


Node.js Design Patterns
Third Edition

Design and implement production-grade Node.js 
applications using proven patterns and techniques

Mario Casciaro

Luciano Mammino

BIRMINGHAM - MUMBAI



Node.js Design Patterns
Third Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors, nor Packt 
Publishing or its dealers and distributors, will be held liable for any damages 
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Suresh Jain
Project Editor: Tom Jacob
Content Development Editors: Joanne Lovell, Bhavesh Amin
Copy Editor: Safis Editing
Technical Editor: Saby D'silva
Proofreader: Safis Editing
Indexer: Manju Arasan
Presentation Designer: Sandip Tadge

First published: December 2014

Second Edition: July 2016

Third Edition: July 2020

Production reference: 1240720

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-411-0

www.packt.com

http://www.packt.com


packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, 
as well as industry leading tools to help you plan your personal development and 
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and 

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.Packt.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get 
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up 
for a range of free newsletters, and receive exclusive discounts and offers on Packt 
books and eBooks.

http://packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com


Contributors

About the authors
Mario Casciaro is a software engineer and entrepreneur. Since he was a child he's 
been in love with building things, from LEGO spaceships to programs written on 
his Commodore 64, his first computer. When in college, he used to work more on 
side projects than on assignments and he published his first open source project on 
SourceForge back in 2006, it was around 30,000 lines of C++ code. After graduating 
with a master's degree in software engineering, Mario worked at IBM for a number 
of years, first in Rome, then in the Dublin Software Lab. He currently splits his time 
between Var7 Technologies—his own software company—and his role as lead 
engineer at D4H Technologies where he creates software for emergency response 
teams. He is a big supporter of pragmatism and simplicity.

The story of this book starts with you all who are reading this book. You 
make all our efforts worthwhile. Thanks also to the readers who contributed 
to the success of the first two editions, providing invaluable feedback, 
writing reviews, and spreading the word about the book.

Thanks to the Packt team, who worked hard to make this book a reality; 
thanks to Tom Jacob, Jonathan Malysiak, Saby D'silva, Bhavesh Amin, 
Tushar Gupta, Kishor Rit, Joanne Lovell.

For this book, I had the honor to work with a team of top-class technical 
reviewers: Roberto Gambuzzi, Minwoo Jung, Kyriakos Markakis, Romina 
Miraballes, Peter Poliwoda, Liran Tal, and Tomas Della Vedova. Thanks for 
lending your expertise to make this book perfect.

Thanks to Hiroyuki Musha who translated the second edition of Node.js 
Design Patterns to Japanese and improved it in the process.



However, the top of the podium goes to Luciano. It has been a tremendous 
experience and also an honor coauthoring this book with him. Thank you 
Luciano for being both a great professional and an all-around great person. 
Hopefully, we'll have the chance to work again together in the future.

Thanks to my Dad, Mom, Alessandro, and Elena for being there for me even 
if we are far away.

Finally, I'd like to say a heartfelt thank you to Miriam, the love of my life, 
for inspiring and supporting me in all my endeavors. There are still many 
more adventures awaiting us. And to Leonardo, thanks for filling our life 
with joy. Your dad loves you very much.



Luciano Mammino was born in 1987, the same year Super Mario Bros. was 
released in Europe, which, by chance, is his favorite game! He started coding at the 
age of 12, hacking away with his father's old i386 armed only with MS-DOS and 
the QBasic interpreter. Since then he has been a professional software developer 
for more than 10 years. Luciano is currently wearing the hat of principal software 
engineer at FabFitFun in Dublin where he builds microservices and scaling 
applications for millions of users.

Luciano loves the cloud, full-stack web development, Node.js, and serverless. 
Among other things, Luciano runs Fullstack Bulletin (fstack.link), a weekly 
newsletter for ambitious full-stack developers and Serverlesslab.com, bespoke 
training courses to foster serverless adoption.

The biggest thanks of all goes to Mario Casciaro for involving me in such an 
amazing project. It has been a fantastic journey and I have definitely learned 
and grown a ton while working together. I do hope there will be many other 
chances to work together!

This book was possible, thanks to the hard work of the team at Packt, 
especially Saby, Tushar, Tom, Joanne, Kishor, Jonathan, and Bhavesh. 
Thanks for bearing with us for almost a year, and thanks to everyone else at 
Packt for supporting 3 editions of this book!

A huge thanks go to our talented reviewers. Without their true-hearted 
supervision and their invaluable recommendations, this book wouldn't be 
something I could be proud about: thanks Romina, Kyriakos, Roberto, Peter, 
Tomas, Liran and Minwoo. I will be forever grateful for your help.

A special thanks to Padraig O'Brien, Domagoj Katavic, Michael Twomey, 
Eugen Serbanescu, Stefano Abalsamo, and Gianluca Arbezzano for 
providing a great deal of support along the way, and for letting me borrow 
their expertise when I needed some extra piece of feedback on the content of 
this book.

My gratitude goes to my family, who raised me and supported me in every 
possible way along my journey. Thanks, Mom, for being a constant source 
of inspiration and strength in my life. Thanks, Dad, for all the lessons, the 
encouragement, and the pieces of advice. I do miss them in my life. Thanks 
to Davide and Alessia for being present in all the painful and the joyful 
events of life.

Thanks to Franco, Silvana, and their family for supporting many of my 
initiatives and for sharing their wisdom with me.

http://fstack.link
http://Serverlesslab.com


Kudos to all the readers of the second edition, especially, the ones that 
went a step further and left reviews, reported issues, submitted patches, 
or suggested new topics. Special praise goes to Vu Nhat Tan, Danilo 
Carrabino, Aaron Hatchard, Angelo Gulina, Bassem Ghoniem, Vasyl 
Boroviak, and Willie Maddox. Thanks also to Hiroyuki Musha for 
translating this book to Japanese and for finding many opportunities to 
improve the content of the book. You are my hero!

Thanks to my friends for promoting this book and supporting me: Andrea 
Mangano, Ersel Aker, Joe Karlsson, Francesco Sciuti, Arthur Thevenet, 
Anton Whalley, Duncan Healy, Heitor Lessa, Francesco Ciula, John Brett, 
Alessio Biancalana, Tommaso Allevi, Chris Sevilleja, David Gonzalez, 
Nicola del Gobbo, Davide De Guz, Aris Markogiannakis, and Simone 
Gentili.

Last, but not least, thanks to my partner Francesca. Thanks for the 
unconditioned love and for supporting me on every adventure, even the 
craziest ones. I look forward to writing the next chapters of our book of life 
together!



About the reviewers
Roberto Gambuzzi was born in 1978 and started coding at the age of 8 on a 
Commodore 16. His first PC was an 8086 with 1 MB of RAM and a 20 MB hard drive. 
He coded in BASIC, assembly, Pascal, C, C++, COBOL, Delphi, Java, PHP, Python, 
Go, JavaScript, and other lesser-known languages. He worked with Amazon in 
Dublin, then moved to the world of startups. He likes simple, effective code.

He was the reviewer of Magento Best Practices (https://leanpub.com/magebp).

Thanks to Luciano Mammino and Mario Casciaro for giving me the chance 
to review their beautiful book.

Minwoo Jung is a Node.js core collaborator and works for NodeSource as a full-
time software engineer. He specializes in web technologies with more than 10 years 
of experience and used to publish the weekly updates on the official Node.js website. 
When he isn't glued to a computer screen, he spends time hiking with his friends.

Kyriakos Markakis has worked as a software engineer and application architect. 
He acquired experience in developing web applications by working on a wide range 
of projects in e-government, online voting, digital education, media monitoring, 
digital advertising, travel, and banking industries for almost 10 years.

During that time, he had the opportunity to work with some leading technologies, 
such as Java, asynchronous messaging, AJAX, REST APIs, PostgreSQL, Redis, 
Docker, and others. He has dedicatedly worked on Node.js for the past 3 years.

He contributes his knowledge by mentoring new technologies to beginners through 
e-learning programs and by reviewing books.

https://leanpub.com/magebp


Romina Miraballes is a software engineer from Uruguay, currently living in 
Ireland. She started working as a firmware developer programming in C for a 
company that creates medical devices. After that, she began working as a full-
stack developer, working on several projects for a wide range of startups, creating 
cloud solutions in AWS with Node.js. Currently, she works at Vectra AI, which 
is a cybersecurity company and mostly works with Node.js applications in AWS 
and Azure.

I would like to thank, first of all, Luciano for giving me the opportunity 
to be part of this project as a reviewer. Secondly, to my family and my 
boyfriend Nicolás who are always supporting me.

Peter Poliwoda is a senior software engineer and a technical lead at the IBM 
Technology Campus in Ireland. He has over a decade of software development 
experience in a wide range of industry sectors from banking and financial systems to 
healthcare and research. Peter graduated from University College Cork in business 
information systems. He has a keen interest in artificial intelligence, cognitive 
solutions, as well as IoT. He is an advocate of solving problems using technology. 
Peter is an avid contributor to the tech community through open source and by 
speaking at conferences, seminars, and workshops across Europe. He enjoys giving 
back to the educational system by working together with schools and universities.

To Larissa—you inspire me to do great things.

Liran Tal is a developer advocate at Snyk and a member of the Node.js Security 
working group. Among his security activities, Liran has also authored Essential 
Node.js Security and coauthored O'Reilly's Serverless Security book, and is a core 
contributor to the OWASP NodeGoat project. He is passionate about the open source 
movement, web technologies, and testing and software philosophy.



Tomas Della Vedova is an enthusiastic software engineer, who spends most of 
his time programming in JavaScript and Node.js. He works for Elastic as a senior 
software engineer in the clients team, focusing on the JavaScript client. Tomas is also 
the author of the Fastify web framework and part of its ecosystem. He constantly 
advances the enrichment of his knowledge and the exploration of new technologies; 
moreover, he is a strong open source supporter and he will always be passionate 
about technology, design, and music.



[ i ]

Table of Contents
Preface xi
Chapter 1: The Node.js Platform 1

The Node.js philosophy 2
Small core 2
Small modules 2
Small surface area 3
Simplicity and pragmatism 4

How Node.js works 5
I/O is slow 5
Blocking I/O 5
Non-blocking I/O 6
Event demultiplexing 7
The reactor pattern 9
Libuv, the I/O engine of Node.js 11
The recipe for Node.js 12

JavaScript in Node.js 13
Run the latest JavaScript with confidence 13
The module system 14
Full access to operating system services 14
Running native code 15

Summary 16
Chapter 2: The Module System 17

The need for modules 18
Module systems in JavaScript and Node.js 19
The module system and its patterns 20

The revealing module pattern 20



Table of Contents

[ ii ]

CommonJS modules 22
A homemade module loader 22
Defining a module 24
module.exports versus exports 25
The require function is synchronous 26
The resolving algorithm 26
The module cache 28
Circular dependencies 29

Module definition patterns 33
Named exports 33
Exporting a function 34
Exporting a class 35
Exporting an instance 36
Modifying other modules or the global scope 37

ESM: ECMAScript modules 38
Using ESM in Node.js 39
Named exports and imports 39
Default exports and imports 42
Mixed exports 43
Module identifiers 45
Async imports 45
Module loading in depth 48

Loading phases 48
Read-only live bindings 49
Circular dependency resolution 50

Modifying other modules 56
ESM and CommonJS differences and interoperability 60

ESM runs in strict mode 60
Missing references in ESM 60
Interoperability 61

Summary 62
Chapter 3: Callbacks and Events 63

The Callback pattern 64
The continuation-passing style 64

Synchronous CPS 65
Asynchronous CPS 65
Non-CPS callbacks 67

Synchronous or asynchronous? 67
An unpredictable function 68
Unleashing Zalgo 68
Using synchronous APIs 70
Guaranteeing asynchronicity with deferred execution 72



Table of Contents

[ iii ]

Node.js callback conventions 73
The callback comes last 73
Any error always comes first 74
Propagating errors 74
Uncaught exceptions 75

The Observer pattern 77
The EventEmitter 78
Creating and using the EventEmitter 79
Propagating errors 80
Making any object observable 80
EventEmitter and memory leaks 82
Synchronous and asynchronous events 83
EventEmitter versus callbacks 85
Combining callbacks and events 86

Summary 88
Exercises 88

Chapter 4: Asynchronous Control Flow Patterns with Callbacks 89
The difficulties of asynchronous programming 90

Creating a simple web spider 90
Callback hell 93

Callback best practices and control flow patterns 94
Callback discipline 95
Applying the callback discipline 95
Sequential execution 98

Executing a known set of tasks in sequence 99
Sequential iteration 100

Parallel execution 104
Web spider version 3 106
The pattern 108
Fixing race conditions with concurrent tasks 108

Limited parallel execution 110
Limiting concurrency 112
Globally limiting concurrency 113

The async library 119
Summary 120
Exercises 121

Chapter 5: Asynchronous Control Flow Patterns  
with Promises and Async/Await 123

Promises 124
What is a promise? 125
Promises/A+ and thenables 127
The promise API 128



Table of Contents

[ iv ]

Creating a promise 130
Promisification 131
Sequential execution and iteration 133
Parallel execution 136
Limited parallel execution 137

Implementing the TaskQueue class with promises 138
Updating the web spider 139

Async/await 141
Async functions and the await expression 141
Error handling with async/await 143

A unified try...catch experience 143
The "return" versus "return await" trap 144

Sequential execution and iteration 145
Antipattern – using async/await with Array.forEach for serial execution 147

Parallel execution 147
Limited parallel execution 149

The problem with infinite recursive promise resolution chains 152
Summary 156
Exercises 157

Chapter 6: Coding with Streams 159
Discovering the importance of streams 160

Buffering versus streaming 160
Spatial efficiency 161

Gzipping using a buffered API 162
Gzipping using streams 163

Time efficiency 163
Composability 167

Adding client-side encryption 167
Adding server-side decryption 169

Getting started with streams 170
Anatomy of streams 170
Readable streams 171

Reading from a stream 171
Implementing Readable streams 174

Writable streams 179
Writing to a stream 179
Backpressure 181
Implementing Writable streams 182

Duplex streams 185
Transform streams 185

Implementing Transform streams 186
Filtering and aggregating data with Transform streams 189

PassThrough streams 193
Observability 193



Table of Contents

[ v ]

Late piping 194
Lazy streams 197
Connecting streams using pipes 198

Pipes and error handling 200
Better error handling with pipeline() 201

Asynchronous control flow patterns with streams 203
Sequential execution 203
Unordered parallel execution 206

Implementing an unordered parallel stream 206
Implementing a URL status monitoring application 208

Unordered limited parallel execution 210
Ordered parallel execution 212

Piping patterns 214
Combining streams 214

Implementing a combined stream 217
Forking streams 219

Implementing a multiple checksum generator 220
Merging streams 221

Merging text files 221
Multiplexing and demultiplexing 223

Building a remote logger 224
Multiplexing and demultiplexing object streams 229

Summary 230
Exercises 230

Chapter 7: Creational Design Patterns 233
Factory 234

Decoupling object creation and implementation 235
A mechanism to enforce encapsulation 236
Building a simple code profiler 238
In the wild 241

Builder 241
Implementing a URL object builder 244
In the wild 248

Revealing Constructor 249
Building an immutable buffer 250
In the wild 253

Singleton 253
Wiring modules 257

Singleton dependencies 258
Dependency Injection 261

Summary 266
Exercises 267



Table of Contents

[ vi ]

Chapter 8: Structural Design Patterns 269
Proxy 269

Techniques for implementing proxies 271
Object composition 272
Object augmentation 275
The built-in Proxy object 277
A comparison of the different proxying techniques 280

Creating a logging Writable stream 281
Change observer with Proxy 282
In the wild 285

Decorator 285
Techniques for implementing decorators 286

Composition 286
Object augmentation 288
Decorating with the Proxy object 289

Decorating a LevelUP database 290
Introducing LevelUP and LevelDB 290
Implementing a LevelUP plugin 291

In the wild 293
The line between proxy and decorator 294
Adapter 294

Using LevelUP through the filesystem API 295
In the wild 298

Summary 299
Exercises 300

Chapter 9: Behavioral Design Patterns 301
Strategy 302

Multi-format configuration objects 304
In the wild 308

State 308
Implementing a basic failsafe socket 310

Template 315
A configuration manager template 316
In the wild 318

Iterator 319
The iterator protocol 319
The iterable protocol 322
Iterators and iterables as a native JavaScript interface 324
Generators 326

Generators in theory 327
A simple generator function 327
Controlling a generator iterator 328
How to use generators in place of iterators 330



Table of Contents

[ vii ]

Async iterators 331
Async generators 334
Async iterators and Node.js streams 335
In the wild 336

Middleware 337
Middleware in Express 337
Middleware as a pattern 338
Creating a middleware framework for ZeroMQ 340

The Middleware Manager 340
Implementing the middleware to process messages 342
Using the ZeroMQ middleware framework 344

In the wild 347
Command 347

The Task pattern 349
A more complex command 349

Summary 353
Exercises 354

Chapter 10: Universal JavaScript for Web Applications 357
Sharing code with the browser 358

JavaScript modules in a cross-platform context 359
Module bundlers 360
How a module bundler works 363
Using webpack 369

Fundamentals of cross-platform development 371
Runtime code branching 372

Challenges of runtime code branching 373
Build-time code branching 374
Module swapping 377
Design patterns for cross-platform development 378

A brief introduction to React 379
Hello React 381
Alternatives to react.createElement 383
Stateful components 385

Creating a Universal JavaScript app 391
Frontend-only app 392
Server-side rendering 399
Asynchronous data retrieval 405
Universal data retrieval 411

Two-pass rendering 412
Async pages 414
Implementing async pages 416

Summary 425
Exercises 426



Table of Contents

[ viii ]

Chapter 11: Advanced Recipes 427
Dealing with asynchronously initialized components 428

The issue with asynchronously initialized components 428
Local initialization check 429
Delayed startup 430

Pre-initialization queues 431
In the wild 435

Asynchronous request batching and caching 435
What's asynchronous request batching? 436
Optimal asynchronous request caching 437
An API server without caching or batching 439
Batching and caching with promises 441

Batching requests in the total sales web server 442
Caching requests in the total sales web server 443
Notes about implementing caching mechanisms 445

Canceling asynchronous operations 445
A basic recipe for creating cancelable functions 446
Wrapping asynchronous invocations 447
Cancelable async functions with generators 449

Running CPU-bound tasks 453
Solving the subset sum problem 453
Interleaving with setImmediate 457

Interleaving the steps of the subset sum algorithm 457
Considerations on the interleaving approach 459

Using external processes 460
Delegating the subset sum task to an external process 461
Considerations for the multi-process approach 467

Using worker threads 468
Running the subset sum task in a worker thread 469

Running CPU-bound tasks in production 472
Summary 473
Exercises 473

Chapter 12: Scalability and Architectural Patterns 475
An introduction to application scaling 476

Scaling Node.js applications 477
The three dimensions of scalability 477

Cloning and load balancing 479
The cluster module 480

Notes on the behavior of the cluster module 481
Building a simple HTTP server 482
Scaling with the cluster module 484
Resiliency and availability with the cluster module 486
Zero-downtime restart 488



Table of Contents

[ ix ]

Dealing with stateful communications 490
Sharing the state across multiple instances 491
Sticky load balancing 492

Scaling with a reverse proxy 494
Load balancing with Nginx 496

Dynamic horizontal scaling 501
Using a service registry 501
Implementing a dynamic load balancer with http-proxy and Consul 503

Peer-to-peer load balancing 510
Implementing an HTTP client that can balance requests across multiple servers 511

Scaling applications using containers 513
What is a container? 513
Creating and running a container with Docker 514
What is Kubernetes? 517
Deploying and scaling an application on Kubernetes 519

Decomposing complex applications 523
Monolithic architecture 524
The microservice architecture 526

An example of a microservice architecture 526
Microservices – advantages and disadvantages 528

Integration patterns in a microservice architecture 530
The API proxy 531
API orchestration 532
Integration with a message broker 536

Summary 538
Exercises 539

Chapter 13: Messaging and Integration Patterns 541
Fundamentals of a messaging system 542

One way versus request/reply patterns 542
Message types 544

Command Messages 544
Event Messages 545
Document Messages 545

Asynchronous messaging, queues, and streams 545
Peer-to-peer or broker-based messaging 547

Publish/Subscribe pattern 549
Building a minimalist real-time chat application 550

Implementing the server side 550
Implementing the client side 551
Running and scaling the chat application 553

Using Redis as a simple message broker 554
Peer-to-peer Publish/Subscribe with ZeroMQ 557

Introducing ZeroMQ 557
Designing a peer-to-peer architecture for the chat server 558
Using the ZeroMQ PUB/SUB sockets 559



Table of Contents

[ x ]

Reliable message delivery with queues 562
Introducing AMQP 564
Durable subscribers with AMQP and RabbitMQ 566

Reliable messaging with streams 571
Characteristics of a streaming platform 571
Streams versus message queues 573
Implementing the chat application using Redis Streams 573

Task distribution patterns 577
The ZeroMQ Fanout/Fanin pattern 579

PUSH/PULL sockets 580
Building a distributed hashsum cracker with ZeroMQ 580

Pipelines and competing consumers in AMQP 587
Point-to-point communications and competing consumers 588
Implementing the hashsum cracker using AMQP 588

Distributing tasks with Redis Streams 592
Redis consumer groups 593
Implementing the hashsum cracker using Redis Streams 594

Request/Reply patterns 598
Correlation Identifier 598

Implementing a request/reply abstraction using correlation identifiers 599
Return address 605

Implementing the Return Address pattern in AMQP 605
Summary 611
Exercises 612

Other Books You May Enjoy 615
Index 619



[ xi ]

Preface
Node.js is considered by many a game-changer—possibly the biggest innovation of 
the decade in web development. It is loved not just for its technical capabilities, but 
also for the paradigm shift that it introduced in web development and, in general, 
in the software development ecosystem.

First, Node.js applications are written in JavaScript, the most adopted language 
on the web and the only programming language supported natively by every web 
browser. This aspect enables scenarios such as single-language application stacks 
and the sharing of code between the server and the client. A single language also 
helps to reduce the gap between frontend and backend engineers, making backend 
programming extremely approachable and intuitive for frontend developers. Once 
you are acquainted with Node.js and JavaScript, you can easily build software for a 
wide variety of platforms and contexts.

Node.js itself is contributing to the rise and evolution of the JavaScript language. 
People realize that using JavaScript on the server brings a lot of value, and they 
are loving it for its pragmatism, for its flexibility, its event-driven approach, and for 
its hybrid nature, halfway between object-oriented and functional programming.

The second revolutionizing factor is Node.js' single-threaded programming model 
and its asynchronous architecture. Besides obvious advantages from a performance 
and scalability point of view, this characteristic changed the way developers 
approach concurrency and parallelism. Mutexes are replaced by queues, threads by 
callbacks, and synchronization by causality. These abstractions are generally simpler 
to adopt than their traditional counterparts, but they are still extremely powerful, 
allowing developers to be very productive while solving day-to-day challenges.



Preface

[ xii ]

The last and most important aspect of Node.js lies in its ecosystem: the npm package 
manager, its constantly growing database of modules, its enthusiastic and helpful 
community, and most importantly, its very own culture based on simplicity, 
pragmatism, and extreme modularity.

However, because of these peculiarities, Node.js development gives you a very 
different feel compared to other server-side platforms, and any developer new to 
this paradigm will often feel unsure about how to tackle even the most common 
design and coding problems effectively. Common questions include: How do I 
organize my code? What's the best way to design this? How can I make my application more 
modular? How do I handle a set of asynchronous calls effectively? How can I make sure that 
my application will not collapse while it grows? Or more simply, what's the right way 
to implement this? Fortunately, Node.js has become a mature enough platform and 
most of these questions can now be easily answered with a design pattern, a proven 
coding technique, or a recommended practice. The aim of this book is to guide you 
through this emerging world of patterns, techniques, and practices, showing you 
what the proven solutions to the most common problems are and teaching you how 
to use them as the starting point to building the solution to your particular problem.

By reading this book, you will learn the following:

• The "Node way":
How to use the right point of view when approaching Node.js development. 
You will learn, for example, how different traditional design patterns look 
in Node.js, or how to design modules that do only one thing.

• A set of patterns to solve common Node.js design and coding problems:
You will be presented with a "Swiss Army knife" of patterns, ready to use in 
order to efficiently solve your everyday development and design problems.

• How to write scalable and efficient Node.js applications:
You will gain an understanding of the basic building blocks and principles 
of writing large and well-organized Node.js applications that can scale. You 
will be able to apply these principles to novel problems that don't fall within 
the scope of existing patterns.

• Code in "modern JavaScript":
JavaScript has been around since 1995, but a lot has changed since its first 
inception, especially in these last few years. This book will take advantage 
of the most modern JavaScript features, like the class syntax, promises, 
generator functions, and async/await, giving you a properly up-to-date 
experience.
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Throughout the book, you will be presented with real-life libraries and technologies, 
such as LevelDB, Redis, RabbitMQ, ZeroMQ, Express, and many others. They will be 
used to demonstrate a pattern or technique, and besides making the example more 
useful, these will also give you great exposure to the Node.js ecosystem and its set 
of solutions.

Whether you use or plan to use Node.js for your work, your side project, or for an 
open source project, recognizing and using well-known patterns and techniques will 
allow you to use a common language when sharing your code and design, and on 
top of that, it will help you get a better understanding of the future of Node.js and 
how to make your own contributions a part of it.

What you need for this book
To experiment with the code, you will need a working installation of Node.js version 
14 (or greater) and npm version 6 (or greater). If some examples will require you to 
use some extra tooling, these will be described accordingly in place. You will also 
need to be familiar with the command line, know how to install an npm package, 
and know how to run Node.js applications. Finally, you will need a text editor to 
work with the code and a modern web browser.

Who this book is for
This book is for developers who have already had initial contact with Node.js and 
now want to get the most out of it in terms of productivity, design quality, and 
scalability. You are only required to have some prior exposure to the technology 
through some basic examples and some degree of familiarity with the JavaScript 
language, since this book will cover some basic concepts as well. Developers with 
intermediate experience in Node.js will also find the techniques presented in this 
book beneficial.

Some background in software design theory is also an advantage to understand 
some of the concepts presented.

This book assumes that you have a working knowledge of web application 
development, web services, databases, and data structures.
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What this book covers
Chapter 1, The Node.js Platform, serves as an introduction to the world of Node.js 
application design by showing the patterns at the core of the platform itself. It covers 
the Node.js ecosystem and its philosophy, and provides a quick introduction to the 
Node.js internals and the reactor pattern.

Chapter 2, The Module System, dives into the module systems available in Node.js, 
underlining the differences between CommonJS and the more modern ES modules 
from the ECMAScript 2015 specification.

Chapter 3, Callbacks and Events, introduces the first steps towards learning 
asynchronous coding and its patterns, discussing and comparing callbacks and 
the event emitter (observer pattern).

Chapter 4, Asynchronous Control Flow Patterns with Callbacks, introduces a set of 
patterns and techniques for efficiently handling asynchronous control flow in 
Node.js using callbacks. This chapter teaches you some traditional ways to mitigate 
the "callback hell" problem using plain JavaScript.

Chapter 5, Asynchronous Control Flow Patterns with Promises and Async/Await, 
progresses with the exploration of more sophisticated and modern asynchronous 
control flow techniques.

Chapter 6, Coding with Streams, dives deep into one of the most important tools 
in Node.js: streams. It shows you how to process data with transform streams 
and how to combine them into different patterns.

Chapter 7, Creational Design Patterns, starts to explore the traditional design patterns 
in Node.js. In this chapter, you will learn about some of the most popular creational 
design patterns, namely the Factory pattern, the Revealing Constructor pattern, the 
Builder pattern, and the Singleton pattern.

Chapter 8, Structural Design Patterns, continues the exploration of traditional design 
patterns in Node.js, covering structural design patterns such as Proxy, Decorator, 
and Adapter.

Chapter 9, Behavioral Design Patterns, concludes the conversation around traditional 
design patterns in Node.js by introducing behavioral design patterns like Strategy, 
State, Template, Middleware, Command, and Iterator.

Chapter 10, Universal JavaScript for Web Applications, explores one of the most 
interesting capabilities of modern JavaScript web applications: being able to share 
code between the frontend and the backend. Throughout this chapter, you will learn 
the basic principles of Universal JavaScript by building a simple web application 
using modern tools and libraries.
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Chapter 11, Advanced Recipes, takes a problem-solution approach to show you how 
some common coding and design intricacies can be approached with ready-to-use 
solutions.

Chapter 12, Scalability and Architectural Patterns, teaches you the basic techniques and 
patterns for scaling a Node.js application.

Chapter 13, Messaging and Integration Patterns, presents the most important messaging 
patterns, teaching you how to build and integrate complex distributed systems using 
Node.js and its ecosystem.

To get the most out of this book
To get the most out of this book you can download the example code files and the 
color images as per the instructions below.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the on-screen 

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for macOS
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nodejsdp.link/repo. 
In case there's an update to the code, it will be updated on the existing GitHub 
repository.

We also have other code bundles from our rich catalog of books and videos available 
at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com/
http://www.packt.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
http://nodejsdp.link/repo
https://github.com/PacktPublishing/
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Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839214110_ColorImages.pdf.

Conventions used
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation 
of their meaning:

• Code words in text: server.listen(handle)
• Pathname: src/app.js
• Dummy URL: http://localhost:8080

A block of code is generally formatted using StandardJS conventions 
(nodejsdp.link/standard) and it is set as follows:

import zmq from 'zeromq'

async function main () {
  const sink = new zmq.Pull()
  await sink.bind('tcp://*:5017')

  for await (const rawMessage of sink) {
    console.log('Message from worker: ', rawMessage.toString())
  }
}

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are highlighted in bold:

const wss = new ws.Server({ server })
wss.on('connection', client => {
  console.log('Client connected')
  client.on('message', msg => {
    console.log(`Message: ${msg}`)
    redisPub.publish('chat_messages', msg)
  })
})

https://static.packt-cdn.com/downloads/9781839214110_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839214110_ColorImages.pdf
http://nodejsdp.link/standard
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Any command-line input or output is written as follows:

node replier.js
node requestor.js

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "To explain 
the problem, we will create a little web spider, a command-line application that 
takes in a web URL as the input and downloads its contents locally into a file."

