best choice, and this greatly depends on the
requirements of your application.

Advanced Recipes

[464]

Other possible tweaks for reducing long-term memory usage and adding resilience
to our process pool are:

• Terminate idle processes to free memory after a certain time of inactivity.
• Add a mechanism to kill non-responsive processes or restart those that have

crashed.

In this example, we will keep the implementation of our process pool simple as the
details we could add are really endless.

Communicating with a child process
Now that our ProcessPool class is ready, we can use it to implement the
SubsetSumFork class, whose role is to communicate with the worker and forward
the results it produces. As we already mentioned, starting a process with
child_process.fork() also gives us a simple message-based communication
channel, so let's see how this works by implementing the subsetSumFork.js module:

import { EventEmitter } from 'events'
import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { ProcessPool } from './processPool.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const workerFile = join(__dirname,
 'workers', 'subsetSumProcessWorker.js')
const workers = new ProcessPool(workerFile, 2)

export class SubsetSum extends EventEmitter {
 constructor (sum, set) {
 super()
 this.sum = sum
 this.set = set
 }

 async start () {
 const worker = await workers.acquire() // (1)
 worker.send({ sum: this.sum, set: this.set })

 const onMessage = msg => {
 if (msg.event === 'end') { // (3)
 worker.removeListener('message', onMessage)
 workers.release(worker)

Chapter 11

[465]

 }

 this.emit(msg.event, msg.data) // (4)
 }

 worker.on('message', onMessage) // (2)
 }
}

The first thing to note is that we created a new ProcessPool object using the
file ./workers/subsetSumProcessWorker.js as the child worker. We also set the
maximum capacity of the pool to 2.

Another point worth mentioning is that we tried to maintain the same public API
of the original SubsetSum class. In fact, SubsetSumFork is an EventEmitter whose
constructor accepts sum and set, while the start() method triggers the execution of
the algorithm, which, this time, runs on a separate process. This is what happens
when the start() method is invoked:

1. We try to acquire a new child process from the pool. When the operation
completes, we immediately use the worker handle to send a message to the
child process with the data of the job to run. The send() API is provided
automatically by Node.js to all processes started with child_process.fork().
This is essentially the communication channel that we were talking about.

2. We then start listening for any message sent by the worker process
using the on() method to attach a new listener (this is also a part of
the communication channel provided by all processes started with
child_process.fork()).

3. In the onMessage listener, we first check if we received an end event, which
means that the SubsetSum task has finished, in which case we remove
the onMessage listener and release the worker, putting it back into the pool.

4. The worker produces messages in the format {event, data}, allowing us to
seamlessly forward (re-emit) any event produced by the child process.

That's it for the SubsetSumFork wrapper. Let's now implement the worker (our child
process).

Advanced Recipes

[466]

Implementing the worker
Let's now create the workers/subsetSumProcessWorker.js module, our worker
process:

import { SubsetSum } from '../subsetSum.js'

process.on('message', msg => { // (1)
 const subsetSum = new SubsetSum(msg.sum, msg.set)

 subsetSum.on('match', data => { // (2)
 process.send({ event: 'match', data: data })
 })

 subsetSum.on('end', data => {
 process.send({ event: 'end', data: data })
 })

 subsetSum.start()
})

process.send('ready')

We can immediately see that we are reusing the original (and synchronous)
SubsetSum as it is. Now that we are in a separate process, we don't have to worry
about blocking the event loop anymore; all the HTTP requests will continue to be
handled by the event loop of the main application without disruptions.

When the worker is started as a child process, this is what happens:

1. It immediately starts listening for messages coming from the parent
process. This can be easily done with the process.on() function (a
part of the communication API provided when the process is started
with child_process.fork()).

It is good to know that the send() method available on a
child process instance can also be used to propagate a socket
handle from the main application to a child process (look at the
documentation at nodejsdp.link/childprocess-send). This is
actually the technique used by the cluster module to distribute
the load of an HTTP server across multiple processes. We will see
this in more detail in the next chapter.

http://nodejsdp.link/childprocess-send

Chapter 11

[467]

The only message we expect from the parent process is the one providing
the input to a new SubsetSum task. As soon as such a message is received,
we create a new instance of the SubsetSum class and register the listeners
for the match and end events. Lastly, we start the computation with
subsetSum.start().

2. Every time an event is received from the running algorithm, we wrap it in
an object having the format {event, data} and send it to the parent process.
These messages are then handled in the subsetSumFork.js module, as we
have seen in the previous section.

As we can see, we just had to wrap the algorithm we already built, without
modifying its internals. This clearly shows that any portion of an application can be
easily put in an external process by simply using the technique we have just seen.

Considerations for the multi-process approach
As always, to try this new version of the subset sum algorithm, we simply have to
replace the module used by the HTTP server (the index.js file):

import { createServer } from 'http'
// import { SubsetSum } from './subsetSum.js'
// import { SubsetSum } from './subsetSumDefer.js'
import { SubsetSum } from './subsetSumFork.js'

createServer((req, res) => {
//...

We can now start the server again and try to send a sample request:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[16,
19,1,1,-16,9,1,-5,-2,17,-15,-97,19,-16,-4,-5,15]" --data-urlencode
"sum=0"

When the child process is not a Node.js program, the simple
communication channel we just described (on(), send()) is not
available. In these situations, we can still establish an interface with
the child process by implementing our own protocol on top of the
standard input and standard output streams, which are exposed
to the parent process. To find out more about all the capabilities
of the child_process API, you can refer to the official Node.js
documentation at nodejsdp.link/child_process.

http://nodejsdp.link/child_process

Advanced Recipes

[468]

As for the interleaving approach that we saw previously, with this new version of
the SubsetSum module, the event loop is not blocked while running the CPU-bound
task. This can be confirmed by sending another concurrent request, as follows:

curl -G http://localhost:8000

The preceding command should immediately return the text I'm alive!

More interestingly, we can also try to start two SubsetSum tasks concurrently and
we will be able to see that they will use the full power of two different processors in
order to run (if your system has more than one processor, of course). Instead, if we
try to run three SubsetSum tasks concurrently, the result should be that the last one
to start will hang. This is not because the event loop of the main process is blocked,
but because we set a concurrency limit of two processes for the SubsetSum task,
which means that the third request will be handled as soon as at least one of the two
processes in the pool becomes available again.

As we saw, the multi-process approach has many advantages compared to the
interleaving approach. First, it doesn't introduce any computational penalty when
running the algorithm. Second, it can take full advantage of a multi-processor
machine.

Now, let's see an alternative approach that uses threads instead of processes.

Using worker threads
Since Node 10.5.0, we have a new mechanism for running CPU-intensive algorithms
outside of the main event loop called worker threads. Worker threads can be seen
as a lightweight alternative to child_process.fork() with some extra goodies.
Compared to processes, worker threads have a smaller memory footprint and
a faster startup time since they run within the main process but inside different
threads.

Even though worker threads are based on real threads, they don't allow the deep
synchronization and sharing capabilities supported by other languages such as Java
or Python. This is because JavaScript is a single-threaded language and it doesn't
have any built-in mechanism to synchronize access to variables from multiple
threads. JavaScript with threads simply wouldn't be JavaScript. The solution to bring
all the advantages of threads within Node.js without actually changing the language
is worker threads.

Chapter 11

[469]

Worker threads are essentially threads that, by default, don't share anything with the
main application thread; they run within their own V8 instance, with an independent
Node.js runtime and event loop. Communication with the main thread is possible
thanks to message-based communication channels, the transfer of ArrayBuffer
objects, and the use of SharedArrayBuffer objects whose synchronization is managed
by the user (usually with the help of Atomics).

This extensive level of isolation of worker threads from the main thread preserves
the integrity of the language. At the same time, the basic communication facilities
and data-sharing capabilities are more than enough for 99% of use cases.

Now, let's use worker threads in our SubsetSum example.

Running the subset sum task in a worker thread
The worker threads API has a lot in common with that of ChildProcess, so the
changes to our code will be minimal.

First, we need to create a new class called ThreadPool, which is our ProcessPool
adapted to operate with worker threads instead of processes. The following code
shows the differences between the new ThreadPool class and the ProcessPool class.
There are only a few differences in the acquire() method, which are highlighted; the
rest of the code is identical:

import { Worker } from 'worker_threads'

export class ThreadPool {
 // ...

 acquire () {
 return new Promise((resolve, reject) => {
 let worker
 if (this.pool.length > 0) {
 worker = this.pool.pop()
 this.active.push(worker)
 return resolve(worker)
 }

You can read more about SharedArrayBuffer and Atomics in the
following article: nodejsdp.link/shared-array-buffer. Even
though the article focuses on Web Workers, a lot of concepts are
similar to Node.js's worker threads.

http://nodejsdp.link/shared-array-buffer

Advanced Recipes

[470]

 if (this.active.length >= this.poolMax) {
 return this.waiting.push({ resolve, reject })
 }

 worker = new Worker(this.file)
 worker.once('online', () => {
 this.active.push(worker)
 resolve(worker)
 })
 worker.once('exit', code => {
 console.log(`Worker exited with code ${code}`)
 this.active = this.active.filter(w => worker !== w)
 this.pool = this.pool.filter(w => worker !== w)
 })
 })
 }

 //...
}

Next, we need to adapt the worker and place it in a new file called
subsetSumThreadWorker.js. The main difference from our old worker is
that instead of using process.send() and process.on(), we'll have to use
parentPort.postMessage() and parentPort.on():

import { parentPort } from 'worker_threads'
import { SubsetSum } from '../subsetSum.js'

parentPort.on('message', msg => {
 const subsetSum = new SubsetSum(msg.sum, msg.set)

 subsetSum.on('match', data => {
 parentPort.postMessage({ event: 'match', data: data })
 })

 subsetSum.on('end', data => {
 parentPort.postMessage({ event: 'end', data: data })
 })

 subsetSum.start()
})

Chapter 11

[471]

Similarly, the module subsetSumThreads.js is essentially the same as the
subsetSumFork.js module except for a couple of lines of code, which are highlighted
in the following code fragment:

import { EventEmitter } from 'events'
import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { ThreadPool } from './threadPool.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const workerFile = join(__dirname,
 'workers', 'subsetSumThreadWorker.js')
const workers = new ThreadPool(workerFile, 2)

export class SubsetSum extends EventEmitter {
 constructor (sum, set) {
 super()
 this.sum = sum
 this.set = set
 }

 async start () {
 const worker = await workers.acquire()
 worker.postMessage({ sum: this.sum, set: this.set })

 const onMessage = msg => {
 if (msg.event === 'end') {
 worker.removeListener('message', onMessage)
 workers.release(worker)
 }

 this.emit(msg.event, msg.data)
 }

 worker.on('message', onMessage)
 }
}

As we've seen, adapting an existing application to use worker threads instead of
forked processes is a trivial operation. This is because the API of the two components
are very similar, but also because a worker thread has a lot in common with a full-
fledged Node.js process.

Advanced Recipes

[472]

Finally, we need to update the index.js module so that it can use the new
subsetSumThreads.js module, as we've seen for the other implementations
of the algorithm:

import { createServer } from 'http'
// import { SubsetSum } from './subsetSum.js'
// import { SubsetSum } from './subsetSumDefer.js'
// import { SubsetSum } from './subsetSumFork.js'
import { SubsetSum } from './subsetSumThreads.js'

createServer((req, res) => {
 // ...

Now, you can try the new version of the subset sum server using worker threads. As
for the previous two implementations, the event loop of the main application is not
blocked by the subset sum algorithm as it runs in a separate thread.

Running CPU-bound tasks in production
The examples we've seen so far should give you an idea of the tools at our disposal
for running CPU-intensive operations in Node.js. However, components such as
process pools and thread pools are complex pieces of machinery that require proper
mechanisms to deal with timeouts, errors, and other types of failures, which, for
brevity, we left out from our implementation. Therefore, unless you have special
requirements, it's better to rely on more battle-tested libraries for production use.
Two of those libraries are workerpool (nodejsdp.link/workerpool) and piscina
(nodejsdp.link/piscina), which are based on the same concepts we've seen in this
section. They allow us to coordinate the execution of CPU-intensive tasks using
external processes or worker threads.

One last observation is that we must consider that if we have particularly complex
algorithms to run or if the number of CPU-bound tasks exceeds the capacity of a
single node, we may have to think about scaling out the computation across multiple
nodes. This is a completely different problem and we'll learn more about this in the
next two chapters.

The example we've seen uses only a small subset of all the
capabilities offered by worker threads. For more advanced topics
such as transferring ArrayBuffer objects or SharedArrayBuffer
objects, you can read the official API documentation at
nodejsdp.link/worker-threads.

http://nodejsdp.link/workerpool
http://nodejsdp.link/piscina
http://nodejsdp.link/worker-threads

Chapter 11

[473]

Summary
This chapter added some great new weapons to our toolbelt, and as you can see, our
journey is getting more focused on advanced problems. Due to this, we have started
to delve deeply into more complex solutions. This chapter gave us not only a set of
recipes to reuse and customize for our needs, but also some great demonstrations of
how mastering a few principles and patterns can help us tackle the most complex
problems in Node.js development.

The next two chapters represent the peak of our journey. After studying the various
tactics of Node.js development, we are now ready to move on to the strategies
and explore the architectural patterns for scaling and distributing our Node.js
applications.

Exercises
• 11.1 Proxy with pre-initialization queues: Using a JavaScript Proxy, create a

wrapper for adding pre-initialization queues to any object. You should allow
the consumer of the wrapper to decide which methods to augment and the
name of the property/event that indicates if the component is initialized.

• 11.2 Batching and caching with callbacks: Implement batching and caching
for the totalSales API examples using only callbacks, streams, and events
(without using promises or async/await). Hint: Pay attention to Zalgo when
returning cached values!

• 11.3 Deep async cancelable: Extend the createAsyncCancelable() function
so that it's possible to invoke other cancelable functions from within the main
cancelable function. Canceling the main operation should also cancel all
nested operations. Hint: Allow to yield the result of an asyncCancelable()
from within the generator function.

• 11.4 Compute farm: Create an HTTP server with a POST endpoint that
receives, as input, the code of a function (as a string) and an array of
arguments, executes the function with the given arguments in a worker
thread or in a separate process, and returns the result back to the client.
Hint: You can use eval(), vm.runInContext(), or neither of the two. Note:
Whatever code you produce for this exercise, please be aware that allowing
users to run arbitrary code in a production setting can pose serious security
risks, and you should never do it unless you know exactly what the
implications are.

[475]

12
Scalability and

Architectural Patterns
In its early days, Node.js was just a non-blocking web server written in C++
and JavaScript and was called web.js. Its creator, Ryan Dahl, soon realized the
potential of the platform and started extending it with tools to enable the creation of
different types of server-side applications on top of JavaScript and the non-blocking
paradigm.

The characteristics of Node.js are perfect for the implementation of distributed
systems, ranging from a few nodes to thousands of nodes communicating through
the network: Node.js was born to be distributed.

Unlike in other web platforms, scalability is a topic that gets explored rather quickly
in Node.js while developing an application. This is often because of the single-
threaded nature of Node.js, which is incapable of exploiting all the resources of
a multi-core machine. But this is just one side of the coin. In reality, there are more
profound reasons for talking about scalability with Node.js.

As we will see in this chapter, scaling an application does not only mean increasing
its capacity, enabling it to handle more requests faster: it's also a crucial path to
achieving high availability and tolerance to errors.

Sometimes, we even refer to scalability when we talk about ways to split the
complexity of an application into more manageable pieces. Scalability is a concept
with multiple faces, six to be precise, as many as there are faces on a cube—the scale
cube.

Scalability and Architectural Patterns

[476]

In this chapter, you will learn the following topics:

• Why you should care about scalability
• What the scale cube is and why it is useful to understand scalability
• How to scale by running multiple instances of the same application
• How to leverage a load balancer when scaling an application
• What a service registry is and how it can be used
• Running and scaling Node.js applications using container orchestration

platforms like Kubernetes
• How to design a microservice architecture out of a monolithic application
• How to integrate a large number of services through the use of some simple

architectural patterns

An introduction to application scaling
Scalability can be described as the capability of a system to grow and adapt to ever-
changing conditions. Scalability is not limited to pure technical growth; it is also
dependent on the growth of a business and the organization behind it.

If you are building the next "unicorn startup" and you expect your product to rapidly
reach millions of users worldwide, you will face serious scalability challenges. How
is your application going to sustain ever-increasing demand? Is the system going
to get slower over time or crash often? How can you store high volumes of data
and keep I/O under control? As you hire more people, how can you organize the
different teams effectively and make them able to work autonomously, without
contention across the different parts of the codebase?

Even if you are not working on a high-scale project, that doesn't mean that you
will be free from scalability concerns. You will just face different types of scalability
challenges. Being unprepared for these challenges might seriously hinder the
success of the project and ultimately damage the company behind it. It's important
to approach scalability in the context of the specific project and understand the
expectations for current and future business needs.

Since scalability is such a broad topic, in this chapter, we will focus our attention on
discussing the role of Node.js in the context of scalability. We will discuss several
useful patterns and architectures used to scale Node.js applications.

With these in your toolbelt and a solid understanding of your business context, you
will be able to design and implement Node.js applications that can adapt and satisfy
your business needs and keep your customers happy.

Chapter 12

[477]

Scaling Node.js applications
We already know that most of the workload of a typical Node.js application runs
in the context of a single thread. In Chapter 1, The Node.js Platform, we learned that
this is not necessarily a limitation but rather an advantage, because it allows the
application to optimize the usage of the resources necessary to handle concurrent
requests, thanks to the non-blocking I/O paradigm. This model works wonderfully
for applications handling a moderate number of requests per second (usually a few
hundred per second), especially if the application is mostly performing I/O-bound
tasks (for example, reading and writing from the filesystem and the network) rather
than CPU-bound ones (for example, number crunching and data processing).

In any case, assuming we are using commodity hardware, the capacity that a single
thread can support is limited. This is regardless of how powerful a server can be, so
if we want to use Node.js for high-load applications, the only way is to scale it across
multiple processes and machines.

However, workload is not the only reason to scale a Node.js application. In fact,
with the same techniques that allow us to scale workloads, we can obtain other
desirable properties such as high availability and tolerance to failures. Scalability
is also a concept applicable to the size and complexity of an application. In fact,
building architectures that can grow as much as needed over time is another
important factor when designing software.

JavaScript is a tool to be used with caution. The lack of type checking and its
many gotchas can be an obstacle to the growth of an application, but with discipline
and accurate design, we can turn some of its downsides into precious advantages.
With JavaScript, we are often pushed to keep the application simple and to split
its components it into small, manageable pieces. This mindset can make it easier to
build applications that are distributed and scalable, but also easy to evolve over time.

The three dimensions of scalability
When talking about scalability, the first fundamental principle to understand
is load distribution, which is the science of splitting the load of an application
across several processes and machines. There are many ways to achieve this, and
the book The Art of Scalability by Martin L. Abbott and Michael T. Fisher proposes
an ingenious model to represent them, called the scale cube. This model describes
scalability in terms of the following three dimensions:

• X-axis — Cloning
• Y-axis — Decomposing by service/functionality
• Z-axis — Splitting by data partition

Scalability and Architectural Patterns

[478]

These three dimensions can be represented as a cube, as shown in Figure 12.1:

Figure 12.1: The scale cube

The bottom-left corner of the cube (that is, the intersection between the X-axis and
the Y-axis) represents the application having all the functionality in a single code
base and running on a single instance. This is what we generally call a monolithic
application. This is a common situation for applications handling small workloads
or at the early stages of their development. Given a monolithic application, there are
three different strategies for scaling it. By looking at the scale cube, these strategies
are represented as growth along the different axes of the cube: X, Y, and Z:

• X-axis — Cloning: The most intuitive evolution of a monolithic, unscaled
application is moving right along the X-axis, which is simple, most of the
time inexpensive (in terms of development cost), and highly effective. The
principle behind this technique is elementary, that is, cloning the same
application n times and letting each instance handle 1/nth of the workload.

• Y-axis — Decomposing by service/functionality: Scaling along the Y-axis
means decomposing the application based on its functionalities, services, or
use cases. In this instance, decomposing means creating different, standalone
applications, each with its own codebase, possibly with its own dedicated
database, and even with a separate UI.
For example, a common situation is separating the part of an application
responsible for the administration from the public-facing product. Another
example is extracting the services responsible for user authentication, thereby
creating a dedicated authentication server.

Chapter 12

[479]

The criteria to split an application by its functionalities depend mostly on
its business requirements, the use cases, the data, and many other factors,
as we will see later in this chapter. Interestingly, this is the scaling dimension
with the biggest repercussions, not only on the architecture of an application
but also on the way it is managed from a development and an operational
perspective. As we will see, microservice is a term that is most commonly
associated with a fine-grained Y-axis scaling.

• Z-axis — Splitting by data partition: The last scaling dimension is the Z-axis,
where the application is split in such a way that each instance is responsible
for only a portion of the whole data. This is a technique often used in
databases, also known as horizontal/vertical partitioning. In this setup,
there are multiple instances of the same application, each of them operating
on a partition of the data, which is determined using different criteria.
For example, we could partition the users of an application based on their
country (list partitioning), or based on the starting letter of their surname
(range partitioning), or by letting a hash function decide the partition each
user belongs to (hash partitioning).
Each partition can then be assigned to a particular instance of the application.
The use of data partitions requires each operation to be preceded by
a lookup step to determine which instance of the application is responsible
for a given datum. As we said, data partitioning is usually applied and
handled at the data storage level because its main purpose is overcoming the
problems related to handling large monolithic datasets (limited disk space,
memory, and network capacity). Applying it at the application level is worth
considering only for complex, distributed architectures or for very particular
use cases such as, for example, when building applications relying on custom
solutions for data persistence, when using databases that don't support
partitioning, or when building applications at Google scale. Considering
its complexity, scaling an application along the Z-axis should be taken into
consideration only after the X and Y axes of the scale cube have been fully
exploited.

In the following sections, we will focus on the two most common and effective
techniques used to scale Node.js applications, namely, cloning and decomposing
by functionality/service.

Cloning and load balancing
Traditional, multithreaded web servers are usually only scaled horizontally when
the resources assigned to a machine cannot be upgraded any more, or when doing so
would involve a higher cost than simply launching another machine.

Scalability and Architectural Patterns

[480]

By using multiple threads, traditional web servers can take advantage of all the
processing power of a server, using all the available processors and memory.
Conversely, Node.js applications, being single-threaded, are usually scaled much
sooner compared to traditional web servers. Even in the context of a single machine,
we need to find ways to "scale" an application in order to take advantage of all the
available resources.

Don't be fooled into thinking about this as a disadvantage. On the contrary, being
almost forced to scale has beneficial effects on other attributes of an application, in
particular, availability and fault-tolerance. In fact, scaling a Node.js application by
cloning is relatively simple and it's often implemented even if there is no need to
harvest more resources, just for the purpose of having a redundant, fail-tolerant
setup.

This also pushes the developer to take into account scalability from the early
stages of an application, making sure the application does not rely on any resource
that cannot be shared across multiple processes or machines. In fact, an absolute
prerequisite to scaling an application is that each instance does not have to store
common information on resources that cannot be shared, such as memory or disk.
For example, in a web server, storing the session data in memory or on disk is a
practice that does not work well with scaling. Instead, using a shared database will
ensure that each instance will have access to the same session information, wherever
it is deployed.

Let's now introduce the most basic mechanism for scaling Node.js applications:
the cluster module.

The cluster module
In Node.js, the simplest pattern to distribute the load of an application across
different instances running on a single machine is by using the cluster module,
which is part of the core libraries. The cluster module simplifies the forking of new
instances of the same application and automatically distributes incoming connections
across them, as shown in Figure 12.2:

In Node.js, vertical scaling (adding more resources to a single
machine) and horizontal scaling (adding more machines to the
infrastructure) are almost equivalent concepts: both, in fact, involve
similar techniques to leverage all the available processing power.

Chapter 12

[481]

Figure 12.2: Cluster module schematic

The master process is responsible for spawning a number of processes (workers),
each representing an instance of the application we want to scale. Each incoming
connection is then distributed across the cloned workers, spreading the load
across them.

Since every worker is an independent process, you can use this approach to spawn
as many workers as the number of CPUs available in the system. With this approach,
you can easily allow a Node.js application to take advantage of all the computing
power available in the system.

Notes on the behavior of the cluster module
In most systems, the cluster module uses an explicit round-robin load balancing
algorithm. This algorithm is used inside the master process, which makes sure the
requests are evenly distributed across all the workers. Round-robin scheduling is
enabled by default on all platforms except Windows, and it can be globally modified
by setting the variable cluster.schedulingPolicy and using the constants cluster.
SCHED_RR (round robin) or cluster.SCHED_NONE (handled by the operating system).

Scalability and Architectural Patterns

[482]

When we use the cluster module, every invocation to server.listen() in a worker
process is delegated to the master process. This allows the master process to receive
all the incoming messages and distribute them to the pool of workers. The cluster
module makes this delegation process very simple for most use cases, but there are
several edge cases in which calling server.listen() in a worker module might not
do what you expect:

• server.listen({fd}): If a worker listens using a specific file descriptor,
for instance, by invoking server.listen({fd: 17}), this operation might
produce unexpected results. File descriptors are mapped at the process level,
so if a worker process maps a file descriptor, this won't match the same file in
the master process. One way to overcome this limitation is to create the file
descriptor in the master process and then pass it to the worker process. This
way, the worker process can invoke server.listen() using a descriptor that
is known to the master.

• server.listen(handle): Listening using handle objects (FileHandle)
explicitly in a worker process will cause the worker to use the supplied
handle directly, rather than delegating the operation to the master process.

• server.listen(0): Calling server.listen(0) will generally cause servers to
listen on a random port. However, in a cluster, each worker will receive the
same "random" port each time they call server.listen(0). In other words,
the port is random only the first time; it will be fixed from the second call on.
If you want every worker to listen on a different random port, you have to
generate the port numbers by yourself.

Building a simple HTTP server
Let's now start working on an example. Let's build a small HTTP server, cloned and
load balanced using the cluster module. First of all, we need an application to scale,
and for this example, we don't need too much, just a very basic HTTP server.

The round-robin algorithm distributes the load evenly across
the available servers on a rotational basis. The first request is
forwarded to the first server, the second to the next server in the
list, and so on. When the end of the list is reached, the iteration
starts again from the beginning. In the cluster module, the round-
robin logic is a little bit smarter than the traditional implementation.
In fact, it is enriched with some extra behaviors that aim to avoid
overloading a given worker process.

Chapter 12

[483]

So, let's create a file called app.js containing the following code:

import { createServer } from 'http'

const { pid } = process
const server = createServer((req, res) => {
 // simulates CPU intensive work
 let i = 1e7; while (i > 0) { i-- }

 console.log(`Handling request from ${pid}`)
 res.end(`Hello from ${pid}\n`)
})

server.listen(8080, () => console.log(`Started at ${pid}`))

The HTTP server we just built responds to any request by sending back a message
containing its process identifier (PID); this is useful for identifying which instance
of the application is handling the request. In this version of the application, we have
only one process, so the PID that you see in the responses and the logs will always be
the same.

Also, to simulate some actual CPU work, we perform an empty loop 10 million
times: without this, the server load would be almost insignificant and it will be quite
hard to draw conclusions from the benchmarks we are going to run.

You can now check if all works as expected by running the application as usual and
sending a request to http://localhost:8080 using either a browser or curl.

You can also try to measure the requests per second that the server is able to handle
on one process. For this purpose, you can use a network benchmarking tool such as
autocannon (nodejsdp.link/autocannon):

npx autocannon -c 200 -d 10 http://localhost:8080

The preceding command will load the server with 200 concurrent connections for 10
seconds. As a reference, the result we got on our machine (a 2.5 GHz quad-core Intel
Core i7 using Node.js v14) is in the order of 300 transactions per second.

The app module we create here is just a simple abstraction for
a generic web server. We are not using a web framework like
Express or Fastify for simplicity, but feel free to rewrite these
examples using your web framework of choice.

http://nodejsdp.link/autocannon

Scalability and Architectural Patterns

[484]

Now that we have a simple test web application and some reference benchmarks,
we are ready to try some techniques to improve the performance of the application.

Scaling with the cluster module
Let's now update app.js to scale our application using the cluster module:

import { createServer } from 'http'
import { cpus } from 'os'
import cluster from 'cluster'

if (cluster.isMaster) { // (1)
 const availableCpus = cpus()
 console.log(`Clustering to ${availableCpus.length} processes`)
 availableCpus.forEach(() => cluster.fork())
} else { // (2)
 const { pid } = process
 const server = createServer((req, res) => {
 let i = 1e7; while (i > 0) { i-- }
 console.log(`Handling request from ${pid}`)
 res.end(`Hello from ${pid}\n`)
 })

 server.listen(8080, () => console.log(`Started at ${pid}`))
}

Please remember that the load tests we will perform in this chapter
are intentionally simple and minimal and are provided only for
reference and learning purposes. Their results cannot provide
a 100% accurate evaluation of the performance of the various
techniques we are analyzing. When you are trying to optimize
a real production application, make sure to always run your own
benchmarks after every change. You might find out that, among
the different techniques we are going to illustrate here, some can
be more effective than others for your specific application.

Chapter 12

[485]

As we can see, using the cluster module requires very little effort. Let's analyze
what is happening:

1. When we launch app.js from the command line, we are actually executing
the master process. In this case, the cluster.isMaster variable is set
to true and the only work we are required to do is forking the current
process using cluster.fork(). In the preceding example, we are starting as
many workers as there are logical CPU cores in the system to take advantage
of all the available processing power.

2. When cluster.fork() is executed from the master process, the current
module (app.js) is run again, but this time in worker mode (cluster.
isWorker is set to true, while cluster.isMaster is false). When the
application runs as a worker, it can start doing some actual work. In this case,
it starts a new HTTP server.

It's interesting to note that the usage of the cluster module is based on a recurring
pattern, which makes it very easy to run multiple instances of an application:

if (cluster.isMaster) {
 // fork()
} else {
 // do work
}

It's important to remember that each worker is a different
Node.js process with its own event loop, memory space,
and loaded modules.