Most URLs are linked through our own short URL system to make it easier for 
readers coming through the print edition to access them. These links are in the form 
nodejsdp.link/some-descriptive-id.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention 
the book title in the subject of your message and email us at customercare@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book, we would be grateful 
if you could report this to us. Please visit www.packtpub.com/support/errata, select 
your book, click on the Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you could provide us with the location address or 
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://nodejsdp.link/some-descriptive-id
http://www.packtpub.com/support/errata
http://authors.packtpub.com
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Reviews
Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and use 
your unbiased opinion to make purchase decisions, we at Packt can understand what 
you think about our products, and our authors can see your feedback on their book. 
Thank you!

For more information about Packt, please visit packt.com.

http://packt.com
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1
The Node.js Platform

Some principles and design patterns literally define the developer experience 
with the Node.js platform and its ecosystem. The most peculiar one is probably 
its asynchronous nature, which makes heavy use of asynchronous constructs 
such as callbacks and promises. In this introductory chapter, we will explore 
where Node.js gets its asynchronous behavior from. This is not just good-to-
know theoretical information: knowing how Node.js works at its core will give 
you a strong foundation for understanding the reasoning behind more complex 
topics and patterns that we will cover later in the book.

Another important aspect that characterizes Node.js is its philosophy. Approaching 
Node.js is, in fact, far more than simply learning a new technology: it's also 
embracing a culture and a community. You will see how this greatly influences the 
way we design our applications and components, and the way they interact with 
those created by the community.

In this chapter, you will learn about the following:

• The Node.js philosophy or the "Node way"
• The reactor pattern—the mechanism at the heart of the Node.js asynchronous 

event-driven architecture
• What it means to run JavaScript on the server compared to the browser
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The Node.js philosophy
Every programming platform has its own philosophy, a set of principles and 
guidelines that are generally accepted by the community, or an ideology for doing 
things that influence both the evolution of the platform and how applications are 
developed and designed. Some of these principles arise from the technology itself, 
some of them are enabled by its ecosystem, some are just trends in the community, 
and others are evolutions of ideologies borrowed from other platforms. In Node.js, 
some of these principles come directly from its creator—Ryan Dahl—while others 
come from the people who contribute to the core or from charismatic figures in the 
community, and, finally, some are inherited from the larger JavaScript movement.

None of these rules are imposed and they should always be applied with common 
sense; however, they can prove to be tremendously useful when we are looking for 
a source of inspiration while designing our software.

Small core
The Node.js core—understood as the Node.js runtime and built-in modules—has its 
foundations built on a few principles. One of these is having the smallest possible 
set of functionalities, while leaving the rest to the so-called userland (or userspace), 
which is the ecosystem of modules living outside the core. This principle has an 
enormous impact on the Node.js culture, as it gives freedom to the community to 
experiment and iterate quickly on a broader set of solutions within the scope of the 
userland modules, instead of having one slowly evolving solution that is built into 
the more tightly controlled and stable core. Keeping the core set of functionalities 
to the bare minimum, then, is not only convenient in terms of maintainability, but 
also in terms of the positive cultural impact that it brings to the evolution of the 
entire ecosystem.

Small modules
Node.js uses the concept of a module as the fundamental means for structuring the 
code of a program. It is the building block for creating applications and reusable 
libraries. In Node.js, one of the most evangelized principles is designing small 
modules (and packages), not only in terms of raw code size, but, most importantly, 
in terms of scope.

You can find an extensive list of software development 
philosophies on Wikipedia at nodejsdp.link/dev-philosophies.

http://nodejsdp.link/dev-philosophies
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This principle has its roots in the Unix philosophy, and particularly in two of its 
precepts, which are as follows:

• "Small is beautiful."
• "Make each program do one thing well."

Node.js has brought these concepts to a whole new level. Along with the help of 
its module managers—with npm and yarn being the most popular—Node.js helps 
to solve the dependency hell problem by making sure that two (or more) packages 
depending on different versions of the same package will use their own installations 
of such a package, thus avoiding conflicts. This aspect allows packages to depend 
on a high number of small, well-focused dependencies without the risk of creating 
conflicts. While this can be considered unpractical or even totally unfeasible in 
other platforms, in Node.js, this practice is the norm. This enables extreme levels 
of reusability; they are so extreme, in fact, that sometimes we can find packages 
comprising of a single module containing just a couple of lines of code—for example, 
a regular expression for matching emails such as nodejsdp.link/email-regex.

Besides the clear advantage in terms of reusability, a small module is also:

• Easier to understand and use
• Simpler to test and maintain
• Small in size and perfect for use in the browser

Having smaller and more focused modules empowers everyone to share or reuse 
even the smallest piece of code; it's the Don't Repeat Yourself (DRY) principle 
applied at a whole new level.

Small surface area
In addition to being small in size and scope, a desirable characteristic of Node.js 
modules is exposing a minimal set of functionalities to the outside world. This has 
the effect of producing an API that is clearer to use and less susceptible to erroneous 
usage. In fact, most of the time the user of a component is only interested in a very 
limited and focused set of features, without needing to extend its functionality or 
tap into more advanced aspects.

In Node.js, a very common pattern for defining modules is to expose only one 
functionality, such as a function or a class, for the simple fact that it provides a 
single, unmistakably clear entry point.

http://nodejsdp.link/email-regex
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Another characteristic of many Node.js modules is the fact that they are created 
to be used, rather than extended. Locking down the internals of a module by 
forbidding any possibility of an extension might sound inflexible, but it actually 
has the advantage of reducing use cases, simplifying implementation, facilitating 
maintenance, and increasing usability. In practice, this means preferring to expose 
functions instead of classes, and being careful not to expose any internals to the 
outside world.

Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle? Richard 
P. Gabriel, a prominent computer scientist, coined the term "worse is better" to 
describe the model whereby less and simpler functionality is a good design choice 
for software. In his essay The Rise of "Worse is Better" he says:

"The design must be simple, both in implementation and interface. It is more 
important for the implementation to be simple than the interface. Simplicity is the 
most important consideration in a design."

Designing simple, as opposed to perfect, fully featured software is a good practice 
for several reasons: it takes less effort to implement, it allows shipping faster 
with fewer resources, it's easier to adapt, and, finally, it's easier to maintain and 
understand. The positive effects of these factors encourage community contributions 
and allow the software itself to grow and improve.

In Node.js, the adoption of this principle is also facilitated by JavaScript, which is 
a very pragmatic language. In fact, it's common to see simple classes, functions, and 
closures replacing complex class hierarchies. Pure object-oriented designs often try to 
replicate the real world using the mathematical terms of a computer system without 
considering the imperfection and complexity of the real world itself. Instead, the 
truth is that our software is always an approximation of reality, and we will probably 
have more success by trying to get something working sooner and with reasonable 
complexity, instead of trying to create near-perfect software with huge effort and 
tons of code to maintain.

Throughout this book, you will see this principle in action many times. For example, 
a considerable number of traditional design patterns, such as Singleton or Decorator, 
can have a trivial, even if sometimes not bulletproof, implementation, and you will 
see how an uncomplicated, practical approach is (most of the time) preferred to a 
pure, flawless design.

Next, we will take a look inside the Node.js core to reveal its internal patterns and 
event-driven architecture.
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How Node.js works
In this section, you will gain an understanding of how Node.js works internally and 
be introduced to the reactor pattern, which is the heart of the asynchronous nature 
of Node.js. We will go through the main concepts behind the pattern, such as the 
single-threaded architecture and the non-blocking I/O, and you will see how this 
creates the foundation for the entire Node.js platform.

I/O is slow
I/O (short for input/output) is definitely the slowest among the fundamental 
operations of a computer. Accessing the RAM is in the order of nanoseconds 
(10E-9 seconds), while accessing data on the disk or the network is in the order 
of milliseconds (10E-3 seconds). The same applies to the bandwidth. RAM has a 
transfer rate consistently in the order of GB/s, while the disk or network varies 
from MB/s to optimistically GB/s. I/O is usually not expensive in terms of CPU, 
but it adds a delay between the moment the request is sent to the device and the 
moment the operation completes. On top of that, we have to consider the human 
factor. In fact, in many circumstances, the input of an application comes from a real 
person—a mouse click, for example—so the speed and frequency of I/O doesn't 
only depend on technical aspects, and it can be many orders of magnitude slower 
than the disk or network.

Blocking I/O
In traditional blocking I/O programming, the function call corresponding to 
an I/O request will block the execution of the thread until the operation completes. 
This can range from a few milliseconds, in the case of disk access, to minutes or 
even more, in the case of data being generated from user actions, such as pressing 
a key. The following pseudocode shows a typical blocking thread performed against 
a socket:

// blocks the thread until the data is available
data = socket.read()
// data is available
print(data)

It is trivial to notice that a web server that is implemented using blocking I/O will 
not be able to handle multiple connections in the same thread. This is because each 
I/O operation on a socket will block the processing of any other connection. The 
traditional approach to solving this problem is to use a separate thread (or process) 
to handle each concurrent connection. 
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This way, a thread blocked on an I/O operation will not impact the availability of the 
other connections, because they are handled in separate threads.

The following illustrates this scenario:

Figure 1.1: Using multiple threads to process multiple connections

Figure 1.1 lays emphasis on the amount of time each thread is idle and waiting for 
new data to be received from the associated connection. Now, if we also consider 
that any type of I/O can possibly block a request—for example, while interacting 
with databases or with the filesystem—we will soon realize how many times a 
thread has to block in order to wait for the result of an I/O operation. Unfortunately, 
a thread is not cheap in terms of system resources—it consumes memory and causes 
context switches—so having a long-running thread for each connection and not 
using it for most of the time means wasting precious memory and CPU cycles.

Non-blocking I/O
In addition to blocking I/O, most modern operating systems support another 
mechanism to access resources, called non-blocking I/O. In this operating mode, the 
system call always returns immediately without waiting for the data to be read or 
written. If no results are available at the moment of the call, the function will simply 
return a predefined constant, indicating that there is no data available to return at 
that moment.

For example, in Unix operating systems, the fcntl() function is used to manipulate 
an existing file descriptor (which in Unix represents the reference used to access a 
local file or a network socket) to change its operating mode to non-blocking (with 
the O_NONBLOCK flag). Once the resource is in non-blocking mode, any read operation 
will fail with the return code EAGAIN if the resource doesn't have any data ready 
to be read.
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The most basic pattern for dealing with this type of non-blocking I/O is to actively 
poll the resource within a loop until some actual data is returned. This is called busy-
waiting. The following pseudocode shows you how it's possible to read from 
multiple resources using non-blocking I/O and an active polling loop:

resources = [socketA, socketB, fileA]
while (!resources.isEmpty()) {
  for (resource of resources) {
    // try to read
    data = resource.read()
    if (data === NO_DATA_AVAILABLE) {
      // there is no data to read at the moment
      continue
    }
    if (data === RESOURCE_CLOSED) {
      // the resource was closed, remove it from the list
      resources.remove(i)
    } else {
      //some data was received, process it
      consumeData(data)
    }
  }
}

As you can see, with this simple technique, it is possible to handle different 
resources in the same thread, but it's still not efficient. In fact, in the preceding 
example, the loop will only consume precious CPU for iterating over resources that 
are unavailable most of the time. Polling algorithms usually result in a huge amount 
of wasted CPU time.

Event demultiplexing
Busy-waiting is definitely not an ideal technique for processing non-blocking 
resources, but luckily, most modern operating systems provide a native mechanism 
to handle concurrent non-blocking resources in an efficient way. We are talking 
about the synchronous event demultiplexer (also known as the event notification 
interface).

If you are unfamiliar with the term, in telecommunications, multiplexing refers to 
the method by which multiple signals are combined into one so that they can be 
easily transmitted over a medium with limited capacity. 
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Demultiplexing refers to the opposite operation, whereby the signal is split again 
into its original components. Both terms are used in other areas (for example, video 
processing) to describe the general operation of combining different things into one 
and vice versa.

The synchronous event demultiplexer that we were talking about watches multiple 
resources and returns a new event (or set of events) when a read or write operation 
executed over one of those resources completes. The advantage here is that the 
synchronous event demultiplexer is, of course, synchronous, so it blocks until there 
are new events to process. The following is the pseudocode of an algorithm that uses 
a generic synchronous event demultiplexer to read from two different resources:

watchedList.add(socketA, FOR_READ)                            // (1)
watchedList.add(fileB, FOR_READ)
while (events = demultiplexer.watch(watchedList)) {           // (2)
  // event loop
  for (event of events) {                                     // (3)
    // This read will never block and will always return data
    data = event.resource.read()
    if (data === RESOURCE_CLOSED) {
      // the resource was closed, remove it from the watched list
      demultiplexer.unwatch(event.resource)
    } else {
      // some actual data was received, process it
      consumeData(data)
    }
  }
}

Let's see what happens in the preceding pseudocode:

1. The resources are added to a data structure, associating each one of them 
with a specific operation (in our example, a read).

2. The demultiplexer is set up with the group of resources to be watched. 
The call to demultiplexer.watch() is synchronous and blocks until 
any of the watched resources are ready for read. When this occurs, the 
event demultiplexer returns from the call and a new set of events is available 
to be processed.
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3. Each event returned by the event demultiplexer is processed. At this point, 
the resource associated with each event is guaranteed to be ready to read and 
to not block during the operation. When all the events are processed, the flow 
will block again on the event demultiplexer until new events are again 
available to be processed. This is called the event loop.

It's interesting to see that, with this pattern, we can now handle several I/O 
operations inside a single thread, without using the busy-waiting technique. It 
should now be clearer why we are talking about demultiplexing; using just a single 
thread, we can deal with multiple resources. Figure 1.2 will help you visualize what's 
happening in a web server that uses a synchronous event demultiplexer and a single 
thread to handle multiple concurrent connections:

Figure 1.2: Using a single thread to process multiple connections

As this shows, using only one thread does not impair our ability to run multiple I/O-
bound tasks concurrently. The tasks are spread over time, instead of being spread 
across multiple threads. This has the clear advantage of minimizing the total idle 
time of the thread, as is clearly shown in Figure 1.2.

But this is not the only reason for choosing this I/O model. In fact, having a single 
thread also has a beneficial impact on the way programmers approach concurrency 
in general. Throughout the book, you will see how the absence of in-process race 
conditions and multiple threads to synchronize allows us to use much simpler 
concurrency strategies.

The reactor pattern
We can now introduce the reactor pattern, which is a specialization of the algorithms 
presented in the previous sections. The main idea behind the reactor pattern is 
to have a handler associated with each I/O operation. A handler in Node.js is 
represented by a callback (or cb for short) function. 
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The handler will be invoked as soon as an event is produced and processed by the 
event loop. The structure of the reactor pattern is shown in Figure 1.3:

Figure 1.3: The reactor pattern

This is what happens in an application using the reactor pattern:

1. The application generates a new I/O operation by submitting a request to 
the Event Demultiplexer. The application also specifies a handler, which 
will be invoked when the operation completes. Submitting a new request 
to the Event Demultiplexer is a non-blocking call and it immediately returns 
control to the application.

2. When a set of I/O operations completes, the Event Demultiplexer pushes 
a set of corresponding events into the Event Queue.

3. At this point, the Event Loop iterates over the items of the Event Queue.
4. For each event, the associated handler is invoked.
5. The handler, which is part of the application code, gives back control 

to the Event Loop when its execution completes (5a). While the handler 
executes, it can request new asynchronous operations (5b), causing new 
items to be added to the Event Demultiplexer (1).
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6. When all the items in the Event Queue are processed, the Event Loop blocks 
again on the Event Demultiplexer, which then triggers another cycle when 
a new event is available.

The asynchronous behavior has now become clear. The application expresses 
interest in accessing a resource at one point in time (without blocking) and provides 
a handler, which will then be invoked at another point in time when the operation 
completes.

We can now define the pattern at the heart of Node.js:

Libuv, the I/O engine of Node.js
Each operating system has its own interface for the event demultiplexer: epoll on 
Linux, kqueue on macOS, and the I/O completion port (IOCP) API on Windows. On 
top of that, each I/O operation can behave quite differently depending on the type 
of resource, even within the same operating system. In Unix operating systems, for 
example, regular filesystem files do not support non-blocking operations, so in order 
to simulate non-blocking behavior, it is necessary to use a separate thread outside the 
event loop.

All these inconsistencies across and within the different operating systems required 
a higher-level abstraction to be built for the event demultiplexer. This is exactly why 
the Node.js core team created a native library called libuv, with the objective to make 
Node.js compatible with all the major operating systems and normalize the non-
blocking behavior of the different types of resource. Libuv represents the low-level 
I/O engine of Node.js and is probably the most important component that Node.js is 
built on.

Other than abstracting the underlying system calls, libuv also implements the reactor 
pattern, thus providing an API for creating event loops, managing the event queue, 
running asynchronous I/O operations, and queuing other types of task.

A Node.js application will exit when there are no more pending 
operations in the event demultiplexer, and no more events to be 
processed inside the event queue.

The reactor pattern

Handles I/O by blocking until new events are available from a set 
of observed resources, and then reacts by dispatching each event to 
an associated handler.
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The recipe for Node.js
The reactor pattern and libuv are the basic building blocks of Node.js, but we need 
three more components to build the full platform:

• A set of bindings responsible for wrapping and exposing libuv and other 
low-level functionalities to JavaScript.

• V8, the JavaScript engine originally developed by Google for the Chrome 
browser. This is one of the reasons why Node.js is so fast and efficient. V8 is 
acclaimed for its revolutionary design, its speed, and for its efficient memory 
management.

• A core JavaScript library that implements the high-level Node.js API.

This is the recipe for creating Node.js, and the following image represents its final 
architecture:

Figure 1.4: The Node.js internal components

This concludes our journey through the internal mechanisms of Node.js. Next, we'll 
take a look at some important aspects to take into consideration when working with 
JavaScript in Node.js.

A great resource to learn more about libuv is the free online book 
created by Nikhil Marathe, which is available at nodejsdp.link/
uvbook.

http://nodejsdp.link/uvbook
http://nodejsdp.link/uvbook
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JavaScript in Node.js
One important consequence of the architecture we have just analyzed is that the 
JavaScript we use in Node.js is somewhat different from the JavaScript we use in 
the browser.

The most obvious difference is that in Node.js we don't have a DOM and we 
don't have a window or a document. On the other hand, Node.js has access to a set 
of services offered by the underlying operating system that are not available in the 
browser. In fact, the browser has to implement a set of safety measures to make sure 
that the underlying system is not compromised by a rogue web application. The 
browser provides a higher-level abstraction over the operating system resources, 
which makes it easier to control and contain the code that runs in it, which will 
also inevitably limit its capabilities. In turn, in Node.js we can virtually have access 
to all the services exposed by the operating system.

In this overview, we'll take a look at some key facts to keep in mind when using 
JavaScript in Node.js.

Run the latest JavaScript with confidence
One of the main pain points of using JavaScript in the browser is that our code will 
likely run on a variety of devices and browsers. Dealing with different browsers 
means dealing with JavaScript runtimes that may miss some of the newest features of 
both the language or the web platform. Luckily, today this problem can be somewhat 
mitigated by the use of transpilers and polyfills. Nonetheless, this brings its own set 
of disadvantages and not everything can be polyfilled.

All these inconveniences don't apply when developing applications on Node.js. In 
fact, our Node.js applications will most likely run on a system and a Node.js runtime 
that are well known in advance. This makes a huge difference as it allows us to target 
our code for a specific JavaScript and Node.js version, with the absolute guarantee 
that we won't have any surprises when we run it on production.

This factor, in combination with the fact that Node.js ships with very recent versions 
of V8, means that we can use with confidence most of the features of the latest 
ECMAScript specification (ES for short; this is the standard on which the JavaScript 
language is based) without the need for any extra transpilation step.
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Please bear in mind, though, that if we are developing a library meant to be used by 
third parties, we still have to take into account that our code may run on different 
versions of Node.js. The general pattern in this case is to target the oldest active long-
term support (LTS) release and specify the engines section in our package.json, so 
that the package manager will warn the user if they are trying to install a package 
that is not compatible with their version of Node.js.

The module system
From its inception, Node.js shipped with a module system, even when JavaScript 
still had no official support for any form of it. The original Node.js module system 
is called CommonJS and it uses the require keyword to import functions, variables, 
and classes exported by built-in modules or other modules located on the device's 
filesystem.

CommonJS was a revolution for the JavaScript world in general, as it started to 
get popular even in the client-side world, where it is used in combination with a 
module bundler (such as Webpack or Rollup) to produce code bundles that are easily 
executable by the browser. CommonJS was a necessary component for Node.js to 
allow developers to create large and better organized applications on a par with 
other server-side platforms.

Today, JavaScript has the so-called ES modules syntax (the import keyword may 
be more familiar) from which Node.js inherits just the syntax, as the underlying 
implementation is somewhat different from that of the browser. In fact, while the 
browser mainly deals with remote modules, Node.js, at least for now, can only 
deal with modules located on the local filesystem.

We'll talk about modules in more detail in the next chapter.

Full access to operating system services
As we already mentioned, even if Node.js uses JavaScript, it doesn't run inside the 
boundaries of a browser. This allows Node.js to have bindings for all the major 
services offered by the underlying operating system.

You can find out more about the Node.js release cycles 
at nodejsdp.link/node-releases. Also, you can find 
the reference for the engines section of package.json at 
nodejsdp.link/package-engines. Finally, you can get an 
idea of what ES feature is supported by each Node.js version at 
nodejsdp.link/node-green.

http://nodejsdp.link/node-releases
http://nodejsdp.link/package-engines
http://nodejsdp.link/node-green
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For example, we can access any file on the filesystem (subject to any operating 
system-level permission) thanks to the fs module, or we can write applications 
that use low-level TCP or UDP sockets thanks to the net and dgram modules. We 
can create HTTP(S) servers (with the http and https modules) or use the standard 
encryption and hashing algorithms of OpenSSL (with the crypto module). We can 
also access some of the V8 internals (the v8 module) or run code in a different V8 
context (with the vm module).

We can also run other processes (with the child_process module) or retrieve 
our own application's process information using the process global variable. In 
particular, from the process global variable, we can get a list of the environment 
variables assigned to the process (with process.env) or the command-line arguments 
passed to the application at the moment of its launch (with process.argv).

Throughout the book, you'll have the opportunity to use many of the modules 
described here, but for a complete reference, you can check the official Node.js 
documentation at nodejsdp.link/node-docs.

Running native code
One of the most powerful capabilities offered by Node.js is certainly the possibility 
to create userland modules that can bind to native code. This gives to the platform 
a tremendous advantage as it allows us to reuse existing or new components 
written in C/C++. Node.js officially provides great support for implementing 
native modules thanks to the N-API interface.

But what's the advantage? First of all, it allows us to reuse with little effort a vast 
amount of existing open source libraries, and most importantly, it allows a company 
to reuse its own C/C++ legacy code without the need to migrate it.

Another important consideration is that native code is still necessary to access 
low-level features such as communicating with hardware drivers or with hardware 
ports (for example, USB or serial). In fact, thanks to its ability to link to native 
code, Node.js has become popular in the world of the Internet of things (IoT) 
and homemade robotics.

Finally, even though V8 is very (very) fast at executing JavaScript, it still has a 
performance penalty to pay compared to executing native code. In everyday 
computing, this is rarely an issue, but for CPU-intensive applications, such as those 
with a lot of data processing and manipulation, delegating the work to native code 
can make tons of sense.

http://nodejsdp.link/node-docs
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We should also mention that, nowadays, most JavaScript virtual machines (VMs) 
(and also Node.js) support WebAssembly (Wasm), a low-level instruction format 
that allows us to compile languages other than JavaScript (such as C++ or Rust) 
into a format that is "understandable" by JavaScript VMs. This brings many of 
the advantages we have mentioned, without the need to directly interface with 
native code.

Summary
In this chapter, you have seen how the Node.js platform is built upon a few 
important principles that shape both its internal architecture and the code we write. 
You have learned that Node.js has a minimal core, and that embracing the "Node 
way" means writing modules that are smaller, simpler, and that expose only the 
minimum functionality necessary.

Next, you discovered the reactor pattern, which is the pulsating heart of Node.js, 
and dissected the internal architecture of the platform runtime to reveal its three 
pillars: V8, libuv, and the core JavaScript library.

Finally, we analyzed some of the main characteristics of using JavaScript in Node.js 
compared to the browser.

Besides the obvious technical advantages enabled by its internal architecture, Node.js 
is attracting so much interest because of the principles you have just discovered and 
the community orbiting around it. For many, grasping the essence of this world feels 
like returning to the origins, to a more humane way of programming in both size and 
complexity, and that's why developers end up falling in love with Node.js.

In the next chapter, we will go deep into one of the most fundamental and important 
topics of Node.js, its module system.

You can learn more about Wasm on the official website of the 
project at nodejsdp.link/webassembly.

http://nodejsdp.link/webassembly
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2
The Module System

In Chapter 1, The Node.js Platform, we briefly introduced the importance of modules 
in Node.js. We discussed how modules play a fundamental role in defining some of 
the pillars of the Node.js philosophy and its programming experience. But what do 
we actually mean when we talk about modules and why are they so important?

In generic terms, modules are the bricks for structuring non-trivial applications. 
Modules allow you to divide the codebase into small units that can be developed 
and tested independently. Modules are also the main mechanism to enforce 
information hiding by keeping private all the functions and variables that are 
not explicitly marked to be exported.

If you come from other languages, you have probably seen similar concepts being 
referred to with different names: package (Java, Go, PHP, Rust, or Dart), assembly 
(.NET), library (Ruby), or unit (Pascal dialects). The terminology is not perfectly 
interchangeable because every language or ecosystem comes with its own unique 
characteristics, but there is a significant overlap between these concepts.

Interestingly enough, Node.js currently comes with two different module systems: 
CommonJS (CJS) and ECMAScript modules (ESM or ES modules). In this chapter, 
we will discuss why there are two alternatives, we will learn about their pros and 
cons, and, finally, we will analyze several common patterns that are relevant when 
using or writing Node.js modules. By the end of this chapter, you should be able 
to make pragmatic choices about how to use modules effectively and how to write 
your own custom modules.

Getting a good grasp of Node.js' module systems and module patterns is very 
important as we will rely on this knowledge in all the other chapters of this book.
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In short, these are the main topics we will be discussing throughout this chapter:

• Why modules are necessary and the different module systems available 
in Node.js

• CommonJS internals and module patterns
• ES modules (ESM) in Node.js
• Differences and interoperability between CommonJS and ESM

Let's begin with why we need modules.

The need for modules
A good module system should help with addressing some fundamental needs 
of software engineering:

• Having a way to split the codebase into multiple files. This helps with keeping 
the code more organized, making it easier to understand but also helps with 
developing and testing various pieces of functionality independently from 
each other.

• Allowing code reuse across different projects. A module can, in fact, implement 
a generic feature that can be useful for different projects. Organizing such 
functionality within a module can make it easier to bring it into the different 
projects that may want to use it.

• Encapsulation (or information hiding). It is generally a good idea to hide 
implementation complexity and only expose simple interfaces with clear 
responsibilities. Most module systems allow to selectively keep the private 
part of the code hidden, while exposing a public interface, such as functions, 
classes, or objects that are meant to be used by the consumers of the module.

• Managing dependencies. A good module system should make it easy for 
module developers to build on top of existing modules, including third-party 
ones. A module system should also make it easy for module users to import 
the chain of dependencies that are necessary for a given module to run 
(transient dependencies).

It is important to clarify the distinction between a module and a module system. We 
can define a module as the actual unit of software, while a module system is the 
syntax and the tooling that allows us to define modules and to use them within 
our projects.
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Module systems in JavaScript and  
Node.js
Not all programming languages come with a built-in module system, and JavaScript 
had been lacking this feature for a long time.

In the browser landscape, it is possible to split the codebase into multiple files and 
then import them by using different <script> tags. For many years, this approach 
was good enough to build simple interactive websites, and JavaScript developers 
managed to get things done without having a fully-fledged module system.

Only when JavaScript browser applications became more complicated and 
frameworks like jQuery, Backbone, and AngularJS took over the ecosystem, the 
JavaScript community came up with several initiatives aimed at defining a module 
system that could be effectively adopted within JavaScript projects. The most 
successful ones were asynchronous module definition (AMD), popularized by 
RequireJS (nodejsdp.link/requirejs), and later Universal Module Definition 
(UMD – nodejsdp.link/umd).

When Node.js was created, it was conceived as a server runtime for JavaScript with 
direct access to the underlying filesystem so there was a unique opportunity to 
introduce a different way to manage modules. The idea was not to rely on HTML 
<script> tags and resources accessible through URLs. Instead, the choice was to rely 
purely on JavaScript files available on the local filesystem. For its module system, 
Node.js came up with an implementation of the CommonJS specification (sometimes 
also referred to as CJS, nodejsdp.link/commonjs), which was designed to provide 
a module system for JavaScript in browserless environments.

CommonJS has been the dominant module system in Node.js since its inception 
and it has become very prominent also in the browser landscape thanks to module 
bundlers like Browserify (nodejsdp.link/browserify) and webpack (nodejsdp.link/
webpack).

In 2015, with the release of ECMAScript 6 (also called ECMAScript 2015 
or ES2015), there was finally an official proposal for a standard module system: 
ESM or ECMAScript modules. ESM brings a lot of innovation in the JavaScript 
ecosystem and, among other things, it tries to bridge the gap between how 
modules are managed on browsers and servers.

ECMAScript 6 defined only the formal specification for ESM in terms of syntax 
and semantics, but it didn't provide any implementation details. It took different 
browser companies and the Node.js community several years to come up with solid 
implementations of the specification. Node.js ships with stable support for ESM 
starting from version 13.2.

http://nodejsdp.link/requirejs
http://nodejsdp.link/umd
http://nodejsdp.link/commonjs
http://nodejsdp.link/browserify
http://nodejsdp.link/webpack
http://nodejsdp.link/webpack
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At the time of writing, the general feeling is that ESM is going to become the de facto 
way to manage JavaScript modules in both the browser and the server landscape. 
The reality today, though, is that the majority of projects are still heavily relying on 
CommonJS and it will take some time for ESM to catch up and eventually become 
the dominant standard.

To provide a comprehensive overview of module-related patterns in Node.js, in the 
first part of this chapter, we will discuss them in the context of CommonJS, and then, 
in the second part of the chapter, we will revisit our learnings using ESM.

The goal of this chapter is to make you comfortable with both module systems, but in 
the rest of the book, we will only be using ESM for our code examples. The idea is to 
encourage you to leverage ESM as much as possible so that your code will be more 
future-proof.

If you are reading this chapter a few years after its publication, you are probably 
not too worried about CommonJS, and you might want to jump straight into the 
ESM part. This is probably fine, but we still encourage you to go through the entire 
chapter, because understanding CommonJS and its characteristics will certainly be 
beneficial in helping you to understand ESM and its strengths in much more depth.

The module system and its patterns
As we said, modules are the bricks for structuring non-trivial applications and the 
main mechanism to enforce information hiding by keeping private all the functions 
and variables that are not explicitly marked to be exported.

Before getting into the specifics of CommonJS, let's discuss a generic pattern that 
helps with information hiding and that we will be using for building a simple 
module system, which is the revealing module pattern.

The revealing module pattern
One of the bigger problems with JavaScript in the browser is the lack of 
namespacing. Every script runs in the global scope; therefore, internal application 
code or third-party dependencies can pollute the scope while exposing their own 
pieces of functionality. This can be extremely harmful. Imagine, for instance, that a 
third-party library instantiates a global variable called utils. If any other library, or 
the application code itself, accidentally overrides or alters utils, the code that relies 
on it will likely crash in some unpredictable way. Unpredictable side effects can also 
happen if other libraries or the application code accidentally invoke a function of 
another library meant for internal use only.
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In short, relying on the global scope is a very risky business, especially as 
your application grows and you have to rely more and more on functionality 
implemented by other individuals.

A popular technique to solve this class of problems is called the revealing module 
pattern, and it looks like this:

const myModule = (() => {
  const privateFoo = () => {}
  const privateBar = []

  const exported = {
    publicFoo: () => {},
    publicBar: () => {}
  }

  return exported
})() // once the parenthesis here are parsed, the function
     // will be invoked

console.log(myModule)
console.log(myModule.privateFoo, myModule.privateBar)

This pattern leverages a self-invoking function. This type of function is sometimes 
also referred to as Immediately Invoked Function Expression (IIFE) and it is used 
to create a private scope, exporting only the parts that are meant to be public.

In JavaScript, variables created inside a function are not accessible from the outer 
scope (outside the function). Functions can use the return statement to selectively 
propagate information to the outer scope.

This pattern is essentially exploiting these properties to keep the private information 
hidden and export only a public-facing API.

In the preceding code, the myModule variable contains only the exported API, while 
the rest of the module content is practically inaccessible from outside.

The log statement is going to print something like this:

{ publicFoo: [Function: publicFoo],
  publicBar: [Function: publicBar] }
undefined undefined
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This demonstrates that only the exported properties are directly accessible from 
myModule.

As we will see in a moment, the idea behind this pattern is used as a base for the 
CommonJS module system.

CommonJS modules
CommonJS is the first module system originally built into Node.js. Node.js' 
CommonJS implementation respects the CommonJS specification, with the addition 
of some custom extensions.

Let's summarize two of the main concepts of the CommonJS specification:

• require is a function that allows you to import a module from the local 
filesystem

• exports and module.exports are special variables that can be used to export 
public functionality from the current module

This information is sufficient for now; we will learn more details and some of the 
nuances of the CommonJS specification in the next few sections.

A homemade module loader
To understand how CommonJS works in Node.js, let's build a similar system 
from scratch. The code that follows creates a function that mimics a subset of the 
functionality of the original require() function of Node.js.

Let's start by creating a function that loads the content of a module, wraps it into 
a private scope, and evaluates it:

function loadModule (filename, module, require) {
  const wrappedSrc =
    `(function (module, exports, require) {
      ${fs.readFileSync(filename, 'utf8')}
    })(module, module.exports, require)`
  eval(wrappedSrc)
}

The source code of a module is essentially wrapped into a function, as it was for 
the revealing module pattern. The difference here is that we pass a list of variables 
to the module, in particular, module, exports, and require. Make a note of how 
the exports argument of the wrapping function is initialized with the content 
of module.exports, as we will talk about this later.
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Another important detail to mention is that we are using readFileSync to read the 
module's content. While it is generally not recommended to use the synchronous 
version of the filesystem APIs, here it makes sense to do so. The reason for that is 
that loading modules in CommonJS are deliberately synchronous operations. This 
approach makes sure that, if we are importing multiple modules, they (and their 
dependencies) are loaded in the right order. We will talk more about this aspect 
later in the chapter.

Let's now implement the require() function:

function require (moduleName) {
  console.log(`Require invoked for module: ${moduleName}`)
  const id = require.resolve(moduleName)                   // (1)
  if (require.cache[id]) {                                 // (2)
    return require.cache[id].exports
  }

  // module metadata
  const module = {                                         // (3)
    exports: {},
    id
  }
  // Update the cache
  require.cache[id] = module                               // (4)

  // load the module
  loadModule(id, module, require)                          // (5)

  // return exported variables
  return module.exports                                    // (6)
}
require.cache = {}
require.resolve = (moduleName) => {
  /* resolve a full module id from the moduleName */
}

Bear in mind that this is only an example, and you will rarely need 
to evaluate some source code in a real application. Features such 
as eval() or the functions of the vm module (nodejsdp.link/vm) 
can be easily used in the wrong way or with the wrong input, thus 
opening a system to code injection attacks. They should always be 
used with extreme care or avoided altogether.

http://nodejsdp.link/vm
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The previous function simulates the behavior of the original require() function 
of Node.js, which is used to load a module. Of course, this is just for educational 
purposes and does not accurately or completely reflect the internal behavior of the 
real require() function, but it's great to understand the internals of the Node.js 
module system, including how a module is defined and loaded.

What our homemade module system does is explained as follows:

1. A module name is accepted as input, and the very first thing that we do 
is resolve the full path of the module, which we call id. This task is delegated 
to require.resolve(), which implements a specific resolving algorithm 
(we will talk about it later).

2. If the module has already been loaded in the past, it should be available 
in the cache. If this is the case, we just return it immediately.

3. If the module has never been loaded before, we set up the environment 
for the first load. In particular, we create a module object that contains 
an exports property initialized with an empty object literal. This object 
will be populated by the code of the module to export its public API.

4. After the first load, the module object is cached.
5. The module source code is read from its file and the code is evaluated, as 

we saw before. We provide the module with the module object that we just 
created, and a reference to the require() function. The module exports its 
public API by manipulating or replacing the module.exports object.

6. Finally, the content of module.exports, which represents the public API 
of the module, is returned to the caller.

As we can see, there is nothing magical behind the workings of the Node.js module 
system. The trick is all in the wrapper we create around a module's source code and 
the artificial environment in which we run it.

Defining a module
By looking at how our custom require() function works, we should now be able 
to understand how to define a module. The following code gives us an example:

// load another dependency
const dependency = require('./anotherModule')

// a private function
function log() {
  console.log(`Well done ${dependency.username}`)
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}

// the API to be exported for public use
module.exports.run = () => {
  log()
}

The essential concept to remember is that everything inside a module is private 
unless it's assigned to the module.exports variable. The content of this variable is 
then cached and returned when the module is loaded using require().

module.exports versus exports
For many developers who are not yet familiar with Node.js, a common source of 
confusion is the difference between using exports and module.exports to expose a 
public API. The code of our custom require() function should again clear any doubt. 
The exports variable is just a reference to the initial value of module.exports. We 
have seen that such a value is essentially a simple object literal created before the 
module is loaded.

This means that we can only attach new properties to the object referenced by 
the exports variable, as shown in the following code:

exports.hello = () => {
  console.log('Hello')
}

Reassigning the exports variable doesn't have any effect, because it doesn't change 
the content of module.exports. It will only reassign the variable itself. The following 
code is therefore wrong:

exports = () => {
  console.log('Hello')
}

If we want to export something other than an object literal, such as a function, 
an instance, or even a string, we have to reassign module.exports as follows:

module.exports = () => {
  console.log('Hello')
}
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The require function is synchronous
A very important detail that we should take into account is that our 
homemade require() function is synchronous. In fact, it returns the module contents 
using a simple direct style, and no callback is required. This is true for the original 
Node.js require() function too. As a consequence, any assignment to module.
exports must be synchronous as well. For example, the following code is incorrect 
and it will cause trouble:

setTimeout(() => {
  module.exports = function() {...}
}, 100)

The synchronous nature of require() has important repercussions on the way 
we define modules, as it limits us to mostly using synchronous code during 
the definition of a module. This is one of the most important reasons why the 
core Node.js libraries offer synchronous APIs as an alternative to most of the 
asynchronous ones.

If we need some asynchronous initialization steps for a module, we can always 
define and export an uninitialized module that is initialized asynchronously at 
a later time. The problem with this approach, though, is that loading such a module 
using require() does not guarantee that it's ready to be used. In Chapter 11, 
Advanced Recipes, we will analyze this problem in detail and present some patterns 
to solve this issue elegantly.

For the sake of curiosity, you might want to know that in its early days, Node.js 
used to have an asynchronous version of require(), but it was soon removed 
because it was overcomplicating a functionality that was actually only meant to be 
used at initialization time and where asynchronous I/O brings more complexities 
than advantages.

The resolving algorithm
The term dependency hell describes a situation whereby two or more dependencies 
of a program in turn depend on a shared dependency, but require different 
incompatible versions. Node.js solves this problem elegantly by loading a different 
version of a module depending on where the module is loaded from. All the 
merits of this feature go to the way Node.js package managers (such as npm or 
yarn) organize the dependencies of the application, and also to the resolving 
algorithm used in the require() function.
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Let's now give a quick overview of this algorithm. As we saw, the resolve() function 
takes a module name (which we will call moduleName) as input and it returns the full 
path of the module. This path is then used to load its code and also to identify the 
module uniquely. The resolving algorithm can be divided into the following three 
major branches:

• File modules: If moduleName starts with /, it is already considered an 
absolute path to the module and it's returned as it is. If it starts with ./, 
then moduleName is considered a relative path, which is calculated starting 
from the directory of the requiring module.

• Core modules: If moduleName is not prefixed with / or ./, the algorithm will 
first try to search within the core Node.js modules.

• Package modules: If no core module is found matching moduleName, then 
the search continues by looking for a matching module in the first node_
modules directory that is found navigating up in the directory structure 
starting from the requiring module. The algorithm continues to search for 
a match by looking into the next node_modules directory up in the directory 
tree, until it reaches the root of the filesystem.

For file and package modules, both files and directories can match moduleName. In 
particular, the algorithm will try to match the following:

• <moduleName>.js

• <moduleName>/index.js

• The directory/file specified in the main property of <moduleName>/package.json

The node_modules directory is actually where the package managers install the 
dependencies of each package. This means that, based on the algorithm we just 
described, each package can have its own private dependencies. For example, 
consider the following directory structure:

myApp
├── foo.js
└── node_modules
    ├── depA
    │   └── index.js

The complete, formal documentation of the resolving 
algorithm can be found at nodejsdp.link/resolve.

http://nodejsdp.link/resolve
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    ├── depB
    │   ├── bar.js
    │   └── node_modules
    │       └── depA
    │           └── index.js
    └── depC
        ├── foobar.js
        └── node_modules
            └── depA
                └── index.js

In the previous example, myApp, depB, and depC all depend on depA. However, they 
all have their own private version of the dependency! Following the rules of the 
resolving algorithm, using require('depA') will load a different file depending 
on the module that requires it, for example:

• Calling require('depA') from /myApp/foo.js will load  
/myApp/node_modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depB/bar.js will load  
/myApp/node_modules/depB/node_modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depC/foobar.js will 
load /myApp/node_modules/depC/node_modules/depA/index.js

The resolving algorithm is the core part behind the robustness of the Node.js 
dependency management, and it makes it possible to have hundreds or even 
thousands of packages in an application without having collisions or problems 
of version compatibility.

The module cache
Each module is only loaded and evaluated the first time it is required, since any 
subsequent call of require() will simply return the cached version. This should be 
clear by looking at the code of our homemade require() function. Caching is crucial 
for performance, but it also has some important functional implications:

• It makes it possible to have cycles within module dependencies
• It guarantees, to some extent, that the same instance is always returned when 

requiring the same module from within a given package

The resolving algorithm is applied transparently for us when we 
invoke require(). However, if needed, it can still be used directly 
by any module by simply invoking require.resolve().
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The module cache is exposed via the require.cache variable, so it is possible to 
directly access it if needed. A common use case is to invalidate any cached module 
by deleting the relative key in the require.cache variable, a practice that can be 
useful during testing but very dangerous if applied in normal circumstances.

Circular dependencies
Many consider circular dependencies an intrinsic design issue, but it is something 
that might actually happen in a real project, so it's useful for us to know at least how 
this works with CommonJS. If we look again at our homemade require() function, 
we immediately get a glimpse of how this might work and what its caveats are.

But let's walk together through an example to see how CommonJS behaves when 
dealing with circular dependencies. Let's suppose we have the scenario represented 
in Figure 2.1:

Figure 2.1: An example of circular dependency

A module called main.js requires a.js and b.js. In turn, a.js requires b.js. But 
b.js relies on a.js as well! It's obvious that we have a circular dependency here as 
module a.js requires module b.js and module b.js requires module a.js. Let's 
have a look at the code of these two modules:

• Module a.js:
exports.loaded = false
const b = require('./b')
module.exports = {
  b,
  loaded: true // overrides the previous export
}

• Module b.js:
exports.loaded = false
const a = require('./a')
module.exports = {
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  a,
  loaded: true
}

Now, let's see how these modules are required by main.js:

const a = require('./a')
const b = require('./b')
console.log('a ->', JSON.stringify(a, null, 2))
console.log('b ->', JSON.stringify(b, null, 2))

If we run main.js, we will see the following output:

a -> {
  "b": {
    "a": {
      "loaded": false
    },
    "loaded": true
  },
  "loaded": true
}

b -> {
  "a": {
    "loaded": false
  },
  "loaded": true
}

This result reveals the caveats of circular dependencies with CommonJS, that is, 
different parts of our application will have a different view of what is exported by 
module a.js and module b.js, depending on the order in which those dependencies 
are loaded. While both the modules are completely initialized as soon as they are 
required from the module main.js, the a.js module will be incomplete when it is 
loaded from b.js. In particular, its state will be the one that it reached the moment 
b.js was required.

In order to understand in more detail what happens behind the scenes, let's analyze 
step by step how the different modules are interpreted and how their local scope 
changes along the way:
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Figure 2.2: A visual representation of how a dependency loop is managed in Node.js
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The steps are as follows:

1. The processing starts in main.js, which immediately requires a.js
2. The first thing that module a.js does is set an exported value called loaded 

to false
3. At this point, module a.js requires module b.js
4. Like a.js, the first thing that module b.js does is set an exported value 

called loaded to false
5. Now, b.js requires a.js (cycle)
6. Since a.js has already been traversed, its currently exported value 

is immediately copied into the scope of module b.js
7. Module b.js finally changes the loaded value to true
8. Now that b.js has been fully executed, the control returns to a.js, which 

now holds a copy of the current state of module b.js in its own scope
9. The last step of module a.js is to set its loaded value to true
10. Module a.js is now completely executed and the control returns to main.js, 

which now has a copy of the current state of module a.js in its internal scope
11. main.js requires b.js, which is immediately loaded from cache
12. The current state of module b.js is copied into the scope of module main.js 

where we can finally see the complete picture of what the state of every 
module is

As we said, the issue here is that module b.js has a partial view of module a.js, 
and this partial view gets propagated over when b.js is required in main.js. This 
behavior should spark an intuition which can be confirmed if we swap the order in 
which the two modules are required in main.js. If you actually try this, you will see 
that this time it will be the a.js module that will receive an incomplete version of 
b.js.

We understand now that this can become quite a fuzzy business if we lose control 
of which module is loaded first, which can happen quite easily if the project is big 
enough.

Later in this chapter, we will see how ESM can deal with circular dependencies in 
a more effective way. Meanwhile, if you are using CommonJS, be very careful about 
this behavior and the way it can affect your application.

In the next section, we will discuss some patterns to define modules in Node.js.
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Module definition patterns
The module system, besides being a mechanism for loading dependencies, is also 
a tool for defining APIs. Like any other problem related to API design, the main 
factor to consider is the balance between private and public functionality. The aim 
is to maximize information hiding and API usability, while balancing these with 
other software qualities, such as extensibility and code reuse.

In this section, we will analyze some of the most popular patterns for defining 
modules in Node.js, such as named exports, exporting functions, classes and 
instances, and monkey patching. Each one has its own balance of information 
hiding, extensibility, and code reuse.

Named exports
The most basic method for exposing a public API is using named exports, which 
involves assigning the values we want to make public to properties of the object 
referenced by exports (or module.exports). In this way, the resulting exported 
object becomes a container or namespace for a set of related functionalities.

The following code shows a module implementing this pattern:

// file logger.js
exports.info = (message) => {
  console.log(`info: ${message}`)
}

exports.verbose = (message) => {
  console.log(`verbose: ${message}`)
}

The exported functions are then available as properties of the loaded module, as 
shown in the following code:

// file main.js
const logger = require('./logger')
logger.info('This is an informational message')
logger.verbose('This is a verbose message')
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Most of the Node.js core modules use this pattern. However, the CommonJS 
specification only allows the use of the exports variable to expose public members. 
Therefore, the named exports pattern is the only one that is really compatible with 
the CommonJS specification. The use of module.exports is an extension provided 
by Node.js to support a broader range of module definition patterns, which we are 
going to see next.

Exporting a function
One of the most popular module definition patterns consists of reassigning the 
whole module.exports variable to a function. The main strength of this pattern is 
the fact that it allows you to expose only a single functionality, which provides a 
clear entry point for the module, making it simpler to understand and use; it also 
honors the principle of small surface area very well. This way of defining modules is 
also known in the community as the substack pattern, after one of its most prolific 
adopters, James Halliday (nickname substack – https://github.com/substack). 
Have a look at this pattern in the following example:

// file logger.js
module.exports = (message) => {
  console.log(`info: ${message}`)
}

A possible extension of this pattern is using the exported function as a namespace 
for other public APIs. This is a very powerful combination because it still gives the 
module the clarity of a single entry point (the main exported function) and at the 
same time it allows us to expose other functionalities that have secondary or more 
advanced use cases. The following code shows us how to extend the module we 
defined previously by using the exported function as a namespace:

module.exports.verbose = (message) => {
  console.log(`verbose: ${message}`)
}

This code demonstrates how to use the module that we just defined:

// file main.js
const logger = require('./logger')
logger('This is an informational message')
logger.verbose('This is a verbose message')

https://github.com/substack
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Even though exporting just a function might seem like a limitation, in reality, it's 
a perfect way to put the emphasis on a single functionality, the most important 
one for the module, while giving less visibility to secondary or internal aspects, 
which are instead exposed as properties of the exported function itself. The 
modularity of Node.js heavily encourages the adoption of the single-responsibility 
principle (SRP): every module should have responsibility over a single functionality 
and that responsibility should be entirely encapsulated by the module.

Exporting a class
A module that exports a class is a specialization of a module that exports a function. 
The difference is that with this new pattern we allow the user to create new instances 
using the constructor, but we also give them the ability to extend its prototype and 
forge new classes. The following is an example of this pattern:

class Logger {
  constructor (name) {
    this.name = name
  }

  log (message) {
    console.log(`[${this.name}] ${message}`)
  }

  info (message) {
    this.log(`info: ${message}`)
  }

  verbose (message) {
    this.log(`verbose: ${message}`)
  }
}

module.exports = Logger

And, we can use the preceding module as follows:

// file main.js
const Logger = require('./logger')
const dbLogger = new Logger('DB')
dbLogger.info('This is an informational message')
const accessLogger = new Logger('ACCESS')
accessLogger.verbose('This is a verbose message')
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Exporting a class still provides a single entry point for the module, but compared 
to the substack pattern, it exposes a lot more of the module internals. On the other 
hand, it allows much more power when it comes to extending its functionality.

Exporting an instance
We can leverage the caching mechanism of require() to easily define 
stateful instances created from a constructor or a factory, which can be shared 
across different modules. The following code shows an example of this pattern:

// file logger.js
class Logger {
  constructor (name) {
    this.count = 0
    this.name = name
  }
  log (message) {
    this.count++
    console.log('[' + this.name + '] ' + message)
  }
}
module.exports = new Logger('DEFAULT')

This newly defined module can then be used as follows:

// main.js
const logger = require('./logger')
logger.log('This is an informational message')

Because the module is cached, every module that requires the logger module will 
actually always retrieve the same instance of the object, thus sharing its state. This 
pattern is very much like creating a singleton. However, it does not guarantee 
the uniqueness of the instance across the entire application, as it happens in the 
traditional singleton pattern. When analyzing the resolving algorithm, we have seen 
that a module might be installed multiple times inside the dependency tree of an 
application. This results in multiple instances of the same logical module, all running 
in the context of the same Node.js application. We will analyze the Singleton pattern 
and its caveats in more detail in Chapter 7, Creational Design Patterns.

One interesting detail of this pattern is that it does not preclude the opportunity to 
create new instances, even if we are not explicitly exporting the class. In fact, we can 
rely on the constructor property of the exported instance to construct a new instance 
of the same type:

const customLogger = new logger.constructor('CUSTOM')
customLogger.log('This is an informational message')
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As you can see, by using logger.constructor(), we can instantiate new Logger 
objects. Note that this technique must be used with caution or avoided altogether. 
Consider that, if the module author decided not to export the class explicitly, they 
probably wanted to keep this class private.

Modifying other modules or the global scope
A module can even export nothing. This can seem a bit out of place; however, 
we should not forget that a module can modify the global scope and any object 
in it, including other modules in the cache. Please note that these are in general 
considered bad practices, but since this pattern can be useful and safe under some 
circumstances (for example, for testing) and it's sometimes used in real-life projects, 
it's worth knowing.

We said that a module can modify other modules or objects in the global scope; 
well, this is called monkey patching. It generally refers to the practice of modifying 
the existing objects at runtime to change or extend their behavior or to apply 
temporary fixes.

The following example shows us how we can add a new function to another module:

// file patcher.js

// ./logger is another module
require('./logger').customMessage = function () {
  console.log('This is a new functionality')
}

Using our new patcher module is as easy as writing the following code:

// file main.js

require('./patcher')
const logger = require('./logger')
logger.customMessage()

The technique described here can be very dangerous to use. The main concern is 
that having a module that modifies the global namespace or other modules is an 
operation with side effects. In other words, it affects the state of entities outside their 
scope, which can have consequences that aren't easily predictable, especially when 
multiple modules interact with the same entities. Imagine having two different 
modules trying to set the same global variable, or modifying the same property of 
the same module. The effects can be unpredictable (which module wins?), but most 
importantly it would have repercussions on the entire application.



The Module System

[ 38 ]

So, again use this technique with care and make sure you understand all the possible 
side effects while doing so.

At this point, we should have a quite complete understanding of CommonJS and 
some of the patterns that are generally used with it. In the next section, we will 
explore ECMAScript modules, also known as ESM.

ESM: ECMAScript modules
ECMAScript modules (also known as ES modules or ESM) were introduced as part 
of the ECMAScript 2015 specification with the goal to give JavaScript an official 
module system suitable for different execution environments. The ESM specification 
tries to retain some good ideas from previous existing module systems like 
CommonJS and AMD. The syntax is very simple and compact. There is support for 
cyclic dependencies and the possibility to load modules asynchronously.

The most important differentiator between ESM and CommonJS is that ES modules 
are static, which means that imports are described at the top level of every module 
and outside any control flow statement. Also, the name of the imported modules 
cannot be dynamically generated at runtime using expressions, only constant strings 
are allowed.

For instance, the following code wouldn't be valid when using ES modules:

if (condition) {
  import module1 from 'module1'
} else {
  import module2 from 'module2'
}

While in CommonJS, it is perfectly fine to write something like this:

let module = null
if (condition) {

If you want a real-life example of how this can be useful, have 
a look at nock (nodejsdp.link/nock), a module that allows you 
to mock HTTP responses in your tests. The way nock works is 
by monkey patching the Node.js http module and by changing 
its behavior so that it will provide the mocked response rather 
than issuing a real HTTP request. This allows our unit test to run 
without hitting the actual production HTTP endpoints, something 
that's very convenient when writing tests for code that relies on 
third-party APIs.

http://nodejsdp.link/nock
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  module = require('module1')
} else {
  module = require('module2')
}

At a first glance, this characteristic of ESM might seem an unnecessary limitation, 
but in reality, having static imports opens up a number of interesting scenarios that 
are not practical with the dynamic nature of CommonJS. For instance, static imports 
allow the static analysis of the dependency tree, which allows optimizations such as 
dead code elimination (tree shaking) and more.

Using ESM in Node.js
Node.js will consider every .js file to be written using the CommonJS syntax by 
default; therefore, if we use the ESM syntax inside a .js file, the interpreter will 
simply throw an error.

There are several ways to tell the Node.js interpreter to consider a given module as 
an ES module rather than a CommonJS module:

• Give the module file the extension .mjs
• Add to the nearest parent package.json a field called "type" with a value of 

"module"

Let's now have a look at the ESM syntax.

Named exports and imports
ESM allows us to export functionality from a module through the export keyword.

Throughout the rest of this book and in the code examples 
provided, we will keep using the .js extension to keep the code 
more easily accessible to most text editors, so if you are copying 
and pasting examples straight from the book, make sure that you 
also create a package.json file with the "type":"module" entry.

Note that ESM uses the singular word export as opposed to the 
plural (exports and module.exports) used by CommonJS.
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In an ES module, everything is private by default and only exported entities are 
publicly accessible from other modules.

The export keyword can be used in front of the entities that we want to make 
available to the module users. Let's see an example:

// logger.js

// exports a function as `log`
export function log (message) {
  console.log(message)
}

// exports a constant as `DEFAULT_LEVEL`
export const DEFAULT_LEVEL = 'info'

// exports an object as `LEVELS`
export const LEVELS = {
  error: 0,
  debug: 1,
  warn: 2,
  data: 3,
  info: 4,
  verbose: 5
}

// exports a class as `Logger`
export class Logger {
  constructor (name) {
    this.name = name
  }

  log (message) {
    console.log(`[${this.name}] ${message}`)
  }
}

If we want to import entities from a module we can use the import keyword. The 
syntax is quite flexible, and it allows us to import one or more entities and even to 
rename imports. Let's see some examples:

import * as loggerModule from './logger.js'
console.log(loggerModule)
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In this example, we are using the * syntax (also called namespace import) to import 
all the members of the module and assign them to the local loggerModule variable. 
This example will output something like this:

[Module] {
  DEFAULT_LEVEL: 'info',
  LEVELS: { error: 0, debug: 1, warn: 2, data: 3, info: 4,
    verbose: 5 },
  Logger: [Function: Logger],
  log: [Function: log]
}

As we can see, all the entities exported in our module are now accessible in the 
loggerModule namespace. For instance, we could refer to the log() function through 
loggerModule.log.

If we are using a large module, most often we don't want to import all of its 
functionality, but only one or few entities from it:

import { log } from './logger.js'
log('Hello World')

If we want to import more than one entity, this is how we would do that:

import { log, Logger } from './logger.js'
log('Hello World')
const logger = new Logger('DEFAULT')
logger.log('Hello world')

When we use this type of import statement, the entities are imported into the 
current scope, so there is a risk of a name clash. The following code, for example, 
would not work:

import { log } from './logger.js'
const log = console.log

It's very important to note that, as opposed to CommonJS, with 
ESM we have to specify the file extension of the imported modules. 
With CommonJS we can use either ./logger or ./logger.js, 
with ESM we are forced to use ./logger.js.



The Module System

[ 42 ]

If we try to execute the preceding snippet, the interpreter fails with the following 
error:

SyntaxError: Identifier 'log' has already been declared

In situations like this one, we can resolve the clash by renaming the imported entity 
with the as keyword:

import { log as log2 } from './logger.js'
const log = console.log

log('message from log')
log2('message from log2')

This approach can be particularly useful when the clash is generated by importing 
two entities with the same name from different modules, and therefore changing 
the original names is outside the consumer's control.

Default exports and imports
One widely used feature of CommonJS is the ability to export a single unnamed 
entity through the assignment of module.exports. We saw that this is very 
convenient as it encourages module developers to follow the single-responsibility 
principle and expose only one clear interface. With ESM, we can do something 
similar through what's called a default export. A default export makes use of the 
export default keywords and it looks like this:

// logger.js
export default class Logger {
  constructor (name) {
    this.name = name
  }

  log (message) {
    console.log(`[${this.name}] ${message}`)
  }
}

In this case, the name Logger is ignored, and the entity exported is registered under 
the name default. This exported name is handled in a special way, and it can be 
imported as follows:

// main.js
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import MyLogger from './logger.js'
const logger = new MyLogger('info')
logger.log('Hello World')

The difference with named ESM imports is that here, since the default export is 
considered unnamed, we can import it and at the same time assign it a local name of 
our choice. In this example, we can replace MyLogger with anything else that makes 
sense in our context. This is very similar to what we do with CommonJS modules. 
Note also that we don't have to wrap the import name around brackets or use the 
as keyword when renaming.

Internally, a default export is equivalent to a named export with default as the 
name. We can easily verify this statement by running the following snippet of code:

// showDefault.js
import * as loggerModule from './logger.js'
console.log(loggerModule)

When executed, the previous code will print something like this:

[Module] { default: [Function: Logger] }

One thing that we cannot do, though, is import the default entity explicitly. In fact, 
something like the following will fail:

import { default } from './logger.js'

The execution will fail with a SyntaxError: Unexpected reserved word error. This 
happens because the default keyword cannot be used as a variable name. It is valid 
as an object attribute, so in the previous example, it is okay to use loggerModule.
default, but we can't have a variable named default directly in the scope.