Under the hood, the cluster.fork() function uses the child_
process.fork() API, therefore, we also have a communication
channel available between the master and the workers. The worker
processes can be accessed from the variable cluster.workers, so
broadcasting a message to all of them would be as easy as running
the following line of code:

Object.values(cluster.workers).forEach(worker =>
worker.send('Hello from the master'))

Scalability and Architectural Patterns

[486]

Now, let's try to run our HTTP server in cluster mode. If our machine has more than
one core, we should see a number of workers being started by the master process,
one after the other. For example, in a system with four logical cores, the terminal
should look like this:

Started 14107
Started 14099
Started 14102
Started 14101

If we now try to hit our server again using the URL http://localhost:8080, we
should notice that each request will return a message with a different PID, which
means that these requests have been handled by different workers, confirming that
the load is being distributed among them.

Now, we can try to load test our server again:

npx autocannon -c 200 -d 10 http://localhost:8080

This way, we should be able to discover the performance increase obtained by
scaling our application across multiple processes. As a reference, in our machine,
we saw a performance increase of about 3.3x (1,000 trans/sec versus 300 trans/sec).

Resiliency and availability with the cluster module
Because workers are all separate processes, they can be killed or respawned
depending on a program's needs, without affecting other workers. As long as there
are some workers still alive, the server will continue to accept connections. If no
workers are alive, existing connections will be dropped, and new connections will be
refused. Node.js does not automatically manage the number of workers; however, it
is the application's responsibility to manage the worker pool based on its own needs.

As we already mentioned, scaling an application also brings other advantages, in
particular, the ability to maintain a certain level of service, even in the presence of
malfunctions or crashes. This property is also known as resiliency and it contributes
to the availability of a system.

By starting multiple instances of the same application, we are creating
a redundant system, which means that if one instance goes down for whatever
reason, we still have other instances ready to serve requests. This pattern is pretty
straightforward to implement using the cluster module. Let's see how it works!

Chapter 12

[487]

Let's take the code from the previous section as a starting point. In particular, let's
modify the app.js module so that it crashes after a random interval of time:

// ...
} else {
 // Inside our worker block
 setTimeout(
 () => { throw new Error('Ooops') },
 Math.ceil(Math.random() * 3) * 1000
)
 // ...

With this change in place, our server exits with an error after a random number of
seconds between 1 and 3. In a real-life situation, this would eventually cause our
application to stop serving requests, unless we use some external tool to monitor
its status and restart it automatically. However, if we only have one instance, there
may be a non-negligible delay between restarts caused by the startup time of the
application. This means that during those restarts, the application is not available.
Having multiple instances instead will make sure we always have a backup process
to serve an incoming request, even when one of the workers fails.

With the cluster module, all we have to do is spawn a new worker as soon as we
detect that one is terminated with an error code. Let's modify app.js to take this into
account:

// ...
if (cluster.isMaster) {
 // ...
 cluster.on('exit', (worker, code) => {
 if (code !== 0 && !worker.exitedAfterDisconnect) {
 console.log(
 `Worker ${worker.process.pid} crashed. ` +
 'Starting a new worker'
)
 cluster.fork()
 }
 })
} else {
 // ...
}

Scalability and Architectural Patterns

[488]

In the preceding code, as soon as the master process receives an 'exit' event, we
check whether the process is terminated intentionally or as the result of an error.
We do this by checking the status code and the flag worker.exitedAfterDisconnect,
which indicates whether the worker was terminated explicitly by the master. If we
confirm that the process was terminated because of an error, we start a new worker.
It's interesting to note that while the crashed worker gets replaced, the other workers
can still serve requests, thus not affecting the availability of the application.

To test this assumption, we can try to stress our server again using autocannon.
When the stress test completes, we will notice that among the various metrics in
the output, there is also an indication of the number of failures. In our case, it is
something like this:

[...]
8k requests in 10.07s, 964 kB read
674 errors (7 timeouts)

This should amount to about 92% availability. Bear in mind that this result can vary
a lot as it greatly depends on the number of running instances and how many times
they crash during the test, but it should give us a good indicator of how our solution
works. The preceding numbers tell us that despite the fact that our application is
constantly crashing, we only had 674 failed requests over 8,000 hits.

In the example scenario that we just built, most of the failing requests will be caused
by the interruption of already established connections during a crash. Unfortunately,
there is very little we can do to prevent these types of failures, especially when the
application terminates because of a crash. Nonetheless, our solution proves to be
working and its availability is not bad at all for an application that crashes so often!

Zero-downtime restart
A Node.js application might also need to be restarted when we want to release a new
version to our production servers. So, also in this scenario, having multiple instances
can help maintain the availability of our application.

When we have to intentionally restart an application to update it, there is a small
window in which the application restarts and is unable to serve requests. This can
be acceptable if we are updating our personal blog, but it's not even an option for a
professional application with a service-level agreement (SLA) or one that is updated
very often as part of a continuous delivery process. The solution is to implement
a zero-downtime restart, where the code of an application is updated without
affecting its availability.

Chapter 12

[489]

With the cluster module, this is, again, a pretty easy task: the pattern involves
restarting the workers one at a time. This way, the remaining workers can continue
to operate and maintain the services of the application available.

Let's add this new feature to our clustered server. All we have to do is add some new
code to be executed by the master process:

import { once } from 'events'
// ...
if (cluster.isMaster) {
 // ...
 process.on('SIGUSR2', async () => { // (1)
 const workers = Object.values(cluster.workers)
 for (const worker of workers) { // (2)
 console.log(`Stopping worker: ${worker.process.pid}`)
 worker.disconnect() // (2)
 await once(worker, 'exit')
 if (!worker.exitedAfterDisconnect) continue
 const newWorker = cluster.fork() // (4)
 await once(newWorker, 'listening') // (5)
 }
 })
} else {
 // ...
}

This is how the preceding code block works:

1. The restarting of the workers is triggered on receiving the SIGUSR2 signal.
Note that we are using an async function to implement the event handler as
we will need to perform some asynchronous tasks here.

2. When a SIGUSR2 signal is received, we iterate over all the values of
the cluster.workers object. Every element is a worker object that we can use
to interact with a given worker currently active in the pool of workers.

3. The first thing we do for the current worker is invoke worker.disconnect(),
which stops the worker gracefully. This means that if the worker is currently
handling a request, this won't be interrupted abruptly; instead, it will be
completed. The worker exits only after the completion of all inflight requests.

4. When the terminated process exits, we can spawn a new worker.
5. We wait for the new worker to be ready and listening for new connections

before we proceed with restarting the next worker.

Scalability and Architectural Patterns

[490]

Now, we can test our zero-downtime restart by running the application and then
sending a SIGUSR2 signal. However, we first need to obtain the PID of the master
process. The following command can be useful to identify it from the list of all the
running processes:

ps -af

The master process should be the parent of a set of node processes. Once we have the
PID we are looking for, we can send the signal to it:

kill -SIGUSR2 <PID>

Now, the output of the application should display something like this:

Restarting workers
Stopping worker: 19389
Started 19407
Stopping worker: 19390
Started 19409

We can try to use autocannon again to verify that we don't have any considerable
impact on the availability of our application during the restart of the workers.

Dealing with stateful communications
The cluster module does not work well with stateful communications where
the application state is not shared between the various instances. This is because
different requests belonging to the same stateful session may potentially be handled
by a different instance of the application. This is not a problem limited only to
the cluster module, but, in general, it applies to any kind of stateless, load balancing
algorithm. Consider, for example, the situation described by Figure 12.3:

Since our program makes use of Unix signals, it will not work
properly on Windows systems (unless you are using the Windows
Subsystem for Linux). Signals are the simplest mechanism to
implement our solution. However, this isn't the only one. In fact,
other approaches include listening for a command coming from a
socket, a pipe, or the standard input.

pm2 (nodejsdp.link/pm2) is a small utility, based on cluster,
which offers load balancing, process monitoring, zero-downtime
restarts, and other goodies.

http://nodejsdp.link/pm2

Chapter 12

[491]

Figure 12.3: An example issue with a stateful application behind a load balancer

The user John initially sends a request to our application to authenticate himself,
but the result of the operation is registered locally (for example, in memory), so only
the instance of the application that receives the authentication request (Instance
A) knows that John is successfully authenticated. When John sends a new request,
the load balancer might forward it to a different instance of the application, which
actually doesn't possess the authentication details of John, hence refusing to perform
the operation. The application we just described cannot be scaled as it is, but luckily,
there are two easy solutions we can apply to solve this problem.

Sharing the state across multiple instances
The first option we have to scale an application using stateful communications
is sharing the state across all the instances.

This can be easily achieved with a shared datastore, such as, for example, a database
like PostgreSQL (nodejsdp.link/postgresql), MongoDB (nodejsdp.link/mongodb),
or CouchDB (nodejsdp.link/couchdb), or, even better, we can use an in-memory
store such as Redis (nodejsdp.link/redis) or Memcached (nodejsdp.link/
memcached).

http://nodejsdp.link/postgresql
http://nodejsdp.link/mongodb
http://nodejsdp.link/couchdb
http://nodejsdp.link/redis
http://nodejsdp.link/memcached
http://nodejsdp.link/memcached

Scalability and Architectural Patterns

[492]

Figure 12.4 outlines this simple and effective solution:

Figure 12.4: Application behind a load balancer using a shared data store

The only drawback of using a shared store for the communication state is that
applying this pattern might require a significant amount of refactoring of the
code base. For example, we might be using an existing library that keeps the
communication state in memory, so we have to figure out how to configure, replace,
or reimplement this library to use a shared store.

In cases where refactoring might not be feasible, for instance, because of too many
changes required or stringent time constraints in making the application more
scalable, we can rely on a less invasive solution: sticky load balancing (or sticky
sessions).

Sticky load balancing
The other alternative we have to support stateful communications is having the
load balancer always routing all of the requests associated with a session to the
same instance of the application. This technique is also called sticky load balancing.

Chapter 12

[493]

Figure 12.5 illustrates a simplified scenario involving this technique:

Figure 12.5: An example illustrating how sticky load balancing works

As we can see from Figure 12.5, when the load balancer receives a request associated
with a new session, it creates a mapping with one particular instance selected by the
load balancing algorithm. The next time the load balancer receives a request from
that same session, it bypasses the load balancing algorithm, selecting the application
instance that was previously associated with the session. The particular technique
we just described involves inspecting the session ID associated with the requests
(usually included in a cookie by the application or the load balancer itself).

A simpler alternative to associate a stateful connection to a single server is by using
the IP address of the client performing the request. Usually, the IP is provided to a
hash function that generates an ID representing the application instance designated
to receive the request. This technique has the advantage of not requiring the
association to be remembered by the load balancer. However, it doesn't work well
with devices that frequently change IP, for example, when roaming on different
networks.

Scalability and Architectural Patterns

[494]

One big problem with sticky load balancing is the fact that it nullifies most of the
advantages of having a redundant system, where all the instances of the application
are the same, and where an instance can eventually replace another one that stopped
working. For these reasons, it is recommended to always try to avoid sticky load
balancing and building applications that maintain session state in a shared store.
Alternatively, where feasible, you can try to build applications that don't require
stateful communications at all; for example, by including the state in the request
itself.

Scaling with a reverse proxy
The cluster module, although very convenient and simple to use, is not
the only option we have to scale a Node.js web application. Traditional techniques
are often preferred because they offer more control and power in highly-available
production environments.

The alternative to using cluster is to start multiple standalone instances of the
same application running on different ports or machines, and then use a reverse
proxy (or gateway) to provide access to those instances, distributing the traffic across
them. In this configuration, we don't have a master process distributing requests to
a set of workers, but a set of distinct processes running on the same machine (using
different ports) or scattered across different machines inside a network. To provide a
single access point to our application, we can use a reverse proxy, a special device or
service placed between the clients and the instances of our application, which takes
any request and forwards it to a destination server, returning the result to the client
as if it was itself the origin. In this scenario, the reverse proxy is also used as a load
balancer, distributing the requests among the instances of the application.

Sticky load balancing is not supported by default by
the cluster module, but it can be added with an npm library
called sticky-session (nodejsdp.link/sticky-session).

For a real example of a library requiring sticky load balancing,
we can mention Socket.IO (nodejsdp.link/socket-io).

http://nodejsdp.link/sticky-session
http://nodejsdp.link/socket-io

Chapter 12

[495]

Figure 12.6 shows a typical multi-process, multi-machine configuration with a reverse
proxy acting as a load balancer on the front:

Figure 12.6: A typical multi-process, multi-machine configuration with a reverse proxy acting as a load balancer

For a Node.js application, there are many reasons to choose this approach in place of
the cluster module:

• A reverse proxy can distribute the load across several machines, not just
several processes.

• The most popular reverse proxies on the market support sticky load
balancing out of the box.

• A reverse proxy can route a request to any available server, regardless of its
programming language or platform.

For a clear explanation of the differences between a reverse proxy
and a forward proxy, you can refer to the Apache HTTP server
documentation at nodejsdp.link/forward-reverse.

http://nodejsdp.link/forward-reverse

Scalability and Architectural Patterns

[496]

• We can choose more powerful load balancing algorithms.
• Many reverse proxies offer additional powerful features such as URL

rewrites, caching, SSL termination point, security features (for example,
denial-of-service protection), or even the functionality of fully-fledged web
servers that can be used to, for example, serve static files.

That said, the cluster module could also be easily combined with a reverse proxy if
necessary, for example, by using cluster to scale vertically inside a single machine
and then using the reverse proxy to scale horizontally across different nodes.

We have many options to implement a load balancer using a reverse proxy. The
following is a list of the most popular solutions:

• Nginx (nodejsdp.link/nginx): This is a web server, reverse proxy, and load
balancer, built upon the non-blocking I/O model.

• HAProxy (nodejsdp.link/haproxy): This is a fast load balancer for TCP/
HTTP traffic.

• Node.js-based proxies: There are many solutions for the implementation
of reverse proxies and load balancers directly in Node.js. This might have
advantages and disadvantages, as we will see later.

• Cloud-based proxies: In the era of cloud computing, it's not rare to utilize a
load balancer as a service. This can be convenient because it requires minimal
maintenance, it's usually highly scalable, and sometimes it can support
dynamic configurations to enable on-demand scalability.

In the next few sections of this chapter, we will analyze a sample configuration using
Nginx. Later on, we will work on building our very own load balancer using nothing
but Node.js!

Load balancing with Nginx
To give you an idea of how reverse proxies work, we will now build a scalable
architecture based on Nginx, but first, we need to install it. We can do that
by following the instructions at nodejsdp.link/nginx-install.

Pattern

Use a reverse proxy to balance the load of an application across
multiple instances running on different ports or machines.

http://nodejsdp.link/nginx
http://nodejsdp.link/haproxy
http://nodejsdp.link/nginx-install

Chapter 12

[497]

Since we are not going to use cluster to start multiple instances of our server,
we need to slightly modify the code of our application so that we can specify
the listening port using a command-line argument. This will allow us to launch
multiple instances on different ports. Let's consider the main module of our example
application (app.js):

import { createServer } from 'http'

const { pid } = process
const server = createServer((req, res) => {
 let i = 1e7; while (i > 0) { i-- }
 console.log(`Handling request from ${pid}`)
 res.end(`Hello from ${pid}\n`)
})

const port = Number.parseInt(
 process.env.PORT || process.argv[2]
) || 8080
server.listen(port, () => console.log(`Started at ${pid}`))

The only difference between this version and the first version of our web server
is that here, we are making the port number configurable through the PORT
environment variable or a command-line argument. This is needed because we
want to be able to start multiple instances of the server and allow them to listen on
different ports.

Another important feature that we won't have available without cluster is
the automatic restart in case of a crash. Luckily, this is easy to fix by using a
dedicated supervisor, that is, an external process that monitors our application and
restarts it if necessary. The following are some possible choices:

• Node.js-based supervisors such as forever (nodejsdp.link/forever)
or pm2 (nodejsdp.link/pm2)

• OS-based monitors such as systemd (nodejsdp.link/
systemd) or runit (nodejsdp.link/runit)

On the latest Ubuntu system, you can quickly install Nginx with
the command sudo apt-get install nginx. On macOS, you
can use brew (nodejsdp.link/brew): brew install nginx. Note
that for the following examples, we will be using the latest version
of Nginx available at the time of writing (1.17.10).

http://nodejsdp.link/forever
http://nodejsdp.link/pm2
http://nodejsdp.link/systemd
http://nodejsdp.link/systemd
http://nodejsdp.link/runit
http://nodejsdp.link/brew

Scalability and Architectural Patterns

[498]

• More advanced monitoring solutions such as monit (nodejsdp.link/monit)
or supervisord (nodejsdp.link/supervisord)

• Container-based runtimes such as Kubernetes (nodejsdp.link/kubernetes),
Nomad (nodejsdp.link/nomad), or Docker Swarm (nodejsdp.link/swarm).

For this example, we are going to use forever, which is the simplest and most
immediate for us to use. We can install it globally by running the following
command:

npm install forever -g

The next step is to start the four instances of our application, all on different ports
and supervised by forever:

forever start app.js 8081
forever start app.js 8082
forever start app.js 8083
forever start app.js 8084

We can check the list of the started processes using the command:

forever list

Now, it's time to configure the Nginx server as a load balancer.

First, we need to create a minimal configuration file in our working directory that we
will call nginx.conf.

You can use forever stopall to stop all the Node.js processes
previously started with forever. Alternatively, you can use
forever stop <id> to stop a specific process from the ones
shown with forever list.

Note that, because Nginx allows you to run multiple applications
behind the same server instance, it is more common to use a global
configuration file, which, in Unix systems, is generally located
under /usr/local/nginx/conf, /etc/nginx or /usr/local/
etc/nginx. Here, by having a configuration file in our working
folder, we are taking a simpler approach. This is ok for the sake of
this demo as we want to run just one application locally, but we
advise you follow the recommended best practices for production
deployments.

http://nodejsdp.link/monit
http://nodejsdp.link/supervisord
http://nodejsdp.link/kubernetes
http://nodejsdp.link/nomad
http://nodejsdp.link/swarm

Chapter 12

[499]

Next, let's write the nginx.conf file and apply the following configuration, which is
the very minimum required to get a working load balancer for our Node.js processes:

daemon off; ## (1)
error_log /dev/stderr info; ## (2)

events { ## (3)
 worker_connections 2048;
}

http { ## (4)
 access_log /dev/stdout;

 upstream my-load-balanced-app {
 server 127.0.0.1:8081;
 server 127.0.0.1:8082;
 server 127.0.0.1:8083;
 server 127.0.0.1:8084;
 }

 server {
 listen 8080;

 location / {
 proxy_pass http://my-load-balanced-app;
 }
 }
}

Let's discuss this configuration together:

1. The declaration daemon off allows us to run Nginx as a standalone process
using the current unprivileged user and by keeping the process running
in the foreground of the current terminal (which allows us to shut it down
using Ctrl + C).

2. We use error_log (and later in the http block, access_log) to stream errors
and access logs respectively to the standard output and standard error, so we
can read the logs in real time straight from our terminal.

3. The events block allows us to configure how network connections
are managed by Nginx. Here, we are setting the maximum number of
simultaneous connections that can be opened by an Nginx worker process
to 2048.

Scalability and Architectural Patterns

[500]

4. The http block allows us to define the configuration for a given application.
In the upstream my-load-balanced-app section, we are defining the list of
backend servers used to handle the network requests. In the server section,
we use listen 8080 to instruct the server to listen on port 8080 and finally,
we specify the proxy_pass directive, which essentially tells Nginx to forward
any request to the server group we defined before (my-load-balanced-app).

That's it! Now, we only need to start Nginx using our configuration file with the
following command:

nginx -c ${PWD}/nginx.conf

Our system should now be up and running, ready to accept requests and balance
the traffic across the four instances of our Node.js application. Simply point your
browser to the address http://localhost:8080 to see how the traffic is balanced
by our Nginx server. You can also try again to load test this application using
autocannon. Since we are still running all the processes in one local machine, your
results should not diverge much from what you got when benchmarking the version
using the cluster module approach.

This example demonstrated how to use Nginx to load balance traffic. For simplicity,
we kept everything locally on our machine, but nonetheless, this was a great exercise
to get us ready to deploy an application on multiple remote servers. If you want to
try to do that, you will essentially have to follow this recipe:

1. Provision n backend servers running the Node.js application (running
multiple instances with a service monitor like forever or by using the
cluster module).

2. Provision a load balancer machine that has Nginx installed and all the
necessary configuration to route the traffic to the n backend servers. Every
process in every server should be listed in the upstream block of your Nginx
configuration file using the correct address of the various machines in the
network.

3. Make your load balancer publicly available on the internet by using a public
IP and possibly a public domain name.

4. Try to send some traffic to the load balancer's public address by using a
browser or a benchmarking tool like autocannon.

Chapter 12

[501]

In this example, we used a predefined number of backend servers. In the next
section, we will explore a technique that allows us to load balance traffic to a
dynamic set of backend servers.

Dynamic horizontal scaling
One important advantage of modern cloud-based infrastructure is the ability to
dynamically adjust the capacity of an application based on the current or predicted
traffic. This is also known as dynamic scaling. If implemented properly, this practice
can reduce the cost of the IT infrastructure enormously while still keeping the
application highly available and responsive.

The idea is simple: if our application is experiencing a performance degradation
caused by a peak in traffic, the system automatically spawns new servers to
cope with the increased load. Similarly, if we see that the allocated resources are
underutilized, we can shut some servers down to reduce the cost of the running
infrastructure. We could also decide to perform scaling operations based on a
schedule; for instance, we could shut down some servers during certain hours of the
day when we know that the traffic will be lighter, and restart them again just before
the peak hours. These mechanisms require the load balancer to always be up-to-date
with the current network topology, knowing at any time which server is up.

Using a service registry
A common pattern to solve this problem is to use a central repository called a service
registry, which keeps track of the running servers and the services they provide.

For simplicity, you can perform all these steps manually by
spinning servers through your cloud provider admin interface
and by using SSH to log in to those. Alternatively, you could
choose tools that allow you to automate these tasks by writing
infrastructure as code such as Terraform (nodejsdp.link/
terraform), Ansible (nodejsdp.link/ansible), and Packer
(nodejsdp.link/packer).

http://nodejsdp.link/terraform
http://nodejsdp.link/terraform
http://nodejsdp.link/ansible
http://nodejsdp.link/packer

Scalability and Architectural Patterns

[502]

Figure 12.7 shows a multiservice architecture with a load balancer on the front,
dynamically configured using a service registry:

Figure 12.7: A multiservice architecture with a load balancer on the front, dynamically configured using a
service registry

The architecture in Figure 12.7 assumes the presence of two services, API and
WebApp. There can be one or many instances of each service, spread across multiple
servers.

When a request to example.com is received, the load balancer checks the prefix of the
request path. If the prefix is /api, the request is load balanced between the available
instances of the API service. In Figure 12.7, we have two instances running on the
server api1.example.com and one instance running on api2.example.com. For all the
other path prefixes, the request is load balanced between the available instances of
the WebApp service. In the diagram, we have only one WebApp instance, which is
running on the server web1.example.com. The load balancer obtains the list of servers
and service instances running on every server using the service registry.

Chapter 12

[503]

For this to work in complete automation, each application instance has to register
itself to the service registry the moment it comes up online and unregister itself
when it stops. This way, the load balancer can always have an up-to-date view
of the servers and the services available on the network.

While this pattern is useful to load balance traffic, it has the added benefit of being
able to decouple service instances from the servers on which they are running. We
can look at the Service Registry pattern as an implementation of the Service Locator
Design pattern applied to network services.

Implementing a dynamic load balancer with
http-proxy and Consul
To support a dynamic network infrastructure, we can use a reverse proxy such
as Nginx or HAProxy: all we need to do is update their configuration using
an automated service and then force the load balancer to pick the changes. For
Nginx, this can be done using the following command line:

nginx -s reload

The same result can be achieved with a cloud-based solution, but we have a third
and more familiar alternative that makes use of our favorite platform.

We all know that Node.js is a great tool for building any sort of network application
and, as we said throughout this book, this is exactly one of its main design goals. So,
why not build a load balancer using nothing but Node.js? This would give us much
more freedom and power and would allow us to implement any sort of pattern or
algorithm straight into our custom-built load balancer, including the one we are
now going to explore: dynamic load balancing using a service registry. Furthermore,
working on this exercise will definitely help us to understand even better how
production-grade products such as Nginx and HAProxy actually work.

Pattern (service registry)

Use a central repository to store an always up-to-date view of the
servers and the services available in a system.

Scalability and Architectural Patterns

[504]

In this example, we are going to use Consul (nodejsdp.link/consul) as the service
registry to replicate the multiservice architecture we saw in Figure 12.7. To do that,
we are going to mainly use three npm packages:

• http-proxy (nodejsdp.link/http-proxy): To simplify the creation of a reverse
proxy/load balancer in Node.js

• portfinder (nodejsdp.link/portfinder): To find a free port in the system
• consul (nodejsdp.link/consul-lib): To interact with Consul

Let's start by implementing our services. These are simple HTTP servers like the ones
we have used so far to test cluster and Nginx, but this time, we want each server to
register itself into the service registry the moment it starts.

Let's see how this looks (file app.js):

import { createServer } from 'http'
import consul from 'consul'
import portfinder from 'portfinder'
import { nanoid } from 'nanoid'

const serviceType = process.argv[2]
const { pid } = process

async function main () {
 const consulClient = consul()

 const port = await portfinder.getPortPromise() // (1)
 const address = process.env.ADDRESS || 'localhost'
 const serviceId = nanoid()

 function registerService () { // (2)
 consulClient.agent.service.register({
 id: serviceId,
 name: serviceType,
 address,
 port,
 tags: [serviceType]
 }, () => {
 console.log(`${serviceType} registered successfully`)
 })
 }

http://nodejsdp.link/consul
http://nodejsdp.link/http-proxy
http://nodejsdp.link/portfinder
http://nodejsdp.link/consul-lib

Chapter 12

[505]

 function unregisterService (err) { // (3)
 err && console.error(err)
 console.log(`deregistering ${serviceId}`)
 consulClient.agent.service.deregister(serviceId, () => {
 process.exit(err ? 1 : 0)
 })
 }

 process.on('exit', unregisterService) // (4)
 process.on('uncaughtException', unregisterService)
 process.on('SIGINT', unregisterService)

 const server = createServer((req, res) => { // (5)
 let i = 1e7; while (i > 0) { i-- }
 console.log(`Handling request from ${pid}`)
 res.end(`${serviceType} response from ${pid}\n`)
 })

 server.listen(port, address, () => {
 registerService()
 console.log(`Started ${serviceType} at ${pid} on port ${port}`)
 })
}

main().catch((err) => {
 console.error(err)
 process.exit(1)
})

In the preceding code, there are some parts that deserve our attention:

1. First, we use portfinder.getPortPromise() to discover a free port in the
system (by default, portfinder starts to search from port 8000). We also allow
the user to configure the address based on the environment variable ADDRESS.
Finally, we generate a random ID to identify this service using nanoid
(nodejsdp.link/nanoid).

2. Next, we declare the registerService() function, which uses the consul
library to register a new service in the registry. The service definition needs
several attributes: id (a unique identifier for the service), name (a generic
name that identifies the service), address and port (to identify how to access
the service), and tags (an optional array of tags that can be used to filter and
group services). We are using serviceType (which we get from the command-
line arguments) to specify the service name and to add a tag. This will allow
us to identify all the services of the same type available in the cluster.

http://nodejsdp.link/nanoid

Scalability and Architectural Patterns

[506]

3. At this point, we define a function called unregisterService(), which allows
us to remove the service we just registered in Consul.

4. We use unregisterService() as a cleanup function so that when the program
is closed (either intentionally or by accident), the service is unregistered from
Consul.

5. Finally, we start the HTTP server for our service on the port discovered
by portfinder and the address configured for the current service. Note that
when the server is started, we make sure to invoke the registerService()
function to make sure that the service is registered for discovery.

With this script, we will be able to start and register different types of applications.

Now, it's time to implement the load balancer. Let's do that by creating a new
module called loadBalancer.js:

import { createServer } from 'http'
import httpProxy from 'http-proxy'
import consul from 'consul'

const routing = [// (1)
 {
 path: '/api',
 service: 'api-service',
 index: 0
 },
 {
 path: '/',
 service: 'webapp-service',
 index: 0
 }
]

const consulClient = consul() // (2)
const proxy = httpProxy.createProxyServer()

const server = createServer((req, res) => {
 const route = routing.find((route) => // (3)
 req.url.startsWith(route.path))
 consulClient.agent.service.list((err, services) => { // (4)
 const servers = !err && Object.values(services)
 .filter(service => service.Tags.includes(route.service))

Chapter 12

[507]

 if (err || !servers.length) {
 res.writeHead(502)
 return res.end('Bad gateway')
 }

 route.index = (route.index + 1) % servers.length // (5)
 const server = servers[route.index]
 const target = `http://${server.Address}:${server.Port}`
 proxy.web(req, res, { target })
 })
})

server.listen(8080, () => {
 console.log('Load balancer started on port 8080')
})

This is how we implemented our Node.js-based load balancer:

1. First, we define our load balancer routes. Each item in the routing array
contains the service used to handle the requests arriving on the
mapped path. The index property will be used to round-robin the requests
of a given service.

2. We need to instantiate a consul client so that we can have access to the
registry. Next, we instantiate an http-proxy server.

3. In the request handler of the server, the first thing we do is match the
URL against our routing table. The result will be a descriptor containing
the service name.

4. We obtain from consul the list of servers implementing the required service.
If this list is empty or there was an error retrieving it, then we return an error
to the client. We use the Tags attribute to filter all the available services and
find the address of the servers that implement the current service type.

5. At last, we can route the request to its destination. We update route.index to
point to the next server in the list, following a round-robin approach. We
then use the index to select a server from the list, passing it to proxy.web(),
along with the request (req) and the response (res) objects. This will simply
forward the request to the server we chose.