Mixed exports
It is possible to mix named exports and a default export within an ES module. Let's 
have a look at an example:

// logger.js
export default function log (message) {
  console.log(message)
}

export function info (message) {
  log(`info: ${message}`)
}
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The preceding code is exporting the log() function as a default export and a named 
export for a function called info(). Note that info() can reference log() internally. 
It would not be possible to replace the call to log() with default() to do that, as it 
would be a syntax error (Unexpected token default).

If we want to import both the default export and one or more named exports, we 
can do it using the following format:

import mylog, { info } from './logger.js'

In the preceding example, we are importing the default export from logger.js as 
mylog and also the named export info.

Let's now discuss some key details and differences between the default export and 
named exports:

• Named exports are explicit. Having predetermined names allows IDEs to 
support the developer with automatic imports, autocomplete, and refactoring 
tools. For instance, if we type writeFileSync, the editor might automatically 
add import { writeFileSync } from 'fs' at the beginning of the current 
file. Default exports, on the contrary, make all these things more complicated 
as a given functionality could have different names in different files, so 
it's harder to make inferences on which module might provide a given 
functionality based only on a given name.

• The default export is a convenient mechanism to communicate what is the 
single most important functionality for a module. Also, from the perspective 
of the user, it can be easier to import the obvious piece of functionality 
without having to know the exact name of the binding.

• In some circumstances, default exports might make it harder to apply dead 
code elimination (tree shaking). For example, a module could provide only 
a default export, which is an object where all the functionality is exposed 
as properties of such an object. When we import this default object, most 
module bundlers will consider the entire object being used and they won't 
be able to eliminate any unused code from the exported functionality.

For these reasons, it is generally considered good practice to stick with named 
exports, especially when you want to expose more than one functionality, and 
only use default exports if it's one clear functionality you want to export.

This is not a hard rule and there are notable exceptions to this suggestion. 
For instance, all Node.js core modules have both a default export and a number 
of named exports. Also, React (nodejsdp.link/react) uses mixed exports.

http://nodejsdp.link/react
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Consider carefully what the best approach for your specific module is and what 
you want the developer experience to be for the users of your module.

Module identifiers
Module identifiers (also called module specifiers) are the different types of values that 
we can use in our import statements to specify the location of the module we want 
to load.

So far, we have seen only relative paths, but there are several other possibilities and 
some nuances to keep in mind. Let's list all the possibilities:

• Relative specifiers like ./logger.js or ../logger.js. They are used to refer 
to a path relative to the location of the importing file.

• Absolute specifiers like file:///opt/nodejs/config.js. They refer directly 
and explicitly to a full path. Note that this is the only way with ESM to refer 
to an absolute path for a module, using a / or a // prefix won't work. This is 
a significant difference with CommonJS.

• Bare specifiers are identifiers like fastify or http, and they represent modules 
available in the node_modules folder and generally installed through a 
package manager (such as npm) or available as core Node.js modules.

• Deep import specifiers like fastify/lib/logger.js, which refer to a path 
within a package in node_modules (fastify, in this case).

In browser environments, it is possible to import modules directly by specifying the 
module URL, for instance, https://unpkg.com/lodash. This feature is not supported 
by Node.js.

Async imports
As we have seen in the previous section, the import statement is static and therefore 
subject to two important limitations:

• A module identifier cannot be constructed at runtime
• Module imports are declared at the top level of every file and they cannot be 

nested within control flow statements

There are some use cases when these limitations can become a little bit too restrictive. 
Imagine, for instance, if we have to import a specific translation module for the 
current user language, or a variation of a module that depends on the user's 
operating system. 

https://unpkg.com/lodash
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Also, what if we want to load a given module, which might be particularly heavy, 
only if the user is accessing the piece of functionality that requires that module?

To allow us to overcome these limitations ES modules provides async imports (also 
called dynamic imports).

Async imports can be performed at runtime using the special import() operator.

The import() operator is syntactically equivalent to a function that takes a module 
identifier as an argument and it returns a promise that resolves to a module object.

The module identifier can be any module identifier supported by static imports as 
discussed in the previous section. Now, let's see how to use dynamic imports with 
a simple example.

We want to build a command line application that can print "Hello World" in 
different languages. In the future, we will probably want to support many more 
phrases and languages, so it makes sense to have one file with the translations of 
all the user-facing strings for each supported language.

Let's create some example modules for some of the languages we want to support:

// strings-el.js
export const HELLO = 'Γεια σου κόσμε'

// strings-en.js
export const HELLO = 'Hello World'

// strings-es.js
export const HELLO = 'Hola mundo'

// strings-it.js
export const HELLO = 'Ciao mondo'

// strings-pl.js
export const HELLO = 'Witaj świecie'

We will learn more about promises in Chapter 5, Asynchronous 
Control Flow Patterns with Promises and Async/Await, so don't worry 
too much about understanding all the nuances of the specific 
promise syntax for now.
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Now let's create the main script that takes a language code from the command line 
and prints "Hello World" in the selected language:

// main.js
const SUPPORTED_LANGUAGES = ['el', 'en', 'es', 'it', 'pl']   // (1)
const selectedLanguage = process.argv[2]                     // (2)

if (!SUPPORTED_LANGUAGES.includes(selectedLanguage)) {       // (3)
  console.error('The specified language is not supported')
  process.exit(1)
}

const translationModule = `./strings-${selectedLanguage}.js` // (4)
import(translationModule)                                    // (5)
  .then((strings) => {                                       // (6)
    console.log(strings.HELLO)
  })

The first part of the script is quite simple. What we do there is:

1. Define a list of supported languages.
2. Read the selected language from the first argument passed in the command 

line.
3. Finally, we handle the case where the selected language is not supported.

The second part of the code is where we actually use dynamic imports:

4. First of all, we dynamically build the name of the module we want to import 
based on the selected language. Note that the module name needs to be 
a relative path to the module file, that's why we are prepending ./ to the 
filename.

5. We use the import() operator to trigger the dynamic import of the module.
6. The dynamic import happens asynchronously, so we can use the .then() 

hook on the returned promise to get notified when the module is ready to 
be used. The function passed to then() will be executed when the module 
is fully loaded and strings will be the module namespace imported 
dynamically. After that, we can access strings.HELLO and print its value to 
the console.
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Now we can execute this script like this:

node main.js it

And we should see Ciao mondo being printed to our console.

Module loading in depth
To understand how ESM actually works and how it can deal effectively with circular 
dependencies, we have to deep dive a little bit more into how JavaScript code is 
parsed and evaluated when using ES modules.

In this section, we will learn how ECMAScript modules are loaded, we will present 
the idea of read-only live bindings, and, finally, we will discuss an example with 
circular dependencies.

Loading phases
The goal of the interpreter is to build a graph of all the necessary modules 
(a dependency graph).

Essentially, the dependency graph is needed by the interpreter to figure out how 
modules depend on each other and in what order the code needs to be executed. 
When the node interpreter is launched, it gets passed some code to execute, generally 
in the form of a JavaScript file. This file is the starting point for the dependency 
resolution, and it is called the entry point. From the entry point, the interpreter 
will find and follow all the import statements recursively in a depth-first fashion, 
until all the necessary code is explored and then evaluated.

More specifically, this process happens in three separate phases:

• Phase 1 - Construction (or parsing): Find all the imports and recursively 
load the content of every module from the respective file.

In generic terms, a dependency graph can be defined as a directed 
graph (nodejsdp.link/directed-graph) representing the 
dependencies of a group of objects. In the context of this section, 
when we refer to a dependency graph, we want to indicate the 
dependency relationship between ECMAScript modules. As we 
will see, using a dependency graph allows us to determine the 
order in which all the necessary modules should be loaded in a 
given project.

http://nodejsdp.link/directed-graph


Chapter 2

[ 49 ]

• Phase 2 - Instantiation: For every exported entity, keep a named reference in 
memory, but don't assign any value just yet. Also, references are created for 
all the import and export statements tracking the dependency relationship 
between them (linking). No JavaScript code has been executed at this stage.

• Phase 3 - Evaluation: Node.js finally executes the code so that all the 
previously instantiated entities can get an actual value. Now running the 
code from the entry point is possible because all the blanks have been filled.

In simple terms, we could say that Phase 1 is about finding all the dots, Phase 2 
connects those creating paths, and, finally, Phase 3 walks through the paths in the 
right order.

At first glance, this approach doesn't seem very different from what CommonJS 
does, but there's a fundamental difference. Due to its dynamic nature, CommonJS 
will execute all the files while the dependency graph is explored. We have seen that 
every time a new require statement is found, all the previous code has already been 
executed. This is why you can use require even within if statements or loops, and 
construct module identifiers from variables.

In ESM, these three phases are totally separate from each other, no code can be 
executed until the dependency graph has been fully built, and therefore module 
imports and exports have to be static.

Read-only live bindings
Another fundamental characteristic of ES modules, which helps with cyclic 
dependencies, is the idea that imported modules are effectively read-only live 
bindings to their exported values.

Let's clarify what this means with a simple example:

// counter.js
export let count = 0
export function increment () {
  count++
}

This module exports two values: a simple integer counter called count and an 
increment function that increases the counter by one.

Let's now write some code that uses this module:

// main.js
import { count, increment } from './counter.js'



The Module System

[ 50 ]

console.log(count) // prints 0
increment()
console.log(count) // prints 1
count++ // TypeError: Assignment to constant variable!

What we can see in this code is that we can read the value of count at any time and 
change it using the increment() function, but as soon as we try to mutate the count 
variable directly, we get an error as if we were trying to mutate a const binding.

This proves that when an entity is imported in the scope, the binding to its original 
value cannot be changed (read-only binding) unless the bound value changes within 
the scope of the original module itself (live binding), which is outside the direct 
control of the consumer code.

This approach is fundamentally different from CommonJS. In fact, in CommonJS, the 
entire exports object is copied (shallow copy) when required from a module. This 
means that, if the value of primitive variables like numbers or string is changed at a 
later time, the requiring module won't be able to see those changes.

Circular dependency resolution
Now to close the circle, let's reimplement the circular dependency example we saw 
in the CommonJS modules section using the ESM syntax:

Figure 2.3: An example scenario with circular dependencies

Let's have a look at the modules a.js and b.js first:

// a.js
import * as bModule from './b.js'
export let loaded = false
export const b = bModule
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loaded = true

// b.js
import * as aModule from './a.js'
export let loaded = false
export const a = aModule
loaded = true

And now let's see how to import those two modules in our main.js file (the entry 
point):

// main.js
import * as a from './a.js'
import * as b from './b.js'
console.log('a ->', a)
console.log('b ->', b)

Note that this time we are not using JSON.stringify because that will fail with a 
TypeError: Converting circular structure to JSON, since there's an actual circular 
reference between a.js and b.js.

When we run main.js, we will see the following output:

a -> <ref *1> [Module] {
  b: [Module] { a: [Circular *1], loaded: true },
  loaded: true
}
b -> <ref *1> [Module] {
  a: [Module] { b: [Circular *1], loaded: true },
  loaded: true
}

The interesting bit here is that the modules a.js and b.js have a complete picture of 
each other, unlike what would happen with CommonJS, where they would only hold 
partial information of each other. We can see that because all the loaded values are 
set to true. Also, b within a is an actual reference to the same b instance available in 
the current scope, and the same goes for a within b. That's the reason why we cannot 
use JSON.stringify() to serialize these modules. Finally, if we swap the order of the 
imports for the modules a.js and b.js, the final outcome does not change, which is 
another important difference in comparison with how CommonJS works

It's worth spending some more time observing what happens in the three phases 
of the module resolution (parsing, instantiation, and evaluation) for this specific 
example.
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Phase 1: Parsing
During the parsing phase, the code is explored starting from the entry point 
(main.js). The interpreter looks only for import statements to find all the necessary 
modules and to load the source code from the module files. The dependency graph 
is explored in a depth-first fashion, and every module is visited only once. This way 
the interpreter builds a view of the dependencies that looks like a tree structure, as 
shown in Figure 2.4:

Figure 2.4: Parsing of cyclic dependencies with ESM

Given the example in Figure 2.4, let's discuss the various steps of the parsing phase:

1. From main.js, the first import found leads us straight into a.js.
2. In a.js we find an import pointing to b.js.
3. In b.js, we also have an import back to a.js (our cycle), but since a.js has 

already been visited, this path is not explored again.
4. At this point, the exploration starts to wind back: b.js doesn't have other 

imports, so we go back to a.js; a.js doesn't have other import statements 
so we go back to main.js. Here we find another import pointing to b.js, but 
again this module has been explored already, so this path is ignored.

At this point, our depth-first visit of the dependency graph has been completed and 
we have a linear view of the modules, as shown in Figure 2.5:
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Figure 2.5: A linear view of the module graph where cycles have been removed

This particular view is quite simple. In more realistic scenarios with a lot more 
modules, the view will look more like a tree structure.

Phase 2: Instantiation
In the instantiation phase, the interpreter walks the tree view obtained from the 
previous phase from the bottom to the top. For every module, the interpreter will 
look for all the exported properties first and build out a map of the exported names 
in memory:

Figure 2.6: A visual representation of the instantiation phase
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Figure 2.6 describes the order in which every module is instantiated:

1. The interpreter starts from b.js and discovers that the module exports 
loaded and a.

2. Then, the interpreter moves to a.js, which exports loaded and b.
3. Finally, it moves to main.js, which does not export any functionality.
4. Note that, in this phase, the exports map keeps track of the exported names 

only; their associated values are considered uninitialized for now.

After this sequence of steps, the interpreter will do another pass to link the exported 
names to the modules importing them, as shown in Figure 2.7:

Figure 2.7: Linking exports with imports across modules

We can describe what we see in Figure 2.7 through the following steps:

1. Module b.js will link the exports from a.js, referring to them as aModule.
2. In turn, a.js will link to all the exports from b.js, referring to them as bModule.
3. Finally, main.js will import all the exports in b.js, referring to them as b; 

similarly, it will import everything from a.js, referring to them as a.
4. Again, it's important to note that all the values are still uninitialized. In this 

phase, we are only linking references to values that will be available at the 
end of the next phase.

Phase 3: Evaluation
The last step is the evaluation phase. In this phase, all the code in every file is finally 
executed. The execution order is again bottom-up respecting the post-order depth-
first visit of our original dependency graph. With this approach, main.js is the last 
file to be executed. This way, we can be sure that all the exported values have been 
initialized before we start executing our main business logic:
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Figure 2.8: A visual representation of the evaluation phase

Following along from the diagram in Figure 2.8, this is what happens:

1. The execution starts from b.js and the first line to be evaluated initializes the 
loaded export to false for the module.

2. Similarly, here the exported property a gets evaluated. This time, it will be 
evaluated to a reference to the module object representing module a.js.

3. The value of the loaded property gets changed to true. At this point, we have 
fully evaluated the state of the exports for module b.js.

4. Now the execution moves to a.js. Again, we start by setting loaded to false.
5. At this point, the b export is evaluated to a reference to module b.js.
6. Finally, the loaded property is changed to true. Now we have finally 

evaluated all the exports for a.js as well.
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After all these steps, the code in main.js can be executed, and at this point, all the 
exported properties are fully evaluated. Since imported modules are tracked as 
references, we can be sure every module has an up-to-date picture of the other 
modules, even in the presence of circular dependencies.

Modifying other modules
We saw that entities imported through ES modules are read-only live bindings, and 
therefore we cannot reassign them from an external module.

There's a caveat, though. It is true that we can't change the bindings of the default 
export or named exports of an existing module from another module, but, if one of 
these bindings is an object, we can still mutate the object itself by reassigning some 
of the object properties.

This caveat can give us enough freedom to alter the behavior of other modules. To 
demonstrate this idea, let's write a module that can alter the behavior of the core 
fs module so that it prevents the module from accessing the filesystem and returns 
mocked data instead. This kind of module is something that could be useful while 
writing tests for a component that relies on the filesystem:

// mock-read-file.js
import fs from 'fs'                                        // (1)

const originalReadFile = fs.readFile                       // (2)
let mockedResponse = null

function mockedReadFile (path, cb) {                       // (3)
  setImmediate(() => {
    cb(null, mockedResponse)
  })
}

export function mockEnable (respondWith) {                 // (4)
  mockedResponse = respondWith
  fs.readFile = mockedReadFile
}

export function mockDisable () {                           // (5)
  fs.readFile = originalReadFile
}
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Let's review the preceding code:

1. The first thing we do is import the default export of the fs module. We will 
get back to this in a second, for now, just keep in mind that the default export 
of the fs module is an object that contains a collection of functions that 
allows us to interact with the filesystem.

2. We want to replace the readFile() function with a mock implementation. 
Before doing that, we save a reference to the original implementation. We 
also declare a mockedResponse value that we will be using later.

3. The function mockedReadFile() is the actual mocked implementation that 
we want to use to replace the original implementation. This function invokes 
the callback with the current value of mockedResponse. Note that this is a 
simplified implementation; the real function accepts an optional options 
argument before the callback argument and is able to handle different types 
of encoding.

4. The exported mockEnable() function can be used to activate the mocked 
functionality. The original implementation will be swapped with the mocked 
one. The mocked implementation will return the same value passed here 
through the respondWith argument.

5. Finally, the exported mockDisable() function can be used to restore the 
original implementation of the fs.readFile() function.

Now let's see a simple example that uses this module:

// main.js
import fs from 'fs'                                          // (1)
import { mockEnable, mockDisable } from './mock-read-file.js'

mockEnable(Buffer.from('Hello World'))                       // (2)

fs.readFile('fake-path', (err, data) => {                    // (3)
  if (err) {
    console.error(err)
    process.exit(1)
  }
  console.log(data.toString()) // 'Hello World'
})

mockDisable()
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Let's discuss step by step what happens in this example:

1. The first thing that we do is import the default export of the fs module. 
Again, note that we are importing specifically the default export exactly 
as we did in our mock-read-file.js module, but more on this later.

2. Here we enable the mock functionality. We want, for every file read, 
to simulate that the file contains the string "Hello World."

3. Finally, we read a file using a fake path. This code will print "Hello World" 
as it will be using the mocked version of the readFile() function. Note that, 
after calling this function, we restore the original implementation by calling 
mockDisable().

This approach works, but it is very fragile. In fact, there are a number of ways in 
which this may not work.

On the mock-read-file.js side, we could have tried the two following imports for 
the fs module:

import * as fs from 'fs' // then use fs.readFile

or

import { readFile } from 'fs'

Both of them are valid imports because the fs module exports all the filesystem 
functions as named exports (other than a default export which is an object with 
the same collection of functions as attributes).

There are certain issues with the preceding two import statements:

• We would get a read-only live binding into the readFile() function, 
and therefore, we would be unable to mutate it from an external module. 
If we try these approaches, we will get an error when trying to reassign 
readFile().

• Another issue is on the consumer side within our main.js, where we could 
use these two alternative import styles as well. In this case, we won't end up 
using the mocked functionality, and therefore the code will trigger an error 
while trying to read a nonexistent file.

The reason why using one of the two import statements mentioned above would 
not work is because our mocking utility is altering only the copy of the readFile() 
function that is registered inside the object exported as the default export, but not the 
one available as a named export at the top level of the module.
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This particular example shows us how monkey patching could be much 
more complicated and unreliable in the context of ESM. For this reason, testing 
frameworks such as Jest (nodejsdp.link/jest) provide special functionalities 
to be able to mock ES modules more reliably (nodejsdp.link/jest-mock).

We could also use the syncBuiltinESMExports() function from the module package. 
When this function is invoked, the value of the properties in the default exports 
object gets mapped again into the equivalent named exports, effectively allowing us 
to propagate any external change applied to the module functionality even to named 
exports:

import fs, { readFileSync } from 'fs'
import { syncBuiltinESMExports } from 'module'

fs.readFileSync = () => Buffer.from('Hello, ESM')
syncBuiltinESMExports()

console.log(fs.readFileSync === readFileSync) // true

We could use this to make our small filesystem mocking utility a little bit more 
flexible by invoking the syncBuiltinESMExports() function after we enable the mock 
or after we restore the original functionality.

This concludes our exploration of ESM. At this point, we should be able to appreciate 
how ESM works, how it loads modules, and how it deals with cyclic dependencies. 
To close this chapter, we are now ready to discuss some key differences and some 
interesting interoperability techniques between CommonJS and ECMAScript 
modules.

Another approach that can be used to mock modules is to rely 
on the hooks available in a special Node.js core module called 
module (nodejsdp.link/module-doc). One simple library that 
takes advantage of this module is mocku (nodejsdp.link/mocku). 
Check out its source code if you are curious.

Note that syncBuiltinESMExports() works only for built-in 
Node.js modules like the fs module in our example.

http://nodejsdp.link/jest
http://nodejsdp.link/jest-mock
http://nodejsdp.link/module-doc
http://nodejsdp.link/mocku
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ESM and CommonJS differences and 
interoperability
We already mentioned several important differences between ESM and CommonJS, 
such as having to explicitly specify file extensions in imports with ESM, while file 
extensions are totally optional with the CommonJS require function.

Let's close this chapter by discussing some other important differences between 
ESM and CommonJS and how the two module systems can work together when 
necessary.

ESM runs in strict mode
ES modules run implicitly in strict mode. This means that we don't have to explicitly 
add the "use strict" statements at the beginning of every file. Strict mode cannot 
be disabled; therefore, we cannot use undeclared variables or the with statement or 
have other features that are only available in non-strict mode, but this is definitely a 
good thing, as strict mode is a safer execution mode.

Missing references in ESM
In ESM, some important CommonJS references are not defined. These include 
require, exports, module.exports, __filename, and __dirname. If we try to use 
any of them within an ES module, since it also runs in strict mode, we will get a 
ReferenceError:

console.log(exports) // ReferenceError: exports is not defined
console.log(module) // ReferenceError: module is not defined
console.log(__filename) // ReferenceError: __filename is not defined
console.log(__dirname) // ReferenceError: __dirname is not defined

We already discussed at length the meaning of exports and module in CommonJS; 
__filename and __dirname represent the absolute path to the current module file 
and the absolute path to its parent folder. Those special variables can be very useful 
when we need to build a path relative to the current file.

If you are curious to find out more about the differences between 
the two modes, you can check out a very detailed article on MDN 
Web Docs (https://nodejsdp.link/strict-mode).

https://nodejsdp.link/strict-mode
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In ESM, it is possible to get a reference to the current file URL by using the special 
object import.meta. Specifically, import.meta.url is a reference to the current module 
file in a format similar to file:///path/to/current_module.js. This value can be 
used to reconstruct __filename and __dirname in the form of absolute paths:

import { fileURLToPath } from 'url'
import { dirname } from 'path'
const __filename = fileURLToPath(import.meta.url)
const __dirname = dirname(__filename)

It is also possible to recreate the require() function as follows:

import { createRequire } from 'module'
const require = createRequire(import.meta.url)

Now we can use require() to import functionality coming from CommonJS modules 
in the context of ES modules.

Another interesting difference is the behavior of the this keyword.

In the global scope of an ES module, this is undefined, while in CommonJS, this is 
a reference to exports:

// this.js - ESM
console.log(this) // undefined

// this.cjs – CommonJS
console.log(this === exports) // true

Interoperability
We discussed in the previous section how to import CommonJS modules in ESM by 
using the module.createRequire function. It is also possible to import CommonJS 
modules from ESM by using the standard import syntax. This is only limited to 
default exports, though:

import packageMain from 'commonjs-package' // Works
import { method } from 'commonjs-package'  // Errors

Unfortunately, it is not possible to import ES modules from CommonJS modules.
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Also, ESM cannot import JSON files directly as modules, a feature that is used quite 
frequently with CommonJS. The following import statement will fail:

import data from './data.json'

It will produce a TypeError (Unknown file extension: .json).

To overcome this limitation, we can use again the module.createRequire utility:

import { createRequire } from 'module'
const require = createRequire(import.meta.url)
const data = require('./data.json')
console.log(data)

There is ongoing work to support JSON modules natively even in ESM, so we may 
not need to rely on createRequire() in the near future for this functionality.

Summary
In this chapter, we explored in depth what modules are, why they are useful, and 
why we need a module system. We also learned about the history of modules in 
JavaScript and about the two module systems available today in Node.js, namely 
CommonJS and ESM. We also explored some common patterns that are useful 
when creating modules or when using third-party modules.

You should now be comfortable with understanding and writing code that takes 
advantage of the features of both CommonJS and ESM.

In the rest of the book, we will rely mostly on ES modules, but you should now 
be equipped to be flexible with your choices and be able to deal with CommonJS 
effectively if necessary.

In the next chapter, we will start to explore the idea of asynchronous programming 
with JavaScript, and we will examine callbacks, events, and their patterns in depth.
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3
Callbacks and Events

In synchronous programming, we conceptualize code as a series of consecutive 
computing steps that solve a specific problem. Every operation is blocking, which 
means that only when an operation is completed, it is possible to execute the next 
one. This approach makes the code very easy to read, understand, and debug.

On the other side, in asynchronous programming, some operations, such as reading 
from a file or performing a network request, are launched and then executed "in 
the background." When we invoke an asynchronous operation, the instruction 
that follows is executed immediately, even if the previous asynchronous operation 
has not finished yet. In this scenario, we need a way to get notified when an 
asynchronous operation completes, and then continue the execution flow using 
the results from the operation. The most basic mechanism to get notified about 
the completion of an asynchronous operation in Node.js is the callback, which 
is nothing more than a function invoked by the runtime with the result of an 
asynchronous operation.

The callback is the most basic building block on which all other asynchronous 
mechanisms are based. In fact, without callbacks, we wouldn't have promises, 
and therefore not even async/await; we also wouldn't have streams or events. 
This is why it's important to know how callbacks work.

In this chapter, you will learn more about the Node.js Callback pattern and 
understand what it means, in practice, to write asynchronous code. We will make 
our way through conventions, patterns, and pitfalls, and by the end of this chapter, 
you will have mastered the basics of the Callback pattern.
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You will also learn about the Observer pattern, which can be considered a 
close relative of the Callback pattern. The Observer pattern—embodied by the 
EventEmitter—uses callbacks to deal with multiple heterogeneous events and is 
one of the most extensively used components in Node.js programming.

To summarize, this is what you will learn in this chapter:

• The Callback pattern, how it works, what conventions are used in Node.js, 
and how to deal with its most common pitfalls

• The Observer pattern and how to implement it in Node.js using the 
EventEmitter class

The Callback pattern
Callbacks are the materialization of the handlers of the Reactor pattern (introduced 
in the previous chapter). They are one of those imprints that give Node.js its 
distinctive programming style.

Callbacks are functions that are invoked to propagate the result of an operation, and 
this is exactly what we need when dealing with asynchronous operations. In the 
asynchronous world, they replace the use of the return instruction, which, in turn, 
always executes synchronously. JavaScript is the ideal language for callbacks because 
functions are first-class objects and can be easily assigned to variables, passed as 
arguments, returned from another function invocation, or stored in data structures. 
Another ideal construct for implementing callbacks is closures. With closures, we 
can reference the environment in which a function was created; this way, we can 
always maintain the context in which the asynchronous operation was requested, 
no matter when or where its callback is invoked.

In this section, we will analyze this particular style of programming, which 
uses callbacks instead of return instructions.

The continuation-passing style
In JavaScript, a callback is a function that is passed as an argument to another 
function and is invoked with the result when the operation completes. In functional 
programming, this way of propagating the result is called continuation-passing 
style (CPS). 

If you need to refresh your knowledge about closures, 
you can refer to the article on MDN Web Docs at 
nodejsdp.link/mdn-closures.

http://nodejsdp.link/mdn-closures
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It is a general concept, and it is not always associated with asynchronous operations. 
In fact, it simply indicates that a result is propagated by passing it to another 
function (the callback), instead of directly returning it to the caller.

Synchronous CPS
To clarify this concept, let's take a look at a simple synchronous function:

function add (a, b) {
  return a + b
}

If you are wondering, there is nothing special going on here. The result is passed 
back to the caller using the return instruction. This is also called direct style, and it 
represents the most common way of returning a result in synchronous programming.

The equivalent CPS of the preceding function would be as follows:

function addCps (a, b, callback) {
  callback(a + b)
}

The addCps() function is a synchronous CPS function. It's synchronous because it 
will complete its execution only when the callback completes its execution too. The 
following code demonstrates this statement:

console.log('before')
addCps(1, 2, result => console.log(`Result: ${result}`))
console.log('after')

Since addCps() is synchronous, the previous code will trivially print the following:

before
Result: 3
after

Now, let's see how asynchronous CPS works.

Asynchronous CPS
Let's consider a case where the addCps() function is asynchronous:

function additionAsync (a, b, callback) {
  setTimeout(() => callback(a + b), 100)
}
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In the previous code, we used setTimeout() to simulate an asynchronous invocation 
of the callback. setTimeout() adds a task to the event queue that is executed after the 
given number of milliseconds. This is clearly an asynchronous operation. Now, let's 
try to use additionAsync() and see how the order of the operations changes:

console.log('before')
additionAsync(1, 2, result => console.log(`Result: ${result}`))
console.log('after')

The preceding code will print the following:

before
after
Result: 3

Since setTimeout() triggers an asynchronous operation, it doesn't wait for the 
callback to be executed; instead, it returns immediately, giving the control back 
to additionAsync(), and then back again to its caller. This property in Node.js is 
crucial, as it gives control back to the event loop as soon as an asynchronous request 
is sent, thus allowing a new event from the queue to be processed.

Figure 3.1 shows how this works:

Figure 3.1: Control flow of an asynchronous function's invocation
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When the asynchronous operation completes, the execution is then resumed, 
starting from the callback provided to the asynchronous function that caused the 
unwinding. The execution starts from the event loop, so it has a fresh stack. This is 
where JavaScript comes in really handy. Thanks to closures, it is trivial to maintain 
the context of the caller of the asynchronous function, even if the callback is invoked 
at a different point in time and from a different location.