It is now clear how simple it is to implement a load balancer using only Node.js and
a service registry, as well as how much flexibility we can have by doing so.

Scalability and Architectural Patterns

[508]

Now, we should be ready to give our system a try, but first, let's install
the Consul server by following the official documentation at nodejsdp.link/consul-
install.

This allows us to start the Consul service registry on our development machine with
this simple command line:

consul agent -dev

Now, we are ready to start the load balancer (using forever to make sure the
application is restarted in case of a crash):

forever start loadBalancer.js

Now, if we try to access some of the services exposed by the load balancer, we will
notice that it returns an HTTP 502 error, because we didn't start any servers yet. Try it
yourself:

curl localhost:8080/api

The preceding command should return the following output:

Bad Gateway

The situation will change if we spawn some instances of our services, for example,
two api-service and one webapp-service:

forever start --killSignal=SIGINT app.js api-service
forever start --killSignal=SIGINT app.js api-service
forever start --killSignal=SIGINT app.js webapp-service

Note that in order to keep the implementation simple, we
intentionally left out some interesting optimization opportunities.
For instance, in this implementation, we are interrogating consul
to get the list of registered services for every single request. This
is something that can add a significant overhead, especially if our
load balancer receives requests with a high frequency. It would be
more efficient to cache the list of services and refresh it on a regular
basis (for instance, every 10 seconds). Another optimization could
be to use the cluster module to run multiple instances of our load
balancer and distribute the load across all the available cores in the
machine.

http://nodejsdp.link/consul-install
http://nodejsdp.link/consul-install

Chapter 12

[509]

Now, the load balancer should automatically see the new servers and start
distributing requests across them. Let's try again with the following command:

curl localhost:8080/api

The preceding command should now return this:

api-service response from 6972

By running this again, we should now receive a message from another server,
confirming that the requests are being distributed evenly among the different
servers:

api-service response from 6979

The advantages of this pattern are immediate. We can now scale our infrastructure
dynamically, on demand, or based on a schedule, and our load balancer will
automatically adjust with the new configuration without any extra effort!

Now that we know how to perform dynamic load balancing using a load balancer
and a service registry, we are ready to explore some interesting alternative
approaches, like peer-to-peer load balancing.

If you want to see the instances managed by forever and stop
some of them you can use the commands forever list and
forever stop. To stop all running instances you can use forever
stopall. Why don't you try to stop one of the running instances of
the api-service to see what happens to the whole application?

Consul offers a convenient web UI available at localhost:8500
by default. Check it out while playing with this example to see
how services appear and disappear as they get registered or
unregistered.

Consul also offers a health check feature to monitor registered
services. This feature could be integrated within our example to
make our infrastructure even more resilient to failures. In fact, if
a service does not respond to a health check, it gets automatically
removed from the registry and therefore, it won't receive traffic
anymore. If you are curious to see how you can implement this
feature, you can check out the official documentation for Checks
at nodejsdp.link/consul-checks.

http://nodejsdp.link/consul-checks

Scalability and Architectural Patterns

[510]

Peer-to-peer load balancing
Using a reverse proxy is almost a necessity when we want to expose a complex
internal network architecture to a public network such as the Internet. It helps hide
the complexity, providing a single access point that external applications can easily
use and rely on. However, if we need to scale a service that is for internal use only,
we can have much more flexibility and control.

Let's imagine having a service, Service A, that relies on Service B to implement its
functionality. Service B is scaled across multiple machines and it's available only
in the internal network. What we have learned so far is that Service A will connect
to Service B using a load balancer, which will distribute the traffic to all the servers
implementing Service B.

However, there is an alternative. We can remove the load balancer from the picture
and distribute the requests directly from the client (Service A), which now becomes
directly responsible for load balancing its requests across the various instances
of Service B. This is possible only if Server A knows the details about the servers
exposing Service B, and in an internal network, this is usually known information.
With this approach, we are essentially implementing peer-to-peer load balancing.

Figure 12.8 compares the two alternatives we just described:

Figure 12.8: Centralized load balancing versus peer-to-peer load balancing

Chapter 12

[511]

This is an extremely simple and effective pattern that enables truly distributed
communications without bottlenecks or single points of failure. Besides that, it also
has the following properties:

• Reduces the infrastructure complexity by removing a network node
• Allows faster communications because messages will travel through one

fewer node
• Scales better because performances are not limited by what the load balancer

can handle

On the other hand, by removing the load balancer, we are actually exposing the
complexity of its underlying infrastructure. Also, each client has to be smarter by
implementing a load balancing algorithm and, possibly, also a way to keep its
knowledge of the infrastructure up to date.

In the next section, we will showcase an example implementing peer-to-peer load
balancing in an HTTP client.

Implementing an HTTP client that can balance
requests across multiple servers
We already know how to implement a load balancer using only Node.js and
distribute incoming requests across the available servers, so implementing the same
mechanism on the client side should not be that different. All we have to do, in fact,
is wrap the client API and augment it with a load balancing mechanism. Take a look
at the following module (balancedRequest.js):

import { request } from 'http'
import getStream from 'get-stream'

const servers = [
 { host: 'localhost', port: 8081 },
 { host: 'localhost', port: 8082 }
]
let i = 0

export function balancedRequest (options) {

Peer-to-peer load balancing is a pattern used extensively in
the ZeroMQ (nodejsdp.link/zeromq) library, which we will use
in the next chapter.

http://nodejsdp.link/zeromq

Scalability and Architectural Patterns

[512]

 return new Promise((resolve) => {
 i = (i + 1) % servers.length
 options.hostname = servers[i].host
 options.port = servers[i].port

 request(options, (response) => {
 resolve(getStream(response))
 }).end()
 })
}

The preceding code is very simple and needs little explanation. We wrapped the
original http.request API so that it overrides the hostname and port of the request
with those selected from the list of available servers using a round-robin algorithm.
Note that, for simplicity, we used the module get-stream (nodejsdp.link/get-
stream) to "accumulate" the response stream into a buffer that will contain the
full response body.

The new wrapped API can then be used seamlessly (client.js):

import { balancedRequest } from './balancedRequest.js'

async function main () {
 for (let i = 0; i < 10; i++) {
 const body = await balancedRequest({
 method: 'GET',
 path: '/'
 })
 console.log(`Request ${i} completed:`, body)
 }
}

main().catch((err) => {
 console.error(err)
 process.exit(1)
})

To run the preceding code, we have to start two instances of the sample server
provided:

node app.js 8081
node app.js 8082

http://nodejsdp.link/get-stream
http://nodejsdp.link/get-stream

Chapter 12

[513]

This is followed by the client application we just built:

node client.js

We should note that each request is sent to a different server, confirming that we are
now able to balance the load without a dedicated load balancer!

In the next section, we will explore the field of containers and container orchestration
and see how, in this specific context, the runtime takes ownership of many scalability
concerns.

Scaling applications using containers
In this section, we will demonstrate how using containers and container
orchestration platforms, such as Kubernetes, can help us to write simpler Node.js
applications that can delegate most of the scaling concerns like load balancing,
elastic scaling, and high availability to the underlying container platform.

Containers and container orchestration platforms constitute a quite broad topic,
largely outside the scope of this book. For this reason, here, we aim to provide
only some basic examples to get you started with this technology using Node.js.
Ultimately, our goal is to encourage you to explore new modern patterns in order
to run and scale Node.js applications.

What is a container?
A container, specifically a Linux container, as standardized by the Open Container
Initiative (OCI) (nodejsdp.link/opencontainers), is defined as "a standard unit
of software that packages up code and all its dependencies so the application runs
quickly and reliably from one computing environment to another."

In other words, by using containers, you can seamlessly package and run
applications on different machines, from a local development laptop on your desk to
a production server in the cloud.

Other than being extremely portable, applications running as containers have the
advantage of having very little overhead when executed. In fact, containers run
almost as fast as running the native application directly on the operating system.

An obvious improvement to the wrapper we created previously
would be to integrate a service registry directly into the client and
obtain the server list dynamically.

http://nodejsdp.link/opencontainers

Scalability and Architectural Patterns

[514]

In simple terms, you can see a container as a standard unit of software that allows
you to define and run an isolated process directly on a Linux operating system.

For their portability and performance, containers are considered a huge step forward
when compared to virtual machines.

There are different ways and tools to create and run an OCI compliant container
for an application. The most popular of them is Docker (nodejsdp.link/docker).

You can install Docker in your system by following the instructions for your
operating system on the official documentation: nodejsdp.link/docker-docs.

Creating and running a container with Docker
Let's rewrite our simple web server application with some minor changes (app.js):

import { createServer } from 'http'
import { hostname } from 'os'

const version = 1
const server = createServer((req, res) => {
 let i = 1e7; while (i > 0) { i-- }
 res.end(`Hello from ${hostname()} (v${version})`)
})
server.listen(8080)

Compared to the previous versions of this web server, here, we send the machine
hostname and the application version back to the user. If you run this server and
make a request, you should get back something like this:

Hello from my-amazing-laptop.local (v1)

Let's see how we can run this application as a container. The first thing we need to
do is create a package.json file for the project:

{
 "name": "my-simple-app",
 "version": "1.0.0",
 "main": "app.js",
 "type": "module",
 "scripts": {
 "start": "node app.js"
 }
}

http://nodejsdp.link/docker
http://nodejsdp.link/docker-docs

Chapter 12

[515]

In order to dockerize our application, we need to follow a two-step process:

• Build a container image
• Run a container instance from the image

To create the container image for our application, we have to define a Dockerfile.
A container image (or Docker image) is the actual package and conforms to the
OCI standard. It contains all the source code and the necessary dependencies and
describes how the application must be executed. A Dockerfile is a file (actually
named Dockerfile) that defines the build script used to build a container image for
an application. So, without further ado, let's write the Dockerfile for our application:

FROM node:14-alpine
EXPOSE 8080
COPY app.js package.json /app/
WORKDIR /app
CMD ["npm", "start"]

Our Dockerfile is quite short, but there are a lot of interesting things here, so let's
discuss them one by one:

• FROM node:14-alpine indicates the base image that we want to use. A base
image allows us to build "on top" of an existing image. In this specific case,
we are starting from an image that already contains version 14 of Node.js.
This means we don't have to be worried about describing how Node.js needs
to be packaged into the container image.

• EXPOSE 8080 informs Docker that the application will be listening for TCP
connections on the port 8080.

• COPY app.js package.json /app/ copies the files app.js and package.json
into the /app folder of the container filesystem. Containers are isolated, so,
by default, they can't share files with the host operating system; therefore,
we need to copy the project files into the container to be able to access and
execute them.

• WORKDIR /app sets the working directory for the container to /app.
• CMD ["npm", "start"] specifies the command that is executed to start the

application when we run a container from an image. Here, we are just
running npm start, which, in turn, will run node app.js, as specified in our
package.json. Remember that we are able to run both node and npm in the
container only because those two executables are made available through the
base image.

Scalability and Architectural Patterns

[516]

Now, we can use the Dockerfile to build the container image with the following
command:

docker build .

This command will look for a Dockerfile in the current working directory and
execute it to build our image.

The output of this command should be something like this:

Sending build context to Docker daemon 7.168kB
Step 1/5 : FROM node:14-alpine
 ---> ea308280893e
Step 2/5 : EXPOSE 8080
 ---> Running in 61c34f4064ab
Removing intermediate container 61c34f4064ab
 ---> 6abfcdf0e750
Step 3/5 : COPY app.js package.json /app/
 ---> 9d498d7dbf8b
Step 4/5 : WORKDIR /app
 ---> Running in 70ea26158cbe
Removing intermediate container 70ea26158cbe
 ---> fc075a421b91
Step 5/5 : CMD ["npm", "start"]
 ---> Running in 3642a01224e8
Removing intermediate container 3642a01224e8
 ---> bb3bd34bac55
Successfully built bb3bd34bac55

The final hash is the ID of our container image. We can use it to run an instance of
the container with the following command:

docker run -it -p 8080:8080 bb3bd34bac55

Note that if you have never used the node:14-alpine image
before (or if you have recently wiped your Docker cache), you will
also see some additional output, indicating the download of this
container image.

Chapter 12

[517]

This command is essentially telling Docker to run the application from image
bb3bd34bac55 in "interactive mode" (which means that it will not go in the
background) and that port 8080 of the container will be mapped to port 8080 of the
host machine (our operating system).

Now, we can access the application at localhost:8080. So, if we use curl to send a
request to the web server, we should get a response similar to the following:

Hello from f2ffa85c8ff8 (v1)

Note that the hostname is now different. This is because every container is running
in a sandboxed environment that, by default, doesn't have access to most of the
resources in the underlying operating system.

At this point, you can stop the container by just pressing Ctrl + C in the terminal
window where the container is running.

What is Kubernetes?
We just ran a Node.js application using containers, hooray! Even though this seems
like a particularly exciting achievement, we have just scratched the surface here. The
real power of containers comes out when building more complicated applications.
For instance, when building applications composed by multiple independent
services that needs to be deployed and coordinated across multiple cloud servers.
In this situation, Docker alone is not sufficient anymore. We need a more complex
system that allows us to orchestrate all the running container instances over the
available machines in our cloud cluster: we need a container orchestration tool.

When building an image, we can use the -t flag to tag the resulting
image. A tag can be used as a more predictable alternative to a
generated hash to identify and run container images. For instance,
if we want to call our container image hello-web:v1, we can use
the following commands:

docker build -t hello-web:v1 .
docker run -it -p 8080:8080 hello-web:v1

When using tags, you might want to follow the conventional
format of image-name:version.

Scalability and Architectural Patterns

[518]

A container orchestration tool has a number of responsibilities:

• It allows us to join multiple cloud servers (nodes) into one logical cluster,
where nodes can be added and removed dynamically without affecting the
availability of the services running in every node.

• It makes sure that there is no downtime. If a container instance stops or
becomes unresponsive to health checks, it will be automatically restarted.
Also, if a node in the cluster fails, the workload running in that node will be
automatically migrated to another node.

• Provides functionalities to implement service discovery and load balancing.
• Provides orchestrated access to durable storage so that data can be persisted

as needed.
• Automatic rollouts and rollbacks of applications with zero downtime.
• Secret storage for sensitive data and configuration management systems.

One of the most popular container orchestration systems is Kubernetes (nodejsdp.
link/kubernetes), originally open sourced by Google in 2014. The name Kubernetes
originates from the Greek "κυβερνήτης", meaning "helmsman" or "pilot", but also
"governor" or more generically, "the one in command". Kubernetes incorporates
years of experience from Google engineers running workloads in the cloud at scale.

One of its peculiarities is the declarative configuration system that allows you
to define an "end state" and let the orchestrator figure out the sequence of steps
necessary to reach the desired state, without disrupting the stability of the services
running on the cluster.

The whole idea of Kubernetes configuration revolves around the concept of "objects".
An object is an element in your cloud deployment, which can be added, removed,
and have its configuration changed over time. Some good examples of Kubernetes
objects are:

• Containerized applications
• Resources for the containers (CPU and memory allocations, persistent

storage, access to devices such as network interfaces or GPU, and so on)
• Policies for the application behavior (restart policies, upgrades, fault-

tolerance)

A Kubernetes object is a sort of "record of intent", which means that once you create
one in a cluster, Kubernetes will constantly monitor (and change, if needed) the state
of the object to make sure it stays compliant with the defined expectation.

http://nodejsdp.link/kubernetes
http://nodejsdp.link/kubernetes

Chapter 12

[519]

A Kubernetes cluster is generally managed through a command-line tool called
kubectl (nodejsdp.link/kubectl-install).

There are several ways to create a Kubernetes cluster for development, testing,
and production purposes. The easiest way to start experimenting with Kubernetes
is through a local single-node cluster, which can be easily created by a tool called
minikube (nodejsdp.link/minikube-install).

Make sure to install both kubectl and minikube on your system, as we will be
deploying our sample containerized app on a local Kubernetes cluster in the next
section!

Deploying and scaling an application on
Kubernetes
In this section, we will be running our simple web server application on a local
minikube cluster. So, make sure you have kubectl and minikube correctly installed
and started.

The first thing that we want to do is build our Docker image and give it a meaningful
name:

docker build -t hello-web:v1 .

If you have configured your environment correctly, the hello-web image will be
available to be used in your local Kubernetes cluster.

Another great way to learn about Kubernetes is by using the
official interactive tutorials (nodejsdp.link/kubernetes-
tutorials).

On macOS and Linux environments, make sure to run minikube
start and eval $(minikube docker-env) to initialize the
working environment. The second command makes sure that
when you use docker and kubectl in your current terminal you
will interact with the local Minikube cluster. If you open multiple
terminals you should run eval $(minikube docker-env) on
every terminal. You can also run minikube dashboard to run
a convenient web dashboard that allows you to visualize and
interact with all the objects in your cluster.

http://nodejsdp.link/kubectl-install
http://nodejsdp.link/minikube-install
http://nodejsdp.link/kubernetes-tutorials
http://nodejsdp.link/kubernetes-tutorials

Scalability and Architectural Patterns

[520]

Creating a Kubernetes deployment
Now, in order to run an instance of this container in the Minikube cluster, we have to
create a deployment (which is a Kubernetes object) using the following command:

kubectl create deployment hello-web --image=hello-web:v1

This should produce the following output:

deployment.apps/hello-web created

This command is basically telling Kubernetes to run an instance of the hello-web:v1
container as an application called hello-web.

You can verify that the deployment is running with the following command:

kubectl get deployments

This should print something like this:

NAME READY UP-TO-DATE AVAILABLE AGE
hello-web 1/1 1 1 7s

This table is basically saying that our hello-web deployment is alive and that there
is one pod allocated for it. A pod is a basic unit in Kubernetes and represents a set of
containers that have to run together in the same Kubernetes node. Containers in the
same pod have shared resources like storage and network. Generally, a pod contains
only one container, but it's not uncommon to see more than one container in a pod
when these containers are running tightly coupled applications.

You can list all the pods running in the cluster with:

kubectl get pods

Using local images is sufficient for local development. When
you are ready to go to production, the best option is to publish
your images to a Docker container registry such as Docker Hub
(nodejsdp.link/docker-hub), Docker Registry (nodejsdp.
link/docker-registry), Google Cloud Container Registry
(nodejsdp.link/gc-container-registry), or Amazon Elastic
Container Registry (nodejsdp.link/ecr). Once you have your
images published to a container registry, you can easily deploy
your application to different hosts without having to rebuild the
corresponding images each time.

http://nodejsdp.link/docker-hub
http://nodejsdp.link/docker-registry
http://nodejsdp.link/docker-registry
http://nodejsdp.link/gc-container-registry
http://nodejsdp.link/ecr

Chapter 12

[521]

This should print something like:

NAME READY STATUS RESTARTS AGE
hello-web-65f47d9997-df7nr 1/1 Running 0 2m19s

Now, in order to be able to access the web server from our local machine, we need to
expose the deployment:

kubectl expose deployment hello-web --type=LoadBalancer --port=8080
minikube service hello-web

The first command tells Kubernetes to create a LoadBalancer object that exposes the
instances of the hello-web app, connecting to port 8080 of every container.

The second command is a minikube helper command that allows us to get the local
address to access the load balancer. This command will also open a browser window
for you, so now you should see the container response in the browser, which should
look like this:

Hello from hello-web-65f47d9997-df7nr (v1)

Scaling a Kubernetes deployment
Now that our application is running and is accessible, let's actually start to
experiment with some of the capabilities of Kubernetes. For instance, why not try to
scale our application by running five instances instead of just one? This is as easy as
running:

kubectl scale --replicas=5 deployment hello-web

Now, kubectl get deployments should show us the following status:

NAME READY UP-TO-DATE AVAILABLE AGE
hello-web 5/5 5 5 9m18s

And kubectl get pods should produce something like this:

NAME READY STATUS RESTARTS AGE
hello-web-65f47d9997-df7nr 1/1 Running 0 9m24s
hello-web-65f47d9997-g98jb 1/1 Running 0 14s
hello-web-65f47d9997-hbdkx 1/1 Running 0 14s
hello-web-65f47d9997-jnfd7 1/1 Running 0 14s
hello-web-65f47d9997-s54g6 1/1 Running 0 14s

Scalability and Architectural Patterns

[522]

If you try to hit the load balancer now, chances are you will see different hostnames
as the traffic gets distributed across the available instances. This should be even more
apparent if you try to hit the load balancer while putting the application under stress,
for instance, by running an autocannon load test against the load balancer URL.

Kubernetes rollouts
Now, let's try out another feature of Kubernetes: rollouts. What if we want to release
a new version of our app?

We can set const version = 2 in our app.js file and create a new image:

docker build -t hello-web:v2 .

At this point, in order to upgrade all the running pods to this new version, we have
to run the following command:

kubectl set image deployment/hello-web hello-web=hello-web:v2 --record

The output of this command should be as follows:

deployment.apps/hello-web image updated

If everything worked as expected, you should now be able to refresh your browser
page and see something like the following:

Hello from hello-web-567b986bfb-qjvfw (v2)

Note the v2 flag there.

What just happened behind the scenes is that Kubernetes started to roll out the new
version of our image by replacing the containers one by one. When a container is
replaced, the running instance is stopped gracefully. This way requests that are
currently in progress can be completed before the container is shut down.

This completes our mini Kubernetes tutorial. The lesson here is that, when using
a container orchestrator platform like Kubernetes, we can keep our application
code quite simple, as we won't have to include concerns such as scaling to multiple
instances or deal with soft rollouts and application restarts. This is the major
advantage of this approach.

Chapter 12

[523]

Of course, this simplicity does not come for free. It is paid by having to learn
and manage the orchestration platform. If you are running small applications in
production, it is probably not worth to incur the complexity and the cost of having
to install and manage a container orchestrator platform like Kubernetes. However,
if you are serving millions of users every day, there is definitely a lot of value in
building and maintaining such a powerful infrastructure.

Another interesting observation is that, when running containers in Kubernetes,
containers are often considered "disposable," which basically means that they could
be killed and restarted at any time. While this might seem like a non-relevant detail,
you should actually take this behavior into account and try to keep your applications
as stateless as possible. In fact, containers, by default, won't retain any change in the
local filesystem, so every time you have to store some persistent information, you
will have to rely on external storage mechanisms such as databases or persistent
volumes.

In the next and last part of this chapter, we will explore some interesting patterns
to decompose a monolithic application into a set of decoupled microservices,
something that is critically important if you have built a monolithic application and
are now suffering from scalability issues.

Decomposing complex applications
So far in this chapter, we have mainly focused our analysis on the X-axis of the scale
cube. We saw how it represents the easiest and most immediate way to distribute the
load and scale an application, also improving its availability. In the following section,
we are going to focus on the Y-axis of the scale cube, where applications are scaled
by decomposing them by functionality and service. As we will learn, this technique
allows us to scale not only the capacity of an application, but also, and most
importantly, its complexity.

If you want to clean up your system from the containers you just
ran in the preceding examples and stop minikube, you can do so
with the following commands:

kubectl scale --replicas=0 deployment hello-web
kubectl delete -n default service hello-web
minikube stop

Scalability and Architectural Patterns

[524]

Monolithic architecture
The term monolithic might make us think of a system without modularity, where
all the services of an application are interconnected and almost indistinguishable.
However, this is not always the case. Often, monolithic systems have a highly
modular architecture and a good level of decoupling between their internal
components.

A perfect example is the Linux OS kernel, which is part of a category
called monolithic kernels (in perfect opposition with its ecosystem and the Unix
philosophy). Linux has thousands of services and modules that we can load and
unload dynamically, even while the system is running. However, they all run
in kernel mode, which means that a failure in any of them could bring the entire
OS down (have you ever seen a kernel panic?). This approach is opposite to the
microkernel architecture, where only the core services of the operating system run in
kernel mode, while the rest run in user mode, usually each one with its own process.
The main advantage of this approach is that a problem in any of these services would
more likely cause it to crash in isolation, instead of affecting the stability of the
entire system.

It's remarkable how these design principles, which are more than 30 years old, can
still be applied today and in totally different environments. Modern monolithic
applications are comparable to monolithic kernels: if any of their components fail,
the entire system is affected, which, translated into Node.js terms, means that all the
services are part of the same code base and run in a single process (when not cloned).

The Torvalds-Tanenbaum debate on kernel design is probably one
of the most famous flame wars in the history of computer science,
where one of the main points of dispute was exactly monolithic
versus microkernel design. You can find a web version of the
discussion (it originally appeared on Usenet) at nodejsdp.link/
torvalds-tanenbaum.

http://nodejsdp.link/torvalds-tanenbaum
http://nodejsdp.link/torvalds-tanenbaum

Chapter 12

[525]

Figure 12.9 shows an example monolithic architecture:

Figure 12.9: Example of a monolithic architecture

Figure 12.9 shows the architecture of a typical e-commerce application. Its structure
is modular: we have two different frontends, one for the main store and another for
the administration interface. Internally, we have a clear separation of the services
implemented by the application. Each service is responsible for a specific portion of
the application business logic: Products, Cart, Checkout, Search, and Authentication
and Users. However, the preceding architecture is monolithic since every module is
part of the same codebase and runs as part of a single application. A failure in any of
its components can potentially tear down the entire online store.

Another problem with this type of architecture is the interconnection between
its modules; the fact that they all live inside the same application makes it very
easy for a developer to build interactions and coupling between modules. For
example, consider the use case of when a product is being purchased: the Checkout
module has to update the availability of a Product object, and if those two modules
are in the same application, it's too easy for a developer to just obtain a reference
to a Product object and update its availability directly. Maintaining a low coupling
between internal modules is very hard in a monolithic application, partly because the
boundaries between them are not always clear or properly enforced.

Scalability and Architectural Patterns

[526]

A high coupling is often one of the main obstacles to the growth of an application
and prevents its scalability in terms of complexity. In fact, an intricate dependency
graph means that every part of the system is a liability, it has to be maintained for
the entire life of the product, and any change should be carefully evaluated because
every component is like a wooden block in a Jenga tower: moving or removing
one of them can cause the entire tower to collapse. This often results in building
conventions and development processes to cope with the increasing complexity
of the project.

The microservice architecture
Now, we are going to reveal the most important pattern in Node.js for writing big
applications: avoid writing big applications. This seems like a trivial statement, but
it's an incredibly effective strategy to scale both the complexity and the capacity
of a software system. So, what's the alternative to writing big applications? The
answer is in the Y-axis of the scale cube: decomposition and splitting by service and
functionality. The idea is to break down an application into its essential components,
creating separate, independent applications. It is practically the opposite of a
monolithic architecture. This fits perfectly with the Unix philosophy and the Node.js
principles we discussed at the beginning of the book; in particular, the motto "make
each program do one thing well."

Microservice architecture is, today, the main reference pattern for this type of
approach, where a set of self-sufficient services replace big monolithic applications.
The prefix "micro" means that the services should be as small as possible, but always
within reasonable limits. Don't be misled by thinking that creating an architecture
with a hundred different applications exposing only one web service is necessarily
a good choice. In reality, there is no strict rule on how small or big a service should
be. It's not the size that matters in the design of a microservice architecture; instead,
it's a combination of different factors, mainly loose coupling, high cohesion,
and integration complexity.

An example of a microservice architecture
Let's now see what the monolithic e-commerce application would look like using
a microservice architecture:

Chapter 12

[527]

Figure 12.10: An example implementation of an e-commerce system using the Microservice pattern

As we can see from Figure 12.10, each fundamental component of the e-commerce
application is now a self-sustaining and independent entity, living in its own context,
with its own database. In practice, they are all independent applications exposing a
set of related services.

The data ownership of a service is an important characteristic of the microservice
architecture. This is why the database also has to be split to maintain the proper level
of isolation and independence. If a unique shared database is used, it would become
much easier for the services to work together; however, this would also introduce a
coupling between the services (based on data), nullifying some of the advantages of
having different applications.

Scalability and Architectural Patterns

[528]

The dashed lines connecting all the nodes tells us that, in some way, they have to
communicate and exchange information for the entire system to be fully functional.
As the services do not share the same database, there is more communication
involved to maintain the consistency of the whole system. For example,
the Checkout service needs to know some information about Products, such as the
price and restrictions on shipping, and at the same time, it needs to update the data
stored in the Products service such as the product's availability when the checkout
is complete. In Figure 12.10, we tried to represent the way the nodes communicate
generic. Surely, the most popular strategy is using web services, but as we will see
later, this is not the only option.

Microservices – advantages and disadvantages
In this section, we are going to highlight some of the advantages and
disadvantages of implementing a microservice architecture. As we will see, this
approach promises to bring a radical change in the way we develop our applications,
revolutionizing the way we see scalability and complexity, but on the other hand, it
introduces new nontrivial challenges.

Every service is expendable
The main technical advantage of having each service living in its own application
context is that crashes do not propagate to the entire system. The goal is to build
truly independent services that are smaller, easier to change, or can even be rebuilt
from scratch. If, for example, the Checkout service of our e-commerce application
suddenly crashes because of a serious bug, the rest of the system would continue
to work as normal. Some functionality may be affected; for example, the ability to
purchase a product, but the rest of the system would continue to work.

Pattern (microservice architecture)

Split a complex application by creating several small, self-
contained services.

Martin Fowler wrote a great article about microservices that you
can find at nodejsdp.link/microservices.

http://nodejsdp.link/microservices

Chapter 12

[529]

Also, imagine if we suddenly realized that the database or the programming
language we used to implement a component was not a good design decision. In
a monolithic application, there would be very little we could do to change things
without affecting the entire system. Instead, in a microservice architecture, we could
more easily reimplement the entire service from scratch, using a different database
or platform, and the rest of the system would not even notice it, as long as the new
implementation maintains the same interface to the rest of the system.

Reusability across platforms and languages
Splitting a big monolithic application into many small services allows us to create
independent units that can be reused much more easily. Elasticsearch (nodejsdp.
link/elasticsearch) is a great example of a reusable search service. ORY (nodejsdp.
link/ory) is another example of a reusable open source technology that provides a
complete authentication and authorization service that can be easily integrated into a
microservice architecture.

The main advantage of the microservice approach is that the level of information
hiding is usually much higher compared to monolithic applications. This is possible
because the interactions usually happen through a remote interface such as a web
API or a message broker, which makes it much easier to hide implementation
details and shield the client from changes in the way the service is implemented or
deployed. For example, if all we have to do is invoke a web service, we are shielded
from the way the infrastructure behind is scaled, from what programming language
it uses, from what database it uses to store its data, and so on. All these decisions can
be revisited and adjusted as needed, with potentially no impact on the rest of the
system.

A way to scale the application
Going back to the scale cube, it's clear that microservices are equivalent to scaling
an application along the Y-axis, so it's already a solution for distributing the
load across multiple machines. Also, we should not forget that we can combine
microservices with the other two dimensions of the cube to scale the application
even further. For example, each service could be cloned to handle more traffic,
and the interesting aspect is that they can be scaled independently, allowing better
resource management.

At this point, it would look like microservices are the solution to all our problems.
However, this is far from being true. Let's see the challenges we face using
microservices.

http://nodejsdp.link/elasticsearch
http://nodejsdp.link/elasticsearch
http://nodejsdp.link/ory
http://nodejsdp.link/ory

Scalability and Architectural Patterns

[530]

The challenges of microservices
Having more nodes to manage introduces a higher complexity in terms of
integration, deployment, and code sharing: it fixes some of the pains of traditional
architectures, but it also opens up many new questions. How do we make the
services interact? How can we keep sanity with deploying, scaling, and monitoring
such a high number of applications? How can we share and reuse code between
services?

Fortunately, cloud services and modern DevOps methodologies can provide some
answers to those questions, and also, using Node.js can help a lot. Its module system
is a perfect companion to share code between different projects. Node.js was made to
be a node in a distributed system such as those of a microservice architecture.

In the following sections, we will introduce some integration patterns that can help
with managing and integrating services in a microservice architecture.

Integration patterns in a microservice
architecture
One of the toughest challenges of microservices is connecting all the nodes
to make them collaborate. For example, the Cart service of our e-commerce
application would make little sense without some Products to add, and
the Checkout service would be useless without a list of products to buy (a cart).
As we already mentioned, there are also other factors that necessitate an interaction
between the various services. For example, the Search service has to know
which Products are available and must also ensure it keeps its information up to
date. The same can be said about the Checkout service, which has to update the
information about Product availability when a purchase is completed.

When designing an integration strategy, it's also important to consider
the coupling that it's going to introduce between the services in the system. We
should not forget that designing a distributed architecture involves the same
practices and principles we use locally when designing a module or subsystem.
Therefore, we also need to take into consideration properties such as the reusability
and extensibility of the service.

Chapter 12

[531]

The API proxy
The first pattern we are going to show makes use of an API proxy (also commonly
identified as an API gateway), a server that proxies the communications between a
client and a set of remote APIs. In a microservice architecture, its main purpose is to
provide a single access point for multiple API endpoints, but it can also offer load
balancing, caching, authentication, and traffic limiting, all of which are features that
prove to be very useful to implement a solid API solution.

This pattern should not be new to us since we already saw it in action in this chapter
when we built the custom load balancer with http-proxy and consul. For that
example, our load balancer was exposing only two services, and then, thanks to
a service registry, it was able to map a URL path to a service and hence to a list of
servers. An API proxy works in the same way; it is essentially a reverse proxy and
often also a load balancer, specifically configured to handle API requests. Figure 12.11
shows how we can apply such a solution to our e-commerce application:

Figure 12.11: Using the API Proxy pattern in an e-commerce application

From the preceding diagram, it should be clear how an API proxy can hide the
complexity of its underlying infrastructure. This is really handy in a microservice
infrastructure, as the number of nodes may be high, especially if each service is
scaled across multiple machines. The integration achieved by an API proxy is
therefore only structural since there is no semantic mechanism. It simply provides
a familiar monolithic view of a complex microservice infrastructure.

Scalability and Architectural Patterns

[532]

Since the API Proxy pattern essentially abstracts the complexity of connecting to all
the different APIs in the system, it might also allow for some freedom to restructure
the various services. Maybe, as your requirements change, you will need to split
an existing microservice into two or more decoupled microservices or, conversely,
you might realize that, in your business context, it's better to join two or more
services together. In both cases, the API Proxy pattern will allow you to make all the
necessary changes with potentially no impact on the upstream systems accessing the
data through the proxy.

API orchestration
The pattern we are going to describe next is probably the most natural and explicit
way to integrate and compose a set of services, and it's called API orchestration.
Daniel Jacobson, VP of Engineering for the Netflix API, in one of his blog posts
(nodejsdp.link/orchestration-layer), defines API orchestration as follows:

"An API Orchestration Layer (OL) is an abstraction layer that takes generically-
modeled data elements and/or features and prepares them in a more specific way for
a targeted developer or application."

The "generically modeled elements and/or features" fit the description of a service in
a microservice architecture perfectly. The idea is to create an abstraction to connect
those bits and pieces to implement new services specific to a particular application.

The ability to enable incremental change in an architecture over
time is a very important characteristic in modern distributed
systems. If you are interested in studying this broad subject in
greater depth, we recommend the book Building Evolutionary
Architectures: nodejsdp.link/evolutionary-architectures.

http://nodejsdp.link/orchestration-layer
http://nodejsdp.link/evolutionary-architectures

Chapter 12

[533]

Let's see an example using the e-commerce application. Refer to Figure 12.12:

Figure 12.12: An example usage of an orchestration layer to interact with multiple microservices

Figure 12.12 shows how the Store frontend application uses an orchestration layer
to build more complex and specific features by composing and orchestrating
existing services. The described scenario takes, as an example, a hypothetical
completeCheckout() service that is invoked the moment a customer clicks
the Pay button at the end of the checkout.

Scalability and Architectural Patterns

[534]

The figure shows how completeCheckout() is a composite operation made of three
different steps:

1. First, we complete the transaction by invoking checkoutService/pay.
2. Then, when the payment is successfully processed, we need to tell the Cart

service that the items were purchased and that they can be removed from the
cart. We do that by invoking cartService/delete.

3. Also, when the payment is complete, we need to update the
availability of the products that were just purchased. This is done
through productsService/update.

As we can see, we took three operations from three different services and we built
a new API that coordinates the services to maintain the entire system in a consistent
state.

Another common operation performed by the API Orchestration Layer is data
aggregation, or in other words, combining data from different services into a
single response. Imagine we wanted to list all the products contained in a cart.
In this case, the orchestration would need to retrieve the list of product IDs from
the Cart service, and then retrieve the complete information about the products from
the Products service. The ways in which we can combine and coordinate services is
infinite, but the important pattern to remember is the role of the orchestration layer,
which acts as an abstraction between a number of services and a specific application.

The orchestration layer is a great candidate for a further functional splitting. It is, in
fact, very common to have it implemented as a dedicated, independent service, in
which case it takes the name of API Orchestrator. This practice is perfectly in line
with the microservice philosophy.

Chapter 12

[535]

Figure 12.13 shows this further improvement of our architecture:

Figure 12.13: An application of the API Orchestrator pattern for our e-commerce example

Scalability and Architectural Patterns

[536]

Creating a standalone orchestrator, as shown in the previous figure, can help
in decoupling the client application (in our case, the Store frontend) from the
complexity of the microservice infrastructure. This is similar to the API proxy,
but there is a crucial difference: an orchestrator performs a semantic integration of
the various services, it's not just a naïve proxy, and it often exposes an API that is
different from the one exposed by the underlying services.

Integration with a message broker
The Orchestrator pattern gave us a mechanism to integrate the various services in an
explicit way. This has both advantages and disadvantages. It is easy to design, easy
to debug, and easy to scale, but unfortunately, it has to have a complete knowledge
of the underlying architecture and how each service works. If we were talking
about objects instead of architectural nodes, the orchestrator would be an anti-
pattern called God object, which defines an object that knows and does too much,
which usually results in high coupling, low cohesion, but most importantly, high
complexity.

The pattern we are now going to show tries to distribute, across the services, the
responsibility of synchronizing the information of the entire system. However, the
last thing we want to do is create direct relationships between services, which would
result in high coupling and a further increase in the complexity of the system, due to
the increasing number of interconnections between nodes. The goal is to keep every
service decoupled: every service should be able to work, even without the rest of the
services in the system or in combination with new services and nodes.

The solution is to use a message broker, a system capable of decoupling the sender
from the receiver of a message, allowing us to implement a Centralized Publish/
Subscribe pattern. This is, in practice, an implementation of the Observer pattern
for distributed systems. We will talk more about this pattern later in Chapter 13,
Messaging and Integration Patterns. Figure 12.14 shows an example of how this applies
to the e-commerce application:

Chapter 12

[537]

Figure 12.14: Using a message broker to distribute events in our e-commerce application

As we can see from Figure 12.14, the client of the Checkout service, which is the
frontend application, does not need to carry out any explicit integration with the
other services.

Scalability and Architectural Patterns

[538]

All it has to do is invoke checkoutService/pay to complete the checkout process
and take the money from the customer; all the integration work happens in the
background:

1. The Store frontend invokes the checkoutService/pay operation on
the Checkout service.

2. When the operation completes, the Checkout service generates an event,
attaching the details of the operation, that is, the cartId and the list
of products that were just purchased. The event is published into the
message broker. At this point, the Checkout service does not know who is
going to receive the message.

3. The Cart service is subscribed to the broker, so it's going to receive
the purchased event that was just published by the Checkout service.
The Cart service reacts by removing the cart identified with the ID contained
in the message from its database.

4. The Products service was subscribed to the message broker as well, so it
receives the same purchased event. It then updates its database based on this
new information, adjusting the availability of the products included in the
message.

This whole process happens without any explicit intervention from external entities
such as an orchestrator. The responsibility of spreading the knowledge and keeping
information in sync is distributed across the services themselves. There is no
god service that has to know how to move the gears of the entire system, since each
service is in charge of its own part of the integration.

The message broker is a fundamental element used to decouple the services and
reduce the complexity of their interaction. It might also offer other interesting
features, such as persistent message queues and guaranteed ordering of the
messages. We will talk more about this in the next chapter.

Summary
In this chapter, we learned how to design Node.js architectures that scale both in
capacity and complexity. We saw how scaling an application is not only about
handling more traffic or reducing the response time, but it's also a practice to apply
whenever we want better availability and tolerance to failures. We saw how these
properties often are on the same wavelength, and we understood that scaling early
is not a bad practice, especially in Node.js, which allows us to do it easily and with
few resources.

Chapter 12

[539]

The scale cube taught us that applications can be scaled across three dimensions.
Throughout this chapter, we focused on the two most important dimensions,
the X-and Y-axes, allowing us to discover two essential architectural patterns,
namely, load balancing and microservices. You should now know how to start
multiple instances of the same Node.js application, how to distribute traffic across
them, and how to exploit this setup for other purposes, such as fail tolerance and
zero-downtime restarts. We also analyzed how to handle the problem of dynamic
and auto-scaled infrastructures. With this, we saw that a service registry can really
come in useful for those situations. We learned how to achieve these goals by using
plain Node.js, external load balancers like Nginx, and service discovery systems like
Consul. We also learned the basics of Kubernetes.

At this point, we should have got to grips with some very practical approaches to be
able to face scalability much more fearlessly then before.

However, cloning and load balancing cover only one dimension of the scale cube,
so we moved our analysis to another dimension, studying in more detail what it
means to split an application by its constituent services by building a microservice
architecture. We saw how microservices enable a complete revolution in how a
project is developed and managed, providing a natural way to distribute the load
of an application and split its complexity. However, we learned that this also means
shifting the complexity from how to build a big monolithic application to how to integrate
a set of services. This last aspect is where we focused the last part of our analysis,
showing some of the architectural solutions to integrate a set of independent
services.

In the next and last chapter of this book, we will have the chance to complete our
Node.js Design Patterns journey by analyzing the messaging patterns we discussed
in this chapter, in addition to more advanced integration techniques that are useful
when implementing complex distributed architectures.

Exercises
• 12.1 A scalable book library: Revisit the book library application we built

in Chapter 10, Universal JavaScript for Web Applications, reconsidering it after
what we learned in this chapter. Can you make our original implementation
more scalable? Some ideas might be to use the cluster module to run
multiple instances of the server, making sure you handle failures by
restarting workers that might accidentally die. Alternatively, why not try to
run the entire application on Kubernetes?

Scalability and Architectural Patterns

[540]

• 12.2 Exploring the Z-axis: Throughout this chapter, we did not show you any
examples about how to shard data across multiple instances, but we explored
all the necessary patterns to build an application that achieves scalability
along the Z-axis of the scale cube. In this exercise, you are challenged to
build a REST API that allows you to get a list of (randomly generated) people
whose first name starts with a given letter. You could use a library like faker
(nodejsdp.link/faker) to generate a sample of random people, and then
you could store this data in different JSON files (or different databases),
splitting the data into three different groups. For instance, you might have
three groups called A-D, E-P, and Q-Z. Ada will go in the first group, Peter
in the second, and Ugo in the third. Now, you can run one or more instances
of a web server for every group, but you should expose only one public API
endpoint to be able to retrieve all the people whose names starts with a given
letter (for instance, /api/people/byFirstName/{letter}). Hint: You could use
just a load balancer and map all the possible letters to the respective backend
of the instances that are responsible for the associated group. Alternatively,
you could create an API orchestration layer that encodes the mapping logic
and redirects the traffic accordingly. Can you also throw a service discovery
tool into the mix and apply dynamic load balancing, so that groups receiving
more traffic can scale as needed?

• 12.3 Music addiction: Imagine you have to design the architecture of a
service like Spotify or Apple Music. Can you try to design this service as a
collection of microservices by applying some of the principles discussed in
this chapter? Bonus points if you can actually implement a minimal version
of this idea with Node.js! If this turns out to be the next big startup idea and
makes you a millionaire, well… don't forget to thank the authors of this
book. :)

http://nodejsdp.link/faker

[541]

13
Messaging and

Integration Patterns
If scalability is about distributing systems, integration is about connecting them. In
the previous chapter, we learned how to distribute an application, fragmenting it
across several processes and machines. For this to work properly, all those pieces
have to communicate in some way and, hence, they have to be integrated.

There are two main techniques to integrate a distributed application: one is to use
shared storage as a central coordinator and keeper of all the information, the other
one is to use messages to disseminate data, events, and commands across the nodes
of the system. This last option is what really makes the difference when scaling
distributed systems, and it's also what makes this topic so fascinating and sometimes
complex.

Messages are used in every layer of a software system. We exchange messages to
communicate on the Internet; we can use messages to send information to other
processes using pipes; we can use messages within an application as an alternative
to direct function invocation (the Command pattern), and also device drivers use
messages to communicate with the hardware. Any discrete and structured data
that is used as a way to exchange information between components and systems
can be seen as a message. However, when dealing with distributed architectures,
the term messaging system is used to describe a specific class of solutions, patterns,
and architectures that are meant to facilitate the exchange of information over
the network.

Messaging and Integration Patterns

[542]

As we will see, several traits characterize these types of systems. We might choose to
use a broker versus a peer-to-peer structure, we might use a request/reply message
exchange or one-way type of communication, or we might use queues to deliver our
messages more reliably; the scope of the topic is really broad. The book Enterprise
Integration Patterns by Gregor Hohpe and Bobby Woolf gives us an idea about
the vastness of the topic. Historically, it is considered the Bible of messaging and
integration patterns and has more than 700 pages describing 65 different integration
patterns. In this final chapter, we will explore the most important of those well-
known patterns—plus some more modern alternatives—considering them from
the perspective of Node.js and its ecosystem.

To sum up, in this chapter, we will learn about the following topics:

• The fundamentals of a messaging system
• The Publish/Subscribe pattern
• Task distribution patterns and pipelines
• Request/reply patterns

Let's begin with the fundamentals.

Fundamentals of a messaging system
When talking about messages and messaging systems, there are four fundamental
elements to take into consideration:

• The direction of the communication, which can be one-way only
or a request/reply exchange

• The purpose of the message, which also determines its content
• The timing of the message, which can be sent and received in-context

(synchronously) or out-of-context (asynchronously)
• The delivery of the message, which can happen directly or via a broker

In the sections that follow, we are going to formalize these aspects to provide
a base for our later discussions.

One way versus request/reply patterns
The most fundamental aspect in a messaging system is the direction of the
communication, which often also determines its semantics.

Chapter 13

[543]

The simplest communication pattern is when the message is pushed one way from
a source to a destination; this is a trivial situation, and it doesn't need much
explanation:

Figure 13.1: One-way communication

A typical example of one-way communication is an email or a web server that sends
a message to a connected browser using WebSockets, or a system that distributes
tasks to a set of workers.

On the other side, we have the Request/Reply exchange pattern, where the message
in one direction is always matched (excluding error conditions) by a message in the
opposite direction. A typical example of this exchange pattern is the invocation of
a web service or sending a query to a database. The following diagram shows this
simple and well-known scenario:

Figure 13.2: Request/Reply message exchange pattern

The Request/Reply pattern might seem a trivial pattern to implement, however, as
we will see later, it becomes more complicated when the communication channel is
asynchronous or involves multiple nodes. Take a look at the example represented in
the next diagram:

Figure 13.3: Multi-node request/reply communication

Messaging and Integration Patterns

[544]

With the setup shown in Figure 13.3, we can better appreciate the complexity of
some request/reply patterns. If we consider the direction of the communication
between any two nodes, we can surely say that it is one way. However, from a
global point of view, the initiator sends a request and in turn receives an associated
response, even if from a different node. In these situations, what really differentiates
a Request/Reply pattern from a bare one-way loop is the relationship between the
request and the reply, which is kept in the initiator. The reply is usually handled in
the same context as the request.

Message types
A message is essentially a means to connect different software components and
there are different reasons for doing so: it might be because we want to obtain some
information held by another system or component, to execute operations remotely,
or to notify some peers that something has just happened.

The message content will also vary depending on the reason for the communication.
In general, we can identify three types of messages, depending on their purpose:

• Command Messages
• Event Messages
• Document Messages

Command Messages
You should already be familiar with the Command Message as it's essentially
a serialized Command object (we learned about this in the Command section in
Chapter 9, Behavioral Design Patterns)

The purpose of this type of message is to trigger the execution of an action
or a task on the receiver. For this to be possible, the Command Message has to
contain the essential information to run the task, which usually includes the name
of the operation and a list of arguments. The Command Message can be used to
implement remote procedure call (RPC) systems, distributed computations, or
can be more simply used to request some data. RESTful HTTP calls are simple
examples of commands; each HTTP verb has a specific meaning and is associated
with a precise operation: GET, to retrieve the resource; POST, to create a new one; PUT/
PATCH, to update it; and DELETE, to destroy it.

Chapter 13

[545]

Event Messages
An Event Message is used to notify another component that something has occurred.
It usually contains the type of the event and sometimes also some details such as the
context, the subject, or the actor involved.

In web development, we are using an Event Message when, for example,
we leverage WebSockets to send notifications from the server to the client
to communicate changes to some data or mutations in the state of the system.

Events are a very important integration mechanism in distributed applications,
as they enable us to keep all the nodes of the system on the same page.

Document Messages
The Document Message is primarily meant to transfer data between components
and machines. A typical example is a message used to transfer the results of
a database query.

The main characteristic that differentiates a Document Message from a Command
Message (which might also contain data) is that the message does not contain any
information that tells the receiver what to do with the data. On the other hand, the
main difference between a Document Message and an Event Message is the absence
of an association with a particular occurrence with something that happened. Often,
the replies to Command Messages are Document Messages, as they usually contain
only the data that was requested or the result of an operation.

Now that we know how to categorize the semantics of a message, let's learn about
the semantic of the communication channel used to move our messages around.

Asynchronous messaging, queues,
and streams
At this point in the book, you should already be familiar with the characteristics of
an asynchronous operation. Well, it turns out that the same principles can be applied
to messaging and communications.

We can compare synchronous communications to a phone call: the two peers
must be connected to the same channel at the same time and they should exchange
messages in real time. Normally, if we want to call someone else, we either need
another phone or terminate the ongoing communication to start a new one.

Messaging and Integration Patterns

[546]

Asynchronous communication is similar to an SMS: it doesn't require the recipient
to be connected to the network the moment we send it; we might receive a response
immediately or after an unknown delay, or we might not receive a response at all.
We might send multiple SMSes to multiple recipients one after the other and receive
their responses (if any) in any order. In short, we have better parallelism with the use
of fewer resources.

Another important characteristic of asynchronous communications is that the
messages can be stored and then delivered as soon as possible or at a later time.
This can be useful when the receiver is too busy to handle new messages or when
we want to guarantee delivery. In messaging systems, this is made possible using
a message queue, a component that mediates the communication between the
producer of the messages and the consumer, storing any message before it gets
delivered to its destination, as shown in the following diagram:

Figure 13.4: A message queue

If for any reason the consumer crashes, disconnects from the network, or experiences
a slowdown, the messages are accumulated in the queue and dispatched as soon as
the consumer comes back online. The queue can be located in the producer, or be
split between the producer and the consumer (in peer-to-peer architectures), or live
in a dedicated external system acting as middleware for the communication (broker).

Another data structure that has a similar (but not the same!) goal as a message queue
is the log. A log is an append-only data structure, which is durable and whose
messages can be read as they arrive or by accessing its history. In the context of
messaging and integration systems, this is also known as a data stream.

Compared to a queue, in a stream, messages are not removed when they are
retrieved or processed. This way, consumers can retrieve the messages as they
arrive or can query the stream at any time to retrieve past messages. This means
that a stream provides more freedom when it comes to accessing the messages,
while queues usually expose only one message at a time to their consumers. Most
importantly, a stream can be shared by more than one consumer, which can access
the messages (even the same messages) using different approaches.

Chapter 13

[547]

Figure 13.5 gives you an idea of the structure of a stream compared to that of a
message queue:

Figure 13.5: A stream

You will be able to better appreciate the difference between a queue and a stream
later in the chapter when we implement a sample application using both approaches.

The final fundamental element to consider in a messaging system is the way the
nodes of the system are connected together, which can be directly or through an
intermediary.

Peer-to-peer or broker-based messaging
Messages can be delivered directly to the receiver in a peer-to-peer fashion, or
through a centralized intermediary system called a message broker. The main role of
the broker is to decouple the receiver of the message from the sender. The following
diagram shows the architectural difference between the two approaches:

Figure 13.6: Peer-to-peer communication versus message brokering

Messaging and Integration Patterns

[548]

In a peer-to-peer architecture, every node is directly responsible for the delivery
of the message to the receiver. This implies that the nodes have to know the address
and port of the receiver and they have to agree on a protocol and message format.
The broker eliminates these complexities from the equation: each node can be totally
independent and can communicate with an unspecified number of peers without
directly knowing their details.

A broker can also act as a bridge between different communication
protocols. For example, the popular RabbitMQ broker (nodejsdp.link/
rabbitmq) supports Advanced Message Queuing Protocol (AMQP), Message
Queue Telemetry Transport (MQTT), and Simple/Streaming Text Orientated
Messaging Protocol (STOMP), enabling multiple applications supporting different
messaging protocols to interact.

Besides the advantages in terms of decoupling and interoperability, a broker can
offer additional features such as persistent queues, routing, message transformations,
and monitoring, without mentioning the broad range of messaging patterns that
many brokers support out of the box.

Of course, nothing prevents us from implementing all these features using a
peer-to-peer architecture, but unfortunately, there is much more effort involved.
Nonetheless, there might be different reasons for choosing a peer-to-peer approach
instead of a broker:

• By removing the broker, we are removing a single point of failure from the
system

• A broker has to be scaled, while in a peer-to-peer architecture we only need
to scale the single nodes of the application

• Exchanging messages without intermediaries can greatly reduce the latency
of the communication

By using a peer-to-peer messaging system we can have much more flexibility
and power because we are not bound to any particular technology, protocol,
or architecture.

MQTT (nodejsdp.link/mqtt) is a lightweight
messaging protocol, specifically designed for machine-
to-machine communications (such as the Internet of
things). AMQP (nodejsdp.link/amqp) is a more complex
messaging protocol, designed to be an open source alternative to
proprietary messaging middleware. STOMP (nodejsdp.link/
stomp) is a lightweight text-based protocol, which comes from "the
HTTP school of design". All three are application layer protocols
and are based on TCP/IP.

http://nodejsdp.link/rabbitmq
http://nodejsdp.link/rabbitmq
http://nodejsdp.link/mqtt
http://nodejsdp.link/amqp
http://nodejsdp.link/stomp
http://nodejsdp.link/stomp

Chapter 13

[549]

Now that we know the basics of a messaging system, let's explore some of the most
important messaging patterns. Let's start with the Publish/Subscribe pattern.

Publish/Subscribe pattern
Publish/Subscribe (often abbreviated to Pub/Sub) is probably the best-known
one-way messaging pattern. We should already be familiar with it, as it's nothing
more than a distributed Observer pattern. As in the case of Observer, we have a set
of subscribers registering their interest in receiving a specific category of messages.
On the other side, the publisher produces messages that are distributed across all
the relevant subscribers. Figure 13.7 shows the two main variants of the Pub/Sub
pattern; the first is based on a peer-to-peer architecture, and the second uses a broker
to mediate the communication:

Figure 13.7: Publish/Subscribe messaging pattern

What makes Pub/Sub so special is the fact that the publisher doesn't know in
advance who the recipients of the messages are. As we said, it's the subscriber that
has to register its interest to receive a particular message, allowing the publisher to
work with an unspecified number of receivers. In other words, the two sides of the
Pub/Sub pattern are loosely coupled, which makes this an ideal pattern to integrate
the nodes of an evolving distributed system.

The presence of a broker further improves the decoupling between the nodes of the
system because the subscribers interact only with the broker, not knowing which
node is the publisher of a message. As we will see later, a broker can also provide
a message queuing system, allowing reliable delivery even in the presence of
connectivity problems between the nodes.

Messaging and Integration Patterns

[550]

Now, let's work on an example to demonstrate this pattern.

Building a minimalist real-time chat
application
To show a real-life example of how the Pub/Sub pattern can help us integrate
a distributed architecture, we are now going to build a very basic real-time
chat application using pure WebSockets. Then, we will scale it by running multiple
instances, and finally, using a messaging system, we will build a communication
channel between all the server instances.

Implementing the server side
Now, let's take one step at a time. Let's first build a basic chat application, then we'll
scale it to multiple instances.

To implement the real-time capabilities of a typical chat application, we will rely on
the ws package (nodejsdp.link/ws), which is a pure WebSocket implementation for
Node.js. Implementing real-time applications in Node.js is pretty simple, and the
code we are going to write will confirm this assumption. So, let's create the server
side of our chat application in a file called index.js:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'

// serve static files
const server = createServer((req, res) => { // (1)
 return staticHandler(req, res, { public: 'www' })
})

const wss = new ws.Server({ server }) // (2)
wss.on('connection', client => {
 console.log('Client connected')
 client.on('message', msg => { // (3)
 console.log(`Message: ${msg}`)
 broadcast(msg)
 })
})

function broadcast (msg) { // (4)
 for (const client of wss.clients) {

http://nodejsdp.link/ws

Chapter 13

[551]

 if (client.readyState === ws.OPEN) {
 client.send(msg)
 }
 }
}

server.listen(process.argv[2] || 8080)

That's it! That's all we need to implement the server-side component of our chat
application. This is how it works:

1. We first create an HTTP server and forward every request to a special
handler (nodejsdp.link/serve-handler), which will take care to serve all
the static files from the www directory. This is needed to access the client-side
resources of our application (for example, HTML, JavaScript, and CSS files).

2. We then create a new instance of the WebSocket server, and we attach it to
our existing HTTP server. Next, we start listening for incoming WebSocket
client connections by attaching an event listener for the connection event.

3. Each time a new client connects to our server, we start listening for incoming
messages. When a new message arrives, we broadcast it to all the connected
clients.

4. The broadcast() function is a simple iteration over all the known clients,
where the send() function is invoked on each connected client.

This is the magic of Node.js! Of course, the server that we just implemented is very
minimal and basic, but as we will see, it does its job.

Implementing the client side
Next, it's time to implement the client side of our chat application. This can be done
with another compact and simple fragment of code, essentially a minimal HTML
page with some basic JavaScript code. Let's create this page in a file named www/
index.html as follows:

<!DOCTYPE html>
<html>
 <body>
 Messages:
 <div id="messages"></div>
 <form id="msgForm">
 <input type="text" placeholder="Send a message" id="msgBox"/>
 <input type="submit" value="Send"/>

http://nodejsdp.link/serve-handler

Messaging and Integration Patterns

[552]

 </form>
 <script>
 const ws = new WebSocket(
 `ws://${window.document.location.host}`
)
 ws.onmessage = function (message) {
 const msgDiv = document.createElement('div')
 msgDiv.innerHTML = message.data
 document.getElementById('messages').appendChild(msgDiv)
 }
 const form = document.getElementById('msgForm')
 form.addEventListener('submit', (event) => {
 event.preventDefault()
 const message = document.getElementById('msgBox').value
 ws.send(message)
 document.getElementById('msgBox').value = ''
 })
 </script>
 </body>
</html>

The HTML page we just created doesn't really need many comments, it's just a
piece of straightforward web development. We use the native WebSocket object to
initialize a connection to our Node.js server, and then start listening for messages
from the server, displaying them in new div elements as they arrive. For sending
messages, instead, we use a simple textbox and a button within a form.

Please note that when stopping or restarting the chat server, the
WebSocket connection is closed and the client will not try to
reconnect automatically (as we might expect from a production-
grade application). This means that it is necessary to refresh the
browser after a server restart to reestablish the connection (or
implement a reconnection mechanism, which we will not cover
here for brevity). Also, in this initial version of our app, the clients
will not receive any message sent while they were not connected to
the server.

Chapter 13

[553]

Running and scaling the chat application
We can try to run our application immediately. Just launch the server with the
following command:

node index.js 8080

Then, open a couple of browser tabs or even two different browsers, point them
at http://localhost:8080, and start chatting:

Figure 13.8: Our new chat application in action

Now, we want to see what happens when we try to scale our application by
launching multiple instances. Let's try to do that. Let's start another server on
another port:

node index.js 8081

The desired outcome should be that two different clients, connected to two different
servers, should be able to exchange chat messages. Unfortunately, this is not what
happens with our current implementation. We can test this by opening another
browser tab to http://localhost:8081.