To sum this up, a synchronous function blocks until it completes its operations. 
An asynchronous function returns immediately, and its result is passed to a handler 
(in our case, a callback) at a later cycle of the event loop.

Non-CPS callbacks
There are several circumstances in which the presence of a callback argument might 
make us think that a function is asynchronous or is using a CPS. That's not always 
true. Let's take, for example, the map() method of an Array object:

const result = [1, 5, 7].map(element => element - 1)
console.log(result) // [0, 4, 6]

Clearly, the callback is used just to iterate over the elements of the array, and not to 
pass the result of the operation. In fact, the result is returned synchronously using a 
direct style. There's no syntactic difference between non-CPS callbacks and CPS ones. 
Therefore, the intent of a callback should be clearly stated in the documentation of 
the API.

In the next section, we are going to discuss one of the most important pitfalls of 
callbacks that every Node.js developer should be aware of.

Synchronous or asynchronous?
You have seen how the execution order of the instructions changes radically 
depending on the nature of a function—synchronous or asynchronous. This 
has strong repercussions on the flow of the entire application, both in terms of 
correctness and efficiency. The following is an analysis of these two paradigms 
and their pitfalls. In general, what must be avoided is creating inconsistency and 
confusion around the nature of an API, as doing so can lead to a set of problems that 
might be very hard to detect and reproduce. To drive our analysis, we will take, as 
an example, the case of an inconsistently asynchronous function.



Callbacks and Events

[ 68 ]

An unpredictable function
One of the most dangerous situations is to have an API that behaves synchronously 
under certain conditions and asynchronously under others. Let's take the following 
code as an example:

import { readFile } from 'fs'

const cache = new Map()

function inconsistentRead (filename, cb) {
  if (cache.has(filename)) {
    // invoked synchronously
    cb(cache.get(filename))
  } else {
    // asynchronous function
    readFile(filename, 'utf8', (err, data) => {
      cache.set(filename, data)
      cb(data)
    })
  }
}

The preceding function uses the cache map to store the results of different file 
read operations. Bear in mind that this is just an example; it does not have error 
management, and the caching logic itself is suboptimal (in Chapter 11, Advanced 
Recipes, you'll learn how to handle asynchronous caching properly). But besides all 
this, the preceding function is dangerous because it behaves asynchronously until 
the file is read for the first time and the cache is set, but it is synchronous for all the 
subsequent requests once the file's content is already in the cache.

Unleashing Zalgo
Now, let's discuss how the use of an unpredictable function, such as the one that we 
just defined, can easily break an application. Consider the following code:

function createFileReader (filename) {
  const listeners = []
  inconsistentRead(filename, value => {
    listeners.forEach(listener => listener(value))
  })

  return {
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    onDataReady: listener => listeners.push(listener)
  }
}

When the preceding function is invoked, it creates a new object that acts as a notifier, 
allowing us to set multiple listeners for a file read operation. All the listeners will 
be invoked at once when the read operation completes and the data is available. 
The preceding function uses our inconsistentRead() function to implement this 
functionality. Let's see how to use the createFileReader() function:

const reader1 = createFileReader('data.txt')
reader1.onDataReady(data => {
  console.log(`First call data: ${data}`)

  // ...sometime later we try to read again from
  // the same file
  const reader2 = createFileReader('data.txt')
  reader2.onDataReady(data => {
    console.log(`Second call data: ${data}`)
  })
})

The preceding code will print the following:

First call data: some data

As you can see, the callback of the second reader is never invoked. Let's see why:

• During the creation of reader1, our inconsistentRead() function behaves 
asynchronously because there is no cached result available. This means that 
any onDataReady listener will be invoked later in another cycle of the event 
loop, so we have all the time we need to register our listener.

• Then, reader2 is created in a cycle of the event loop in which the 
cache for the requested file already exists. In this case, the inner call 
to inconsistentRead() will be synchronous. So, its callback will be invoked 
immediately, which means that all the listeners of reader2 will be invoked 
synchronously as well. However, we are registering the listener after the 
creation of reader2, so it will never be invoked.

The callback behavior of our inconsistentRead() function is really unpredictable 
as it depends on many factors, such as the frequency of its invocation, the filename 
passed as an argument, and the amount of time taken to load the file.
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The bug that you've just seen can be extremely complicated to identify and 
reproduce in a real application. Imagine using a similar function in a web server, 
where there can be multiple concurrent requests. Imagine seeing some of those 
requests hanging, without any apparent reason and without any error being logged. 
This can definitely be considered a nasty defect.

Isaac Z. Schlueter, the creator of npm and former Node.js project lead, in one of his 
blog posts, compared the use of this type of unpredictable function to unleashing 
Zalgo.

Zalgo is an internet legend about an ominous entity believed to cause insanity, death, 
and the destruction of the world. If you're not familiar with Zalgo, you are invited to 
find out what it is.

Using synchronous APIs
The lesson to learn from the unleashing Zalgo example is that it is imperative for 
an API to clearly define its nature: either synchronous or asynchronous.

One possible fix for our inconsistentRead() function is to make it completely 
synchronous. This is possible because Node.js provides a set of synchronous 
direct style APIs for most basic I/O operations. For example, we can use the 
fs.readFileSync() function in place of its asynchronous counterpart. The code 
would become as follows:

import { readFileSync } from 'fs'

const cache = new Map()

function consistentReadSync (filename) {
  if (cache.has(filename)) {
    return cache.get(filename)
  } else {
    const data = readFileSync(filename, 'utf8')
    cache.set(filename, data)
    return data
  }
}

You can find Isaac Z. Schlueter's original post at nodejsdp.link/
unleashing-zalgo.

http://nodejsdp.link/unleashing-zalgo
http://nodejsdp.link/unleashing-zalgo
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You can see that the entire function was also converted into direct style. There is 
no reason for a function to have a CPS if it is synchronous. In fact, it is always best 
practice to implement a synchronous API using a direct style. This will eliminate 
any confusion around its nature and will also be more efficient from a performance 
perspective.

Bear in mind that changing an API from CPS to a direct style, or from asynchronous 
to synchronous or vice versa, might also require a change to the style of all the code 
using it. For example, in our case, we will have to totally change the interface of 
our createFileReader() API and adapt it so that it always works synchronously.

Also, using a synchronous API instead of an asynchronous one has some caveats:

• A synchronous API for a specific functionality might not always be available.
• A synchronous API will block the event loop and put any concurrent 

requests on hold. This will break the Node.js concurrency model, slowing 
down the whole application. You will see later in this book what this really 
means for our applications.

In our consistentReadSync() function, the risk of blocking the event loop is partially 
mitigated because the synchronous I/O API is invoked only once per filename, while 
the cached value will be used for all the subsequent invocations. If we have a limited 
number of static files, then using consistentReadSync() won't have a big effect on 
our event loop. Things can change quickly if we have to read many files and only 
once.

Using synchronous I/O in Node.js is strongly discouraged in many circumstances, 
but in some situations, this might be the easiest and most efficient solution. Always 
evaluate your specific use case in order to choose the right alternative. As an example, 
it makes perfect sense to use a synchronous blocking API to load a configuration file 
while bootstrapping an application.

Pattern

Always choose a direct style for purely synchronous functions.

Pattern

Use blocking APIs sparingly and only when they don't affect 
the ability of the application to handle concurrent asynchronous 
operations.
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Guaranteeing asynchronicity with  
deferred execution
Another alternative for fixing our inconsistentRead() function is to make it 
purely asynchronous. The trick here is to schedule the synchronous callback 
invocation to be executed "in the future" instead of it being run immediately in the 
same event loop cycle. In Node.js, this is possible with process.nextTick(), which 
defers the execution of a function after the currently running operation completes. Its 
functionality is very simple: it takes a callback as an argument and pushes it to the 
top of the event queue, in front of any pending I/O event, and returns immediately. 
The callback will then be invoked as soon as the currently running operation yields 
control back to the event loop.

Let's apply this technique to fix our inconsistentRead() function, as follows:

import { readFile } from 'fs'

const cache = new Map()

function consistentReadAsync (filename, callback) {
  if (cache.has(filename)) {
    // deferred callback invocation
    process.nextTick(() => callback(cache.get(filename)))
  } else {
    // asynchronous function
    readFile(filename, 'utf8', (err, data) => {
      cache.set(filename, data)
      callback(data)
    })
  }
}

Now, thanks to process.nextTick(), our function is guaranteed to invoke its 
callback asynchronously, under any circumstances. Try to use it instead of the 
inconsistentRead() function and verify that, indeed, Zalgo has been eradicated.

Pattern

You can guarantee that a callback is invoked asynchronously by 
deferring its execution using process.nextTick().
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Another API for deferring the execution of code is setImmediate(). While its 
purpose is very similar to that of process.nextTick(), its semantics are quite 
different. Callbacks deferred with process.nextTick() are called microtasks 
and they are executed just after the current operation completes, even before any 
other I/O event is fired. With setImmediate(), on the other hand, the execution is 
queued in an event loop phase that comes after all I/O events have been processed. 
Since process.nextTick() runs before any already scheduled I/O, it will be executed 
faster, but under certain circumstances, it might also delay the running of any I/O 
callback indefinitely (also known as I/O starvation), such as in the presence of a 
recursive invocation. This can never happen with setImmediate().

Using setTimeout(callback, 0) has a behavior comparable to that of 
setImmediate(), but in typical circumstances, callbacks scheduled with 
setImmediate() are executed faster than those scheduled with setTimeout(callback, 
0). To see why, we have to consider that the event loop executes all the callbacks 
in different phases; for the type of events we are considering, we have timers 
(setTimeout()) that are executed before I/O callbacks, which are, in turn, 
executed before setImmediate() callbacks. This means that if we queue a task with 
setImmediate() in a setTimeout() callback, in an I/O callback, or in a microtask 
queued after these two phases, then the callback will be executed in a phase that 
comes right after the phase we are currently in. setTimeout() callbacks have to wait 
for the next cycle of the event loop.

You will better appreciate the difference between these APIs when we analyze 
the use of deferred invocation for running synchronous CPU-bound tasks later 
in this book.

Next, we are going to explore the conventions used to define callbacks in Node.js.

Node.js callback conventions
In Node.js, CPS APIs and callbacks follow a set of specific conventions. These 
conventions apply to the Node.js core API, but they are also followed by the vast 
majority of the userland modules and applications. So, it's very important that you 
understand them and make sure that you comply whenever you need to design an 
asynchronous API that makes use of callbacks.

The callback comes last
In all core Node.js functions, the standard convention is that when a function accepts 
a callback as input, this has to be passed as the last argument. 
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Let's take the following Node.js core API as an example:

readFile(filename, [options], callback)

As you can see from the signature of the preceding function, the callback is always 
put in the last position, even in the presence of optional arguments. The reason 
for this convention is that the function call is more readable in case the callback is 
defined in place.

Any error always comes first
In CPS, errors are propagated like any other type of result, which means using 
callbacks. In Node.js, any error produced by a CPS function is always passed as 
the first argument of the callback, and any actual result is passed starting from the 
second argument. If the operation succeeds without errors, the first argument will 
be null or undefined. The following code shows you how to define a callback that 
complies with this convention:

readFile('foo.txt', 'utf8', (err, data) => {
  if(err) {
    handleError(err)
  } else {
    processData(data)
  }
})

It is best practice to always check for the presence of an error, as not doing so will 
make it harder for you to debug your code and discover the possible points of 
failure. Another important convention to take into account is that the error must 
always be of type Error. This means that simple strings or numbers should never 
be passed as error objects.

Propagating errors
Propagating errors in synchronous, direct style functions is done with the well-
known throw statement, which causes the error to jump up in the call stack until it is 
caught.

In asynchronous CPS, however, proper error propagation is done by simply passing 
the error to the next callback in the chain. The typical pattern looks as follows:

import { readFile } from 'fs'

function readJSON (filename, callback) {
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  readFile(filename, 'utf8', (err, data) => {
    let parsed
    if (err) {
      // propagate the error and exit the current function
      return callback(err)
    }

    try {
      // parse the file contents
      parsed = JSON.parse(data)
    } catch (err) {
      // catch parsing errors
      return callback(err)
    }
    // no errors, propagate just the data
    callback(null, parsed)
  })
}

Notice how we propagate the error received by the readFile() operation. We do not 
throw it or return it; instead, we just use the callback as if it were any other result. 
Also, notice how we use the try...catch statement to catch any error thrown by 
JSON.parse(), which is a synchronous function and therefore uses the traditional 
throw instruction to propagate errors to the caller. Lastly, if everything went well, 
callback is invoked with null as the first argument to indicate that there are 
no errors.

It's also interesting to note how we refrained from invoking callback from within 
the try block. This is because doing so would catch any error thrown from the 
execution of the callback itself, which is usually not what we want.

Uncaught exceptions
Sometimes, it can happen that an error is thrown and not caught within the callback 
of an asynchronous function. This could happen if, for example, we had forgotten to 
surround JSON.parse() with a try...catch statement in the readJSON() function we 
defined previously. Throwing an error inside an asynchronous callback would cause 
the error to jump up to the event loop, so it would never be propagated to the next 
callback. In Node.js, this is an unrecoverable state and the application would simply 
exit with a non-zero exit code, printing the stack trace to the stderr interface.
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To demonstrate this, let's try to remove the try...catch block surrounding JSON.
parse() from the readJSON() function we defined previously:

function readJSONThrows (filename, callback) {
  readFile(filename, 'utf8', (err, data) => {
    if (err) {
      return callback(err)
    }
    callback(null, JSON.parse(data))
  })
}

Now, in the function we just defined, there is no way of catching an eventual 
exception coming from JSON.parse(). If we try to parse an invalid JSON file with 
the following code:

readJSONThrows('invalid_json.json', (err) => console.error(err))

This will result in the application being abruptly terminated, with a stack trace 
similar to the following being printed on the console:

SyntaxError: Unexpected token h in JSON at position 1
    at JSON.parse (<anonymous>)
    at file:///.../03-callbacks-and-events/08-uncaught-errors/index.
js:8:25
    at FSReqCallback.readFileAfterClose [as oncomplete] (internal/fs/
read_file_context.js:61:3)

Now, if you look at the preceding stack trace, you will see that it starts from within 
the built-in fs module, and exactly from the point in which the native API has 
completed reading and returned its result back to the fs.readFile() function, via 
the event loop. This clearly shows that the exception traveled from our callback, up 
the call stack, and then straight into the event loop, where it was finally caught and 
thrown to the console.

This also means that wrapping the invocation of readJSONThrows() with a try...
catch block will not work, because the stack in which the block operates is different 
from the one in which our callback is invoked. The following code shows the anti-
pattern that was just described:

try {
  readJSONThrows('invalid_json.json', (err) => console.error(err))
} catch (err) {
  console.log('This will NOT catch the JSON parsing exception')
}
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The preceding catch statement will never receive the JSON parsing error, as it will 
travel up the call stack in which the error was thrown, that is, in the event loop and 
not in the function that triggered the asynchronous operation.

As mentioned previously, the application will abort the moment an exception 
reaches the event loop. However, we still have the chance to perform some cleanup 
or logging before the application terminates. In fact, when this happens, Node.js will 
emit a special event called uncaughtException, just before exiting the process. The 
following code shows a sample use case:

process.on('uncaughtException', (err) => {
  console.error(`This will catch at last the JSON parsing exception: 
${err.message}`)
  // Terminates the application with 1 (error) as exit code.
  // Without the following line, the application would continue
  process.exit(1)
})

It's important to understand that an uncaught exception leaves the application 
in a state that is not guaranteed to be consistent, which can lead to unforeseeable 
problems. For example, there might still be incomplete I/O requests running or 
closures might have become inconsistent. That's why it is always advised, especially 
in production, to never leave the application running after an uncaught exception is 
received. Instead, the process should exit immediately, optionally after having run 
some necessary cleanup tasks, and ideally, a supervising process should restart the 
application. This is also known as the fail-fast approach and it's the recommended 
practice in Node.js.

This concludes our gentle introduction to the Callback pattern. Now, it's time to 
meet the Observer pattern, which is another critical component of an event-driven 
platform such as Node.js.

The Observer pattern
Another important and fundamental pattern used in Node.js is the Observer pattern. 
Together with the Reactor pattern and callbacks, the Observer pattern is an absolute 
requirement for mastering the asynchronous world of Node.js.

We'll discuss supervisors in more detail in Chapter 12, Scalability 
and Architectural Patterns.



Callbacks and Events

[ 78 ]

The Observer pattern is the ideal solution for modeling the reactive nature of Node.js 
and a perfect complement for callbacks. Let's give a formal definition, as follows:

The main difference from the Callback pattern is that the subject can actually notify 
multiple observers, while a traditional CPS callback will usually propagate its result 
to only one listener, the callback.

The EventEmitter
In traditional object-oriented programming, the Observer pattern requires 
interfaces, concrete classes, and a hierarchy. In Node.js, all this becomes much 
simpler. The Observer pattern is already built into the core and is available through 
the EventEmitter class. The EventEmitter class allows us to register one or more 
functions as listeners, which will be invoked when a particular event type is fired. 
Figure 3.2 visually explains this concept:

Figure 3.2: Listeners receiving events from an EventEmitter

The EventEmitter is exported from the events core module. The following code 
shows how we can obtain a reference to it:

import { EventEmitter } from 'events'
const emitter = new EventEmitter()

The essential methods of the EventEmitter are as follows:

• on(event, listener): This method allows us to register a new listener (a 
function) for the given event type (a string).

The Observer pattern defines an object (called subject) that can notify 
a set of observers (or listeners) when a change in its state occurs.
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• once(event, listener): This method registers a new listener, which is then 
removed after the event is emitted for the first time.

• emit(event, [arg1], [...]): This method produces a new event and 
provides additional arguments to be passed to the listeners.

• removeListener(event, listener): This method removes a listener for the 
specified event type.

All the preceding methods will return the EventEmitter instance to allow chaining. 
The listener function has the signature function([arg1], [...]), so it simply 
accepts the arguments provided at the moment the event is emitted.

You can already see that there is a big difference between a listener and a traditional 
Node.js callback. In fact, the first argument is not an error, but it can be any data 
passed to emit() at the moment of its invocation.

Creating and using the EventEmitter
Let's now see how we can use an EventEmitter in practice. The simplest way is 
to create a new instance and use it immediately. The following code shows us a 
function that uses an EventEmitter to notify its subscribers in real time when a 
particular regular expression is matched in a list of files:

import { EventEmitter } from 'events'
import { readFile } from 'fs'

function findRegex (files, regex) {
  const emitter = new EventEmitter()
  for (const file of files) {
    readFile(file, 'utf8', (err, content) => {
      if (err) {
        return emitter.emit('error', err)
      }

      emitter.emit('fileread', file)
      const match = content.match(regex)
      if (match) {
        match.forEach(elem => emitter.emit('found', file, elem))
      }
    })
  }
  return emitter
}
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The function we just defined returns an EventEmitter instance that will produce 
three events:

• fileread, when a file is being read
• found, when a match has been found
• error, when an error occurs during reading the file

Let's now see how our findRegex() function can be used:

findRegex(
  ['fileA.txt', 'fileB.json'],
  /hello \w+/g
)
  .on('fileread', file => console.log(`${file} was read`))
  .on('found', (file, match) => console.log(`Matched "${match}" in 
${file}`))
  .on('error', err => console.error(`Error emitted ${err.message}`))

In the code we just defined, we register a listener for each of the three event types 
produced by the EventEmitter that was created by our findRegex() function.

Propagating errors
As with callbacks, the EventEmitter can't just throw an exception when 
an error condition occurs. Instead, the convention is to emit a special event, 
called error, and pass an Error object as an argument. That's exactly what we were 
doing in the findRegex() function that we defined earlier.

Making any object observable
In the Node.js world, the EventEmitter is rarely used on its own, as you saw in the 
previous example. Instead, it is more common to see it extended by other classes. In 
practice, this enables any class to inherit the capabilities of the EventEmitter, hence 
becoming an observable object.

The EventEmitter treats the error event in a special way. It will 
automatically throw an exception and exit from the application if 
such an event is emitted and no associated listener is found. For 
this reason, it is recommended to always register a listener for 
the error event.
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To demonstrate this pattern, let's try to implement the functionality of 
the findRegex() function in a class, as follows:

import { EventEmitter } from 'events'
import { readFile } from 'fs'

class FindRegex extends EventEmitter {
  constructor (regex) {
    super()
    this.regex = regex
    this.files = []
  }

  addFile (file) {
    this.files.push(file)
    return this
  }

  find () {
    for (const file of this.files) {
      readFile(file, 'utf8', (err, content) => {
        if (err) {
          return this.emit('error', err)
        }

        this.emit('fileread', file)

        const match = content.match(this.regex)
        if (match) {
          match.forEach(elem => this.emit('found', file, elem))
        }
      })
    }
    return this
  }
}

The FindRegex class that we just defined extends EventEmitter to become a fully 
fledged observable class. Always remember to use super() in the constructor to 
initialize the EventEmitter internals.
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The following is an example of how to use the FindRegex class we just defined:

const findRegexInstance = new FindRegex(/hello \w+/)
findRegexInstance
  .addFile('fileA.txt')
  .addFile('fileB.json')
  .find()
  .on('found', (file, match) => console.log(`Matched "${match}" in file 
${file}`))
  .on('error', err => console.error(`Error emitted ${err.message}`))

You will now notice how the FindRegex object also provides the on() method, which 
is inherited from the EventEmitter. This is a pretty common pattern in the Node.js 
ecosystem. For example, the Server object of the core HTTP module inherits from 
the EventEmitter function, thus allowing it to produce events such as request (when 
a new request is received), connection (when a new connection is established), 
or closed (when the server socket is closed).

Other notable examples of objects extending the EventEmitter are Node.js streams. 
We will analyze streams in more detail in Chapter 6, Coding with Streams.

EventEmitter and memory leaks
When subscribing to observables with a long life span, it is extremely important 
that we unsubscribe our listeners once they are no longer needed. This allows us 
to release the memory used by the objects in a listener's scope and prevent memory 
leaks. Unreleased EventEmitter listeners are the main source of memory leaks in 
Node.js (and JavaScript in general).

A memory leak is a software defect whereby memory that is no longer needed is 
not released, causing the memory usage of an application to grow indefinitely. For 
example, consider the following code:

const thisTakesMemory = 'A big string....'
const listener = () => {
  console.log(thisTakesMemory)
}
emitter.on('an_event', listener)

The variable thisTakesMemory is referenced in the listener and therefore its memory 
is retained until the listener is released from emitter, or until the emitter itself is 
garbage collected, which can only happen when there are no more active references 
to it, making it unreachable.
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This means that if an EventEmitter remains reachable for the entire duration of the 
application, all its listeners do too, and with them all the memory they reference. If, 
for example, we register a listener to a "permanent" EventEmitter at every incoming 
HTTP request and never release it, then we are causing a memory leak. The memory 
used by the application will grow indefinitely, sometimes slowly, sometimes faster, 
but eventually it will crash the application. To prevent such a situation, we can 
release the listener with the removeListener() method of the EventEmitter:

emitter.removeListener('an_event', listener)

An EventEmitter has a very simple built-in mechanism for warning the developer 
about possible memory leaks. When the count of listeners registered to an event 
exceeds a specific amount (by default, 10), the EventEmitter will produce a warning. 
Sometimes, registering more than 10 listeners is completely fine, so we can adjust 
this limit by using the setMaxListeners() method of the EventEmitter.

Synchronous and asynchronous events
As with callbacks, events can also be emitted synchronously or asynchronously 
with respect to the moment the tasks that produce them are triggered. It is 
crucial that we never mix the two approaches in the same EventEmitter, but 
even more importantly, we should never emit the same event type using a 
mix of synchronous and asynchronous code, to avoid producing the same 
problems described in the Unleashing Zalgo section. The main difference between 
emitting synchronous and asynchronous events lies in the way listeners can be 
registered.

When events are emitted asynchronously, we can register new listeners, even after 
the task that produces the events is triggered, up until the current stack yields to the 
event loop. This is because the events are guaranteed not to be fired until the next 
cycle of the event loop, so we can be sure that we won't miss any events. 

You can find a good explanation about garbage collection in 
JavaScript and the concept of reachability at nodejsdp.link/
garbage-collection.

We can use the convenience method once(event, listener) 
in place of on(event, listener) to automatically unregister 
a listener after the event is received for the first time. However, 
be advised that if the event we specify is never emitted, then the 
listener is never released, causing a memory leak.

http://nodejsdp.link/garbage-collection
http://nodejsdp.link/garbage-collection
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The FindRegex() class we defined previously emits its events asynchronously after 
the find() method is invoked. This is why we can register the listeners after the 
find() method is invoked, without losing any events, as shown in the following code:

findRegexInstance
  .addFile(...)
  .find()
  .on('found', ...)

On the other hand, if we emit our events synchronously after the task is launched, 
we have to register all the listeners before we launch the task, or we will miss all 
the events. To see how this works, let's modify the FindRegex class we defined 
previously and make the find() method synchronous:

find () {
  for (const file of this.files) {
    let content
    try {
      content = readFileSync(file, 'utf8')
    } catch (err) {
      this.emit('error', err)
    }

    this.emit('fileread', file)
    const match = content.match(this.regex)
    if (match) {
      match.forEach(elem => this.emit('found', file, elem))
    }
  }
  return this
}

Now, let's try to register a listener before we launch the find() task, and then a 
second listener after that to see what happens:

const findRegexSyncInstance = new FindRegexSync(/hello \w+/)
findRegexSyncInstance
  .addFile('fileA.txt')
  .addFile('fileB.json')
  // this listener is invoked
  .on('found', (file, match) => console.log(`[Before] Matched 
"${match}"`))
  .find()
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  // this listener is never invoked
  .on('found', (file, match) => console.log(`[After] Matched 
"${match}"`))

As expected, the listener that was registered after the invocation of the find() task is 
never called; in fact, the preceding code will print:

[Before] Matched "hello world"
[Before] Matched "hello NodeJS"

There are some (rare) situations in which emitting an event in a synchronous fashion 
makes sense, but the very nature of the EventEmitter lies in its ability to deal with 
asynchronous events. Most of the time, emitting events synchronously is a telltale 
sign that we either don't need the EventEmitter at all or that, somewhere else, the 
same observable is emitting another event asynchronously, potentially causing 
a Zalgo type of situation.

EventEmitter versus callbacks
A common dilemma when defining an asynchronous API is deciding whether 
to use an EventEmitter or simply accept a callback. The general differentiating 
rule is semantic: callbacks should be used when a result must be returned in 
an asynchronous way, while events should be used when there is a need to 
communicate that something has happened.

But besides this simple principle, a lot of confusion is generated from the fact that 
the two paradigms are, most of the time, equivalent and allow us to achieve the same 
results. Consider the following code as an example:

import { EventEmitter } from 'events'

function helloEvents () {
  const eventEmitter = new EventEmitter()
  setTimeout(() => eventEmitter.emit('complete', 'hello world'), 100)
  return eventEmitter
}

The emission of synchronous events can be deferred with 
process.nextTick() to guarantee that they are emitted 
asynchronously.
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function helloCallback (cb) {
  setTimeout(() => cb(null, 'hello world'), 100)
}

helloEvents().on('complete', message => console.log(message))
helloCallback((err, message) => console.log(message))

The two functions helloEvents() and helloCallback() can be considered equivalent 
in terms of functionality. The first communicates the completion of the timeout using 
an event, while the second uses a callback. But what really differentiates them is the 
readability, the semantics, and the amount of code that is required for them to be 
implemented or used.

While a deterministic set of rules for you to choose between one style or the other 
can't be given, here are some hints to help you make a decision on which method 
to use:

• Callbacks have some limitations when it comes to supporting different 
types of events. In fact, we can still differentiate between multiple events 
by passing the type as an argument of the callback, or by accepting several 
callbacks, one for each supported event. However, this can't exactly be 
considered an elegant API. In this situation, the EventEmitter can give a 
better interface and leaner code.

• The EventEmitter should be used when the same event can occur multiple 
times, or may not occur at all. A callback, in fact, is expected to be invoked 
exactly once, whether the operation is successful or not. Having a possibly 
repeating circumstance should make us think again about the semantic 
nature of the occurrence, which is more similar to an event that has to be 
communicated, rather than a result to be returned.

• An API that uses callbacks can notify only one particular callback, while 
using an EventEmitter allows us to register multiple listeners for the 
same event.

Combining callbacks and events
There are some particular circumstances where the EventEmitter can be used in 
conjunction with a callback. This pattern is extremely powerful as it allows us to pass 
a result asynchronously using a traditional callback, and at the same time return an 
EventEmitter, which can be used to provide a more detailed account on the status of 
an asynchronous process.
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One example of this pattern is offered by the glob package (nodejsdp.link/npm-
glob), a library that performs glob-style file searches. The main entry point of the 
module is the function it exports, which has the following signature:

const eventEmitter = glob(pattern, [options], callback)

The function takes a pattern as the first argument, a set of options, and a callback 
that is invoked with the list of all the files matching the provided pattern. At the 
same time, the function returns an EventEmitter, which provides a more fine-grained 
report about the state of the search process. For example, it is possible to be notified 
in real time when a match occurs by listening to the match event, to obtain the list 
of all the matched files with the end event, or to know whether the process was 
manually aborted by listening to the abort event. The following code shows what 
this looks like in practice:

import glob from 'glob'

glob('data/*.txt',
  (err, files) => {
    if (err) {
      return console.error(err)
    }
    console.log(`All files found: ${JSON.stringify(files)}`)
  })
  .on('match', match => console.log(`Match found: ${match}`))

Combining an EventEmitter with traditional callbacks is an elegant way to offer two 
different approaches to the same API. One approach is usually meant to be simpler 
and more immediate to use, while the other is targeted at more advanced scenarios.

The EventEmitter can also be combined with other asynchronous 
mechanisms such as promises (which we will look at in Chapter 
5, Asynchronous Control Flow Patterns with Promises and Async/
Await). In this case, just return an object (or array) containing 
both the promise and the EventEmitter. This object can then be 
destructured by the caller, like this: {promise, events} = foo().

http://nodejsdp.link/npm-glob
http://nodejsdp.link/npm-glob
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Summary
In this chapter, we made our first contact with the practical aspects of writing 
asynchronous code. You discovered the two pillars of the entire Node.js 
asynchronous infrastructure—the callback and the EventEmitter—and we explored 
in detail their use cases, conventions, and patterns. We also explored some of the 
pitfalls of dealing with asynchronous code and you learned about the ways to avoid 
them. Mastering the content of this chapter paves the way toward learning the more 
advanced asynchronous techniques that will be presented throughout the rest of 
this book.

In the next chapter, you will learn how to deal with complex asynchronous control 
flows using callbacks.

Exercises
• 3.1 A simple event: Modify the asynchronous FindRegex class so that it 

emits an event when the find process starts, passing the input files list as 
an argument. Hint: beware of Zalgo!

• 3.2 Ticker: Write a function that accepts a number and a callback as the 
arguments. The function will return an EventEmitter that emits an event 
called tick every 50 milliseconds until the number of milliseconds is passed 
from the invocation of the function. The function will also call the callback 
when the number of milliseconds has passed, providing, as the result, the total 
count of tick events emitted. Hint: you can use setTimeout() to schedule 
another setTimeout() recursively.

• 3.3 A simple modification: Modify the function created in exercise 3.2 so that 
it emits a tick event immediately after the function is invoked.

• 3.4 Playing with errors: Modify the function created in exercise 3.3 so that 
it produces an error if the timestamp at the moment of a tick (including the 
initial one that we added as part of exercise 3.3) is divisible by 5. Propagate 
the error using both the callback and the event emitter. Hint: use Date.now() 
to get the timestamp and the remainder (%) operator to check whether the 
timestamp is divisible by 5. 
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4
Asynchronous Control Flow 

Patterns with Callbacks
Moving from a synchronous programming style to a platform such as Node.js, 
where continuation-passing style (CPS) and asynchronous APIs are the norm, 
can be frustrating. Asynchronous code can make it hard to predict the order in 
which statements are executed. Simple problems such as iterating over a set of files, 
executing tasks in sequence, or waiting for a set of operations to complete require the 
developer to take on new approaches and techniques just to avoid ending up writing 
inefficient and unreadable code. When using callbacks to deal with asynchronous 
control flow, the most common mistake is to fall into the trap of callback hell and see 
the code growing horizontally, rather than vertically, with a nesting that makes even 
simple routines hard to read and maintain.

In this chapter, you will see how it's actually possible to tame callbacks and write 
clean, manageable asynchronous code by using some discipline and with the aid 
of some patterns. Knowing how to properly deal with callbacks will pave the way 
for adopting modern approaches such as promises and async/await.

In short, in this chapter, you will learn about:

• The challenges of asynchronous programming.
• Avoiding callback hell and other callback best practices.
• Common asynchronous patterns such as sequential execution, sequential 

iteration, parallel execution, and limited parallel execution.
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The difficulties of asynchronous 
programming
Losing control of asynchronous code in JavaScript is undoubtedly easy. Closures 
and in-place definitions of anonymous functions allow for a smooth programming 
experience that doesn't require the developer to jump to other points in the codebase. 
This is perfectly in line with the KISS principle (Keep It Simple, Stupid); it's 
simple, it keeps the code flowing, and we get it working in less time. Unfortunately, 
sacrificing qualities such as modularity, reusability, and maintainability will, sooner 
or later, lead to the uncontrolled proliferation of callback nesting, functions growing 
in size, and poor code organization. Most of the time, creating callbacks as in-place 
functions is not strictly required, so it's more a matter of discipline than a problem 
related to asynchronous programming. Recognizing that our code is becoming 
unwieldy or, even better, knowing in advance that it might become unwieldy and 
then acting accordingly with the most adequate solution, is what differentiates a 
novice from an expert.

Creating a simple web spider
To explain this problem, we will create a little web spider, a command-line 
application that takes in a web URL as input and downloads its contents locally into 
a file. In the code presented in this chapter, we are going to use a couple of npm 
dependencies:

• superagent: A library to streamline HTTP calls (nodejsdp.link/superagent)
• mkdirp: A small utility to create directories recursively (nodejsdp.link/

mkdirp)

Also, we will often refer to a local module named ./utils.js, which contains some 
helpers that we will be using in our application. We will omit the contents of this file 
for brevity, but you can find the full implementation, along with a package.json file 
containing the full list of dependencies, in the official repository at nodejsdp.link/
repo.

The core functionality of our application is contained inside a module 
named spider.js. Let's see how it looks. To start with, let's load all the dependencies 
that we are going to use:

http://nodejsdp.link/superagent
http://nodejsdp.link/mkdirp
http://nodejsdp.link/mkdirp
http://nodejsdp.link/repo
http://nodejsdp.link/repo
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import fs from 'fs'
import path from 'path'
import superagent from 'superagent'
import mkdirp from 'mkdirp'
import { urlToFilename } from './utils.js'

Next, let's create a new function named spider(), which takes in the URL to 
download and a callback function that will be invoked when the download process 
completes:

export function spider (url, cb) {
  const filename = urlToFilename(url)
  fs.access(filename, err => {                                // (1)
    if (err && err.code === 'ENOENT') {
      console.log(`Downloading ${url} into ${filename}`)
      superagent.get(url).end((err, res) => {                 // (2)
        if (err) {
          cb(err)
        } else {
          mkdirp(path.dirname(filename), err => {             // (3)
            if (err) {
              cb(err)
            } else {
              fs.writeFile(filename, res.text, err => {       // (4)
                if (err) {
                  cb(err)
                } else {
                  cb(null, filename, true)
                }
              })
            }
          })
        }
      })
    } else {
      cb(null, filename, false)
    }
  })
}
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There is a lot going on here, so let's discuss in more detail what happens in 
every step:

1. The code checks whether the URL was already downloaded by verifying that 
the corresponding file was not already created. If err is defined and has type 
ENOENT, then the file does not exist and it's safe to create it:

fs.access(filename, err => ...

2. If the file is not found, the URL is downloaded using the following line of 
code:

superagent.get(url).end((err, res) => ...

3. Then, we make sure that the directory that will contain the file exists:
mkdirp(path.dirname(filename), err => ...

4. Finally, we write the body of the HTTP response to the filesystem:
fs.writeFile(filename, res.text, err => ...

To complete our web spider application, we just need to invoke 
the spider() function by providing a URL as an input (in our case, we read it from 
the command-line arguments). The spider() function is exported from the file we 
defined previously. Let's now create a new file called spider-cli.js that can be 
directly invoked from the command line:

import { spider } from './spider.js'

spider(process.argv[2], (err, filename, downloaded) => {
  if (err) {
    console.error(err)
  } else if (downloaded) {
    console.log(`Completed the download of "${filename}"`)
  } else {
    console.log(`"${filename}" was already downloaded`)
  }
})

Now, we are ready to try our web spider application, but first, make sure you 
have the utils.js module and the package.json file containing the full list of 
dependencies in your project directory. Then, install all the dependencies by 
running the following command:

npm install
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Now, let's execute the spider-cli.js module to download the contents of a web 
page with a command like this:

node spider-cli.js http://www.example.com

In the next section, you will learn how to improve the readability of this code and, 
in general, how to keep callback-based code as clean and readable as possible.

Callback hell
Looking at the spider() function we defined earlier, you will likely notice that even 
though the algorithm we implemented is really straightforward, the resulting code 
has several levels of indentation and is very hard to read. Implementing a similar 
function with a direct style blocking API would be straightforward, and most 
likely, the code would be much more readable. However, using asynchronous CPS 
is another story, and making bad use of in-place callback definitions can lead to 
incredibly bad code.

The situation where the abundance of closures and in-place callback definitions 
transforms the code into an unreadable and unmanageable blob is known as callback 
hell. It's one of the most widely recognized and severe anti-patterns in Node.js and 
JavaScript in general. The typical structure of code affected by this problem looks 
as follows:

asyncFoo(err => {
  asyncBar(err => {
    asyncFooBar(err => {
      //...
    })
  })
})

You can see how code written in this way assumes the shape of a pyramid due to 
deep nesting, and that's why it is also colloquially known as the pyramid of doom.

The most evident problem with code such as the preceding snippet is its poor 
readability. Due to the nesting being so deep, it's almost impossible to keep track of 
where a function ends and where another one begins.

Our web spider application requires that we always include the 
protocol (for example, http://) in the URL we provide. Also, do 
not expect HTML links to be rewritten or resources such as images 
to be downloaded, as this is just a simple example to demonstrate 
how asynchronous programming works.
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Another issue is caused by the overlapping of the variable names used in each 
scope. Often, we have to use similar or even identical names to describe the content 
of a variable. The best example is the error argument received by each callback. 
Some people often try to use variations of the same name to differentiate the object 
in each scope, for example, err, error, err1, err2, and so on. Others prefer to just 
shadow the variable defined in the upper scope by always using the same name, 
for example, err. Both alternatives are far from perfect, and cause confusion and 
increase the probability of introducing defects.

Also, we have to keep in mind that closures come at a small price in terms of 
performance and memory consumption. In addition, they can create memory 
leaks that are not very easy to identify. In fact, we shouldn't forget that any context 
referenced by an active closure is retained from garbage collection.

If you look at our spider() function, you will notice that it clearly represents 
a callback hell situation and has all the problems just described. That's exactly what 
we are going to fix with the patterns and techniques that are covered in the following 
sections of this chapter.

Callback best practices and control flow 
patterns
Now that you have met your first example of callback hell, you know what 
you should definitely avoid; however, that's not the only concern when writing 
asynchronous code. In fact, there are several situations where controlling the flow 
of a set of asynchronous tasks requires the use of specific patterns and techniques, 
especially if we are only using plain JavaScript without the aid of any external 
library. For example, iterating over a collection by applying an asynchronous 
operation in sequence is not as easy as invoking forEach() over an array; it actually 
requires a technique similar to recursion.

In this section, you will learn not only about how to avoid callback hell, but also how 
to implement some of the most common control flow patterns, using only simple and 
plain JavaScript.

For a great introduction to how closures work in V8, you 
can refer to the following blog post by Vyacheslav Egorov, a 
software engineer at Google working on V8, which you can read 
at nodejsdp.link/v8-closures.

http://nodejsdp.link/v8-closures
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Callback discipline
When writing asynchronous code, the first rule to keep in mind is to not abuse 
in-place function definitions when defining callbacks. It can be tempting to do 
so, because it does not require any additional thinking for problems such as 
modularization and reusability; however, you have seen how this can have more 
disadvantages than advantages. Most of the time, fixing the callback hell problem 
does not require any libraries, fancy techniques, or changes of paradigm; you just 
need some common sense.

These are some basic principles that can help us keep the nesting level low and 
improve the organization of our code in general:

• Exit as soon as possible. Use return, continue, or break, depending on 
the context, to immediately exit the current statement instead of writing 
(and nesting) complete if...else statements. This will help to keep our 
code shallow.

• Create named functions for callbacks, keeping them out of closures and 
passing intermediate results as arguments. Naming our functions will also 
make them look better in stack traces.

• Modularize the code. Split the code into smaller, reusable functions 
whenever possible.

Now, let's put these principles into practice.

Applying the callback discipline
To demonstrate the power of the ideas mentioned in the previous section, let's apply 
them to fix the callback hell in our web spider application.

For the first step, we can refactor our error-checking pattern by removing 
the else statement. This is made possible by returning from the function 
immediately after we receive an error. So, instead of having code such as the 
following:

if (err) {
  cb(err)
} else {
  // code to execute when there are no errors
}
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We can improve the organization of our code by writing the following instead:

if (err) {
  return cb(err)
}
// code to execute when there are no errors

This is often referred to as the early return principle. With this simple trick, we 
immediately have a reduction in the nesting level of our functions. It is easy and 
doesn't require any complex refactoring.

As a second optimization for our spider() function, we can try to identify reusable 
pieces of code. For example, the functionality that writes a given string to a file can 
be easily factored out into a separate function, as follows:

function saveFile (filename, contents, cb) {
  mkdirp(path.dirname(filename), err => {
    if (err) {

A common mistake when executing the optimization just described 
is forgetting to terminate the function after the callback is invoked. 
For an error-handling scenario, the following code is a typical 
source of defects:

if (err) {
  callback(err)
}
// code to execute when there are no errors.

We should never forget that the execution of our function will 
continue even after we invoke the callback. It is then important 
to insert a return instruction to block the execution of the rest of 
the function. Also, note that it doesn't really matter what value 
is returned by the function; the real result (or error) is produced 
asynchronously and passed to the callback. The return value of the 
asynchronous function is usually ignored. This property allows us 
to write shortcuts such as the following:

return callback(...)

Otherwise, we'd have to write slightly more verbose code, such as 
the following:

callback(...)
return
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      return cb(err)
    }
    fs.writeFile(filename, contents, cb)
  })
}

Following the same principle, we can create a generic function 
named download() that takes a URL and a filename as input, and downloads the 
URL into the given file. Internally, we can use the saveFile() function we created 
earlier:

function download (url, filename, cb) {
  console.log(`Downloading ${url}`)
  superagent.get(url).end((err, res) => {
    if (err) {
      return cb(err)
    }
    saveFile(filename, res.text, err => {
      if (err) {
        return cb(err)
      }
      console.log(`Downloaded and saved: ${url}`)
      cb(null, res.text)
    })
  })
}

For the last step, we modify the spider() function, which, thanks to our changes, 
will now look like the following:

export function spider (url, cb) {
  const filename = urlToFilename(url)
  fs.access(filename, err => {
    if (!err || err.code !== 'ENOENT') {   // (1)
      return cb(null, filename, false)
    }
    download(url, filename, err => {
      if (err) {
        return cb(err)
      }
      cb(null, filename, true)
    })
  })
}
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The functionality and the interface of the spider() function remained exactly the 
same; what changed was the way the code was organized. One important detail to 
notice (1) is that we inverted the check for the file's existence so that we could apply 
the early return principle discussed previously.

By applying the early return principle and the other callback discipline principles, 
we were able to drastically reduce the nesting of our code and, at the same time, 
increase its reusability and testability. In fact, we could think about exporting 
both saveFile() and download() so that we could reuse them in other modules. 
This would also allow us to test their functionality as independent units.

The refactoring we carried out in this section clearly demonstrates that most of the 
time, all we need is some discipline to make sure we do not abuse closures and 
anonymous functions. It works brilliantly, requires minimal effort, and it doesn't 
require external libraries.

Now that you know how to write clean asynchronous code using callbacks, we 
are ready to explore some of the most common asynchronous patterns, such as 
sequential and parallel execution.

Sequential execution
In this section, we will look at asynchronous control flow patterns and start by 
analyzing the sequential execution flow.

Executing a set of tasks in sequence means running them one at a time, one after the 
other. The order of execution matters and must be preserved, because the result of a 
task in the list may affect the execution of the next. Figure 4.1 illustrates this concept:

Figure 4.1: An example of sequential execution flow with three tasks

There are different variations of this flow:

• Executing a set of known tasks in sequence, without propagating data across 
them.

• Using the output of a task as the input for the next (also known 
as chain, pipeline, or waterfall).

• Iterating over a collection while running an asynchronous task on each 
element, one after the other.
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Sequential execution, despite being trivial when implemented using a direct style 
blocking API, is usually the main cause of the callback hell problem when using 
asynchronous CPS.

Executing a known set of tasks in sequence
We already looked at a sequential execution flow while implementing 
the spider() function in the previous section. By applying some simple rules, we 
were able to organize a set of known tasks in a sequential execution flow. Taking that 
code as a guideline, we can now generalize the solution with the following pattern:

function task1 (cb) {
  asyncOperation(() => {
    task2(cb)
  })
}

function task2 (cb) {
  asyncOperation(() => {
    task3(cb)
  })
}

function task3 (cb) {
  asyncOperation(() => {
    cb() // finally executes the callback
  })
}

task1(() => {
  // executed when task1, task2 and task3 are completed
  console.log('tasks 1, 2 and 3 executed')
})

The preceding pattern shows how each task invokes the next upon completion 
of a generic asynchronous operation. The pattern puts the emphasis on the 
modularization of tasks, showing how closures are not always necessary to handle 
asynchronous code.
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Sequential iteration
The pattern described in the previous section works perfectly if we know in advance 
what and how many tasks are to be executed. This allows us to hardcode the 
invocation of the next task in the sequence, but what happens if we want to execute 
an asynchronous operation for each item in a collection? In cases such as this, we 
can't hardcode the task sequence anymore; instead, we have to build it dynamically.

Web spider version 2
To show an example of sequential iteration, let's introduce a new feature to the web 
spider application. We now want to download all the links contained in a web page 
recursively. To do that, we are going to extract all the links from the page and then 
trigger our web spider on each recursively and in sequence.

The first step is modifying our spider() function so that it triggers a recursive 
download of all the links of a page by using a function named spiderLinks(), which 
we are going to create shortly.

Also, instead of checking whether the file already exists, we will try to read it and 
start spidering its links. This way, we will be able to resume interrupted downloads. 
As a final change, we need to make sure we propagate a new parameter, nesting, 
which will help us to limit the recursion depth. The code is as follows:

export function spider (url, nesting, cb) {
  const filename = urlToFilename(url)
  fs.readFile(filename, 'utf8', (err, fileContent) => {
    if (err) {
      if (err.code !== 'ENOENT') {
        return cb(err)
      }

      // The file doesn't exist, so let's download it
      return download(url, filename, (err, requestContent) => {
        if (err) {
          return cb(err)
        }

        spiderLinks(url, requestContent, nesting, cb)
      })
    }

    // The file already exists, let's process the links
    spiderLinks(url, fileContent, nesting, cb)
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  })
}

In the next section, we will explore how the spiderLinks() function can be 
implemented.

Sequential crawling of links
Now, we can create the core of this new version of our web spider application, 
the spiderLinks() function, which downloads all the links of an HTML page using a 
sequential asynchronous iteration algorithm. Pay attention to the way we are going 
to define that in the following code block:

function spiderLinks (currentUrl, body, nesting, cb) {
  if (nesting === 0) {
    // Remember Zalgo from chapter 3?
    return process.nextTick(cb)
  }

  const links = getPageLinks(currentUrl, body)            // (1)
  if (links.length === 0) {
    return process.nextTick(cb)
  }

  function iterate (index) {                              // (2)
    if (index === links.length) {
      return cb()
    }

    spider(links[index], nesting - 1, function (err) {    // (3)
      if (err) {
        return cb(err)
      }
      iterate(index + 1)
    })
  }

  iterate(0)                                              // (4)
}
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The important steps to understand from this new function are as follows:

1. We obtain the list of all the links contained in the page using 
the getPageLinks() function. This function returns only the links pointing 
to an internal destination (the same hostname).

2. We iterate over the links using a local function called iterate(), which 
takes the index of the next link to analyze. In this function, the first thing we 
do is check whether the index is equal to the length of the links array, in 
which case we immediately invoke the cb() function, as it means we have 
processed all the items.

3. At this point, everything should be ready for processing the link. We invoke 
the spider() function by decreasing the nesting level and invoking the next 
step of the iteration when the operation completes.

4. As the last step in the spiderLinks() function, we bootstrap the iteration by 
invoking iterate(0).

The algorithm that was just presented allows us to iterate over an array by executing 
an asynchronous operation in sequence, which in our case is the spider() function.

Finally, we can change our spider-cli.js a bit so that we can specify the nesting 
level as an additional command-line interface (CLI) argument:

import { spider } from './spider.js'

const url = process.argv[2]
const nesting = Number.parseInt(process.argv[3], 10) || 1

spider(url, nesting, err => {
  if (err) {
    console.error(err)
    process.exit(1)
  }

  console.log('Download complete')
})

We can now try this new version of the spider application and watch it download 
all the links of a web page recursively, one after the other. To interrupt the process, 
which can take a while if there are many links, remember that we can always 
use Ctrl + C. If we then decide to resume it, we can do so by launching the spider 
application and providing the same URL we used for the first run.
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The pattern
The code of the spiderLinks() function from the previous section is a clear example 
of how it's possible to iterate over a collection while applying an asynchronous 
operation. You may also notice that it's a pattern that can be adapted to any other 
situation where we need to iterate asynchronously over the elements of a collection 
or, in general, over a list of tasks. This pattern can be generalized as follows:

function iterate (index) {
  if (index === tasks.length) {
    return finish()
  }
  const task = tasks[index]
  task(() => iterate(index + 1))
}

function finish () {
  // iteration completed
}

iterate(0)

The pattern that was just presented is very powerful and can be extended or adapted 
to address several common needs. Just to mention some examples:

• We can map the values of an array asynchronously.
• We can pass the results of an operation to the next one in the iteration to 

implement an asynchronous version of the reduce algorithm.

Now that our web spider application can potentially trigger the 
download of an entire website, please consider using it carefully. 
For example, do not set a high nesting level or leave the spider 
running for more than a few seconds. It is not polite to overload 
a server with thousands of requests. In some circumstances, this 
can also be considered illegal. Spider responsibly!

It's important to notice that these types of algorithms become really 
recursive if task() is a synchronous operation. In such a case, the 
stack will not unwind at every cycle and there might be a risk of 
hitting the maximum call stack size limit.
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• We can quit the loop prematurely if a particular condition is met 
(asynchronous implementation of the Array.some() helper).

• We can even iterate over an infinite number of elements.

We could also choose to generalize the solution even further by wrapping it in 
a function with a signature such as the following:

iterateSeries(collection, iteratorCallback, finalCallback)

Here, collection is the actual dataset you want to iterate over, iteratorCallback is 
the function to execute over every item, and finalCallback is the function that gets 
executed when all the items are processed or in case of an error. The implementation 
of this helper function is left to you as an exercise.

In the next section, we will explore the parallel execution pattern, which is more 
convenient when the order of the various tasks is not important.

Parallel execution
There are some situations where the order of execution of a set of asynchronous 
tasks is not important, and all we want is to be notified when all those running tasks 
are completed. Such situations are better handled using a parallel execution flow, as 
shown in Figure 4.2:

Figure 4.2: An example of parallel execution with three tasks

The Sequential Iterator pattern

Execute a list of tasks in sequence by creating a function 
named iterator, which invokes the next available task in the 
collection and makes sure to invoke the next step of the iteration 
when the current task completes.
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This may sound strange if you consider that Node.js is single-threaded, but if you 
remember what we discussed in Chapter 1, The Node.js Platform, you'll realize that 
even though we have just one thread, we can still achieve concurrency, thanks to 
the non-blocking nature of Node.js. In fact, the word parallel is used improperly in 
this case, as it does not mean that the tasks run simultaneously, but rather that their 
execution is carried out by an underlying, non-blocking API and interleaved by the 
event loop.

As you know, a task gives control back to the event loop when it requests a new 
asynchronous operation, allowing the event loop to execute another task. The proper 
word to use for this kind of flow is concurrency, but we will still use parallel for 
simplicity.

The following diagram shows how two asynchronous tasks can run in parallel in a 
Node.js program:

Figure 4.3: An example of how asynchronous tasks run in parallel

In Figure 4.3, we have a Main function that executes two asynchronous tasks:

1. The Main function triggers the execution of Task 1 and Task 2. As they 
trigger an asynchronous operation, they immediately return control back to 
the Main function, which then returns it to the event loop.
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2. When the asynchronous operation of Task 1 is completed, the event 
loop gives control to it. When Task 1 completes its internal synchronous 
processing as well, it notifies the Main function.

3. When the asynchronous operation triggered by Task 2 is complete, the event 
loop invokes its callback, giving control back to Task 2. At the end of Task 
2, the Main function is notified once more. At this point, the Main function 
knows that both Task 1 and Task 2 are complete, so it can continue its 
execution or return the results of the operations to another callback.

In short, this means that in Node.js, we can only execute asynchronous operations 
in parallel, because their concurrency is handled internally by the non-blocking 
APIs. In Node.js, synchronous (blocking) operations can't run concurrently 
unless their execution is interleaved with an asynchronous operation, or 
interleaved with setTimeout() or setImmediate(). You will see this in more 
detail in Chapter 11, Advanced Recipes.

Web spider version 3
Our web spider application seems like a perfect candidate to apply the concept of 
parallel execution. So far, our application is executing the recursive download of the 
linked pages in a sequential fashion. We can easily improve the performance of this 
process by downloading all the linked pages in parallel.

To do that, we just need to modify the spiderLinks() function to make sure we 
spawn all the spider() tasks at once, and then invoke the final callback only when all 
of them have completed their execution. So, let's modify our spiderLinks() function 
as follows:

function spiderLinks (currentUrl, body, nesting, cb) {
  if (nesting === 0) {
    return process.nextTick(cb)
  }

  const links = getPageLinks(currentUrl, body)
  if (links.length === 0) {
    return process.nextTick(cb)
  }

  let completed = 0
  let hasErrors = false

  function done (err) {
    if (err) {
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      hasErrors = true
      return cb(err)
    }
    if (++completed === links.length && !hasErrors) {
      return cb()
    }
  }

  links.forEach(link => spider(link, nesting - 1, done))
}

Let's discuss what we changed. As mentioned earlier, the spider() tasks are now 
started all at once. This is possible by simply iterating over the links array and 
starting each task without waiting for the previous one to finish:

links.forEach(link => spider(link, nesting - 1, done))

Then, the trick to make our application wait for all the tasks to complete is to 
provide the spider() function with a special callback, which we call done(). 
The done() function increases a counter when a spider task completes. When 
the number of completed downloads reaches the size of the links array, the final 
callback is invoked:

function done (err) {
  if (err) {
    hasErrors = true
    return cb(err)
  }
  if (++completed === links.length && !hasErrors) {
    return cb()
  }
}

With these changes in place, if we now try to run our spider against a web page, 
we will notice a huge improvement in the speed of the overall process, as every 
download will be carried out in parallel, without waiting for the previous link 
to be processed.

The hasErrors variable is necessary because if one parallel task 
fails, we want to immediately call the callback with the given error. 
Also, we need to make sure that other parallel tasks that might still 
be running won't invoke the callback again.
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The pattern
Finally, we can extract our nice little pattern for the parallel execution flow. Let's 
represent a generic version of the pattern with the following code:

const tasks = [ /* ... */ ]

let completed = 0
tasks.forEach(task => {
  task(() => {
    if (++completed === tasks.length) {
      finish()
    }
  })
})

function finish () {
  // all the tasks completed
}

With small modifications, we can adapt the pattern to accumulate the results of 
each task into a collection, to filter or map the elements of an array, or to invoke 
the finish() callback as soon as one or a given number of tasks complete (this last 
situation in particular is called competitive race).

When we have multiple tasks running in parallel, we might have race conditions, 
that is, contention to access external resources (for example, files or records in a 
database). In the next section, we will talk about race conditions in Node.js and 
explore some techniques to identify and address them.

Fixing race conditions with concurrent tasks
Running a set of tasks in parallel can cause issues when using blocking I/O in 
combination with multiple threads. However, you have just seen that, in Node.js, 
this is a totally different story. Running multiple asynchronous tasks in parallel is, 
in fact, straightforward and cheap in terms of resources. 

The Unlimited Parallel Execution pattern

Run a set of asynchronous tasks in parallel by launching them all 
at once, and then wait for all of them to complete by counting the 
number of times their callbacks are invoked.
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This is one of the most important strengths of Node.js, because it makes 
parallelization a common practice rather than a complex technique to only 
use when strictly necessary.

Another important characteristic of the concurrency model of Node.js is the way we 
deal with task synchronization and race conditions. In multithreaded programming, 
this is usually done using constructs such as locks, mutexes, semaphores, and 
monitors, and it can be one of the most complex aspects of parallelization, and has 
a considerable impact on performance. In Node.js, we usually don't need a fancy 
synchronization mechanism, as everything runs on a single thread. However, 
this doesn't mean that we can't have race conditions; on the contrary, they can be 
quite common. The root of the problem is the delay between the invocation of an 
asynchronous operation and the notification of its result.

To see a concrete example, we will refer again to our web spider application, and 
in particular, the last version we created, which actually contains a race condition 
(can you spot it?). The problem we are talking about lies in the spider() function, 
where we check whether a file already exists before we start to download the 
corresponding URL:

export function spider (url, nesting, cb) {
  const filename = urlToFilename(url)
  fs.readFile(filename, 'utf8', (err, fileContent) => {
    if (err) {
      if (err.code !== 'ENOENT') {
        return cb(err)
      }
      return download(url, filename, (err, requestContent) => {
        // ...

The problem is that two spider tasks operating on the same URL might invoke fs.
readFile() on the same file before one of the two tasks completes the download 
and creates a file, causing both tasks to start a download. Figure 4.4 explains 
this situation:

Figure 4.4: An example of a race condition in our spider() function
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Figure 4.4 shows how Task 1 and Task 2 are interleaved in the single thread of 
Node.js, as well as how an asynchronous operation can actually introduce a race 
condition. In our case, the two spider tasks end up downloading the same file.

How can we fix that? The answer is much simpler than you might think. In fact, all 
we need is a variable to mutually exclude multiple spider() tasks running on the 
same URL. This can be achieved with some code, such as the following:

const spidering = new Set()
function spider (url, nesting, cb) {
  if (spidering.has(url)) {
    return process.nextTick(cb)
  }
  spidering.add(url)

// ...

The fix does not require many comments. We simply exit the function immediately 
if the given url is already present in the spidering set; otherwise, we add the url 
to the set and continue with the download. In our case, we don't need to release the 
lock, as we are not interested in downloading a URL twice, even if the spider tasks 
are executed at two completely different points in time. If you are building a spider 
that might have to download hundreds of thousands of web pages, removing the 
downloaded url from the set once a file is downloaded will help you to keep the set 
cardinality, and therefore the memory consumption, from growing indefinitely.

Race conditions can cause many problems, even if we are in a single-threaded 
environment. In some circumstances, they can lead to data corruption and are 
usually very hard to debug because of their ephemeral nature. So, it's always good 
practice to double-check for these types of situations when running tasks in parallel.

Also, running an arbitrary number of parallel tasks can be a dangerous practice. 
In the next section, you will discover why it can be a problem and how to keep the 
number of parallel tasks under control.