In a real-world application, we would use a load balancer to
distribute the load across our instances, but for this demo we
will not use one. This allows us to access each server instance
in a deterministic way to verify how it interacts with the other
instances.

Messaging and Integration Patterns

[554]

When sending a chat message on one instance, we only broadcast the message
locally, distributing it only to the clients connected to that particular server. In
practice, the two servers are not talking to each other. We need to integrate them,
and that's exactly what we are going to see next.

Using Redis as a simple message broker
We start our analysis of the most common Pub/Sub implementations by
introducing Redis (nodejsdp.link/redis), which is a very fast and flexible
in-memory data structure store. Redis is often used as a database or a cache
server, however, among its many features there is a pair of commands
specifically designed to implement a centralized Pub/Sub message exchange pattern.

Redis' message brokering capabilities are (intentionally) very simple and basic,
especially if we compare them to those of more advanced message-oriented
middleware. However, this is one of the main reasons for its popularity. Often, Redis
is already available in an existing infrastructure, for example, used as a cache server
or as a session data store. Its speed and flexibility make it a very popular choice for
sharing data in a distributed system. So, as soon as the need for a publish/subscribe
broker arises in a project, the most simple and immediate choice is to reuse Redis
itself, avoiding the need to install and maintain a dedicated message broker.

Let's now work on an example to demonstrate the simplicity and power of using
Redis as a message broker.

Our plan of action is to integrate our chat servers using Redis as a message broker.
Each instance publishes any message received from its clients to the broker, and at
the same time, it subscribes for any message coming from other server instances. As
we can see, each server in our architecture is both a subscriber and a publisher. The
following diagram shows a representation of the architecture that we want to obtain:

This example requires a working installation of Redis, listening
on its default port. You can find more details at nodejsdp.link/
redis-quickstart.

http://nodejsdp.link/redis
http://nodejsdp.link/redis-quickstart
http://nodejsdp.link/redis-quickstart

Chapter 13

[555]

Figure 13.9: Using Redis as a message broker for our chat application

Based on the architecture described in Figure 13.9, we can sum up the journey of a
message as follows:

1. The message is typed into the textbox of the web page and sent to the
connected instance of our chat server.

2. The message is then published to the broker.
3. The broker dispatches the message to all the subscribers, which in

our architecture are all the instances of the chat server.
4. In each instance, the message is distributed to all the connected clients.

Let's see in practice how this works. Let's modify the server code by adding the
publish/subscribe logic:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import Redis from 'ioredis' // (1)

const redisSub = new Redis()
const redisPub = new Redis()

Messaging and Integration Patterns

[556]

// serve static files
const server = createServer((req, res) => {
 return staticHandler(req, res, { public: 'www' })
})

const wss = new ws.Server({ server })
wss.on('connection', client => {
 console.log('Client connected')
 client.on('message', msg => {
 console.log(`Message: ${msg}`)
 redisPub.publish('chat_messages', msg) // (2)
 })
})

redisSub.subscribe('chat_messages') // (3)
redisSub.on('message', (channel, msg) => {
 for (const client of wss.clients) {
 if (client.readyState === ws.OPEN) {
 client.send(msg)
 }
 }
})

server.listen(process.argv[2] || 8080)

The changes that we made to our original chat server are highlighted in the
preceding code. This how the new implementation works:

1. To connect our Node.js application to the Redis server, we use the ioredis
package (nodejsdp.link/ioredis), which is a complete Node.js client
supporting all the available Redis commands. Next, we instantiate two
different connections, one used to subscribe to a channel, the other to publish
messages. This is necessary in Redis, because once a connection is put in
subscriber mode, only commands related to the subscription can be used.
This means that we need a second connection for publishing messages.

2. When a new message is received from a connected client, we publish the
message in the chat_messages channel. We don't directly broadcast the
message to our clients because our server is subscribed to the same channel
(as we will see in a moment), so it will come back to us through Redis. For
the scope of this example, this is a simple and effective mechanism. However,
depending on the requirements of your application, you may instead want
to broadcast the message immediately and ignore any message arriving from
Redis and originating from the current server instance. We leave this to you
as an exercise.

http://nodejsdp.link/ioredis

Chapter 13

[557]

3. As we said, our server also has to subscribe to the chat_messages channel, so
we register a listener to receive all the messages published into that channel
(either by the current server instance or any other chat server instance). When
a message is received, we simply broadcast it to all the clients connected to
the current WebSocket server.

These few changes are enough to integrate all the chat server instances that we might
decide to start. To prove this, you can try starting multiple instances of our application:

node index.js 8080
node index.js 8081
node index.js 8082

You can then connect multiple browser tabs to each instance and verify that the
messages you send to one instance are successfully received by all the other clients
connected to the other instances.

Congratulations! We just integrated multiple nodes of a distributed real-time
application using the Publish/Subscribe pattern.

Peer-to-peer Publish/Subscribe with ZeroMQ
The presence of a broker can considerably simplify the architecture of a messaging
system. However, in some circumstances, this may not be the best solution. This
includes all the situations where a low latency is critically important, or when scaling
complex distributed systems, or when the presence of a single point of failure is not
an option. The alternative to using a broker is, of course, implementing a peer-to-
peer messaging system.

Introducing ZeroMQ
If our project is a good candidate for a peer-to-peer architecture, one of the best
solutions to evaluate is certainly ZeroMQ (nodejsdp.link/zeromq, also known
as zmq or ØMQ). ZeroMQ is a networking library that provides the basic tools
to build a large variety of messaging patterns. It is low-level, extremely fast, and
has a minimalistic API, but it offers all the basic building blocks to create a solid
messaging system, such as atomic messages, load balancing, queues, and many
more. It supports many types of transport, such as in-process channels (inproc://),
inter-process communication (ipc://), multicast using the PGM protocol
(pgm:// or epgm://), and, of course, the classic TCP (tcp://).

Redis allows us to publish and subscribe to channels identified by a
string, for example, chat.nodejs. But it also allows us to use glob-
style patterns to define subscriptions that can potentially match
multiple channels, for example, chat.*.

http://nodejsdp.link/zeromq

Messaging and Integration Patterns

[558]

Among the features of ZeroMQ, we can also find tools to implement a Publish/
Subscribe pattern, which is exactly what we need for our example. So, what we
are going to do now is remove the broker (Redis) from the architecture of our
chat application and let the various nodes communicate in a peer-to-peer fashion,
leveraging the publish/subscribe sockets of ZeroMQ.

Designing a peer-to-peer architecture for the chat
server
When we remove the broker from our architecture, each instance of the chat server
has to directly connect to the other available instances in order to receive the messages
they publish. In ZeroMQ, we have two types of sockets specifically designed for this
purpose: PUB and SUB. The typical pattern is to bind a PUB socket to a local port where
it will start listening for incoming subscription requests from sockets of type SUB.

A subscription can have a filter that specifies what messages are delivered to the
connected SUB sockets. The filter is a simple binary buffer (so it can also be a string),
which will be matched against the beginning of the message (which is also a binary
buffer). When a message is sent through the PUB socket it is broadcast to all the
connected SUB sockets, but only after their subscription filters are applied. The filters
will be applied to the publisher side only if a connected protocol is used, such as, for
example, TCP.

The following diagram shows the pattern applied to our distributed chat server
architecture (with only two instances, for simplicity):

Figure 13.10: Chat server messaging architecture using ZeroMQ PUB/SUB sockets

A ZeroMQ socket can be considered as a network socket on
steroids, which provides additional abstractions to help implement
the most common messaging patterns. For example, we can find
sockets designed to implement publish/subscribe, request/reply,
or one-way push communications.

Chapter 13

[559]

Figure 13.10 shows us the flow of information when we have two instances of
the chat application, but the same concept can be applied to N instances. This
architecture tells us that each node must be aware of the other nodes in the system
to be able to establish all the necessary connections. It also shows us how the
subscriptions go from a SUB socket to a PUB socket, while messages travel in the
opposite direction.

Using the ZeroMQ PUB/SUB sockets
Let's see how the ZeroMQ PUB/SUB sockets work in practice by modifying our chat
server:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import yargs from 'yargs' // (1)
import zmq from 'zeromq'

// serve static files
const server = createServer((req, res) => {
 return staticHandler(req, res, { public: 'www' })
})

let pubSocket
async function initializeSockets () {
 pubSocket = new zmq.Publisher() // (2)
 await pubSocket.bind(`tcp://127.0.0.1:${yargs.argv.pub}`)

 const subSocket = new zmq.Subscriber() // (3)
 const subPorts = [].concat(yargs.argv.sub)
 for (const port of subPorts) {
 console.log(`Subscribing to ${port}`)
 subSocket.connect(`tcp://127.0.0.1:${port}`)
 }
 subSocket.subscribe('chat')

 for await (const [msg] of subSocket) { // (4)
 console.log(`Message from another server: ${msg}`)
 broadcast(msg.toString().split(' ')[1])
 }
}

Messaging and Integration Patterns

[560]

initializeSockets()

const wss = new ws.Server({ server })
wss.on('connection', client => {
 console.log('Client connected')
 client.on('message', msg => {
 console.log(`Message: ${msg}`)
 broadcast(msg)
 pubSocket.send(`chat ${msg}`) // (5)
 })
})

function broadcast (msg) {
 for (const client of wss.clients) {
 if (client.readyState === ws.OPEN) {
 client.send(msg)
 }
 }
}

server.listen(yargs.argv.http || 8080)

The preceding code clearly shows that the logic of our application became slightly
more complicated, however, it's still straightforward considering that we are
implementing a peer-to-peer Publish/Subscribe pattern. Let's see how all the pieces
come together:

1. We import two new packages. First, we import yargs (nodejsdp.link/yargs),
which is a command-line argument parser; we need this to easily accept
named arguments. Secondly, we import the zeromq package (nodejsdp.link/
zeromq), which is a Node.js client for ZeroMQ.

2. In the initializeSockets() function, we immediately create our Publisher
socket and bind it to the port provided in the --pub command-line argument.

3. We create the Subscriber socket and we connect it to the Publisher sockets
of the other instances of our application. The ports of the target Publisher
sockets are provided in the --sub command-line arguments (there might be
more than one). We then create the actual subscription, by providing chat as
a filter, which means that we will receive only the messages beginning
with chat.

http://nodejsdp.link/yargs
http://nodejsdp.link/zeromq
http://nodejsdp.link/zeromq

Chapter 13

[561]

4. We start listening for messages arriving at our Subscriber socket using a for
await...of loop, since subSocket is an async iterable. With each message
we receive, we do some simple parsing to remove the chat prefix, and then
we broadcast() the actual payload to all the clients connected to the current
WebSocket server.

5. When a new message is received by the WebSocket server of the current
instance, we broadcast it to all the connected clients but we also publish it
through our Publisher socket. We use chat as a prefix followed by a space,
so that the message will be published to all the subscriptions using chat as
a filter.

We have now built a simple distributed system, integrated using a peer-to-peer
Publish/Subscribe pattern!

Let's fire it up, let's start three instances of our application by making sure to connect
their Publisher and Subscriber sockets properly:

node index.js --http 8080 --pub 5000 --sub 5001 --sub 5002
node index.js --http 8081 --pub 5001 --sub 5000 --sub 5002
node index.js --http 8082 --pub 5002 --sub 5000 --sub 5001

The first command will start an instance with an HTTP server listening on port 8080,
while binding its Publisher socket on port 5000 and connecting the Subscriber
socket to ports 5001 and 5002, which is where the Publisher sockets of the other two
instances should be listening at. The other two commands work in a similar way.

Now, the first thing you will see is that ZeroMQ will not complain if a Subscriber
socket can't establish a connection to a Publisher socket. For example, at the time of
the first command, there are no Publisher sockets listening on ports 5001 and 5002,
however, ZeroMQ is not throwing any error. This is because ZeroMQ is built to be
resilient to faults and it implements a built-in connection retry mechanism. This
feature also comes in particularly handy if any node goes down or is restarted. The
same forgiving logic applies to the Publisher socket: if there are no subscriptions, it
will simply drop all the messages, but it will continue working.

At this point, we can try to navigate with a browser to any of the server instances
that we started and verify that the messages are properly propagated to all the chat
servers.

Messaging and Integration Patterns

[562]

Reliable message delivery with queues
An important abstraction in a messaging system is the message queue (MQ). With
a message queue, the sender and the receiver(s) of the message don't necessarily
need to be active and connected at the same time to establish a communication,
because the queuing system takes care of storing the messages until the destination
is able to receive them. This behavior is opposed to the fire-and-forget paradigm,
where a subscriber can receive messages only during the time it is connected to
the messaging system.

A subscriber that is able to always reliably receive all the messages, even those sent
when it's not listening for them, is called a durable subscriber.

We can summarize the delivery semantic of a messaging system in three categories:

• At most once: Also known as fire-and-forget, the message is not persisted, and
the delivery is not acknowledged. This means that the message can be lost in
cases of crashes or disconnections of the receiver.

• At least once: The message is guaranteed to be received at least once, but
duplicates might occur if, for example, the receiver crashes before notifying
the sender of the reception. This implies that the message has to be persisted
in the eventuality it has to be sent again.

• Exactly once: This is the most reliable delivery semantic. It guarantees that
the message is received once and only once. This comes at the expense of a
slower and more data-intensive mechanism for acknowledging the delivery
of messages.

We have a durable subscriber when our messaging system can achieve an "at least
once" or an "exactly once" delivery semantic and to do that, the system has to use
a message queue to accumulate the messages while the subscriber is disconnected.
The queue can be stored in memory or persisted on disk to allow the recovery of its
messages even if the queuing system restarts or crashes.

In the previous example, we assumed a static architecture where
the number of instances and their addresses are known in advance.
We can introduce a service registry, as explained in Chapter 12,
Scalability and Architectural Patterns, to connect our instances
dynamically. It is also important to point out that ZeroMQ can
be used to implement a broker using the same primitives we
demonstrated here.

Chapter 13

[563]

The following diagram shows a graphical representation of a durable subscriber
backed by a message queue:

Figure 13.11: Example behavior of a messaging system backed by a queue

Figure 13.11 shows us how a message queue can help us implement the Durable
Subscriber pattern. As we can see, during normal operations (1) messages travel from
the publisher to the subscriber through the message queue. When the subscriber
goes offline (2) because of a crash, a malfunction, or simply a planned maintenance
period, any message sent by the publisher is stored and accumulated safely in the
message queue. Afterward, when the subscriber comes back online (3), all messaged
accumulated in the queue are sent to the subscriber, so no message is lost.

The durable subscriber is probably the most important pattern enabled by a message
queue, but it's certainly not the only one, as we will see later in the chapter.

Next, we are going to learn about AMQP, which is the protocol we are going to use
throughout the rest of the chapter to implement our message queue examples.

Messaging and Integration Patterns

[564]

Introducing AMQP
A message queue is normally used in situations where messages must not be lost,
which includes mission-critical applications such as banking systems, air traffic
management and control systems, medical applications, and so on. This usually
means that the typical enterprise-grade message queue is a very complex piece of
software, which utilizes bulletproof protocols and persistent storage to guarantee
the delivery of the message even in the presence of malfunctions. For this reason,
enterprise messaging middleware has been, for many years, a prerogative of tech
giants such as Oracle and IBM, each one of them usually implementing their own
proprietary protocol, resulting in a strong customer lock-in. Fortunately, it's been
a few years now since messaging systems entered the mainstream, thanks to the
growth of open protocols such as AMQP, STOMP, and MQTT. Throughout the rest
of the chapter we are going to use AMQP as the messaging protocol for our queuing
system, so let's give it a proper introduction.

AMQP is an open standard protocol supported by many message-queuing systems.
Besides defining a common communication protocol, it also provides a model to
describe routing, filtering, queuing, reliability, and security.

The following diagram shows us all the AMQP components at a glance:

Figure 13.12: Example of an AMQP-based messaging system

As shown in Figure 13.12, in AMQP there are three essential components:

• Queue: The data structure responsible for storing the messages consumed
by the clients. The messages from a queue are pushed (or pulled) to one or
more consumers. If multiple consumers are attached to the same queue,
the messages are load balanced across them. A queue can be any of the
following:

Chapter 13

[565]

• Durable: This means that the queue is automatically recreated if the
broker restarts. A durable queue does not imply that its contents
are preserved as well; in fact, only messages that are marked as
persistent are saved to the disk and restored in case of a restart.

• Exclusive: This means that the queue is bound to only one particular
subscriber connection. When the connection is closed, the queue is
destroyed.

• Auto-delete: This will cause the queue to be deleted when the last
subscriber disconnects.

• Exchange: This is where a message is published. An exchange routes the
messages to one or more queues depending on the algorithm it implements:

• Direct exchange: It routes the messages by matching an entire
routing key (for example, chat.msg)

• Topic exchange: It distributes the messages using a glob-like pattern
matched against the routing key (for example, chat.# matches all the
routing keys starting with chat.)

• Fanout exchange: It broadcasts a message to all the connected
queues, ignoring any routing key provided

• Binding: This is the link between exchanges and queues. It also defines the
routing key or the pattern used to filter the messages that arrive from the
exchange.

These components are managed by a broker, which exposes an API for creating and
manipulating them. When connecting to a broker, a client creates a channel—an
abstraction of a connection—which is responsible for maintaining the state of the
communication with the broker.

The AMQP model is way more complex than the messaging systems we have
used so far (Redis and ZeroMQ). However, it offers a set of features and a level of
reliability that would be very hard to obtain using only primitive publish/subscribe
mechanisms.

In AMQP, we can obtain the Durable Subscriber pattern by
creating any type of queue that is not exclusive or auto-delete.

You can find a detailed introduction to the AMQP model on the
RabbitMQ website at nodejsdp.link/amqp-components.

http://nodejsdp.link/amqp-components

Messaging and Integration Patterns

[566]

Durable subscribers with AMQP and RabbitMQ
Let's now practice what we learned about durable subscribers and AMQP and
work on a small example. A typical scenario where it's important to not lose
any message is when we want to keep the different services of a microservice
architecture in sync (we already described this integration pattern in the previous
chapter). If we want to use a broker to keep all our services on the same page, it's
important that we don't lose any information, otherwise we might end up in an
inconsistent state.

Designing a history service for the chat application
Let's now extend our small chat application using a microservice approach. Let's
add a history service that persists our chat messages inside a database, so that when
a client connects, we can query the service and retrieve the entire chat history. We
are going to integrate the history service with the chat server using the RabbitMQ
broker (nodejsdp.link/rabbitmq) and AMQP.

The following diagram shows our planned architecture:

Figure 13.13: Architecture of our chat application with AMQP and history service

As shown in Figure 13.13, we are going to use a single fanout exchange; we don't
need any complicated routing logic, so our scenario does not require any exchange
more complex than that. Next, we will create one queue for each instance of the chat
server.

http://nodejsdp.link/rabbitmq

Chapter 13

[567]

These queues are exclusive since we are not interested in receiving any messages
missed while a chat server is offline; that's the job of our history service, which can
eventually also implement more complicated queries against the stored messages.
In practice, this means that our chat servers are not durable subscribers and their
queues will be destroyed as soon as the connection is closed. The history service
instead cannot afford to lose any messages, otherwise it would not fulfill its very
purpose. Therefore, the queue we are going to create for it has to be durable, so that
any message that is published while the history service is disconnected will be kept
in the queue and delivered when it comes back online.

We are going to use the familiar LevelUP as the storage engine for the history
service, while we will use the amqplib package (nodejsdp.link/amqplib) to connect
to RabbitMQ using the AMQP protocol.

Implementing a history service using AMQP
Let's now implement our history service! We are going to create a standalone
application (a typical microservice), which is implemented in the historySvc.js
module. The module is made up of two parts: an HTTP server to expose the chat
history to clients, and an AMQP consumer responsible for capturing the chat
messages and storing them in a local database.

Let's see what this looks like in the code that follows:

import { createServer } from 'http'
import level from 'level'
import timestamp from 'monotonic-timestamp'
import JSONStream from 'JSONStream'
import amqp from 'amqplib'

async function main () {
 const db = level('./msgHistory')

 const connection = await amqp.connect('amqp://localhost') // (1)
 const channel = await connection.createChannel()
 await channel.assertExchange('chat', 'fanout') // (2)
 const { queue } = channel.assertQueue('chat_history') // (3)
 await channel.bindQueue(queue, 'chat') // (4)

The example that follows requires a working RabbitMQ server,
listening on its default port. For more information, please refer
to its official installation guide at nodejsdp.link/rabbitmq-
getstarted.

http://nodejsdp.link/amqplib
http://nodejsdp.link/rabbitmq-getstarted
http://nodejsdp.link/rabbitmq-getstarted

Messaging and Integration Patterns

[568]

 channel.consume(queue, async msg => { // (5)
 const content = msg.content.toString()
 console.log(`Saving message: ${content}`)
 await db.put(timestamp(), content)
 channel.ack(msg)
 })

 createServer((req, res) => {
 res.writeHead(200)
 db.createValueStream()
 .pipe(JSONStream.stringify())
 .pipe(res)
 }).listen(8090)
}

main().catch(err => console.error(err))

We can immediately see that AMQP requires a little bit of setting up, which is
necessary to create and connect all the components of the model. Let's see in detail
how it works:

1. We first establish a connection with the AMQP broker, which in our case is
RabbitMQ. Then, we create a channel, which is similar to a session that will
maintain the state of our communications.

2. Next, we set up an exchange, named chat. As we already mentioned, it is
a fanout exchange. The assertExchange() command will make sure that the
exchange exists on the broker, otherwise it will create it.

3. We also create a queue called chat_history. By default, the queue is durable
(not exclusive and not auto-delete), so we don't need to pass any extra
options to support durable subscribers.

4. Next, we bind the queue to the exchange we previously created. Here,
we don't need any other particular option (such as a routing key or pattern),
as the exchange is of the type fanout, so it doesn't perform any filtering.

5. Finally, we can begin to listen for messages coming from the queue we
just created. We save every message that we receive in a LevelDB database
using a monotonic timestamp as the key (see nodejsdp.link/monotonic-
timestamp) to keep the messages sorted by date. It's also interesting to see
that we are acknowledging every message using channel.ack(msg), but
only after the message is successfully saved into the database. If the ACK
(acknowledgment) is not received by the broker, the message is kept in the
queue to be processed again.

http://nodejsdp.link/monotonic-timestamp
http://nodejsdp.link/monotonic-timestamp

Chapter 13

[569]

Integrating the chat application with AMQP
To integrate the chat servers using AMQP, we have to use a setup very similar to the
one we implemented in the history service, but with some small variations. So, let's
see how the new index.js module looks with the introduction of AMQP:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import amqp from 'amqplib'
import JSONStream from 'JSONStream'
import superagent from 'superagent'

const httpPort = process.argv[2] || 8080

async function main () {
 const connection = await amqp.connect('amqp://localhost')
 const channel = await connection.createChannel()
 await channel.assertExchange('chat', 'fanout')
 const { queue } = await channel.assertQueue(// (1)
 `chat_srv_${httpPort}`,
 { exclusive: true }
)
 await channel.bindQueue(queue, 'chat')
 channel.consume(queue, msg => { // (2)
 msg = msg.content.toString()
 console.log(`From queue: ${msg}`)
 broadcast(msg)
 }, { noAck: true })

 // serve static files
 const server = createServer((req, res) => {
 return staticHandler(req, res, { public: 'www' })
 })

 const wss = new ws.Server({ server })
 wss.on('connection', client => {
 console.log('Client connected')

If we are not interested in sending explicit acknowledgments,
we can pass the { noAck: true } option to
the channel.consume() API.

Messaging and Integration Patterns

[570]

 client.on('message', msg => {
 console.log(`Message: ${msg}`)
 channel.publish('chat', '', Buffer.from(msg)) // (3)
 })

 // query the history service
 superagent // (4)
 .get('http://localhost:8090')
 .on('error', err => console.error(err))
 .pipe(JSONStream.parse('*'))
 .on('data', msg => client.send(msg))
 })

 function broadcast (msg) {
 for (const client of wss.clients) {
 if (client.readyState === ws.OPEN) {
 client.send(msg)
 }
 }
 }

 server.listen(httpPort)
}

main().catch(err => console.error(err))

As we can see, AMQP made the code a little bit more verbose on this occasion too,
but at this point we should already be familiar with most of it. There are just a few
aspects to be aware of:

1. As we mentioned, our chat server doesn't need to be a durable subscriber: a
fire-and-forget paradigm is enough. So when we create our queue, we pass
the { exclusive: true } option, indicating that the queue is scoped to the
current connection and therefore it will be destroyed as soon as the chat
server shuts down.

2. For the same reason as in the previous point, we don't need to send back any
acknowledgement when we read a message from the queue. So, to make
things easier, we pass the { noAck: true } option when starting to consume
the messages from the queue.

3. Publishing a new message is also very easy. We simply have to specify the
target exchange (chat) and a routing key, which in our case is empty ('')
because we are using a fanout exchange, so there is no routing to perform.

Chapter 13

[571]

4. The other peculiarity of this version of our chat server is that we can
now present to the user the full history of the chat, thanks to our history
microservice. We do that by querying the history microservice and sending
every past message to the client as soon as a new connection is established.

We can now run our new improved chat application. To do that, first make sure to
have RabbitMQ running locally on your machine, then let's start two chat servers
and the history service in three different terminals:

node index.js 8080
node index.js 8081
node historySvc.js

We should now focus our attention on how our system, and in particular the history
service, behaves in case of downtime. If we stop the history server and continue to
send messages using the web UI of the chat application, we will see that when the
history server is restarted, it will immediately receive all the messages it missed. This
is a perfect demonstration of how the Durable Subscriber pattern works!

Reliable messaging with streams
At the beginning of this chapter, we mentioned that a possible alternative to message
queues are streams. The two paradigms are similar in scope, but fundamentally
different in their approach to messaging. In this section, we are going to unveil the
power of streams by leveraging Redis Streams to implement our chat application.

Characteristics of a streaming platform
In the context of system integration, a stream (or log) is an ordered, append-only,
durable data structure. Messages—which in the context of streams would be more
appropriately called records—are always added at the end of the stream and, unlike
queues, they are not automatically deleted when they are consumed. Essentially, this
characteristic makes a stream more similar to a data store than to a message broker.
And like a data store, a stream can be queried to retrieve a batch of past records or
replayed starting from a specific record.

It is interesting to see how the microservice approach allows our
system to survive even without one of its components—the history
service. There would be a temporary reduction of functionality (no
chat history available) but people would still be able to exchange
chat messages in real time. Awesome!

Messaging and Integration Patterns

[572]

Another important characteristic of streams is that records are pulled by the
consumer from the stream. This intrinsically allows the consumer to process the
records at its own pace without risking being overwhelmed.

Based on these features, a stream allows us to implement reliable message delivery
out of the box, since no data is ever lost from the stream (even though data can still
be removed explicitly or can be deleted after an optional retention period). In fact, as
Figure 13.14 shows, if a consumer crashes, all it has to do is start reading the stream
from where it left off:

Figure 13.14: Reliable message delivery with streams

As Figure 13.14 shows, during normal operations (1) the consumer processes
the records in the stream as soon as they are added by the producer. When the
consumer becomes unavailable (2) because of a problem or a scheduled maintenance,
the producer simply continues to add records to the stream as normal. When the
consumer comes back online (3), it starts processing the records from the point where
it left. The main aspect of this mechanism is that it's very simple and barebone, but
it's quite effective at making sure that no message is lost even when the consumer is
not available.

Chapter 13

[573]

Streams versus message queues
As we have seen so far, there are a lot of differences, but also a lot of similarities
between a message queue and a stream. So, when should you use one in place of the
other?

Well, the obvious use case for streams is when we have to process sequential data
(streaming data) that may also require the consumer to process messages in batch or
to look for correlations in past messages. Also, modern streaming platforms allow
the ingestion of gigabytes of data per second and the distribution of both the data
and the processing of the data across multiple nodes.

Both message queues and streams are well suited to implement simple Publish/
Subscribe patterns, even with reliable message delivery. However, message queues
are better suited for complex system integration tasks, since they provide advanced
routing of messages and allow us to have different priorities for different messages
(in streams, the order of the records is always preserved).

As we will see later, both can also be used to implement task distribution patterns,
even though, in a standard architecture, message queues could be more suitable
thanks to message priorities and more advanced routing mechanisms.

Implementing the chat application using Redis
Streams
At the moment of writing, the most popular streaming platforms out there are
Apache Kafka (nodejsdp.link/kafka) and Amazon Kinesis (nodejsdp.link/kinesis).
However, for simpler tasks, we can rely again on Redis, which implements a log data
structure called Redis Streams.

In the next code sample, we are going to see Redis Streams in action by adapting
our chat application. The immediate advantage of using a stream over a message
queue is that we don't need to rely on a dedicated component to store and retrieve
the history of the messages exchanged in a chat room, but we can simply query the
stream every time we need to access older messages. As we will see, this simplifies
a lot the architecture of our application and certainly makes streams a better choice
than message queues, at least for our very simple use case.

http://nodejsdp.link/kafka
http://nodejsdp.link/kinesis

Messaging and Integration Patterns

[574]

So, let's dive into some code. Let's update the index.js of our chat application to use
Redis Streams:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import Redis from 'ioredis'

const redisClient = new Redis()
const redisClientXRead = new Redis()

// serve static files
const server = createServer((req, res) => {
 return staticHandler(req, res, { public: 'www' })
})

const wss = new ws.Server({ server })
wss.on('connection', async client => {
 console.log('Client connected')

 client.on('message', msg => {
 console.log(`Message: ${msg}`)
 redisClient.xadd('chat_stream', '*', 'message', msg) // (1)
 })

 // Load message history
 const logs = await redisClient.xrange(// (2)
 'chat_stream', '-', '+')
 for (const [, [, message]] of logs) {
 client.send(message)
 }
})

function broadcast (msg) {
 for (const client of wss.clients) {
 if (client.readyState === ws.OPEN) {
 client.send(msg)
 }
 }
}

let lastRecordId = '$'

Chapter 13

[575]

async function processStreamMessages () { // (3)
 while (true) {
 const [[, records]] = await redisClientXRead.xread(
 'BLOCK', '0', 'STREAMS', 'chat_stream', lastRecordId)
 for (const [recordId, [, message]] of records) {
 console.log(`Message from stream: ${message}`)
 broadcast(message)
 lastRecordId = recordId
 }
 }
}

processStreamMessages().catch(err => console.error(err))

server.listen(process.argv[2] || 8080)

As always, the overall structure of the application has remained the same; what
changed is the API we used to exchange messages with the other instances of the
application.