Limited parallel execution
Spawning parallel tasks without control can often lead to excessive load. Imagine 
having thousands of files to read, URLs to access, or database queries to run in 
parallel. A common problem in such situations is running out of resources. The 
most common example is when an application tries to open too many files at once, 
utilizing all the file descriptors available to the process. 
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A server that spawns unbounded parallel tasks to handle a user request could be 
exploited with a denial-of-service (DoS) attack. That is when a malicious actor can 
forge one or more requests to push the server to consume all the available resources 
and become unresponsive. Limiting the number of parallel tasks is, in general, a 
good practice that helps with building resilient applications.

Version 3 of our web spider does not limit the number of parallel tasks and therefore, 
it is susceptible to crashing in a number of cases. For instance, if we try to run it 
against a significantly big website, we might see it running for a few seconds and 
then failing with the error code ECONNREFUSED. When we are downloading too many 
pages concurrently from a web server, the server might decide to start rejecting new 
connections from the same IP. In this case, our spider would just crash and we would 
be forced to relaunch the process if we wanted to continue crawling the website. We 
could just handle ECONNREFUSED to stop the process from crashing, but we would still 
be risking allocating too many parallel tasks and might run into other issues.

In this section, you will see how we can make our spider more resilient by keeping 
the concurrency limited.

The following diagram shows a situation where we have five tasks that run in 
parallel with a concurrency limit of two:

Figure 4.5: An example of how concurrency can be limited to a maximum of two parallel tasks

From Figure 4.5, it should be clear how our algorithm works:

1. Initially, we spawn as many tasks as we can without exceeding the 
concurrency limit.

2. Then, every time a task is completed, we spawn one or more tasks until we 
reach the limit again.

In the next section, we will explore a possible implementation of the limited parallel 
execution pattern.
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Limiting concurrency
We will now look at a pattern that will execute a set of given tasks in parallel with 
limited concurrency:

const tasks = [
  // ...
]

const concurrency = 2
let running = 0
let completed = 0
let index = 0

function next () {                                          // (1)
  while (running < concurrency && index < tasks.length) {
    const task = tasks[index++]
    task(() => {                                            // (2)
      if (++completed === tasks.length) {
        return finish()
      }
      running--
      next()
    })
    running++
  }
}
next()

function finish() {
  // all tasks finished
}

This algorithm can be considered a mixture of sequential execution and parallel 
execution. In fact, you might notice similarities with both patterns:

1. We have an iterator function, which we call next(), and then an inner loop 
that spawns as many tasks as possible in parallel while staying within the 
concurrency limit.

2. The next important part is the callback we pass to each task, which checks 
whether we completed all the tasks in the list. If there are still tasks to run, 
it invokes next() to spawn another set of tasks.

Pretty simple, isn't it?
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Globally limiting concurrency
Our web spider application is perfect for applying what we just learned about 
limiting the concurrency of a set of tasks. In fact, to avoid the situation in which we 
have thousands of links being crawled at the same time, we can enforce a limit on the 
concurrency of this process by adding some predictability regarding the number of 
concurrent downloads.

We could apply this implementation of the limited concurrency pattern to 
our spiderLinks() function, but by doing that, we would only be limiting the 
concurrency of tasks spawned from the links found within a given page. If we chose, 
for example, a concurrency of two, we would have, at most, two links downloaded 
in parallel for each page. However, as we can download multiple links at once, 
each page would then spawn another two downloads, causing the grand total of 
download operations to grow exponentially anyway.

In general, this implementation of the limited concurrency pattern works very well 
when we have a predetermined set of tasks to execute, or when the set of tasks grows 
linearly over time. When, instead, a task can spawn two or more tasks directly, as 
happens with our web spider, this implementation is not suitable for limiting the 
global concurrency.

Queues to the rescue
What we really want, then, is to limit the global number of download operations 
we can have running in parallel. We could slightly modify the pattern shown in the 
previous section, but this is left as an exercise for you. Instead, let's discuss another 
mechanism that makes use of queues to limit the concurrency of multiple tasks. Let's 
see how this works.

We are now going to implement a simple class named TaskQueue, which will 
combine a queue with the algorithm that was presented while discussing limited 
concurrency. Let's create a new module named taskQueue.js:

export class TaskQueue {
  constructor (concurrency) {
    this.concurrency = concurrency
    this.running = 0
    this.queue = []
  }

  pushTask (task) {
    this.queue.push(task)
    process.nextTick(this.next.bind(this))
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    return this
  }

  next () {
    while (this.running < this.concurrency && this.queue.length) {
      const task = this.queue.shift()
      task(() => {
        this.running--
        process.nextTick(this.next.bind(this))
      })
      this.running++
    }
  }
}

The constructor of this class takes, as input, only the concurrency limit, but besides 
that, it initializes the instance variables running and queue. The former variable is a 
counter used to keep track of all the running tasks, while the latter is the array that 
will be used as a queue to store the pending tasks.

The pushTask() method simply adds a new task to the queue and then bootstraps the 
execution of the worker by asynchronously invoking this.next(). Note that we have 
to use bind because otherwise, the next function will lose its context when invoked 
by process.nextTick.

The next() method spawns a set of tasks from the queue, ensuring that it does not 
exceed the concurrency limit.

You may notice that this method has some similarities with the pattern presented 
at the beginning of the Limiting concurrency section. It essentially starts as many 
tasks from the queue as possible, without exceeding the concurrency limit. When 
each task is complete, it updates the count of running tasks and then starts another 
round of tasks by asynchronously invoking next() again. The interesting property 
of the TaskQueue class is that it allows us to dynamically add new items to the 
queue. The other advantage is that, now, we have a central entity responsible for 
the limitation of the concurrency of our tasks, which can be shared across all the 
instances of a function's execution. In our case, it's the spider() function, as you 
will see in a moment.
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Refining the TaskQueue
The previous implementation of TaskQueue is sufficient to demonstrate the queue 
pattern, but in order to be used in real-life projects, it needs a couple of extra 
features. For instance, how can we tell when one of the tasks has failed? How 
do we know whether all the work in the queue has been completed?

Let's bring back some of the concepts we discussed in Chapter 3, Callbacks and Events, 
and let's turn the TaskQueue into an EventEmitter so that we can emit events to 
propagate task failures and to inform any observer when the queue is empty.

The first change we have to make is to import the EventEmitter class and let our 
TaskQueue extend it:

import { EventEmitter } from 'events'

export class TaskQueue extends EventEmitter {
  constructor (concurrency) {
    super()
    // ...
  }
  // ...
}

At this point, we can use this.emit to fire events from within the TaskQueue next() 
method:

next () {
  if (this.running === 0 && this.queue.length === 0) {         // (1)
    return this.emit('empty')
  }

  while (this.running < this.concurrency && this.queue.length) {
    const task = this.queue.shift()
    task((err) => {                                            // (2)
      if (err) {
        this.emit('error', err)
      }
      this.running--
      process.nextTick(this.next.bind(this))
    })
    this.running++
  }
}
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Comparing this implementation with the previous one, there are two additions here:

• Every time the next() function is called, we check that no task is running and 
whether the queue is empty. In such a case, it means that the queue has been 
drained and we can fire the empty event.

• The completion callback of every task can now be invoked by passing an 
error. We check whether an error is actually passed, indicating that the task 
has failed, and in that case, we propagate such an error with an error event.

Notice that in case of an error, we are deliberately keeping the queue running. We 
are not stopping other tasks in progress, nor removing any pending tasks. This is 
quite common with queue-based systems. Errors are expected to happen and rather 
than letting the system crash on these occasions, it is generally better to identify 
errors and to think about retry or recovery strategies. We will discuss these concepts 
a bit more in Chapter 13, Messaging and Integration Patterns.

Web spider version 4
Now that we have our generic queue to execute tasks in a limited parallel flow, let's 
use it straightaway to refactor our web spider application.

We are going to use an instance of TaskQueue as a work backlog; every URL that we 
want to crawl needs to be appended to the queue as a task. The starting URL will be 
added as the first task, then every other URL discovered during the crawling process 
will be added as well. The queue will manage all the scheduling for us, making sure 
that the number of tasks in progress (that is, the number of pages being downloaded 
or read from the filesystem) at any given time is never greater than the concurrency 
limit configured for the given TaskQueue instance.

We have already defined the logic to crawl a given URL inside our spider() 
function. We can consider this to be our generic crawling task. For more clarity, it's 
best to rename this function spiderTask:

function spiderTask (url, nesting, queue, cb) {             // (1)
  const filename = urlToFilename(url)
  fs.readFile(filename, 'utf8', (err, fileContent) => {
    if (err) {
      if (err.code !== 'ENOENT') {
        return cb(err)
      }

      return download(url, filename, (err, requestContent) => {
        if (err) {
          return cb(err)
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        }

        spiderLinks(url, requestContent, nesting, queue)    // (2)
        return cb()
      })
    }

    spiderLinks(url, fileContent, nesting, queue)           // (3)
    return cb()
  })
}

Other than renaming the function, you might have noticed that we applied some 
other small changes:

• The function signature now accepts a new parameter called queue. This is an 
instance of TaskQueue that we need to carry over to be able to append new 
tasks when necessary.

• The function responsible for adding new links to crawl is spiderLinks, so we 
need to make sure that we pass the queue instance when we call this function 
after downloading a new page.

• We also need to pass the queue instance to spiderLinks when we are 
invoking that from an already downloaded file.

Let's revisit the spiderLinks() function. This function can now be greatly simplified 
as it doesn't have to keep track of task completion anymore, as this work has been 
delegated to the queue. Its job becomes effectively synchronous now; it just needs to 
invoke the new spider() function (which we will define shortly) to push a new task 
to the queue, one for each discovered link:

function spiderLinks (currentUrl, body, nesting, queue) {
  if (nesting === 0) {
    return
  }

  const links = getPageLinks(currentUrl, body)
  if (links.length === 0) {
    return
  }

  links.forEach(link => spider(link, nesting - 1, queue))
}
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Let's now revisit the spider() function, which needs to act as the entry point for the 
first URL; it will also be used to add every new discovered URL to the queue:

const spidering = new Set()                               // (1)
export function spider (url, nesting, queue) {
  if (spidering.has(url)) {
    return
  }

  spidering.add(url)
  queue.pushTask((done) => {                              // (2)
    spiderTask(url, nesting, queue, done)
  })
}

As you can see, this function now has two main responsibilities:

1. It manages the bookkeeping of the URLs already visited or in progress by 
using the spidering set.

2. It pushes a new task to the queue. Once executed, this task will invoke the 
spiderTask() function, effectively starting the crawling of the given URL.

Finally, we can update the spider-cli.js script, which allows us to invoke our 
spider from the command line:

import { spider } from './spider.js'
import { TaskQueue } from './TaskQueue.js'

const url = process.argv[2]                                    // (1)
const nesting = Number.parseInt(process.argv[3], 10) || 1
const concurrency = Number.parseInt(process.argv[4], 10) || 2

const spiderQueue = new TaskQueue(concurrency)                 // (2)
spiderQueue.on('error', console.error)
spiderQueue.on('empty', () => console.log('Download complete'))

spider(url, nesting, spiderQueue)                              // (3)

This script is now composed of three main parts:

1. CLI arguments parsing. Note that the script now accepts a third additional 
parameter that can be used to customize the concurrency level.
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2. A TaskQueue object is created and listeners are attached to the error and 
empty events. When an error occurs, we simply want to print it. When the 
queue is empty, that means that we've finished crawling the website.

3. Finally, we start the crawling process by invoking the spider function.

After we have applied these changes, we can try to run the spider module again. 
When we run the following command:

node spider-cli.js https://loige.co 1 4

We should notice that no more than four downloads will be active at the same time.

With this final example, we've concluded our exploration of callback-based patterns. 
In the next section, we will close this chapter by looking at a famous library that 
provides a production-ready implementation of these patterns and many other 
asynchronous utilities.

The async library
If you take a look for a moment at every control flow pattern we have analyzed so 
far, you will see that they can be used as a base to build reusable and more generic 
solutions. For example, we could wrap the unlimited parallel execution algorithm 
into a function that accepts a list of tasks, runs them in parallel, and invokes the 
given callback when all of them are complete. This way of wrapping control flow 
algorithms into reusable functions can lead to a more declarative and expressive way 
of defining asynchronous control flows, and that's exactly what async (nodejsdp.
link/async) does.

The async library (not to be confused with the async/await keywords, which we will 
discuss later in this book) is a very popular solution, in Node.js and JavaScript in 
general, for dealing with asynchronous code. It offers a set of functions that greatly 
simplify the execution of tasks in different configurations, and it also provides useful 
helpers for dealing with collections asynchronously. Even though there are several 
other libraries with a similar goal, async is the de facto standard in Node.js due to its 
historic popularity, especially when using callbacks to define asynchronous tasks.

Just to give you an idea of some of the most important capabilities of the async 
module, here is a sample of the functionalities it exposes:

• Execute asynchronous functions over a collection of elements (in series or in 
parallel with limited concurrency).

• Execute a chain of asynchronous functions (waterfall) where the output of 
every function becomes the input of the next one.

http://nodejsdp.link/async
http://nodejsdp.link/async
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• Offers a queue abstraction functionally equivalent to the one we 
implemented with our TaskQueue utility.

• Provides other interesting asynchronous patterns such as race (executes 
multiple asynchronous functions in parallel and stops when the first one 
completes).

Check out the async documentation (nodejsdp.link/async) to find out more about 
the module and to see some examples.

Once you've understood the fundamentals of the asynchronous patterns described 
in this chapter, you shouldn't rely on the simplified implementations presented here 
for your everyday control flow needs. Instead, it's better to adopt a broadly used and 
battle-tested library like async for your production applications, unless your use case 
is so advanced that you require a custom algorithm.

Summary
At the beginning of this chapter, it was stated that Node.js programming can be 
tough because of its asynchronous nature, especially for people used to developing 
on other platforms. However, throughout this chapter, you saw how asynchronous 
APIs can be bent to your will. You discovered that the tools at your disposal are 
indeed versatile and provide good solutions to most of your problems, in addition to 
offering a programming style for every taste.

In this chapter, we also kept refactoring and improving our web crawler example. 
When dealing with asynchronous code, it can sometimes be challenging to figure out 
the right ergonomics that can keep your code simple and effective, so allow yourself 
some time to digest the concepts explored in this chapter and to experiment with 
them.

Our journey with asynchronous Node.js programming has just started. In the next 
few chapters, you will be introduced to other broadly adopted techniques that 
leverage promises, and async/await. After you've learned all these techniques, you 
will be able to choose the best solution for your needs or use many of them together 
in the same project.

http://nodejsdp.link/async
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Exercises
• 4.1 File concatenation: Write the implementation of concatFiles(), a 

callback-style function that takes two or more paths to text files in the 
filesystem and a destination file:

function concatFiles (srcFile1, srcFile2, srcFile3, ... ,
                      dest, cb) {
  // ...
}

This function must copy the contents of every source file into the destination 
file, respecting the order of the files, as provided by the arguments list. 
For instance, given two files, if the first file contains foo and the second 
file contains bar, the function should write foobar (and not barfoo) in the 
destination file. Note that the preceding example signature is not valid 
JavaScript syntax: you need to find a different way to handle an arbitrary 
number of arguments. For instance, you could use the rest parameters syntax 
(nodejsdp.link/rest-parameters).

• 4.2 List files recursively: Write listNestedFiles(), a callback-style function 
that takes, as the input, the path to a directory in the local filesystem and that 
asynchronously iterates over all the subdirectories to eventually return a list 
of all the files discovered. Here is what the signature of the function should 
look like:

function listNestedFiles (dir, cb) { /* ... */ }

Bonus points if you manage to avoid callback hell. Feel free to create 
additional helper functions if needed.

• 4.3 Recursive find: Write recursiveFind(), a callback-style function that 
takes a path to a directory in the local filesystem and a keyword, as per the 
following signature:

function recursiveFind(dir, keyword, cb) { /* ... */ }

http://nodejsdp.link/rest-parameters
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The function must find all the text files within the given directory that 
contain the given keyword in the file contents. The list of matching files 
should be returned using the callback when the search is completed. If no 
matching file is found, the callback must be invoked with an empty array. 
As an example test case, if you have the files foo.txt, bar.txt, and baz.txt 
in myDir and the keyword 'batman' is contained in the files foo.txt and baz.
txt, you should be able to run the following code:

recursiveFind('myDir', 'batman', console.log)
// should print ['foo.txt', 'baz.txt']

Bonus points if you make the search recursive (it looks for text files in any 
subdirectory as well). Extra bonus points if you manage to perform the 
search within different files and subdirectories in parallel, but be careful to 
keep the number of parallel tasks under control!
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5
Asynchronous Control Flow 
Patterns with Promises and 

Async/Await
Callbacks are the low-level building blocks of asynchronous programming in 
Node.js, but they are far from being developer-friendly. In fact, in the last chapter, 
we learned techniques to implement different control flow constructs using callbacks, 
and we can say that they are quite complex and verbose compared to the (low) level 
of complexity of the tasks they try to accomplish. In particular, serial execution 
flow, which is the predominant control flow structure in most of the code we write, 
can easily lead an untrained developer to write code affected by the callback hell 
problem. On top of that, even if properly implemented, a serial execution flow seems 
needlessly complicated and error-prone. Let's also remember how fragile error 
management with callbacks is; if we forget to forward an error, then it just gets lost, 
and if we forget to catch any exception thrown by some synchronous code, then the 
program crashes. And all of this without considering that Zalgo is always breathing 
down our necks.

Node.js and JavaScript have been criticized for many years for the lack of a native 
solution to a problem so common and ubiquitous. Luckily, over the years, the 
community has worked on new solutions to the problem and finally, after many 
iterations, discussions, and years of waiting, today we have a proper solution to 
the "callback issue."
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The first step toward a better asynchronous code experience is the promise, an object 
that "carries" the status and the eventual result of an asynchronous operation. A 
promise can be easily chained to implement serial execution flows and can be moved 
around like any other object. Promises simplify asynchronous code a lot; however, 
there was still room for improvement. So, in an attempt to make the ubiquitous serial 
execution flow as simple as possible, a new construct was introduced, called async/
await, which can finally make asynchronous code look like synchronous code.

In today's modern Node.js programming, async/await is the preferred construct to 
use when dealing with asynchronous code. However, async/await is built on top of 
promises, as much as promises are built on top of callbacks. So, it's important that 
we know and master all of them in order to tackle our asynchronous programming 
problems with the right approach.

In this chapter, you will learn the following:

• How promises work and how to use them effectively to implement the main 
control flow constructs we already know about.

• The async/await syntax, which will become our main tool for dealing with 
asynchronous code in Node.js.

By the end of the chapter, you will have learned about the two most important 
components that we have in JavaScript for taming asynchronous code. So, let's get 
started by discovering promises.

Promises
Promises are part of the ECMAScript 2015 standard (or ES6, which is why they are 
also called ES6 promises) and have been natively available in Node.js since version 4. 
But the history of promises goes back a few years earlier, when there were dozens of 
implementations around, initially with different features and behavior. Eventually, 
the majority of those implementations settled on a standard called Promises/A+.

Promises represent a big step ahead toward providing a robust alternative to 
continuation-passing style callbacks for propagating an asynchronous result. As 
we will see, the use of promises will make all the major asynchronous control flow 
constructs easier to read, less verbose, and more robust compared to their callback-
based alternatives.
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What is a promise?
A Promise is an object that embodies the eventual result (or error) of an 
asynchronous operation. In promises jargon, we say that a Promise is pending when 
the asynchronous operation is not yet complete, it's fulfilled when the operation 
successfully completes, and rejected when the operation terminates with an error. 
Once a Promise is either fulfilled or rejected, it's considered settled.

To receive the fulfillment value or the error (reason) associated with the rejection, 
we can use the then() method of a Promise instance. The following is its signature:

promise.then(onFulfilled, onRejected)

In the preceding signature, onFulfilled is a callback that will eventually receive the 
fulfillment value of the Promise, and onRejected is another callback that will receive 
the reason for the rejection (if any). Both are optional.

To have an idea of how promises can transform our code, let's consider the following 
callback-based code:

asyncOperation(arg, (err, result) => {
  if(err) {
    // handle the error
  }
  // do stuff with the result
})

Promises allow us to transform this typical continuation-passing style code into a 
better structured and more elegant code, such as the following:

asyncOperationPromise(arg)
  .then(result => {
    // do stuff with result
  }, err => {
    // handle the error
  })

In the code above, asyncOperationPromise() is returning a Promise, which we can 
then use to receive the fulfillment value or the rejection reason of the eventual result 
of the function. So far, it seems that there is nothing major going on, but one crucial 
property of the then() method is that it synchronously returns another Promise. 



Asynchronous Control Flow Patterns with Promises and Async/Await

[ 126 ]

Moreover, if any of the onFulfilled or onRejected functions return a value x, the 
Promise returned by the then() method will:

• Fulfill with x if x is a value
• Fulfill with the fulfillment value of x if x is a Promise
• Reject with the eventual rejection reason of x if x is a Promise

This behavior allows us to build chains of promises, allowing easy aggregation and 
arrangement of asynchronous operations into several configurations. Moreover, if we 
don't specify an onFulfilled or onRejected handler, the fulfillment value or rejection 
reason is automatically forwarded to the next promise in the chain. This allows us, 
for example, to automatically propagate errors across the whole chain until they are 
caught by an onRejected handler. With a Promise chain, the sequential execution of 
tasks suddenly becomes a trivial operation:

asyncOperationPromise(arg)
  .then(result1 => {
    // returns another promise
    return asyncOperationPromise(arg2)
  })
  .then(result2 => {
    // returns a value
    return 'done'
  })
  .then(undefined, err => {
    // any error in the chain is caught here
  })

The following diagram provides another perspective on how a Promise chain works:

Figure 5.1: Promise chain execution flow
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Figure 5.1 shows how our program flows when we use a chain of promises. When 
we invoke then() on Promise A we synchronously receive Promise B as a result 
and when we invoke then() on Promise B we synchronously receive Promise C 
as a result. Eventually, when Promise A settles, it will either fulfill or reject, which 
results in the invocation of either the onFulfilled() or the onRejected() callback 
respectively. The result of the execution of such a callback will then fulfill or reject 
Promise B and such a result is, in turn, propagated to the onFulfilled() or the 
onRejected() callback passed to the then() invocation on Promise B. The execution 
continues similarly for Promise C and any other promise that follows in the chain.

An important property of promises is that the onFulfilled() and onRejected() 
callbacks are guaranteed to be invoked asynchronously and at most once, 
even if we resolve the Promise synchronously with a value. Not only that, 
the onFulfilled() and onRejected() callbacks will be invoked asynchronously even 
if the Promise object is already settled at the moment in which then() is called. This 
behavior shields our code against all those situations where we could unintentionally 
release Zalgo (see Chapter 3, Callbacks and Events), making our asynchronous code 
more consistent and robust without any extra effort.

Now comes the best part. If an exception is thrown (using the throw statement) 
in the onFulfilled() or onRejected() handler, the Promise returned by 
the then() method will automatically reject, with the exception that was thrown 
provided as the rejection reason. This is a tremendous advantage over CPS, as it 
means that with promises, exceptions will propagate automatically across the chain, 
and the throw statement becomes finally usable.

Promises/A+ and thenables
Historically, there have been many different implementations of promises, and 
most of them were not compatible with each other, meaning that it was not possible 
to create chains between Promise objects coming from libraries that were using 
different Promise implementations.

The JavaScript community worked very hard to address this limitation and those 
efforts led to the creation of the Promises/A+ specification. This specification details 
the behavior of the then() method, providing an interoperable base, which makes 
Promise objects from different libraries able to work with each other out of the box. 
Today, the majority of Promise implementations use this standard, including the 
native Promise object of JavaScript and Node.js.
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As a result of the adoption of the Promises/A+ standard, many Promise 
implementations, including the native JavaScript Promise API, will consider any 
object with a then() method a Promise-like object, also called thenable. This behavior 
allows different Promise implementations to interact with each other seamlessly.

The promise API
Let's now take a quick look at the API of the native JavaScript Promise. This is just 
an overview to give you an idea of what we can do with promises, so don't worry if 
things are not so clear at this point yet; we will have the chance to use most of these 
APIs throughout the book.

The Promise constructor (new Promise((resolve, reject) => {})) creates 
a new Promise instance that fulfills or rejects based on the behavior of the function 
provided as an argument. The function provided to the constructor will receive 
two arguments:

• resolve(obj): This is a function that, when invoked, will fulfill the Promise 
with the provided fulfillment value, which will be obj if obj is a value. It 
will be the fulfillment value of obj if obj is a Promise or a thenable.

• reject(err): This rejects the Promise with the reason err. It is a convention 
for err to be an instance of Error.

Now, let's take a look at the most important static methods of the Promise object:

• Promise.resolve(obj): This method creates a new Promise from another 
Promise, a thenable, or a value. If a Promise is passed, then that Promise is 
returned as it is. If a thenable is provided, then it's converted to the Promise 
implementation in use. If a value is provided, then the Promise will be 
fulfilled with that value.

For a detailed overview of the Promises/A+ specification, you can 
refer to the official website at nodejsdp.link/promises-aplus.

The technique of recognizing (or typing) objects based on their 
external behavior, rather than their actual type, is called duck 
typing and is widely used in JavaScript.

http://nodejsdp.link/promises-aplus
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• Promise.reject(err): This method creates a Promise that rejects with err as 
the reason.

• Promise.all(iterable): This method creates a Promise that fulfills with 
an array of fulfillment values when every item in the input iterable (such 
as an Array) object fulfills. If any Promise in the iterable object rejects, then 
the Promise returned by Promise.all() will reject with the first rejection 
reason. Each item in the iterable object can be a Promise, a generic thenable, 
or a value.

• Promise.allSettled(iterable): This method waits for all the input 
promises to fulfill or reject and then returns an array of objects containing 
the fulfillment value or the rejection reason for each input Promise. Each 
output object has a status property, which can be equal to 'fulfilled' 
or 'rejected', and a value property containing the fulfillment value, 
or a reason property containing the rejection reason. The difference with 
Promise.all() is that Promise.allSettled() will always wait for each 
Promise to either fulfill or reject, instead of immediately rejecting when 
one of the promises rejects.

• Promise.race(iterable): This method returns a Promise that is equivalent 
to the first Promise in iterable that settles.

Finally, the following are the main methods available on a Promise instance:

• promise.then(onFulfilled, onRejected): This is the essential method of 
a Promise. Its behavior is compatible with the Promises/A+ standard that 
we mentioned before.

• promise.catch(onRejected): This method is just syntactic sugar (nodejsdp.
link/syntactic-sugar) for promise.then(undefined, onRejected).

• promise.finally(onFinally): This method allows us to set up an onFinally 
callback, which is invoked when the Promise is settled (either fulfilled or 
rejected). Unlike onFulfilled and onRejected, the onFinally callback will 
not receive any argument as input and any value returned from it will 
be ignored. The Promise returned by finally will settle with the same 
fulfillment value or rejection reason of the current Promise instance. There 
is only once exception to all this, which is the case in which we throw inside 
the onFinally callback or return a rejected Promise. In this case, the returned 
Promise will reject with the error that is thrown or the rejection reason of the 
rejected Promise returned.

Let's now see an example of how we can create a Promise from scratch using 
its constructor.

http://nodejsdp.link/syntactic-sugar
http://nodejsdp.link/syntactic-sugar
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Creating a promise
Let's now see how we can create a Promise using its constructor. Creating a Promise 
from scratch is a low-level operation and it's usually required when we need to 
convert an API that uses another asynchronous style (such as a callback-based style). 
Most of the time we—as developers—are consumers of promises produced by other 
libraries and most of the promises we create will come from the then() method. 
Nonetheless, in some advanced scenarios, we need to manually create a Promise 
using its constructor.

To demonstrate how to use the Promise constructor, let's create a function that 
returns a Promise that fulfills with the current date after a specified number of 
milliseconds. Let's take a look at it:

function delay (milliseconds) {
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve(new Date())
    }, milliseconds)
  })
}

As you probably already guessed, we used setTimeout() to invoke the resolve() 
function of the Promise constructor. We can notice how the entire body of the 
function is wrapped by the Promise constructor; this is a frequent code pattern you 
will see when creating a Promise from scratch.

The delay() function we just created can then be used with some code like the 
following:

console.log(`Delaying...${new Date().getSeconds()}s`)
delay(1000)
  .then(newDate => {
    console.log(`Done ${newDate.getSeconds()}s`)
  })

The console.log() within the then() handler will be executed approximately after 1 
second from the invocation of delay().
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Promisification
When some characteristics of a callback-based function are known in advance, 
it's possible to create a function that transforms such a callback-based function 
into an equivalent function returning a Promise. This transformation is called 
promisification.

For example, let's consider the conventions used in Node.js-style callback-based 
functions:

• The callback is the last argument of the function
• The error (if any) is always the first argument passed to the callback
• Any return value is passed after the error to the callback

Based on these rules, we can easily create a generic function that promisifies a 
Node.js-style callback-based function. Let's see what this function looks like:

function promisify (callbackBasedApi) {
  return function promisified (...args) {
    return new Promise((resolve, reject) => {              // (1)
      const newArgs = [
        ...args,
        function (err, result) {                           // (2)
          if (err) {
            return reject(err)
          }

          resolve(result)
        }
      ]
      callbackBasedApi(...newArgs)                         // (3)
    })
  }
}

The Promises/A+ specification states that the onFulfilled and 
onRejected callbacks of the then() method have to be invoked 
only once and exclusively (only one or the other is invoked). 
A compliant promises implementation makes sure that even if 
we call resolve or reject multiple times, the Promise is either 
fulfilled or rejected only once.
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The preceding function returns another function called promisified(), which 
represents the promisified version of the callbackBasedApi given as the input. 
This is how it works:

1. The promisified() function creates a new Promise using 
the Promise constructor and immediately returns it to the caller.

2. In the function passed to the Promise constructor, we make sure to pass 
to callbackBasedApi a special callback. Since we know that the callback 
always comes last, we simply append it to the arguments list (args) provided 
to the promisified() function. In the special callback, if we receive an error, 
we immediately reject the Promise; otherwise, we resolve it with the given 
result.