Let's take a look at those APIs more closely:

1. The first command we want to analyze is xadd. This command appends
a new record to a stream, and we are using it to add a new chat message as
it arrives from a connected client. We pass to xadd the following arguments:

a. The name of the stream, which in our case is chat_stream.
b. The ID of the record. In our case, we provide an asterisk (*), which

is a special ID that asks Redis to generate an ID for us. This is
usually what we want, as IDs have to be monotonic to preserve the
lexicographic order of the records and Redis takes care of that for us.

c. It follows a list of key-value pairs. In our case, we specify only a
'message' key of the value msg (which is the message we receive from
the client).

2. This is one of the most interesting aspects of using streams: we query the
past records of the stream to retrieve the chat history. We do this every time
a client connects. We use the xrange command for that, which, as the name
implies, allows us to retrieve all the records in the stream within the two
specified IDs. In our case we are using the special IDs '-' (minus) and '+'
(plus) which indicate the lowest possible ID and the highest possible ID. This
essentially means that we want to retrieve all the records currently in the
stream.

Messaging and Integration Patterns

[576]

3. The last interesting part of our new chat application is where we wait for
new records to be added to the stream. This allows each application instance
to read new chat messages as they are added into the queue, and it's an
essential part for the integration to work. We use an infinite loop and the
xread command for the task, providing the following arguments:

a. BLOCK means that we want the call to block until new messages arrive.
b. Next, we specify the timeout after which the command will simply

return with a null result. In our case, 0 means that we want to wait
forever.

c. STREAMS is a keyword that tells Redis that we are now going to specify
the details of the streams we want to read.

d. chat_stream is the name of the stream we want to read.
e. Finally, we supply the record ID (lastRecordId) after which we want

to start reading the new messages. Initially, this is set to $ (dollar
sign), which is a special ID indicating the highest ID currently in the
stream, which should essentially start to read the stream after the
last record currently in the stream. After we read the first record, we
update the lastRecordId variable with the ID of the last record read.

Within the previous example, we also made use of some clever destructuring
instructions. Consider for example the following code:

for (const [, [, message]] of logs) {...}

This instruction could be expanded to something like the following:

for (const [recordId, [propertyId, message]] of logs) {...}

But since we are not interested in getting the recordId and the propertyId, we
are simply keeping them out of the destructuring instruction. This particular
destructuring, in combination with the for...of loop, is necessary to parse the data
returned from the xrange command, which in our case is in the following form:

[
 ["1588590110918-0", ["message", "This is a message"]],
 ["1588590130852-0", ["message", "This is another message"]]
]

Chapter 13

[577]

We applied a similar principle to parse the return value of xread. Please refer to the
API documentation of those instructions for a detailed explanation of their return
value.

Now, you can start a couple of server instances again and test the application to see
how the new implementation works.

It's interesting to highlight again the fact that we didn't need to rely on a dedicated
component to manage our chat history, but instead, all we needed to do was to
retrieve the past records from the stream with xrange. This aspect of streams makes
them intrinsically reliable as no message is lost unless explicitly deleted.

This concludes our exploration of the Publish/Subscribe pattern. Now, it's time to
discover another important category of messaging patterns: task distribution patterns.

Task distribution patterns
In Chapter 11, Advanced Recipes, you learned how to delegate costly tasks to multiple
local processes. Even though this was an effective approach, it cannot be scaled
beyond the boundaries of a single machine, so in this section, we are going to see
how it's possible to use a similar pattern in a distributed architecture, using remote
workers located anywhere in a network.

The idea is to have a messaging pattern that allows us to spread tasks across multiple
machines. These tasks might be individual chunks of work or pieces of a bigger task
split using a divide and conquer approach.

You can read more about the xadd command and the
format of record IDs in the official Redis documentation at
nodejsdp.link/xadd.

The xread command has also a fairly complicated arguments
list and return value that you can read more about at
nodejsdp.link/xread.

Also, check out the documentation for xrange at
nodejsdp.link/xrange.

Records can be removed from the stream with the
xdel (nodejsdp.link/xdel) or xtrim commands
(nodejsdp.link/xtrim) or with the MAXLEN option of xadd
(nodejsdp.link/xadd-maxlen).

http://nodejsdp.link/xadd
http://nodejsdp.link/xread
http://nodejsdp.link/xrange
http://nodejsdp.link/xdel
http://nodejsdp.link/xtrim
http://nodejsdp.link/xadd-maxlen

Messaging and Integration Patterns

[578]

If we look at the logical architecture represented in the following diagram, we should
be able to recognize a familiar pattern:

Figure 13.15: Distributing tasks to a set of consumers

As we can see from the diagram of Figure 13.15, the Publish/Subscribe pattern is not
suitable for this type of application, as we absolutely don't want a task to be received
by multiple workers. What we need instead, is a message distribution pattern similar
to a load balancer that dispatches each message to a different consumer (also called
a worker, in this case). In messaging systems terminology, this pattern is also known
as competing consumers, fanout distribution, or ventilator.

One important difference to the HTTP load balancers that we saw in the previous
chapter is that, here, the consumers have a more active role. In fact, as we will see
later, most of the time it's not the producer that connects to the consumers, but the
consumers themselves that connect to the task producer or to the task queue in order
to receive new jobs. This is a great advantage in a scalable system as it allows us
to seamlessly increase the number of workers without modifying the producer or
adopting a service registry.

Also, in a generic messaging system, we don't necessarily have request/reply
communication between the producer and the workers. Instead, most of the time, the
preferred approach is to use one-way asynchronous communication, which enables
better parallelism and scalability. In such an architecture, messages can potentially
always travel in one direction, creating pipelines, as shown in the following
diagram:

Chapter 13

[579]

Figure 13.16: A messaging pipeline

Pipelines allow us to build very complex processing architectures without the
overhead of a synchronous request/reply communication, often resulting in lower
latency and higher throughput. In Figure 13.16, we can see how messages can be
distributed across a set of workers (fanout), forwarded to other processing units,
and then aggregated into a single node (fanin), usually called the sink.

In this section, we are going to focus on the building blocks of these kinds of
architectures, by analyzing the two most important variations: peer-to-peer and
broker-based.

The ZeroMQ Fanout/Fanin pattern
We have already discovered some of the capabilities of ZeroMQ for building
peer-to-peer distributed architectures. In the previous section, in fact, we
used PUB and SUB sockets to disseminate a single message to multiple consumers,
and now, we are going to see how it's possible to build parallel pipelines using
another pair of sockets called PUSH and PULL.

The combination of a pipeline with a task distribution pattern is
also called a parallel pipeline.

Messaging and Integration Patterns

[580]

PUSH/PULL sockets
Intuitively, we can say that the PUSH sockets are made for sending messages,
while the PULL sockets are meant for receiving. It might seem a trivial combination,
however, they have some extra features that make them perfect for building one-way
communication systems:

• Both can work in connect mode or bind mode. In other words, we can
create a PUSH socket and bind it to a local port listening for the incoming
connections from a PULL socket, or vice versa, a PULL socket might listen for
connections from a PUSH socket. The messages always travel in the same
direction, from PUSH to PULL, it's only the initiator of the connection that can
be different. The bind mode is the best solution for durable nodes, such as, for
example, the task producer and the sink, while the connect mode is perfect
for transient nodes, such as the task workers. This allows the number of
transient nodes to vary arbitrarily without affecting the more stable, durable
nodes.

• If there are multiple PULL sockets connected to a single PUSH socket, the
messages are evenly distributed across all the PULL sockets. In practice, they
are load balanced (peer-to-peer load balancing!). On the other hand, a PULL
socket that receives messages from multiple PUSH sockets will process the
messages using a fair queuing system, which means that they are consumed
evenly from all the sources—a round-robin applied to inbound messages.

• The messages sent over a PUSH socket that doesn't have any connected PULL
sockets do not get lost. They are instead queued until a node comes online
and starts pulling the messages.

We are now starting to understand how ZeroMQ is different from traditional web
services and why it's a perfect tool for building a distributed messaging system.

Building a distributed hashsum cracker with
ZeroMQ
Now it's time to build a sample application to see the properties of the PUSH/
PULL sockets we just described in action.

A simple and fascinating application to work with would be a hashsum cracker:
A system that uses a brute-force approach to try to match a given hashsum (such as
MD5 or SHA1) to the hashsum of every possible variation of characters of a given
alphabet, thus discovering the original string the given hashsum was created from.

Chapter 13

[581]

This is an embarrassingly parallel workload (nodejsdp.link/embarrassingly-
parallel), which is perfect for building an example demonstrating the power
of parallel pipelines.

For our application, we want to implement a typical parallel pipeline where we have
the following:

• A node to create and distribute tasks across multiple workers
• Multiple worker nodes (where the actual computation happens)
• A node to collect all the results

The system we just described can be implemented in ZeroMQ using the following
architecture:

Figure 13.17: The architecture of a typical pipeline with ZeroMQ

In our architecture, we have a ventilator generating intervals of variations of
characters in the given alphabet (for example, the interval 'aa' to 'bb' includes the
variations 'aa', 'ab', 'ba', 'bb') and distributing those intervals to the workers as tasks.
Each worker, then, calculates the hashsum of every variation in the given interval,
trying to match each resulting hashsum against the control hashsum given as input.
If a match is found, the result is sent to a results collector node (sink).

Never use plain hashsums to encrypt passwords as they are very
easy to crack. Use instead a purpose-built algorithm such as bcrypt
(nodejsdp.link/bcrypt), scrypt (nodejsdp.link/scrypt),
PBKDF2 (nodejsdp.link/pbkdf2), or Argon2 (nodejsdp.link/
argon2).

http://nodejsdp.link/embarrassingly-parallel
http://nodejsdp.link/embarrassingly-parallel
http://nodejsdp.link/bcrypt
http://nodejsdp.link/scrypt
http://nodejsdp.link/pbkdf2
http://nodejsdp.link/argon2
http://nodejsdp.link/argon2

Messaging and Integration Patterns

[582]

The durable nodes of our architecture are the ventilator and the sink, while
the transient nodes are the workers. This means that each worker connects
its PULL socket to the ventilator and its PUSH socket to the sink, this way we can
start and stop as many workers as we want without changing any parameter in
the ventilator or the sink.

Implementing the producer
To represent intervals of variations, we are going to use indexed n-ary trees. If we
imagine having a tree in which each node has exactly n children, where each child is
one of the n elements of the given alphabet and we assign an index to each node in
breadth-first order, then, given the alphabet [a, b] we should obtain a tree such as
the following:

Figure 13.18: Indexed n-ary tree for alphabet [a, b]

It's then possible to obtain the variation corresponding to an index by traversing
the tree from the root to the given index, appending the element of the nodes found
along the way to the variation being calculated. For example, given the tree in Figure
13.18, the variation corresponding to the index 13 will be 'bba'.

We'll leverage the indexed-string-variation package (nodejsdp.link/indexed-
string-variation) to aid us in calculating the corresponding variation given its
index in the n-ary tree. This operation is done in the workers, so all we have to do in
the ventilator is to produce intervals of indexes to give to the workers, which in turn
will calculate all the variations of characters represented by those intervals.

http://nodejsdp.link/indexed-string-variation
http://nodejsdp.link/indexed-string-variation

Chapter 13

[583]

Now, after the necessary theory, let's start to build our system by implementing the
component responsible to generate the tasks to distribute (generateTasks.js):

export function * generateTasks (searchHash, alphabet,
 maxWordLength, batchSize) {
 let nVariations = 0
 for (let n = 1; n <= maxWordLength; n++) {
 nVariations += Math.pow(alphabet.length, n)
 }
 console.log('Finding the hashsum source string over ' +
 `${nVariations} possible variations`)

 let batchStart = 1
 while (batchStart <= nVariations) {
 const batchEnd = Math.min(
 batchStart + batchSize - 1, nVariations)
 yield {
 searchHash,
 alphabet: alphabet,
 batchStart,
 batchEnd
 }

 batchStart = batchEnd + 1
 }
}

The generateTasks() generator creates intervals of integers of batchSize size,
starting from 1 (we exclude 0, which is the root of the tree, corresponding to the
empty variation) and ending at the largest possible index (nVariations) for the given
alphabet and the maximum word length provided (maxLength). Then, we pack all the
data about the task into an object and yield it to the caller.

Please consider that to generate longer strings it may be
necessary to switch to BigInt (nodejsdp.link/bigint)
to represent their indexes, since the maximum safe integer
manageable by JavaScript is currently 253 – 1, which is the value
of Number.MAX_SAFE_INTEGER. Note that using very large integers
may have a negative impact on the performances of the variations
generator.

http://nodejsdp.link/bigint

Messaging and Integration Patterns

[584]

Now, we need to implement the logic of our producer, which is responsible for
distributing the tasks across all workers (in the producer.js file):

import zmq from 'zeromq'
import delay from 'delay'
import { generateTasks } from './generateTasks.js'

const ALPHABET = 'abcdefghijklmnopqrstuvwxyz'
const BATCH_SIZE = 10000

const [, , maxLength, searchHash] = process.argv

async function main () {
 const ventilator = new zmq.Push() // (1)
 await ventilator.bind('tcp://*:5016')
 await delay(1000) // wait for all the workers to connect

 const generatorObj = generateTasks(searchHash, ALPHABET,
 maxLength, BATCH_SIZE)
 for (const task of generatorObj) {
 await ventilator.send(JSON.stringify(task)) // (2)
 }
}

main().catch(err => console.error(err))

To avoid generating too many variations, our generator uses only the lowercase
letters of the English alphabet and sets a limit on the size of the words generated.
This limit is provided as an input in the command-line arguments (maxLength)
together with the hashsum to match (searchHash).

But the part that we are most interested in analyzing is how we distribute the tasks
across the workers:

1. We first create a PUSH socket and we bind it to the local port 5016, which
is where the PULL socket of the workers will connect to receive their tasks.
We then wait 1 second for all the workers to connect: we do this because
if the producer starts while the workers are already running, the workers
may connect at different times (because of their timer-based reconnection
algorithm) and that may cause the first connecting worker to receive most of
the tasks.

2. For each generated task, we stringify it and send it to a worker using
the send() function of the ventilator socket. Each connected worker
will receive a different task following a round-robin approach.

Chapter 13

[585]

Implementing the worker
Now it's time to implement the worker, but first, let's create a component to process
the incoming tasks (in the processTask.js file):

import isv from 'indexed-string-variation'
import { createHash } from 'crypto'

export function processTask (task) {
 const variationGen = isv.generator(task.alphabet)
 console.log('Processing from ' +
 `${variationGen(task.batchStart)} (${task.batchStart}) ` +
 `to ${variationGen(task.batchEnd)} (${task.batchEnd})`)

 for (let idx = task.batchStart; idx <= task.batchEnd; idx++) {
 const word = variationGen(idx)
 const shasum = createHash('sha1')
 shasum.update(word)
 const digest = shasum.digest('hex')

 if (digest === task.searchHash) {
 return word
 }
 }
}

The logic of the processTask() function is quite simple: it iterates over the indexes
within the given interval, then for each index it generates the corresponding
variation of characters (word). Next, it calculates the SHA1 checksum for the word and
it tries to match it against the searchHash passed within the task object. If the two
digests match, then it returns the source word to the caller.

Now we are ready to implement the main logic of our worker (worker.js):

import zmq from 'zeromq'
import { processTask } from './processTask.js'

async function main () {
 const fromVentilator = new zmq.Pull()
 const toSink = new zmq.Push()

 fromVentilator.connect('tcp://localhost:5016')
 toSink.connect('tcp://localhost:5017')

Messaging and Integration Patterns

[586]

 for await (const rawMessage of fromVentilator) {
 const found = processTask(JSON.parse(rawMessage.toString()))
 if (found) {
 console.log(`Found! => ${found}`)
 await toSink.send(`Found: ${found}`)
 }
 }
}

main().catch(err => console.error(err))

As we said, our worker represents a transient node in our architecture, therefore,
its sockets should connect to a remote node instead of listening for the incoming
connections. That's exactly what we do in our worker, we create two sockets:

• A PULL socket that connects to the ventilator, for receiving the tasks
• A PUSH socket that connects to the sink, for propagating the results

Besides this, the job done by our worker is very simple: it processes every task
received, and if a match is found, we send a message to the results collector through
the toSink socket.

Implementing the results collector
For our example, the results collector (sink) is a very basic program that simply
prints the messages received by the workers to the console. The contents of the
collector.js file are as follows:

import zmq from 'zeromq'

async function main () {
 const sink = new zmq.Pull()
 await sink.bind('tcp://*:5017')

 for await (const rawMessage of sink) {
 console.log('Message from worker: ', rawMessage.toString())
 }
}

main().catch(err => console.error(err))

Chapter 13

[587]

It's interesting to see that the results collector (as the producer) is also a durable node
of our architecture and therefore we bind its PULL socket instead of connecting it
explicitly to the PUSH socket of the workers.

Running the application
We are now ready to launch our application; let's start a couple of workers and the
results collector (each one in a different terminal):

node worker.js
node worker.js
node collector.js

Then it's time to start the producer, specifying the maximum length of the words to
generate and the SHA1 checksum that we want to match. The following is a sample
command line:

node producer.js 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

When the preceding command is run, the producer will start generating tasks and
distributing them to the set of workers we started. We are telling the producer
to generate all possible words with 4 lowercase letters (because our alphabet
comprises only lowercase letters) and we also provide a sample SHA1 checksum that
corresponds to a secret 4-letter word.

The results of the computation, if any, will appear in the terminal of the results
collector application.

Pipelines and competing consumers in AMQP
In the previous section, we saw how a parallel pipeline can be implemented
in a peer-to-peer context. Now, we are going to explore this pattern when applied
in a broker-based architecture using RabbitMQ.

Please note that given the low-level nature of PUSH/PULL sockets in
ZeroMQ and in particular the lack of message acknowledgments, if
a node crashes, then all the tasks it was processing will be lost. It's
possible to implement a custom acknowledgment mechanism on
top of ZeroMQ but we'll leave that as an exercise for the reader.

Another known limitation of this implementation is the fact that
the workers won't stop processing tasks if a match is found. This
feature was intentionally left out to make the examples as focused
as possible on the pattern being discussed. You can try adding this
"stopping" mechanism as an exercise.

Messaging and Integration Patterns

[588]

Point-to-point communications and competing
consumers
In a peer-to-peer configuration, a pipeline is a very straightforward concept to
imagine. With a message broker in the middle, though, the relationships between
the various nodes of the system are a little bit harder to understand: the broker
itself acts as an intermediary for our communications and, often, we don't really
know who is on the other side listening for messages. For example, when we send
a message using AMQP, we don't deliver it directly to its destination, but instead to
an exchange and then to a queue. Finally, it will be for the broker to decide where to
route the message, based on the rules defined in the exchange, the bindings, and the
destination queues.

If we want to implement a pipeline and a task distribution pattern using a system
like AMQP, we have to make sure that each message is received by only one
consumer, but this is impossible to guarantee if an exchange can potentially be
bound to more than one queue. The solution, then, is to send a message directly to
the destination queue, bypassing the exchange altogether. This way, we can make
sure that only one queue will ever receive the message. This communication pattern
is called point-to-point.

Once we are able to send a set of messages directly to a single queue, we are already
half-way to implementing our task distribution pattern. In fact, the next step comes
naturally: when multiple consumers are listening on the same queue, the messages
will be distributed evenly across them, following a fanout distribution pattern. As
we already mentioned, in the context of message brokers this is better known as
the Competing Consumers pattern.

Next, we are going to reimplement our simple hashsum cracker using AMQP, so we
can appreciate the differences to the peer-to-peer approach we have discussed in the
previous section.

Implementing the hashsum cracker using AMQP
We just learned that exchanges are the point in a broker where a message is multicast
to a set of consumers, while queues are the place where messages are load balanced.
With this knowledge in mind, let's now implement our brute-force hashsum cracker
on top of an AMQP broker (which in our case is RabbitMQ). The following figure
gives you an overview of the system we want to implement:

Chapter 13

[589]

Figure 13.19: Task distribution architecture using a message queue broker

As we discussed, to distribute a set of tasks across multiple workers, we need to use
a single queue. In Figure 13.19, we called this the tasks queue. On the other side of the
tasks queue, we have a set of workers, which are competing consumers: in other words,
each one will receive a different message from the queue. The effect is that multiple
tasks will execute in parallel on different workers.

The results generated by the workers are published into another queue, which we
called the results queue, and then consumed by the results collector, which is actually
equivalent to a sink. In the entire architecture, we don't make use of any exchange,
we only send messages directly to their destination queue, implementing a point-to-
point type of communication.

Implementing the producer
Let's see how to implement such a system, starting from the producer
(in the producer.js file):

import amqp from 'amqplib'
import { generateTasks } from './generateTasks.js'

const ALPHABET = 'abcdefghijklmnopqrstuvwxyz'
const BATCH_SIZE = 10000

const [, , maxLength, searchHash] = process.argv

async function main () {
 const connection = await amqp.connect('amqp://localhost')
 const channel = await connection.createConfirmChannel() // (1)

Messaging and Integration Patterns

[590]

 await channel.assertQueue('tasks_queue')

 const generatorObj = generateTasks(searchHash, ALPHABET,
 maxLength, BATCH_SIZE)
 for (const task of generatorObj) {
 channel.sendToQueue('tasks_queue', // (2)
 Buffer.from(JSON.stringify(task)))
 }

 await channel.waitForConfirms()
 channel.close()
 connection.close()
}

main().catch(err => console.error(err))

As we can see, the absence of any exchange or binding makes the setup of an AMQP-
based application much simpler. There are however a few details to note:

1. Instead of creating a standard channel, we are creating a confirmChannel.
This is necessary as it creates a channel with some extra functionality,
in particular, it provides the waitForConfirms() function that we use later in
the code to wait until the broker confirms the reception of all the messages.
This is necessary to prevent the application from closing the connection to
the broker too soon, before all the messages have been dispatched from the
local queue.

2. The core of the producer is the channel.sendToQueue() API, which is actually
new to us. As its name says, that's the API responsible for delivering a
message straight to a queue—the tasks_queue in our example—bypassing
any exchange or routing.

Implementing the worker
On the other side of the tasks_queue, we have the workers listening for the incoming
tasks. Let's update the code of our existing worker.js module to use AMQP:

import amqp from 'amqplib'
import { processTask } from './processTask.js'

async function main () {
 const connection = await amqp.connect('amqp://localhost')
 const channel = await connection.createChannel()
 const { queue } = await channel.assertQueue('tasks_queue')

Chapter 13

[591]

 channel.consume(queue, async (rawMessage) => {
 const found = processTask(
 JSON.parse(rawMessage.content.toString()))
 if (found) {
 console.log(`Found! => ${found}`)
 await channel.sendToQueue('results_queue',
 Buffer.from(`Found: ${found}`))
 }

 await channel.ack(rawMessage)
 })
}

main().catch(err => console.error(err))

Our new worker is also very similar to the one we implemented in the previous
section using ZeroMQ, except for the parts related to the exchange of messages.
In the preceding code, we can see how we first get a reference to the queue
called tasks_queue and then we start listening for incoming tasks using channel.
consume(). Then, every time a match is found, we send the result to the collector
via the results_queue, again using point-to-point communication. It's also important
to note how we are acknowledging every message with channel.ack() after the
message has been completely processed.

If multiple workers are started, they will all listen on the same queue, resulting in
the messages being load balanced between them (they become competing consumers).

Implementing the result collector
The results collector is again a trivial module, simply printing any message received
to the console. This is implemented in the collector.js file, as follows:

import amqp from 'amqplib'

async function main () {
 const connection = await amqp.connect('amqp://localhost')
 const channel = await connection.createChannel()
 const { queue } = await channel.assertQueue('results_queue')
 channel.consume(queue, msg => {
 console.log(`Message from worker: ${msg.content.toString()}`)
 })
}

main().catch(err => console.error(err))

Messaging and Integration Patterns

[592]

Running the application
Now everything is ready to give our new system a try. First, make sure that the
RabbitMQ server is running, then you can launch a couple of workers (in two
separate terminals), which will both connect to the same queue (tasks_queue) so that
every message will be load balanced between them:

node worker.js
node worker.js

Then, you can run the collector module and then the producer (by providing the
maximum word length and the hash to crack):

node collector.js
node producer.js 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

With this, we implemented a message pipeline and the Competing Consumers
pattern using AMQP.

Now, let's consider another broker-based approach for implementing task
distribution patterns, this time built on top of Redis Streams.

Distributing tasks with Redis Streams
After seeing how the Task Distribution pattern can be implemented using ZeroMQ
and AMQP, we are now going to see how we can implement this pattern leveraging
Redis Streams.

It's interesting to note that our new version of the hashsum cracker
based on AMQP takes slightly longer (compared to the ZeroMQ-
based version) to execute all the tasks and find a match. This is a
practical demonstration of how a broker can actually introduce a
negative performance impact, compared to a more low-level peer-
to-peer approach. However, let's not forget that with AMQP we
are getting much more out of the box compared to our ZeroMQ
implementation. For example, with the AMQP implementation,
if a worker crashes, the messages it was processing won't be lost
and will eventually be passed to another worker. So, remember
to always look at the bigger picture when choosing the right
approach to use for your application: a small delay may mean
nothing compared to a massive increase in the overall complexity
of the system or to a lack of some important features.

Chapter 13

[593]

Redis consumer groups
Before diving into some code, we need to learn about a critical feature of Redis that
allows us to implement a Task Distribution pattern using Redis Streams. This feature
is called consumer groups and is an implementation of the Competing Consumer
pattern (with the addition of some useful accessories) on top of Redis Streams.

A consumer group is a stateful entity, identified by a name, which comprises a set
of consumers identified by a name. When the consumers in the group try to read the
stream, they will receive the records in a round-robin configuration.

Each record has to be explicitly acknowledged, otherwise, the record will be kept
in a pending state. Each consumer can only access its own history of pending
records unless it explicitly claims the records of another consumer. This is useful
if a consumer crashes while processing a record. When the consumer comes back
online, the first thing it should do is retrieve its list of pending records and process
those before requesting new records from the stream. Figure 13.20 provides a visual
representation of how consumer groups work in Redis.

Figure 13.20: A Redis Stream consumer group

We can note how the two consumers in the group receive two different records
(B for Consumer 1 and C for Consumer 2) when they try to read from the stream.
The consumer group also stores the ID of the last retrieved record (record C), so that
at the successive read operation the consumer group knows what's the next record to
read. We can also note how Consumer 1 has a pending record (A), which is a record
that it's still processing or couldn't process. Consumer 1 can implement a retry
algorithm to make sure to process all the pending records assigned to itself.

Messaging and Integration Patterns

[594]

Now let's put into practice what we just learned about Redis consumer groups to
implement our hashsum cracker.

Implementing the hashsum cracker using Redis
Streams
The architecture of our hashsum cracker with Redis Streams is going to resemble
closely that of the previous AMQP example. In fact, we are going to have two
different streams (in the AMQP examples they were queues): one stream to hold the
tasks to be processed (tasks_stream) and another stream to hold the results coming
from the workers (results_stream).

Then, we are going to use a consumer group to distribute the tasks from the tasks_
stream to the workers of our application (our workers are the consumers).

Implementing the producer
Let's start by implementing the producer (in the producer.js file):

import Redis from 'ioredis'
import { generateTasks } from './generateTasks.js'

const ALPHABET = 'abcdefghijklmnopqrstuvwxyz'
const BATCH_SIZE = 10000
const redisClient = new Redis()

const [, , maxLength, searchHash] = process.argv

async function main () {
 const generatorObj = generateTasks(searchHash, ALPHABET,
 maxLength, BATCH_SIZE)
 for (const task of generatorObj) {
 await redisClient.xadd('tasks_stream', '*',
 'task', JSON.stringify(task))
 }

 redisClient.disconnect()

A Redis Stream can have multiple consumer groups. This way it's
possible to simultaneously apply different types of processing to
the same data.

Chapter 13

[595]

}

main().catch(err => console.error(err))

As we can see, there is nothing new to us in the implementation of the new
producer.js module. In fact, we already know very well how to add records to
a stream; all we have to do is invoke xadd() as discussed in the Reliable messaging
with streams section.

Implementing the worker
Next, we need to adapt our worker so it can interface with a Redis Stream using
a consumer group. This is the core of all the architecture, as in here, in the worker,
we leverage consumer groups and their features. So, let's implement the new
worker.js module:

import Redis from 'ioredis'
import { processTask } from './processTask.js'

const redisClient = new Redis()
const [, , consumerName] = process.argv

async function main () {
 await redisClient.xgroup('CREATE', 'tasks_stream', // (1)
 'workers_group', '$', 'MKSTREAM')
 .catch(() => console.log('Consumer group already exists'))

 const [[, records]] = await redisClient.xreadgroup(// (2)
 'GROUP', 'workers_group', consumerName, 'STREAMS',
 'tasks_stream', '0')
 for (const [recordId, [, rawTask]] of records) {
 await processAndAck(recordId, rawTask)
 }

 while (true) {
 const [[, records]] = await redisClient.xreadgroup(// (3)
 'GROUP', 'workers_group', consumerName, 'BLOCK', '0',
 'COUNT', '1', 'STREAMS', 'tasks_stream', '>')
 for (const [recordId, [, rawTask]] of records) {
 await processAndAck(recordId, rawTask)
 }
 }

Messaging and Integration Patterns

[596]

}

async function processAndAck (recordId, rawTask) { // (4)
 const found = processTask(JSON.parse(rawTask))
 if (found) {
 console.log(`Found! => ${found}`)
 await redisClient.xadd('results_stream', '*', 'result',
 `Found: ${found}`)
 }

 await redisClient.xack('tasks_stream', 'workers_group', recordId)
}

main().catch(err => console.error(err))

OK, there are a lot of moving parts in the new worker code. So, let's analyze it one
step at a time:

1. First, we need to make sure that the consumer group exists before we can
use it. We can do that with the xgroup command, which we invoke with the
following parameters:

a. 'CREATE' is the keyword to use when we want to create a consumer
group. In fact, with the xgroup command, we can also destroy the
consumer group, remove a consumer, or update the last read record
ID, using different subcommands.

b. 'tasks_stream' is the name of the stream we want to read from.
c. 'workers_group' is the name of the consumer group.
d. The fourth argument represents the record ID from where the consumer

group should start consuming records from the stream. Using '$'
(dollar sign) means that the consumer group should start reading
the stream from the ID of the last record currently in the stream.

e. 'MKSTREAM' is an extra parameter that instructs Redis to create the
stream if it doesn't exist already.

2. Next, we read all the pending records belonging to the current consumer.
Those are the leftover records from a previous run of the consumer that
weren't processed because of an abrupt interruption of the application (such
as a crash). If the same consumer (with the same name) terminated properly
during the last run, without errors, then this list would most likely be empty.
As we already mentioned, each consumer has access only to its own pending
records. We retrieve this list with a xreadgroup command and the following
arguments:

Chapter 13

[597]

a. 'GROUP', 'workers_group', consumerName is a mandatory trio where
we specify the name of the consumer group ('workers_group') and
the name of the consumer (consumerName) that we read from the
command-line inputs.

b. Then we specify the stream we would like to read with 'STREAMS',
'tasks_stream'.

c. Finally, we specify '0' as the last argument, which is the ID from
which we should start reading. Essentially, we are saying that we
want to read all pending messages belonging to the current consumer
starting from the first message.

3. Then, we have another call to xreadgroup(), but this time it has a completely
different semantic. In this case, in fact, we want to start reading new records
from the stream (and not access the consumer's own history). This is possible
with the following list of arguments:

a. As in the previous call of xreadgroup(), we specify the consumer
group that we want to use for the read operation with the three
arguments: 'GROUP', 'workers_group', consumerName.

b. Then we indicate that the call should block if there are no new
records currently available instead of returning an empty list. We
do that with the following two arguments: 'BLOCK', '0'. The last
argument is the timeout after which the function returns anyway,
even without results. '0' means that we want to wait indefinitely.

c. The next two arguments, 'COUNT' and '1', tell Redis that we are
interested in getting one record per call.

d. Next, we specify the stream we want to read from with 'STREAMS',
'tasks_stream'.

e. Finally, with the special ID '>'(greater than symbol), we indicate that
we are interested in any record not yet retrieved by this consumer
group.

4. Finally, in the processAndAck() function, we check if we have a match and
if that's the case, we append a new record to the results_stream. At last,
when all the processing for the record returned by xreadgroup() completes,
we invoke the Redis xack command to acknowledge that the record has been
successfully consumed, which results in the record being removed from the
pending list for the current consumer.

Phew! There was a lot going on in the worker.js module. It's interesting to note that
most of the complexity comes from the large amount of arguments required by the
various Redis commands.

Messaging and Integration Patterns

[598]

Now, everything should be ready for us to try out this new version of the hashsum
cracker. Let's start a couple of workers, but this time remember to assign them a
name, which will be used to identify them in the consumer group:

node worker.js workerA
node worker.js workerB

Then, you can run the collector and the producer as we did in the previous examples:

node collector.js
node producer.js 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

This concludes our exploration of the task distribution patterns, so now, we'll take a
closer look at the request/reply patterns.

Request/Reply patterns
One-way communications can give us great advantages in terms of parallelism and
efficiency, but alone they are not able to solve all our integration and communication
problems. Sometimes, a good old request/reply pattern might just be the perfect tool
for the job. But, there are situations in which all we have is an asynchronous one-way
channel. It's therefore important to know the various patterns and approaches required
to build an abstraction that would allow us to exchange messages in a request/reply
fashion on top of a one-way channel. That's exactly what we are going to learn next.

Correlation Identifier
The first Request/Reply pattern that we are going to learn is called the Correlation
Identifier and it represents the basic block for building a request/reply abstraction
on top of a one-way channel.

The pattern involves marking each request with an identifier, which is then attached
to the response by the receiver: this way, the sender of the request can correlate the
two messages and return the response to the right handler. This elegantly solves the
problem in the context of a one-way asynchronous channel, where messages can travel
in any direction at any time. Let's take a look at the example in the following diagram:

You may be surprised to know that this example just scratches
the surface, as there is a lot more to know about Redis Streams,
and in particular, consumer groups. Check out the official Redis
introduction to Streams for more details at nodejsdp.link/
redis-streams.

http://nodejsdp.link/redis-streams
http://nodejsdp.link/redis-streams

Chapter 13

[599]

Figure 13.21: Request/reply message exchange using correlation identifiers

The scenario depicted in Figure 13.21 shows how using a correlation ID allows us to
match each response with the right request, even if those are sent and then received
in a different order. The way this works will be much clearer once we start working
on our next example.

Implementing a request/reply abstraction using
correlation identifiers
Let's now start working on an example by choosing the simplest type of one-way
channel; one that is point-to-point (which directly connects two nodes of the system)
and fully duplex (messages can travel in both directions).

In this simple channel category, we can find, for example, WebSockets: they establish
a point-to-point connection between the server and browser, and the messages
can travel in any direction. Another example is the communication channel that is
created when a child process is spawned using child_process.fork() (we already
met this API in Chapter 11, Advanced Recipes). This channel too is asynchronous,
point-to-point, and duplex since it connects the parent only with the child process
and it allows messages to travel in any direction. This is probably the most basic
channel of this category, so that's what we are going to use in the next example.

Messaging and Integration Patterns

[600]

The plan for the next application is to build an abstraction in order to wrap the
channel created between the parent process and the child process. This abstraction
should provide a request/reply communication channel by automatically marking
each request with a correlation identifier and then matching the ID of any incoming
reply against the list of request handlers awaiting a response.

From Chapter 11, Advanced Recipes, we should remember that the parent process can
send a message to a child with child.send(message), while receiving messages is
possible with the child.on('message', callback) event handler.

In a similar way, the child process can send a message to the parent process using
process.send(message) and receive messages with process.on('message', callback).

This means that the interface of the channel available in the parent process is
identical to the one available in the child. This will allow us to build a common
abstraction that can be used from both ends of the channel.

Abstracting the request
Let's start building this abstraction by considering the part responsible for sending
new requests. Let's create a new file called createRequestChannel.js with the
following content:

import { nanoid } from 'nanoid'

export function createRequestChannel (channel) { // (1)
 const correlationMap = new Map()

 function sendRequest (data) { // (2)
 console.log('Sending request', data)
 return new Promise((resolve, reject) => {
 const correlationId = nanoid()

 const replyTimeout = setTimeout(() => {
 correlationMap.delete(correlationId)
 reject(new Error('Request timeout'))
 }, 10000)

 correlationMap.set(correlationId, (replyData) => {
 correlationMap.delete(correlationId)
 clearTimeout(replyTimeout)
 resolve(replyData)
 })

Chapter 13

[601]

 channel.send({
 type: 'request',
 data,
 id: correlationId
 })
 })
 }

 channel.on('message', message => { // (3)
 const callback = correlationMap.get(message.inReplyTo)
 if (callback) {
 callback(message.data)
 }
 })

 return sendRequest
}

This is how our request abstraction works:

1. The createRequestChannel() is a factory that wraps the input channel and
returns a sendRequest() function used to send a request and receive a reply.
The magic of the pattern lies in the correlationMap variable, which stores the
association between the outgoing requests and their reply handlers.

2. The sendRequest() function is used to send new requests. Its job is to
generate a correlation ID using the nanoid package (nodejsdp.link/nanoid)
and then wrap the request data in an envelope that allows us to specify
the correlation ID and the type of the message. The correlation ID and the
handler responsible for returning the reply data to the caller (which uses
resolve() under the hood) are then added to the correlationMap so that the
handler can be retrieved later using the correlation ID. We also implemented
a very simple request timeout logic.

3. When the factory is invoked, we also start listening for incoming messages.
If the correlation ID of the message (contained in the inReplyTo property)
matches any of the IDs contained in the correlationMap map, we know that
we just received a reply, so we obtain the reference to the associated response
handler and we invoke it with the data contained in the message.

That's it for the createRequestChannel.js module. Let's move on to the next part.

http://nodejsdp.link/nanoid

Messaging and Integration Patterns

[602]

Abstracting the reply
We are just a step away from implementing the full pattern, so let's see how the
counterpart of the request channel, which is the reply channel, works. Let's create
another file called createReplyChannel.js, which will contain the abstraction for
wrapping the reply handler:

export function createReplyChannel (channel) {
 return function registerHandler (handler) {
 channel.on('message', async message => {
 if (message.type !== 'request') {
 return
 }

 const replyData = await handler(message.data) // (1)
 channel.send({ // (2)
 type: 'response',
 data: replyData,
 inReplyTo: message.id
 })
 })
 }
}

Our createReplyChannel() function is again a factory that returns another function
used to register new reply handlers. This is what happens when a new handler is
registered:

1. When we receive a new request, we immediately invoke the handler by
passing the data contained in the message.

2. Once the handler has done its work and returned its reply, we build
an envelope around the data and include the type of the message and
the correlation ID of the request (the inReplyTo property), then we put
everything back into the channel.

The amazing thing about this pattern is that in Node.js it comes very easily:
everything for us is already asynchronous, so an asynchronous request/reply
communication built on top of a one-way channel is not very different from any
other asynchronous operation, especially if we build an abstraction to hide its
implementation details.

Chapter 13

[603]

Trying the full request/reply cycle
Now we are ready to try our new asynchronous request/reply abstraction. Let's
create a sample replier in a file named replier.js:

import { createReplyChannel } from './createReplyChannel.js'

const registerReplyHandler = createReplyChannel(process)

registerReplyHandler(req => {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve({ sum: req.a + req.b })
 }, req.delay)
 })
})

process.send('ready')

Our replier simply calculates the sum between the two numbers received in the
request and returns the result after a certain delay (which is also specified in the
request). This will allow us to verify that the order of the responses can be different
from the order in which we sent the requests, to confirm that our pattern is working.
With the last instruction of the module, we send a message back to the parent
process to indicate that the child is ready to accept requests.

The final step to complete the example is to create the requestor in a file
named requestor.js, which also has the task of starting the replier using child_
process.fork():

import { fork } from 'child_process'
import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { once } from 'events'
import { createRequestChannel } from './createRequestChannel.js'

const __dirname = dirname(fileURLToPath(import.meta.url))

async function main () {
 const channel = fork(join(__dirname, 'replier.js')) // (1)
 const request = createRequestChannel(channel)

 try {
 const [message] = await once(channel, 'message') // (2)

Messaging and Integration Patterns

[604]

 console.log(`Child process initialized: ${message}`)
 const p1 = request({ a: 1, b: 2, delay: 500 }) // (3)
 .then(res => {
 console.log(`Reply: 1 + 2 = ${res.sum}`)
 })

 const p2 = request({ a: 6, b: 1, delay: 100 }) // (4)
 .then(res => {
 console.log(`Reply: 6 + 1 = ${res.sum}`)
 })

 await Promise.all([p1, p2]) // (5)
 } finally {
 channel.disconnect() // (6)
 }
}

main().catch(err => console.error(err))

The requestor starts the replier (1) and then passes its reference to
our createRequestChannel() abstraction. We then wait for the child process to be
available (2) and run a couple of sample requests (3, 4). Finally, we wait for both
requests to complete (5) and we disconnect the channel (6) to allow the child process
(and therefore the parent process) to exit gracefully.

To try out the sample, simply launch the requestor.js module. The output should
be something similar to the following:

Child process initialized: ready
Sending request { a: 1, b: 2, delay: 500 }
Sending request { a: 6, b: 1, delay: 100 }
Reply: 6 + 1 = 7
Reply: 1 + 2 = 3

This confirms that our implementation of the Request/Reply messaging pattern
works perfectly and that the replies are correctly associated with their respective
requests, no matter in what order they are sent or received.

The technique we've discussed in this section works great when we have a single
point-to-point channel. But what happens if we have a more complex architecture
with multiple channels or queues? That's what we are going to see next.

Chapter 13

[605]

Return address
The Correlation Identifier is the fundamental pattern for creating a request/reply
communication on top of a one-way channel. However, it's not enough when
our messaging architecture has more than one channel or queue, or when there
can be potentially more than one requestor. In these situations, in addition to a
correlation ID, we also need to know the return address, a piece of information that
allows the replier to send the response back to the original sender of the request.

Implementing the Return Address pattern in AMQP
In the context of an AMQP-based architecture, the return address is the queue where
the requestor is listening for incoming replies. Because the response is meant to
be received by only one requestor, it's important that the queue is private and not
shared across different consumers. From these properties, we can infer that we are
going to need a transient queue scoped to the connection of the requestor, and that
the replier has to establish a point-to-point communication with the return queue to
be able to deliver its responses.

The following diagram gives us an example of this scenario:

Figure 13.22: Request/reply messaging architecture using AMQP

Figure 13.22 shows us how each requestor has its own private queue, specifically
intended to handle the replies to their requests. All requests are sent instead to
a single queue, which is then consumed by the replier. The replier will route the
replies to the correct response queue thanks to the return address information
specified in the request.

Messaging and Integration Patterns

[606]

In fact, to create a Request/Reply pattern on top of AMQP, all we need to do is to
specify the name of the response queue in the message properties, so that the replier
knows where the response message has to be delivered.

The theory seems very straightforward, so let's see how to implement this in a real
application.

Implementing the request abstraction
Let's now build a request/reply abstraction on top of AMQP. We will use RabbitMQ
as a broker, but any compatible AMQP broker should do the job. Let's start with
the request abstraction, implemented in the amqpRequest.js module. We will show
the code here one piece at a time to make the explanation easier. Let's start from the
constructor of the AMQPRequest class:

export class AMQPRequest {
 constructor () {
 this.correlationMap = new Map()
 }
 //...

As we can see from the preceding code, we will again be using the Correlation
Identifier pattern, so we are going to need a map to hold the association between the
message ID and the relative handler.

Then, we need a method to initialize the AMQP connection and its objects:

async initialize () {
 this.connection = await amqp.connect('amqp://localhost')
 this.channel = await this.connection.createChannel()
 const { queue } = await this.channel.assertQueue('', // (1)
 { exclusive: true })
 this.replyQueue = queue

 this.channel.consume(this.replyQueue, msg => { // (2)
 const correlationId = msg.properties.correlationId
 const handler = this.correlationMap.get(correlationId)
 if (handler) {
 handler(JSON.parse(msg.content.toString()))
 }
 }, { noAck: true })
}

Chapter 13

[607]

The interesting thing to observe here is how we create the queue to hold the replies
(1). The peculiarity is that we don't specify any name, which means that a random
one will be chosen for us. In addition to this, the queue is exclusive, which means that
it's bound to the currently active AMQP connection and it will be destroyed when
the connection closes. There is no need to bind the queue to an exchange as we don't
need any routing or distribution to multiple queues, which means that the messages
have to be delivered straight into our response queue. In the second part of the
function (2), we start to consume the messages from the replyQueue. Here we match
the ID of the incoming message with the one we have in our correlationMap and
invoke the associated handler.

Next, let's see how it's possible to send new requests:

send (queue, message) {
 return new Promise((resolve, reject) => {
 const id = nanoid() // (1)
 const replyTimeout = setTimeout(() => {
 this.correlationMap.delete(id)
 reject(new Error('Request timeout'))
 }, 10000)

 this.correlationMap.set(id, (replyData) => { // (2)
 this.correlationMap.delete(id)
 clearTimeout(replyTimeout)
 resolve(replyData)
 })

 this.channel.sendToQueue(queue, // (3)
 Buffer.from(JSON.stringify(message)),
 { correlationId: id, replyTo: this.replyQueue }
)
 })
}

The send() method accepts as input the name of the requests queue and
the message to send. As we learned in the previous section, we need to generate
a correlation ID (1) and associate it to a handler responsible for returning the reply
to the caller (2). Finally, we send the message (3), specifying the correlationId and
the replyTo property as metadata. In AMQP, in fact, we can specify a set of
properties (or metadata) to be passed to the consumer, together with the main
message. The metadata object is passed as the third argument of the sendToQueue()
method.

Messaging and Integration Patterns

[608]

It's important to note that we are using the channel.sentToQueue() API instead
of channel.publish() to send the message. This is because we are not interested in
implementing a publish/subscribe distribution pattern using exchanges, but a more
basic point-to-point delivery straight into the destination queue.

The last piece of our AMQPRequest class is where we implement the destroy()
method, which is used to close the connection and the channel:

 destroy () {
 this.channel.close()
 this.connection.close()
 }
}

That's it for the amqpRequest.js module.

Implementing the reply abstraction
Now it's time to implement the reply abstraction in a new module named
amqpReply.js:

import amqp from 'amqplib'

export class AMQPReply {
 constructor (requestsQueueName) {
 this.requestsQueueName = requestsQueueName
 }

 async initialize () {
 const connection = await amqp.connect('amqp://localhost')
 this.channel = await connection.createChannel()
 const { queue } = await this.channel.assertQueue(// (1)
 this.requestsQueueName)
 this.queue = queue
 }

 handleRequests (handler) { // (2)
 this.channel.consume(this.queue, async msg => {
 const content = JSON.parse(msg.content.toString())
 const replyData = await handler(content)
 this.channel.sendToQueue(// (3)
 msg.properties.replyTo,
 Buffer.from(JSON.stringify(replyData)),
 { correlationId: msg.properties.correlationId }

Chapter 13

[609]

)
 this.channel.ack(msg)
 })
 }
}

In the initialize() method of the AMQPReply class, we create the queue that
will receive the incoming requests (1): we can use a simple durable queue for
this purpose. The handleRequests() method (2) is used to register new request
handlers from where new replies can be sent. When sending back a reply (3),
we use channel.sendToQueue() to publish the message straight into the queue
specified in the replyTo property of the message (our return address). We also set
the correlationId in the reply, so that the receiver can match the message with the
list of pending requests.

Implementing the requestor and the replier
Everything is now ready to give our system a try, but first, let's build a pair sample
requestor and replier to see how to use our new abstraction.

Let's start with the replier.js module:

import { AMQPReply } from './amqpReply.js'

async function main () {
 const reply = new AMQPReply('requests_queue')
 await reply.initialize()

 reply.handleRequests(req => {
 console.log('Request received', req)
 return { sum: req.a + req.b }
 })
}

main().catch(err => console.error(err))

It's nice to see how the abstraction we built allows us to hide all the mechanisms
to handle the correlation ID and the return address. All we need to do is initialize
a new reply object, specifying the name of the queue where we want to receive
our requests ('requests_queue'). The rest of the code is just trivial; in practice, our
sample replier simply calculates the sum of the two numbers received as the input
and sends back the result in an object.

Messaging and Integration Patterns

[610]

On the other side, we have a sample requestor implemented in the requestor.js file:

import { AMQPRequest } from './amqpRequest.js'
import delay from 'delay'

async function main () {
 const request = new AMQPRequest()
 await request.initialize()

 async function sendRandomRequest () {
 const a = Math.round(Math.random() * 100)
 const b = Math.round(Math.random() * 100)
 const reply = await request.send('requests_queue', { a, b })
 console.log(`${a} + ${b} = ${reply.sum}`)
 }

 for (let i = 0; i < 20; i++) {
 await sendRandomRequest()
 await delay(1000)
 }

 request.destroy()
}

main().catch(err => console.error(err))

Our sample requestor sends 20 random requests at one-second intervals to
the requests_queue queue. In this case, also, it's interesting to see that our abstraction
is doing its job perfectly, hiding all the details behind the implementation of the
asynchronous Request/Reply pattern.

Now, to try out the system, simply run the replier module followed by a couple
of requestor instances:

node replier.js
node requestor.js
node requestor.js

You will see a set of operations published by the requestors and then received by the
replier, which in turn will send back the responses to the right requestor.

Chapter 13

[611]

Now we can try other experiments. Once the replier is started for the first time,
it creates a durable queue and this means that if we now stop it and then run the
replier again, no request will be lost. All the messages will be stored in the queue
until the replier is started again!

Another nice feature that we get for free by using AMQP is the fact that our replier
is scalable out of the box. To test this assumption, we can try to start two or more
instances of the replier, and watch the requests being load balanced between them.
This works because, every time a requestor starts, it attaches itself as a listener to the
same durable queue, and as a result, the broker will load balance the messages across
all the consumers of the queue (remember the Competing Consumers pattern?).
Sweet!

Summary
You have reached the end of this chapter. Here, you learned the most important
messaging and integration patterns and the role they play in the design of
distributed systems. You should now have mastered the three most important types
of message exchange patterns: Publish/Subscribe, Task Distribution, and Request/
Reply, implemented either on top of a peer-to-peer architecture or using a broker.
We analyzed the pros and cons of each pattern and architecture, and we saw that by
using a broker (implementing either a message queue or data stream), it's possible
to implement reliable and scalable applications with little effort, but at the cost of
having one more system to maintain and scale.

Note that based on how we implemented the application, a request
will time out after 10 seconds. So, in order for a reply to reach the
requestor in time, the replier can afford to have only a limited
downtime (certainly less than 10 seconds).

ZeroMQ has a pair of sockets specifically meant for implementing
request/reply patterns, called REQ/REP, however, they are
synchronous (only one request/response at a time). More
complex request/reply patterns are possible with more
sophisticated techniques. For more information, you can
read the official guide at nodejsdp.link/zeromq-reqrep.

A Request/Reply pattern with a return address is also possible
on top of Redis Streams and resembles very closely the system we
implemented with AMQP. We'll leave this to you to implement as
an exercise.

http://nodejsdp.link/zeromq-reqrep

Messaging and Integration Patterns

[612]

You have also learned how ZeroMQ allows you to build distributed systems where
you can have total control over every aspect of the architecture, fine tuning its
properties around your very own requirements.

Ultimately, both approaches will give you all the tools that you need to build any
type of distributed systems, from basic chat applications to web-scale platforms used
by millions of people.

This chapter also closes the book. By now, you should have a toolbelt full of patterns
and techniques that you can go and apply in your projects. You should also have
a deeper understanding of how Node.js development works and what its strengths
and weaknesses are. Throughout the book, you also had the chance to work with
a myriad of packages and solutions developed by many extraordinary developers.
In the end, this is the most beautiful aspect of Node.js: its people, a community
where everybody plays their part in giving something back.

We hope you enjoyed our small contribution and we look forward to seeing yours.

Sincerely, Mario Casciaro and Luciano Mammino.

Exercises
• 13.1 History service with streams: In our publish/subscribe example with

Redis Stream, we didn't need a history service (as we did instead in the
related AMQP example) because all the message history was saved in the
stream anyway. Now, implement such a history service, storing all the
incoming messages in a separate database and use this service to retrieve the
chat history when a new client connects. Hint: the history service will need to
remember the ID of the last message retrieved across restarts.

• 13.2 Multiroom chat: Update the chat application example we created in this
chapter to be able to support multiple chat rooms. The application should
also support displaying the message history when the client connects. You
can choose the messaging system you prefer, and even mix different ones.

• 13.3 Tasks that stop: Update the hashsum cracker examples we implemented
in this chapter and add the necessary logic to stop the computation on all
nodes once a match has been found.

Chapter 13

[613]

• 13.4 Reliable task processing with ZeroMQ: Implement a mechanism to
make our hashsum cracker example with ZeroMQ more reliable. As we
already mentioned, with the implementation we saw in this chapter, if a
worker crashes, all the tasks it was processing are lost. Implement a peer-
to-peer queuing system and an acknowledgment mechanism to make sure
that the message is always processed at least once (excluding errors due to
hypothetical unprocessable tasks).

• 13.5 Data aggregator: Create an abstraction that can be used to send a request
to all the nodes connected to the system and then returns an aggregation of
all the replies received by those nodes. Hint: you can use publish/reply to
send the request, and any one-way channel to send back the replies. Use any
combination of the technologies we have learned.

• 13.6 Worker status CLI: Use the data aggregator component defined in
Exercise 13.5 to implement a command-line application that, when invoked,
displays the current status of all the workers of the hashsum cracker
application (for example, which chunk they are processing, whether they
found a match, and so on).

• 13.7 Worker status UI: Implement a web application (from client to server) to
expose the status of the workers of the hashsum cracker application through
a web UI that can report in real time when a match is found.

• 13.8 Pre-initialization queues are back: In the AMQP request/reply
example, we implemented a Delayed Startup pattern to deal with the fact
that the initialize() method is asynchronous. Now, refactor that example
by adding pre-initialization queues as we learned in Chapter 11, Advanced
Recipes.

• 13.9 Request/reply with Redis Streams: Build a request/reply abstraction
on top of Redis Streams.

• 13.10 Kafka: If you are brave enough, try to reimplement all relevant
examples in this chapter using Apache Kafka (nodejsdp.link/kafka)
instead of Redis Streams.

http://nodejsdp.link/kafka

[615]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Django 3 By Example - Third Edition

Antonio Melé

ISBN: 9781838981952

 ● Build real-world web applications
 ● Learn Django essentials, including models, views, ORM, templates, URLs,

forms, and authentication
 ● Implement advanced features such as custom model fields, custom template

tags, cache, middleware, localization, and more

https://www.packtpub.com/web-development/django-3-by-example-third-edition

[616]

Other Books You May Enjoy

 ● Create complex functionalities, such as AJAX interactions, social authentication,
a full-text search engine, a payment system, a CMS, a RESTful API, and more

 ● Integrate other technologies, including Redis, Celery, RabbitMQ, PostgreSQL,
and Channels, into your projects

 ● Deploy Django projects in production using NGINX, uWSGI, and Daphne

[617]

Other Books You May Enjoy

Responsive Web Design with HTML5 and CSS - Third Edition

Ben Frain

ISBN: 9781839211560

 ● Integrate CSS media queries into your designs; apply different styles to
different devices

 ● Load different sets of images depending upon screen size or resolution
 ● Leverage the speed, semantics, and clean markup of accessible HTML patterns
 ● Implement SVGs into your designs to provide resolution-independent images
 ● Apply the latest features of CSS like custom properties, variable fonts, and CSS

Grid
 ● Add validation and interface elements like date and color pickers to HTML

forms
 ● Understand the multitude of ways to enhance interface elements with filters,

shadows, animations, and more

https://www.packtpub.com/web-development/responsive-web-design-with-html5-and-css-third-edition

[618]

Other Books You May Enjoy

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[619]

Index
Symbols
@@iterator method 322
@@name convention

reference link 322

A
adaptee 295
Adapter pattern 294

LevelUP, using through filesystem
API 295-298

real-world examples 298
addCps() function 65
Amazon Kinesis

reference link 573
Advanced Message Queuing

Protocol (AMQP) 548, 564
chat application, integrating with 569, 570
competing consumers 588
durable subscribers 566
history service, implementing 567, 568
pipelines 588
point-to-point communications 588
reference link 548
return address pattern,

implementing 605, 606
AMQP, components

binding 565
exchange 565
queue 564

AMQP model
reference link 565

Ansible
URL 501

ANSI escape sequences
reference link 372

Apache Kafka
reference link 573

API orchestration 532-535
URL 532

API proxy 531, 532
API server

without, asynchronous request
batching 439-441

without, asynchronous request
caching 439-441

application scaling 476
archiver

using, reference link 197
async/await 141

limited parallel execution
pattern 149-152

parallel execution 147-149
sequential execution 145-147
sequential iteration 145-147
used, for error handling 143
using, with Array.forEach for

serial execution 147
async functions 141, 142
async generator function 334
async generator objects 334
async generators 334, 335
asynchronicity

with deferred execution 72, 73
asynchronous CPS

versus synchronous CPS 67
asynchronous invocations

cancelable async functions, with
generators 449-453

wrapping 447-449

[620]

asynchronously initialized components
code execution, delaying 430
dealing with 428
issue 428, 429
local initialization check 429
Mongoose 435
pre-initialization queues 431-435

asynchronous messaging 546
asynchronous module definition (AMD) 19
asynchronous operations

cancelable functions, creating 446, 447
canceling 445

asynchronous programming 63
issues 90

asynchronous request batching 435-437
in total sales web server 442, 443
with promises 441

asynchronous request caching 435
implementation 445
in total sales web server 443, 444
with promises 441

async imports 45-47
async iterables 331, 332
async iterators 178, 331-336

and Node.js streams 335, 336
async library 119, 120
autocannon

URL 483
await expression 141, 142
awilix

reference link 265

B
Babel

reference link 363
backpressure 176, 181
batch operations

URL 293
behavioral design patterns

Command pattern 347
Iterator pattern 319
Middleware pattern 337
State pattern 308
Strategy pattern 302
Template pattern 315

binary buffer 558
bound function 349
Brotli

using 195
browser

code, sharing with 358, 359
Browserify

URL 19, 362
Brunch

reference link 362
buffered API

using, for Gzipping 162
buffering

versus streaming 160, 161
Builder pattern 241-244, 248

URL object builder, implementing 244-247
build-time code branching 374-376
built-in Proxy object 277, 278

capabilities and limitations 278, 279

C
callback discipline 95

applying 95-98
callback hell 93, 94
callback pattern 64

continuation-passing style (CPS) 64
callbacks 63

best practices 94
combining, with events 86, 87

chain-of-responsibility pattern 338
reference link 338

chalk
reference link 377

Change Observer pattern
creating, with Proxy pattern 282-285

chat application
history service, designing for 566, 567
implementing, with Redis Streams 573-577
integrating, with AMQP 569, 570

chat server
peer-to-peer architecture, designing for 558

child process
communicating with 464, 465

child processes 460
circular dependencies 29-32

[621]

circular dependency resolution,
ECMAScript modules (ESM)

evaluation phase 54
instantiation phase 53, 54
parsing phase 52, 53

cloning 479
closures 64

URL 64
cloud-based proxies 496
cluster module 480

behavior, notes of 481, 482
edge cases 482
resiliency, and availability with 486-488
scaling with 484-486
used, for building HTTP server 482-484
zero-downtime restart 488-490

code
sharing, with browser 358, 359

code minification 360
combined streams

implementing 217, 218
Command Message 544
Command pattern 347

client 348
command 348
complex command 349-353
invoker 348
target 348
Task pattern 349
using 348, 349

CommonJS
URL 19

CommonJS modules 22
circular dependencies 29-32
defining 24
homemade module loader 22-24
module cache 28
module.exports, versus exports 25
require function is synchronous 26
resolving algorithm 26, 28
versus ESM 60

CommonJS modules, concepts
exports and module.exports variables 22
require function 22

competitive race 108
complex applications

decomposing 523

component 379
concurrency

limiting 112
limiting, globally 113

concurrent tasks
race conditions, fixing 108-110

conditional rendering 388
constructor injection 265
Consul

URL 504
used, for implementing dynamic

load balancer 503-509
consumer groups 593
container image 515
containers 513

creating, with Docker 514-517
running, with Docker 514-517
used, for scaling applications 513

content delivery network (CDN) 370
context 302
continuation-passing style (CPS) 64

asynchronous CPS 65-67
non-CPS callbacks 67
synchronous CPS 65

control flow patterns 94
core-js

URL 280
Correlation Identifier 598
CouchDB

URL 491
CPU-bound tasks

executing 453
executing, in production 472
external processes, using 460
interleaving approach, interleaving 459
interleaving, with setImmediate 457
subset sum algorithm, interleaving 457, 458
subset sum problem, solving 453-457

cross-origin resource sharing (CORS)
reference link 406

cross-platform context
JavaScript modules 359, 360

cross-platform development
build-time code branching 374-376
design patterns 378
fundamentals 371
module swapping 377, 378

[622]

runtime code branching 372
csv-parse module

URL 190

D
databases

reference link 337
data ownership 527
Decorator pattern 285, 286

implementation techniques 286
used, for decorating LevelUP database 290
versus Proxy pattern 294

Decorator pattern implementation
techniques 286

composition, using 286, 288
object augmentation (decoration) 288, 289
Proxy object, using 289, 290

default exports 42, 43
default imports 42, 43
delegates

URL 275
demultiplexing 223
denial-of-service (DoS) attack 111, 461
dependency graph 48, 363
dependency hoisting 256
dependency injection container 265
Dependency Injection (DI) 261-264
design patterns, cross-platform development

adapter 378
dependency injection 379
proxy 378
service locator 379
strategy 378
template 378

developer experience (DX) 435
directed graph

URL 48
direct style 65
distributed hashsum cracker, building with

ZeroMQ 580, 581
application, running 587
producer, implementing 582-584
result collector, implementing 586
worker, implementing 585, 586

Docker
URL 514

used, for creating container 514-517
used, for running container 514-517

Dockerfile 515
Document Message 545
Don't Repeat Yourself (DRY) 3
duck typing 128

reference link 239
duplexer2

URL 215
duplexify

URL 215
Duplex streams 185
durable subscriber 562
durable subscribers

with AMQP, and RabbitMQ 566
dynamic horizontal scaling 501

dynamic load balancer, implementing with
Consul 503-509

dynamic load balancer, implementing with
http-proxy 503-509

service registry, using 501-503
dynamic load balancer

implementing, with Consul 503-509
implementing, with http-proxy 503-509

dynamic scaling 501

E
early return principle 96
ECMAScript modules (ESM) 38, 39

async imports 45-47
circular dependency resolution 50, 51
default exports and imports 42, 43
loading 48
loading phases 48, 49
missing references 60, 61
mixed exports 43, 44
modifying 56-59
module identifiers 45
named exports and imports 39-42
read-only live bindings 49, 50
running, in strict mode 60
using, in Node.js 39
versus CommonJS modules 60

Elasticsearch
URL 529

encapsulation 18, 236

[623]

entry point 48
ErrorBoundary component

reference link 388
error handling, async/await

return, versus return await 144, 145
try...catch 143, 144

esx
reference link 384

EventEmitter
versus callbacks 85, 86

event loop 9
Event Message 545
event notification interface 7
Express

Middleware pattern 337
reference link 337, 347

external process
subset sum task, delegating to 461

F
Factory pattern 234

code profiler, building 238-240
encapsulation mechanism 236
object creation and implementation,

decoupling 235
fail fast approach 77
Fastify 293

URL 293, 391
fastify-cors

reference link 406
first in first out (FIFO) 445
flow control 203
flowing mode 173
function injection 265
functional reactive programming (FRP) 285
FuseBox

reference link 362

G
garbage collection, JavaScript

URL 83
generator delegation 331
generator function 327
generator iterator

controlling 328-330

generator object 327
generators 178, 326

using, instead of iterators 330, 331
get trap 279
global scope

modifying 37, 38
glob package

URL 87
God object 536
Gzipping

with buffered API 162
with streams 163

H
HAProxy 496

URL 496
hashsum cracker implementation,

with AMQP 588, 589
application, running 592
producer, implementing 589, 590
result collector, implementing 591
worker, implementing 590, 591

hashsum cracker implementation, with
Redis Streams 594

producer, implementing 594
worker, implementing 595-598

has trap 279
Hello React 381, 382
high coupling 526
history service

designing, for chat application 566, 567
implementing, with AMQP 567, 568

homemade module loader 22-24
horizontal scaling 480
horizontal/vertical partitioning 479
htm

reference link 384
HTTP/2 Server Push

reference link 360
http-proxy

used, for implementing dynamic
load balancer 503-509

HTTP server
building 482-484

hydration
reference link 380

[624]

I
Immediately Invoked Function Expression

(IIFE) 21, 368
inconsistently asynchronous function 68
inconsistentRead() function

fixing 72, 73
infinite recursive promise resolution chains

issues 152-155
infrastructure as code 501
injector 261
intercepting filter pattern 338

reference link 338
interoperability 61, 62
inversify

reference link 265
Inversion of Control 265
I/O completion port (IOCP) 11
I/O starvation 73
iterable protocol 322-324
iterables 322

as native JavaScript interface 324-326
Iterator pattern 319

async generators 334
async iterators 331
generator function 327, 328
generators 327
iterable protocol 322-324
iterator protocol 319-321

iterator protocol 319-322
iterator result 319
iterators 178

as native JavaScript interface 324-326
reference link 321

J
JavaScript, in Node.js 13

accessing, operating system services 14
module system 14
native code, running 15, 16
running 13, 14

JavaScript modules
in cross-platform context 359, 360

Jest
URL 59

json-socket module
URL 293

JSX
reference link 383

JugglingDB 299
URL 299

K
Keep It Simple, Stupid (KISS) 4
KISS principle (Keep It Simple, Stupid) 90
Knex

reference link 241
Koa

reference link 347
kubectl

URL 519
Kubernetes 517-519

application, deploying and
scaling on 519, 520

rollouts 523
URL 518

Kubernetes deployment
creating 520, 521
scaling 521, 522

L
lazy initialization 280
lazy streams 197, 198

reference link 198
least recently used (LRU) 445
LevelDB 290
level-filesystem

URL 299
LevelGraph

URL 290
level package

URL 291
LevelUP 290

ecosystem, URL 290
URL 290
using, through filesystem API 295-298

LevelUP database
decorating, with Decorator pattern 290

LevelUP plugin
implementing 291-293
level-inverted-index, URL 293
levelplus, URL 293

[625]

libuv 11
URL 12

links
sequential crawling 101, 102

Linux container 513
load balancer, implementing with reverse

proxy
options 496

load balancing 479
with Nginx 496-501

load distribution 477
loading phases, ECMAScript modules (ESM)

construction phase 48
evaluation phase 49
instantiation phase 49

lodash
URL 45

log 546, 571
logging Writable stream

creating, in Proxy pattern 281, 282
long-term support (LTS) 14
LoopBack 285

URL 285

M
Memcached

URL 491
memory leaks

observer pattern 82
message 544

Command Message 544
Document Message 545
Event Message 545

message broker 547
integrating with 536-538
Redis, using as 554-556

message queue (MQ) 546, 562
versus streams 573

Message Queue Telemetry
Transport (MQTT) 548

reference link 548
messaging system

fundamentals 542
Microbundle

reference link 362

microservice architecture 526
advantages 528
disadvantages 528
example 526-528
integration patterns 530

microservice architecture, advantages and
disadvantages

across platforms and languages,
reusability 529

application, scaling 529
challenges 530
service, expendable 529

microservice architecture, factors
high cohesion 526
integration complexity 526
loose coupling 526

microservice architecture, integration pat-
terns

API orchestration 532-535
API proxy 531, 532
integrating, with message broker 536-538

microtasks 73
middleware framework

creating, for ØMQ 340
middleware framework, for ØMQ

creating 340
middleware functions, creating to process

messages 342, 343
Middleware Manager 340-342

Middleware pattern 337
implementing 339
in Express 337
Middleware Manager 339
using 338

Middy
reference link 347

minikube
URL 519

mixed exports 43, 44
mkdirp 90
MobX 285

URL 285
mocku module

URL 59
module bundler 360

dependency resolution 363-366
packing 367, 368

[626]

working 363
module cache 28
module definition patterns 33

class, exporting 35
function, exporting 34
instance, exporting 36
named exports 33

module identifiers 45
module objects

reference link 59
module systems 20

in JavaScript 19, 20
in Node.js 19, 20
modifying 37, 38
need for 18

MongoDB 435
URL 491

monkey patching 37, 275
monolithic application 478
monolithic architecture 524, 525
monolithic kernels 524
multi-pass rendering 413
multiplexing 223
multi-process approach

considerations 467
mux/demux application

running 228

N
named exports 39-42
named imports 39-42
namespace import 41
nanoSQL 299

URL 299
Next.js framework

reference link 416
Nginx

load balancing with 496-500
Nginx

URL 496
nock

URL 38
Node.js

callback conventions 73
core 2
ECMAScript modules (ESM), using 39

event demultiplexing 7-9
I/O, blocking 5, 6
I/O, disadvantages 5
I/O engine, libuv of 11
I/O, non-blocking 6, 7
modules, advantages 3
modules, using 2, 3
philosophy 2
philosophy, reference link 2
reactor pattern 9-11
recipe for 12
simplicity and pragmatism 4
surface area 3
working 5

Node.js applications
scaling 477
scaling, with containers 513

Node.js-based proxies 496
Node.js callback conventions 73-77

errors, propagating 74, 75
uncaught exceptions 75-77

Node.js release cycles
reference link 14

non-flowing mode 171, 172
nunjucks

reference link 370

O
Object.defineProperty() method

URL 280
object streams

demultiplexing 229
multiplexing 229

observer pattern 77
asynchronous event 83-85
errors, propagating 80
EventEmitter 78
EventEmitter, and memory leaks 82, 83
EventEmitter, creating 79, 80
EventEmitter, methods 78
EventEmitter, using 79, 80
observable object, creating 80-82
synchronous event 83-85

ØMQ
middleware framework, creating 340
reference link 340

[627]

ØMQ middleware framework
client-side, creating 345, 346
reference link 344
server-side, creating 344, 345
using 344

one way pattern
versus request/reply patterns 542, 543

Open Container Initiative (OCI)
URL 513

operational transformation (OT) 348
reference link 349

optimal asynchronous request
caching 437, 438

phases 438
ORY

URL 529

P
Packer

URL 501
packet switching 224
parallel execution 104, 105

limited parallel execution 110, 111
pattern 108

parallel pipeline 579
parallel-transform

URL 212
parcel

reference link 362
passport 308

reference link 308
supported authentication providers 308

PassThrough streams 193
late piping 194-196
observability 193, 194

peer-to-peer architecture
designing, for chat server 558

peer-to-peer communication 548
peer-to-peer load balancing 510, 511

HTTP client, implementing that can balance
requests across multiple
servers 511-513

Peer-to-Peer Publish/Subscribe
with ZeroMQ 557

pipeline
processing 338

pipeline()
used, for error handling 201, 202

pipes
used, for connecting streams 198, 199

polyfill 280
PostgreSQL

URL 491
PouchDB

URL 290
private class fields

reference link 237
private variables

reference link 237
process identifier (PID) 483
process pool module

implementing 461-463
promise 124-127

creating 130
limited parallel execution 137
parallel execution flow 136, 137
sequential execution 133-136
sequential iteration 133-136
used, for implementing TaskQueue

class 138, 139
promise API 128, 129
Promises/A 127
Promises/A+ 124, 128

URL 128
promisification 131, 132
property injection 265
proxy 269
Proxy pattern 269, 270

implementing, techniques 271
logging Writable stream, creating 281, 282
used, for creating Change Observer

pattern 282-285
uses, example 270
using, in projects 285
versus Decorator pattern 294

Proxy pattern implementation
techniques 271, 272

built-in Proxy object 277, 278
comparing 280, 281
object augmentation 275, 276
object composition 272-275

Publish/Subscribe pattern 549
real-time chat application, building 550

[628]

pumpify
URL 216

pyramid of doom 93

Q
queues 113, 114

R
RabbitMQ

durable subscribers 566
reference link 548

race conditions
fixing, with concurrent tasks 108-110

reachability
URL 83

React 379, 380
reference link 391
stateful components 385-390

react.createElement
alternatives 383-385

React Hardware
reference link 380

reactive programming (RP) 285
React Native

reference link 380
reactor pattern 9, 11

using 10
React PIXI

reference link 380
React Router

reference link 391
react-three-fiber

reference link 380
Readable streams

approaches 171
async iterators 174
flowing mode 173
from iterables 178, 179
implementing 174-177
non-flowing mode 171, 172
simplified construction 177

real-time chat application
building 550
client side, implementing 551, 552
running 553
scaling 553

server side, implementing 550, 551
records 571
Redis

reference link 554
URL 491
using, as message broker 554-556

Redis consumer groups 593
Redis Streams

chat application, implementing 573-577
tasks, distributing 592

reliable message delivery
with queues 562, 563

reliable messaging
with streams 571

remote procedure call (RPC) 348, 544
request/reply abstraction, implementing with

correlation identifiers 599, 600
reply, abstracting 602
request, abstracting 600, 601

request/reply cycle
trying 603, 604

request/reply patterns 598
versus one way pattern 542, 543

require function is synchronous 26
requirejs

URL 19
resiliency 486
resolving algorithm 26-28

URL 27
resolving algorithm, branches

core modules 27
file modules 27
package modules 27

return address 605
return address pattern, AMQP

implementing 605
replier, implementing 609-611
reply abstraction, implementing 608, 609
request abstraction, implementing 606, 607
requestor, implementing 609-611

Revealing Constructor pattern 249, 250, 253
immutable buffer, building 250-252

revealing module pattern 20-22
reverse proxy

scaling with 494-496
rollup

reference link 362

[629]

runtime code branching 372
challenges 373, 374

S
scalability

three dimensions 477, 478
scalability, three dimensions

X-axis 478
Y-axis 478, 479
Z-axis 479

scale cube 475, 477
scaling

with cluster module 484-486
with reverse proxy 494-496

semicoroutines 326
sequential crawling

of links 101, 102
sequential execution flow 98
sequential iteration 100

pattern 103
service-level agreement (SLA) 488
service locator 265
service locator pattern

reference link 368
service registry

using 501-503
set of tasks

executing, in sequence 99
Simple/Streaming Text Orientated Messaging

Protocol (STOMP) 548
reference link 548

single-page applications (SPAs) 380
single-responsibility principle (SRP) 35
Singleton dependencies 258-261
Singleton pattern 253-257
Socket.IO

URL 494
SQLite 258
sqlite3

reference link 258
stateful communications

dealing with 490, 491
state across multiple instances,

sharing 491, 492
sticky load balancing 492-494

State pattern 308, 309
used, for implementing failsafe

socket 310-314
state transition 310
sticky load balancing 492-494

URL 494
Store front-end 535
strategies 302
Strategy pattern 302-304

approaches 307
multi-format configuration objects

example 304-307
Passport 308

streaming
versus buffering 160, 161

streaming platform
characteristics 571, 572

streams 546, 547, 571
anatomy 170, 171
asynchronous control flow patterns with 203
combining 214-216
composability 167
connecting, with pipes 198, 199
data, handling in sequence 203-205
demultiplexing 223
error handling, with pipeline() 201, 202
forking 219, 220
for reliable messaging 571
importance, discovering 160
merging 221
multiple checksum generator,

implementing 220
multiplexing 223
mux/demux application, running 228
ordered parallel execution 212, 213
pipes and error handling 200
piping patterns 214
remote logger, building 224
spatial efficiency 161, 162
text files, merging 221, 222
time efficiency 163-167
unordered limited parallel execution 210-212
used, for Gzipping 163
used, for implementing unordered

parallel tasks 206
versus message queues 573
working with 170

[630]

streams, composability
client-side encryption, adding 167, 168
server-side decryption, adding 169, 170

streams, demultiplexing
server side 226-228

streams, multiplexing
client side 224-226

streams, operating modes
binary mode 170
object mode 170

structural design patterns
Adapter pattern 294
Decorator pattern 285
Proxy pattern 269

stubs 317
subset sum problem 453
subset sum task

delegating, to external process 461
executing, in worker threads 469-472

substack pattern
URL 34

superagent 90
reference link 248, 406

surrogate 269
symbols

reference link 237
synchronous APIs

using 70, 71
synchronous CPS

versus asynchronous CPS 67

T
task distribution patterns 577-579
Task pattern 349
TaskQueue 115, 116
TaskQueue class

implementing, with promise 138, 139
tasks

distributing, with Redis Streams 592
template methods 315
Template pattern 315, 318

configuration manager template 316-318
purpose 315

ternary-stream package
URL 229

Terraform
URL 501

Terser
reference link 376

thenables 127, 128
Transform streams 185, 186

data, aggregating with 189-192
data, filtering with 189-192
implementing 186-188
simplified construction 188, 189

transpilation (transcompilation) 280
trap methods 277

URLs 279
tree shaking

reference link 366

U
Universal data retrieval 411

async pages 414-416
async pages implementation 416-424
two-pass rendering 412, 413

Universal JavaScript app
asynchronous data retrieval 405-411
creating 391
frontend only-app 392-399
server-side rendering 399-404

Universal Module Definition (UMD)
URL 19

unordered parallel stream
implementing 206-208

URL status monitoring application
implementing 208-210

userland 2

V
variable 302
vertical scaling 480
virtual DOM

reference link 379
virtual machines 514
Vue.js

version 3 285
version 3, URL 285

[631]

W
WeakMaps

reference link 237
WebAssembly

reference link 16
webpack

reference link 362
URL 19
using 369-371

webpack, alternatives
browserify 362
parcel 362
rollup 362

web spider
creating 90-92
updating 139, 140

web spider version 2 100
web spider version 3 106, 107
web spider version 4 116-119
wiring modules 257
worker module

implementing 466
worker threads 468

subset sum task, executing 469-472
using 468

Writable streams 179
backpressure 181, 182
data, pushing 179-181
implementing 182, 183
simplified construction 184

Z
Zalgo 70

unleashing 68-70
zero-downtime restart 488-490
ZeroMQ 340, 557

distributed hashsum cracker,
building 580, 581

reference link 314, 557
URL 511

ZeroMQ Fanout/Fanin pattern 579
PUSH/PULL sockets 580

ZeroMQ package
reference link 337

ZeroMQ PUB/SUB sockets
using 559-561

ZMQ 340

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Node.js Platform
	The Node.js philosophy
	Small core
	Small modules
	Small surface area
	Simplicity and pragmatism

	How Node.js works
	I/O is slow
	Blocking I/O
	Non-blocking I/O
	Event demultiplexing
	The reactor pattern
	Libuv, the I/O engine of Node.js
	The recipe for Node.js

	JavaScript in Node.js
	Run the latest JavaScript with confidence
	The module system
	Full access to operating system services
	Running native code

	Summary

	Chapter 2: The Module System
	The need for modules
	Module systems in JavaScript and Node.js
	The module system and its patterns
	The revealing module pattern

	CommonJS modules
	A homemade module loader
	Defining a module
	module.exports versus exports
	The require function is synchronous
	The resolving algorithm
	The module cache
	Circular dependencies

	Module definition patterns
	Named exports
	Exporting a function
	Exporting a class
	Exporting an instance
	Modifying other modules or the global scope

	ESM: ECMAScript modules
	Using ESM in Node.js
	Named exports and imports
	Default exports and imports
	Mixed exports
	Module identifiers
	Async imports
	Module loading in depth
	Loading phases
	Read-only live bindings
	Circular dependency resolution

	Modifying other modules

	ESM and CommonJS differences and interoperability
	ESM runs in strict mode
	Missing references in ESM
	Interoperability

	Summary

	Chapter 3: Callbacks and Events
	The Callback pattern
	The continuation-passing style
	Synchronous CPS
	Asynchronous CPS
	Non-CPS callbacks

	Synchronous or asynchronous?
	An unpredictable function
	Unleashing Zalgo
	Using synchronous APIs
	Guaranteeing asynchronicity with deferred execution

	Node.js callback conventions
	The callback comes last
	Any error always comes first
	Propagating errors
	Uncaught exceptions

	The Observer pattern
	The EventEmitter
	Creating and using the EventEmitter
	Propagating errors
	Making any object observable
	EventEmitter and memory leaks
	Synchronous and asynchronous events
	EventEmitter versus callbacks
	Combining callbacks and events

	Summary
	Exercises

	Chapter 4: Asynchronous Control Flow Patterns with Callbacks
	The difficulties of asynchronous programming
	Creating a simple web spider
	Callback hell

	Callback best practices and control flow patterns
	Callback discipline
	Applying the callback discipline
	Sequential execution
	Executing a known set of tasks in sequence
	Sequential iteration

	Parallel execution
	Web spider version 3
	The pattern
	Fixing race conditions with concurrent tasks

	Limited parallel execution
	Limiting concurrency
	Globally limiting concurrency

	The async library
	Summary
	Exercises

	Chapter 5: Asynchronous Control Flow Patterns with Promises and Async/Await
	Promises
	What is a promise?
	Promises/A+ and thenables
	The promise API
	Creating a promise
	Promisification
	Sequential execution and iteration
	Parallel execution
	Limited parallel execution
	Implementing the TaskQueue class with promises
	Updating the web spider

	Async/await
	Async functions and the await expression
	Error handling with async/await
	A unified try...catch experience
	The "return" versus "return await" trap

	Sequential execution and iteration
	Antipattern – using async/await with Array.forEach for serial execution

	Parallel execution
	Limited parallel execution

	The problem with infinite recursive promise resolution chains
	Summary
	Exercises

	Chapter 6: Coding with Streams
	Discovering the importance of streams
	Buffering versus streaming
	Spatial efficiency
	Gzipping using a buffered API
	Gzipping using streams

	Time efficiency
	Composability
	Adding client-side encryption
	Adding server-side decryption

	Getting started with streams
	Anatomy of streams
	Readable streams
	Reading from a stream
	Implementing Readable streams

	Writable streams
	Writing to a stream
	Backpressure
	Implementing Writable streams

	Duplex streams
	Transform streams
	Implementing Transform streams
	Filtering and aggregating data with Transform streams

	PassThrough streams
	Observability
	Late piping

	Lazy streams
	Connecting streams using pipes
	Pipes and error handling
	Better error handling with pipeline()

	Asynchronous control flow patterns with streams
	Sequential execution
	Unordered parallel execution
	Implementing an unordered parallel stream
	Implementing a URL status monitoring application

	Unordered limited parallel execution
	Ordered parallel execution

	Piping patterns
	Combining streams
	Implementing a combined stream

	Forking streams
	Implementing a multiple checksum generator

	Merging streams
	Merging text files

	Multiplexing and demultiplexing
	Building a remote logger
	Multiplexing and demultiplexing object streams

	Summary
	Exercises

	Chapter 7: Creational Design Patterns
	Factory
	Decoupling object creation and implementation
	A mechanism to enforce encapsulation
	Building a simple code profiler
	In the wild

	Builder
	Implementing a URL object builder
	In the wild

	Revealing Constructor
	Building an immutable buffer
	In the wild

	Singleton
	Wiring modules
	Singleton dependencies
	Dependency Injection

	Summary
	Exercises

	Chapter 8: Structural Design Patterns
	Proxy
	Techniques for implementing proxies
	Object composition
	Object augmentation
	The built-in Proxy object
	A comparison of the different proxying techniques

	Creating a logging Writable stream
	Change observer with Proxy
	In the wild

	Decorator
	Techniques for implementing decorators
	Composition
	Object augmentation
	Decorating with the Proxy object

	Decorating a LevelUP database
	Introducing LevelUP and LevelDB
	Implementing a LevelUP plugin

	In the wild

	The line between proxy and decorator
	Adapter
	Using LevelUP through the filesystem API
	In the wild

	Summary
	Exercises

	Chapter 9: Behavioral Design Patterns
	Strategy
	Multi-format configuration objects
	In the wild

	State
	Implementing a basic failsafe socket

	Template
	A configuration manager template
	In the wild

	Iterator
	The iterator protocol
	The iterable protocol
	Iterators and iterables as a native JavaScript interface
	Generators
	Generators in theory
	A simple generator function
	Controlling a generator iterator
	How to use generators in place of iterators

	Async iterators
	Async generators
	Async iterators and Node.js streams
	In the wild

	Middleware
	Middleware in Express
	Middleware as a pattern
	Creating a middleware framework for ZeroMQ
	The Middleware Manager
	Implementing the middleware to process messages
	Using the ZeroMQ middleware framework

	In the wild

	Command
	The Task pattern
	A more complex command

	Summary
	Exercises

	Chapter 10: Universal JavaScript for Web Applications
	Sharing code with the browser
	JavaScript modules in a cross-platform context
	Module bundlers
	How a module bundler works
	Using webpack

	Fundamentals of cross-platform development
	Runtime code branching
	Challenges of runtime code branching

	Build-time code branching
	Module swapping
	Design patterns for cross-platform development

	A brief introduction to React
	Hello React
	Alternatives to react.createElement
	Stateful components

	Creating a Universal JavaScript app
	Frontend-only app
	Server-side rendering
	Asynchronous data retrieval
	Universal data retrieval
	Two-pass rendering
	Async pages
	Implementing async pages

	Summary

	Chapter 11: Advanced Recipes
	Dealing with asynchronously initialized components
	The issue with asynchronously initialized components
	Local initialization check
	Delayed startup

	Pre-initialization queues
	In the wild

	Asynchronous request batching and caching
	What's asynchronous request batching?
	Optimal asynchronous request caching
	An API server without caching or batching
	Batching and caching with promises
	Batching requests in the total sales web server
	Caching requests in the total sales web server
	Notes about implementing caching mechanisms

	Canceling asynchronous operations
	A basic recipe for creating cancelable functions
	Wrapping asynchronous invocations
	Cancelable async functions with generators

	Running CPU-bound tasks
	Solving the subset sum problem
	Interleaving with setImmediate
	Interleaving the steps of the subset sum algorithm
	Considerations on the interleaving approach

	Using external processes
	Delegating the subset sum task to an external process
	Considerations for the multi-process approach

	Using worker threads
	Running the subset sum task in a worker thread

	Running CPU-bound tasks in production

	Summary
	Exercises

	Chapter 12: Scalability and Architectural Patterns
	An introduction to application scaling
	Scaling Node.js applications
	The three dimensions of scalability

	Cloning and load balancing
	The cluster module
	Notes on the behavior of the cluster module
	Building a simple HTTP server
	Scaling with the cluster module
	Resiliency and availability with the cluster module
	Zero-downtime restart

	Dealing with stateful communications
	Sharing the state across multiple instances
	Sticky load balancing

	Scaling with a reverse proxy
	Load balancing with Nginx

	Dynamic horizontal scaling
	Using a service registry
	Implementing a dynamic load balancer with http-proxy and Consul

	Peer-to-peer load balancing
	Implementing an HTTP client that can balance requests across multiple servers

	Scaling applications using containers
	What is a container?
	Creating and running a container with Docker
	What is Kubernetes?
	Deploying and scaling an application on Kubernetes

	Decomposing complex applications
	Monolithic architecture
	The microservice architecture
	An example of a microservice architecture
	Microservices – advantages and disadvantages

	Integration patterns in a microservice architecture
	The API proxy
	API orchestration
	Integration with a message broker

	Summary
	Exercises

	Chapter 13: Messaging and Integration Patterns
	Fundamentals of a messaging system
	One way versus request/reply patterns
	Message types
	Command Messages
	Event Messages
	Document Messages

	Asynchronous messaging, queues, and streams
	Peer-to-peer or broker-based messaging

	Publish/Subscribe pattern
	Building a minimalist real-time chat application
	Implementing the server side
	Implementing the client side
	Running and scaling the chat application

	Using Redis as a simple message broker
	Peer-to-peer Publish/Subscribe with ZeroMQ
	Introducing ZeroMQ
	Designing a peer-to-peer architecture for the chat server
	Using the ZeroMQ PUB/SUB sockets

	Reliable message delivery with queues
	Introducing AMQP
	Durable subscribers with AMQP and RabbitMQ

	Reliable messaging with streams
	Characteristics of a streaming platform
	Streams versus message queues
	Implementing the chat application using Redis Streams

	Task distribution patterns
	The ZeroMQ Fanout/Fanin pattern
	PUSH/PULL sockets
	Building a distributed hashsum cracker with ZeroMQ

	Pipelines and competing consumers in AMQP
	Point-to-point communications and competing consumers
	Implementing the hashsum cracker using AMQP

	Distributing tasks with Redis Streams
	Redis consumer groups
	Implementing the hashsum cracker using Redis Streams

	Request/Reply patterns
	Correlation Identifier
	Implementing a request/reply abstraction using correlation identifiers

	Return address
	Implementing the Return Address pattern in AMQP

	Summary
	Exercises

	Other Books You May Enjoy
	Index