3. Finally, we simply invoke callbackBasedApi with the list of arguments we 
have built.

Now, let's promisify a Node.js function using our newly created promisify() 
function. We can use the randomBytes() function of the core crypto module, 
which produces a buffer containing the specified number of random bytes. The 
randomBytes() function accepts a callback as the last argument and it follows the 
conventions we already know very well. Let's see what this looks like:

import { randomBytes } from 'crypto'

const randomBytesP = promisify(randomBytes)
randomBytesP(32)
  .then(buffer => {
    console.log(`Random bytes: ${buffer.toString()}`)
  })

The previous code should print some gibberish to the console; that's because not all 
generated bytes have a corresponding printable character.

The promisification function we created here is just for educational 
purposes and it's missing a few features, such as the ability to 
deal with callbacks returning more than one result. In real life, we 
would use the promisify() function of the util core module to 
promisify our Node.js-style callback-based functions. You can take 
a look at its documentation at nodejsdp.link/promisify.

http://nodejsdp.link/promisify
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Sequential execution and iteration
We now know enough to convert the web spider application that we created 
in the previous chapter to use promises. Let's start directly from version 2, the 
one downloading the links of a webpage in sequence.

In the spider.js module, the very first step required is to import our dependencies 
and promisify any callback-based function that we are going to use:

import { promises as fsPromises } from 'fs'                // (1)
import { dirname } from 'path'
import superagent from 'superagent'
import mkdirp from 'mkdirp'
import { urlToFilename, getPageLinks } from './utils.js'
import { promisify } from 'util'

const mkdirpPromises = promisify(mkdirp)                   // (2)

There are two main differences here compared to the spider.js module of the 
previous chapter:

1. We import the promises object of the fs module to get access to all the fs 
functions already promisified.

2. We manually promisify the mkdirp() function.

Now, we can start converting the download() function:

function download (url, filename) {
  console.log(`Downloading ${url}`)
  let content
  return superagent.get(url)                               // (1)
    .then((res) => {
      content = res.text                                   // (2)
      return mkdirpPromises(dirname(filename))
    })
    .then(() => fsPromises.writeFile(filename, content))
    .then(() => {
      console.log(`Downloaded and saved: ${url}`)

We can access an already promisified version of the core 
fs API through the promises object of the fs module. 
For example: import { promises } from 'fs'.
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      return content                                       // (3)
    })
}

We can straightaway appreciate the elegance of implementing sequential 
asynchronous operations with promises. We simply have a clean and very intuitive 
chain of then() invocations.

Compared to the previous version of the function, this time we are leveraging the 
out-of-the-box support for promises of the superagent package. Instead of invoking 
end() on the request object returned by superagent.get(), we simply invoke then() 
to send the request (1) and receive a Promise that fulfills/rejects with the result of the 
request.

The final return value of the download() function is the Promise returned by the last 
then() call in the chain, which fulfills with the content of the webpage (3), which we 
initialized in the onFulfilled handler of the first then() call (2). This makes sure that 
the caller receives a Promise that fulfills with content only after all operations (get, 
mkdirp, and writeFile) have completed.

In the download() function that we've just seen, we have executed a known set of 
asynchronous operations in sequence. However, in the spiderLinks() function, we 
will have to deal with a sequential iteration over a dynamic set of asynchronous 
tasks. Let's see how we can achieve that:

function spiderLinks (currentUrl, content, nesting) {
  let promise = Promise.resolve()                            // (1)
  if (nesting === 0) {
    return promise
  }
  const links = getPageLinks(currentUrl, content)
  for (const link of links) {
    promise = promise.then(() => spider(link, nesting - 1))  // (2)
  }

  return promise
}

To iterate over all the links of a webpage asynchronously, we had to dynamically 
build a chain of promises as follows:

1. First, we defined an "empty" Promise, which resolves to undefined. This 
Promise is used just as the starting point for our chain.
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2. Then, in a loop, we update the promise variable with a new Promise obtained 
by invoking then() on the previous promise in the chain. This is actually our 
asynchronous iteration pattern using promises.

At the end of the for loop, the promise variable will contain the promise of the 
last then() invocation, so it will resolve only when all the promises in the chain have 
been resolved.

Now, we can finally convert the spider() function:

export function spider (url, nesting) {
  const filename = urlToFilename(url)
  return fsPromises.readFile(filename, 'utf8')
    .catch((err) => {
      if (err.code !== 'ENOENT') {
        throw err
      }

      // The file doesn't exist, so let's download it
      return download(url, filename)
    })
    .then(content => spiderLinks(url, content, nesting))
}

In this new spider() function, we are using catch() to handle any error produced by 
readFile(). In particular, if the error has code 'ENOENT', it means that the file doesn't 
exist yet and therefore we need to download the corresponding URL. The Promise 
returned from download(), if fulfilled, will return the content at the URL. On the 
other hand, if the Promise produced by readFile() fulfills, it will skip the catch() 
handler and go straight to the next then(). In both cases, the onFulfilled handler 
of the last then() call will always receive the content of the webpage, either coming 
from the local file or from a fresh download.

Now that we have converted our spider() function as well, we can finally modify 
the spider-cli.js module:

spider(url, nesting)
  .then(() => console.log('Download complete'))
  .catch(err => console.error(err))

Pattern (sequential iteration with promises)

Dynamically build a chain of promises using a loop.
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The catch() handler here will intercept any error originating from the 
entire spider() process.

If we look again at all the code we have written so far, we will be pleasantly 
surprised by the fact that we haven't included any error propagation logic (as we 
would be forced to do when using callbacks). This is clearly an enormous advantage, 
as it greatly reduces the boilerplate in our code and the chances of missing any 
asynchronous errors.

This completes the implementation of version 2 of our web spider application 
with promises.

Parallel execution
Another execution flow that becomes trivial with promises is the parallel 
execution flow. In fact, all that we need to do is use the built-in Promise.all() 
method. This helper function creates another Promise that fulfills only when all the 
promises received as input are fulfilled. If there is no causal relationship between 
those promises (for example, they are not part of the same chain of promises), then 
they will be executed in parallel.

To demonstrate this, let's consider version 3 of our web spider application, which 
downloads all the links of a page in parallel. Let's just update the spiderLinks() 
function again to implement a parallel execution flow using promises:

function spiderLinks (currentUrl, content, nesting) {
  if (nesting === 0) {
    return Promise.resolve()
  }

An alternative of the sequential iteration pattern with promises 
makes use of the reduce() function, for an even more compact 
implementation:

const promise = tasks.reduce((prev, task) => {
  return prev.then(() => {
    return task()
  })
}, Promise.resolve())
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  const links = getPageLinks(currentUrl, content)
  const promises = links.map(link => spider(link, nesting - 1))

  return Promise.all(promises)
}

The pattern here consists in starting the spider() tasks all at once in the links.map() 
loop. At the same time, each Promise returned by invoking spider() is collected 
in the final promises array. The critical difference in this loop—as compared to the 
sequential iteration loop—is that we are not waiting for the previous spider() task 
in the list to complete before starting a new one. All the spider() tasks are started in 
the loop at once, in the same event loop cycle.

Once we have all the promises, we pass them to the Promise.all() method, which 
returns a new Promise that will be fulfilled when all the promises in the array are 
fulfilled. In other words, it fulfills when all the download tasks have completed. 
In addition to that, the Promise returned by Promise.all() will reject immediately 
if any of the promises in the input array reject. This is exactly what we wanted for 
this version of our web spider.

Limited parallel execution
So far, promises have not disappointed our expectations. We were able to greatly 
improve our code for both serial and parallel execution. Now, with limited parallel 
execution, things should not be that different, considering that this flow is just a 
combination of serial and parallel execution.

In this section, we will go straight to implementing a solution that allows us to 
globally limit the concurrency of our web spider tasks. In other words, we are going 
to implement our solution in a class that we can use to instantiate objects that we can 
pass around to different functions of the same application. If you are just interested 
in a simple solution to locally limit the parallel execution of a set of tasks, you can 
still apply the same principles that we will see in this section to implement a special 
asynchronous version of Array.map(). We leave this to you as an exercise; you can 
find more details and hints at the end of this chapter.

For a ready-to-use, production-ready implementation of a 
map() function supporting promises and limited concurrency, 
you can rely on the p-map package. Find out more at 
nodejsdp.link/p-map.

http://nodejsdp.link/p-map
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Implementing the TaskQueue class with promises
To globally limit the concurrency of our spider download tasks, we are going to 
reuse the TaskQueue class we implemented in the previous chapter. Let's start with 
the next() method, where we trigger the execution of a set of tasks until we reach 
the concurrency limit:

next () {
  while (this.running < this.concurrency && this.queue.length) {
    const task = this.queue.shift()
    task().finally(() => {
      this.running--
      this.next()
    })
    this.running++
  }
}

The core change in the next() method is where we invoke task(). In fact, now we 
expect that task() returns a Promise, so all we have to do is invoke finally() on 
that Promise so we can reset the count of running tasks if it either fulfills or rejects.

Now, we implement a new method called runTask(). This method is responsible 
for queueing a special wrapper function and also for returning a newly built Promise. 
Such a Promise will essentially forward the result (fulfillment or rejection) of the 
Promise eventually returned by task(). Let's see what this method looks like:

runTask (task) {
  return new Promise((resolve, reject) => {                // (1)
    this.queue.push(() => {                                // (2)
      return task().then(resolve, reject)                  // (4)
    })
    process.nextTick(this.next.bind(this))                 // (3)
  })
}

In the method we have just seen:

1. We create a new Promise using its constructor.
2. We add a special wrapper function to the tasks queue. This function 

is going to be executed at a later next() run, when there are enough 
concurrency slots left.
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3. We invoke next() to trigger a new set of tasks to be run. We defer this to a 
subsequent run of the event loop to guarantee that task is always invoked 
asynchronously with respect to when runTask() is invoked. This prevents the 
problems we described in Chapter 3, Callbacks and Events (for example, Zalgo). 
In fact, we can notice that in the next() method there is another invocation of 
next() itself, in the finally() handler, that is always asynchronous.

4. When the wrapper function we queued is finally run, we execute the task we 
have received as the input, and we forward its results—fulfilment value or 
rejection reason—to the outer Promise, the one we return from the runTask() 
method.

With this, we have completed the implementation of our new TaskQueue class using 
promises. Next, we'll use this new version of the TaskQueue class to implement 
version 4 of our web spider.

Updating the web spider
Now it's time to adapt our web spider to implement a limited parallel execution flow 
using the TaskQueue class we have just created.

First, we need to split the spider() function into two functions, one simply 
initializing a new TaskQueue object and another actually executing the spidering 
task, which we will call spiderTask(). Then, we need to update the spiderLinks() 
function to invoke the newly created spiderTask() function and forward the task 
queue instance received as an input. Let's see what all this looks like:

function spiderLinks (currentUrl, content, nesting, queue) {
  if (nesting === 0) {
    return Promise.resolve()
  }

  const links = getPageLinks(currentUrl, content)
  const promises = links
    .map(link => spiderTask(link, nesting - 1, queue))

  return Promise.all(promises)                             // (2)
}

const spidering = new Set()
function spiderTask (url, nesting, queue) {
  if (spidering.has(url)) {
    return Promise.resolve()
  }
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  spidering.add(url)

  const filename = urlToFilename(url)

  return queue
    .runTask(() => {                                       // (1)
      return fsPromises.readFile(filename, 'utf8')
        .catch((err) => {
          if (err.code !== 'ENOENT') {
            throw err
          }

          // The file doesn't exists, so let's download it
          return download(url, filename)
        })
    })
    .then(content => spiderLinks(url, content, nesting, queue))
}

export function spider (url, nesting, concurrency) {
  const queue = new TaskQueue(concurrency)
  return spiderTask(url, nesting, queue)
}

The crucial instruction in the code we have just seen is where we invoke queue.
runTask() (1). Here, the task that we are queuing (and therefore limiting) comprises 
just the retrieval of the contents of the URL from either the local filesystem or 
the remote URL location. Only after this task has been run by the queue can 
we continue to spider the links of the webpage. Note that we are intentionally 
keeping spiderLinks() outside of the task that we want to limit. This is because 
spiderLinks() can trigger more spiderTasks() and that would create a deadlock if 
the depth of the spidering process is higher than the concurrency limit of the queue.

We can also notice how in spiderLinks() we simply continue to use Promise.
all() (2) to download all the links of a webpage in parallel. This is because it's the 
responsibility of our queue to limit the concurrency of the tasks.

In production code, you can use the package p-limit (available 
at nodejsdp.link/p-limit) to limit the concurrency of a set of 
tasks. The package essentially implements the pattern we have just 
shown but wrapped in a slightly different API.

http://nodejsdp.link/p-limit
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This concludes our exploration of JavaScript promises. Next, we are going to learn 
about the async/await pair, which will completely revolutionize the way we deal 
with asynchronous code.

Async/await
As we have just seen, promises are a quantum leap ahead of callbacks. They allow 
us to write clean and readable asynchronous code and provide a set of safeguards 
that can only be achieved with boilerplate code when working with callback-based 
asynchronous code. However, promises are still suboptimal when it comes to writing 
sequential asynchronous code. The Promise chain is indeed much better than having 
callback hell, but still, we have to invoke a then() and create a new function for each 
task in the chain. This is still too much for a control flow that is definitely the most 
commonly used in everyday programming. JavaScript needed a proper way to deal 
with the ubiquitous asynchronous sequential execution flow, and the answer arrived 
with the introduction in the ECMAScript standard of async functions and the await 
expression (async/await for short).

The async/await dichotomy allows us to write functions that appear to block at 
each asynchronous operation, waiting for the results before continuing with the 
following statement. As we will see, any asynchronous code using async/await has 
a readability comparable to traditional synchronous code.

Today, async/await is the recommended construct for dealing with asynchronous 
code in both Node.js and JavaScript. However, async/await does not replace all that 
we have learned so far about asynchronous control flow patterns; on the contrary, as 
we will see, async/await piggybacks heavily onto promises.

Async functions and the await expression
An async function is a special type of function in which it's possible to use the 
await expression to "pause" the execution on a given Promise until it resolves. 
Let's consider a simple example and use the delay() function we implemented in 
the Creating a promise subsection. The Promise returned by delay() resolves with 
the current date as the value after the given number of milliseconds. Let's use this 
function with the async/await pair:

async function playingWithDelays () {
  console.log('Delaying...', new Date())

  const dateAfterOneSecond = await delay(1000)
  console.log(dateAfterOneSecond)
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  const dateAfterThreeSeconds = await delay(3000)
  console.log(dateAfterThreeSeconds)

  return 'done'
}

As we can see from the previous function, async/await seems to work like magic. 
The code doesn't even look like it contains any asynchronous operation. However, 
don't be mistaken; this function does not run synchronously (they are called async 
functions for a reason!). At each await expression, the execution of the function 
is put on hold, its state saved, and the control returned to the event loop. Once 
the Promise that has been awaited resolves, the control is given back to the async 
function, returning the fulfilment value of the Promise.

Let's now see how we can invoke our new async function:

playingWithDelays()
  .then(result => {
    console.log(`After 4 seconds: ${result}`)
  })

From the preceding code, it's clear that async functions can be invoked just like 
any other function. However, the most observant of you may have already spotted 
another important property of async functions: they always return a Promise. It's 
like if the return value of an async function was passed to Promise.resolve() and 
then returned to the caller.

From this first encounter with async/await, we can see how dominant promises 
still are in our discussion. In fact, we can consider async/await just a syntactic 
sugar for a simpler consumption of promises. As we will see, all the asynchronous 
control flow patterns with async/await use promises and their API for most of the 
heavy-lifting operations.

The await expression works with any value, not just promises. If a 
value other than a Promise is provided, then its behavior is similar 
to awaiting a value that it first passed to Promise.resolve().

Invoking an async function is instantaneous, like any other 
asynchronous operation. In other words, async functions return 
a Promise synchronously. That Promise will then eventually 
settle based on the result or error produced by the function.
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Error handling with async/await
Async/await doesn't just improve the readability of asynchronous code under 
standard conditions, but it also helps when handling errors. In fact, one of the 
biggest gains of async/await is the ability to normalize the behavior of the try...
catch block, to make it work seamlessly with both synchronous throws and 
asynchronous Promise rejections. Let's demonstrate that with an example.

A unified try...catch experience
Let's define a function that returns a Promise that rejects with an error after a given 
number of milliseconds. This is very similar to the delay() function that we already 
know very well:

function delayError (milliseconds) {
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      reject(new Error(`Error after ${milliseconds}ms`))
    }, milliseconds)
  })
}

Next, let's implement an async function that can throw an error synchronously 
or await a Promise that will reject. This function demonstrates how both the 
synchronous throw and the Promise rejection are caught by the same catch block:

async function playingWithErrors (throwSyncError) {
  try {
    if (throwSyncError) {
      throw new Error('This is a synchronous error')
    }
    await delayError(1000)
  } catch (err) {
    console.error(`We have an error: ${err.message}`)
  } finally {
    console.log('Done')
  }
}

Now, invoking the function like this:

playingWithErrors(true)
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Will print to the console the following:

We have an error: This is a synchronous error
Done

While invoking the function with false as the input, like this:

playingWithErrors(false)

Will produce the following output:

We have an error: Error after 1000ms
Done

If we remember how we had to deal with errors in Chapter 4, Asynchronous Control 
Flow Patterns with Callbacks, we will surely appreciate the giant improvements 
introduced by both promises and async/await. Now, error handling is just as it 
should be: simple, readable, and most importantly, supporting both synchronous 
and asynchronous errors.

The "return" versus "return await" trap
One common antipattern when dealing with errors with async/await is returning 
a Promise that rejects to the caller and expecting the error to be caught by the local 
try...catch block of the function that is returning the Promise.

For example, consider the following code:

async function errorNotCaught () {
  try {
    return delayError(1000)
  } catch (err) {
    console.error('Error caught by the async function: ' +
      err.message)
  }
}

errorNotCaught()
  .catch(err => console.error('Error caught by the caller: ' +
    err.message))
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The Promise returned by delayError() is not awaited locally, which means that it's 
returned as it is to the caller. As a consequence, the local catch block will never be 
invoked. In fact, the previous code will output:

Error caught by the caller: Error after 1000ms

If our intention is catching locally any error generated by the asynchronous 
operation that produces the value that we want to return to the caller, then we have 
to use the await expression on that Promise before we return the value to the caller. 
The following code demonstrates this:

async function errorCaught () {
  try {
    return await delayError(1000)
  } catch (err) {
    console.error('Error caught by the async function: ' +
      err.message) }
}

errorCaught()
  .catch(err => console.error('Error caught by the caller: ' +
    err.message))

All we did was add an await after the return keyword. This is enough to cause 
the async function to "deal" with the Promise locally and therefore also catch any 
rejection locally. As a confirmation, when we run the previous code, we should see 
the following output:

Error caught by the async function: Error after 1000ms

Sequential execution and iteration
Our exploration of control flow patterns with async/await starts with sequential 
execution and iteration. We already mentioned a few times that the core strength of 
async/await lies in its ability to make asynchronous serial execution easy to write 
and straightforward to read. This was already apparent in all the code samples we 
have written so far; however, it will become even more obvious now that we will 
start converting our web spider version 2. Async/await is so simple to use and 
understand that there are really no patterns here to study. We will get straight to 
the code, without any preamble.
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So, let's start with the download() function of our web spider; this is how it looks 
with async/await:

async function download (url, filename) {
  console.log(`Downloading ${url}`)
  const { text: content } = await superagent.get(url)
  await mkdirpPromises(dirname(filename))
  await fsPromises.writeFile(filename, content)
  console.log(`Downloaded and saved: ${url}`)
  return content
}

Let's appreciate for a moment how simple and compact the download() function 
has become. Let's just consider that the same functionality was implemented with 
callbacks in two different functions using a total of 19 lines of code. Now we just 
have seven. Plus, the code is now completely flat, with no nesting at all. This tells us 
a lot about the enormous positive impact that async/await has on our code.

Now, let's see how we can iterate asynchronously over an array using async/await. 
This is exemplified in the spiderLinks() function:

async function spiderLinks (currentUrl, content, nesting) {
  if (nesting === 0) {
    return
  }
  const links = getPageLinks(currentUrl, content)
  for (const link of links) {
    await spider(link, nesting - 1)
  }
}

Even here there is no pattern to learn. We just have a simple iteration over a list of 
links and for each item, we await on the Promise returned by spider().

The next code fragment shows the spider() function implemented using async/
await. The aspect to notice here is how errors are easily dealt with using just a try...
catch statement, making everything easier to read:

export async function spider (url, nesting) {
  const filename = urlToFilename(url)
  let content
  try {
    content = await fsPromises.readFile(filename, 'utf8')
  } catch (err) {
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    if (err.code !== 'ENOENT') {
      throw err
    }

    content = await download(url, filename)
  }

  return spiderLinks(url, content, nesting)
}

And with the spider() function, we have completed the conversion of our web 
spider application to async/await. As you can see, it has been quite a smooth process 
but the results are quite impressive.

Antipattern – using async/await with Array.forEach 
for serial execution
It's worth mentioning that there is a common antipattern whereby developers will 
try to use Array.forEach() or Array.map() to implement a sequential asynchronous 
iteration with async/await, which, of course, won't work as expected.

To see why, let's take a look at the following alternate implementation (which is 
wrong!) of the asynchronous iteration in the spiderLinks() function:

links.forEach(async function iteration(link) {
  await spider(link, nesting - 1)
})

In the previous code, the iteration function is invoked once for each element of 
the links array. Then, in the iteration function, we use the await expression on 
the Promise returned by spider(). However, the Promise returned by the iteration 
function is just ignored by forEach(). The result is that all the spider() functions 
are invoked in the same round of the event loop, which means they are started in 
parallel, and the execution continues immediately after invoking forEach(), without 
waiting for all the spider() operations to complete.

Parallel execution
There are mainly two ways to run a set of tasks in parallel using async/await; one 
purely uses the await expression and the other relies on Promise.all(). They are 
both very simple to implement; however, be advised that the method relying on 
Promise.all() is the recommended (and optimal) one to use.
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Let's see an example of both. Let's consider the spiderLinks() function of our web 
spider. If we wanted to purely use the await expression to implement an unlimited 
parallel asynchronous execution flow, we would do it with some code like the 
following:

async function spiderLinks (currentUrl, content, nesting) {
  if (nesting === 0) {
    return
  }
  const links = getPageLinks(currentUrl, content)
  const promises = links.map(link => spider(link, nesting - 1))
  for (const promise of promises) {
    await promise
  }
}

That's it—very simple. In the previous code, we first start all the spider() tasks in 
parallel, collecting their promises with a map(). Then, we loop, and we await on each 
one of those promises.

At first, it seems neat and functional; however, it has a small undesired effect. If a 
Promise in the array rejects, we have to wait for all the preceding promises in the 
array to resolve before the Promise returned by spiderLinks() will also reject. This is 
not optimal in most situations, as we usually want to know if an operation has failed 
as soon as possible. Luckily, we already have a built-in function that behaves exactly 
the way we want, and that's Promise.all(). In fact, Promise.all() will reject as soon 
as any of the promises provided in the input array reject. Therefore, we can simply 
rely on this method even for all our async/await code. And, since Promise.all() 
returns just another Promise, we can simply invoke an await on it to get the results 
from multiple asynchronous operations. The following code shows an example:

const results = await Promise.all(promises)

So, to wrap up, our recommended implementation of the spiderLinks() function 
with parallel execution and async/await will look almost identical to that using 
promises. The only visible difference is the fact that we are now using an async 
function, which always returns a Promise:

async function spiderLinks (currentUrl, content, nesting) {
  if (nesting === 0) {
    return
  }

  const links = getPageLinks(currentUrl, content)
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  const promises = links.map(link => spider(link, nesting - 1))

  return Promise.all(promises)
}

What we just learned about parallel execution and async/await simply reiterates the 
fact that async/await is inseparable from promises. Most of the utilities that work 
with promises will also seamlessly work with async/await and we should never 
hesitate to take advantage of them in our async functions.

Limited parallel execution
To implement a limited parallel execution pattern with async/await, we can simply 
reuse the TaskQueue class that we created in the Limited parallel execution subsection 
within the Promises section. We can either use it as it is or convert its internals to 
async/await. Converting the TaskQueue class to async/await is a trivial operation 
and we'll leave this to you as an exercise. Either way, the TaskQueue external interface 
shouldn't change; both implementations will have a runTask() method that returns a 
Promise that settles when the task has been run by the queue.

Starting from this assumption, converting the web spider v4 from promises to 
async/await is also a trivial task and we won't show all the steps here as we 
wouldn't be learning anything new. Instead, what we'll do in this section is examine 
a third variation of the TaskQueue class that uses async/await and a producer-
consumer approach.

The general idea to apply this approach to our problem goes as follows:

• On one side, we have an unknown set of producers adding tasks into a queue.
• On the other side, we have a predefined set of consumers, responsible for 

extracting and executing the tasks from the queue, one at a time.

The following diagram should help us understand the setup:

Figure 5.2: Using the Producer-Consumer pattern to implement limited parallel execution
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The number of consumers will determine the concurrency with which the tasks will 
be executed. The challenge here is to put the consumers to "sleep" when the queue 
is empty and "wake them up" again when there are new tasks to run. But we are 
lucky, since Node.js is single-threaded, so putting a task to "sleep" just means giving 
back control to the event loop, while "resuming" a task is equivalent to invoking 
a callback.

With this in mind, let's then take a look at some code. We will create a new class 
called TaskQueuePC with a public interface similar to one of the TaskQueue classes we 
implemented previously in this chapter. Taking a top-down approach, let's see how 
we can implement the constructor:

export class TaskQueuePC {
  constructor (concurrency) {
    this.taskQueue = []
    this.consumerQueue = []

    // spawn consumers
    for (let i = 0; i < concurrency; i++) {
      this.consumer()
    }
  }

  // ...

First of all, we can notice that we now have two queues, one to hold our tasks 
(taskQueue) and the other to store our sleeping consumers (consumerQueue). It 
will be clearer in a while how these queues will be used. In the second part of our 
constructor, we spawn as many consumers as the concurrency we want to attain. 
Let's see what a consumer looks like:

async consumer () {
  while (true) {                                           // (1)
    try {
      const task = await this.getNextTask()                // (2)
      await task()                                         // (3)
    } catch (err) {
      console.error(err)                                   // (4)
    }
  }
}
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Our consumer is an infinite while loop (1). At each iteration, we try to retrieve a 
new task from the queue using getNextTask() (2). As we will see, this will cause 
the current consumer to sleep if the queue is empty. When a new task is eventually 
available, we just execute it (3). Any error thrown from the above operation should 
not cause the consumer to stop, so we simply log it (4) and continue with the next 
iteration.

With the next code fragment, we should start to get an idea of what's going on. Let's 
take a look at the implementation of getNextTask():

async getNextTask () {
  return new Promise((resolve) => {
    if (this.taskQueue.length !== 0) {
      return resolve(this.taskQueue.shift())               // (1)
    }

    this.consumerQueue.push(resolve)                       // (2)
  })
}

The getNextTask() method returns a new Promise that resolves with the first task 
in the queue if the queue is not empty. The first task is removed from taskQueue 
and used as an argument to invoke resolve (1). If the queue is instead empty, we 
postpone the resolution of the Promise by queuing the resolve callback into the 
consumerQueue. This will effectively put the Promise—and the consumer that is 
awaiting the Promise—to sleep.

Now comes the "gluing" part of the whole TaskQueuePC class, which corresponds to 
the producer side of the algorithm. That's implemented in the runTask() method:

runTask (task) {
  return new Promise((resolve, reject) => {
    const taskWrapper = () => {                            // (1)
      const taskPromise = task()

By the look of it, it may seem that each consumer in TaskQueuePC 
is an actual thread. In fact, our consumer() function has an infinite 
loop and it can "pause" until awakened by some other "thread." 
In reality, we should not forget that each consumer is an async 
function, which is nothing more than a nice syntax built around 
promises and callbacks. The while loop may seem to be spinning 
continuously consuming CPU cycles, but under the hood, the loop 
is more similar to an asynchronous recursion than a traditional 
while loop.
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      taskPromise.then(resolve, reject)
      return taskPromise
    }

    if (this.consumerQueue.length !== 0) {                 // (2)
      const consumer = this.consumerQueue.shift()
      consumer(taskWrapper)
    } else {                                               // (3)
      this.taskQueue.push(taskWrapper)
    }
  })
}

First, we create a taskWrapper function (1) that, when executed, has the responsibility 
for running the input task and forwarding the status of the Promise returned by 
task() to the outer Promise returned by runTask(). Next, if the consumerQueue is not 
empty (2), it means that there is at least one consumer that is asleep, waiting for new 
tasks to run. We then extract the first consumer from the queue (remember, that's 
essentially the resolve callback of the Promise returned by getNextTask()) and we 
invoke it immediately by passing our taskWrapper. If, instead, all the consumers are 
already busy (3), we push taskWrapper into the taskQueue.

This concludes the implementation of our TaskQueuePC class. The public interface of 
the TaskQueuePC class is identical to that of the TaskQueue class that we implemented 
in the Promises section, so migrating the code of our web spider to the new algorithm 
will be a trivial task.

This also concludes our exploration of the async/await construct. But, before we 
wrap up the chapter, we'll dive into a subtle problem affecting promises.

The problem with infinite recursive 
promise resolution chains
At this point in the chapter, you should have a strong understanding of how 
promises work and how to use them to implement the most common control flow 
constructs. This is therefore the right time to discuss an advanced topic that every 
professional Node.js developer should know and understand. This advanced topic 
is about a memory leak caused by infinite Promise resolution chains. The bug seems 
to affect the actual Promises/A+ specification, so no compliant implementation 
is immune.
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It is quite common in programming to have tasks that don't have a predefined 
ending or take as an input a potentially infinite array of data. We can include in 
this category things like the encoding/decoding of live audio/video streams, the 
processing of live cryptocurrency market data, and the monitoring of IoT sensors. 
But we can have much more trivial situations than those, for example, when making 
heavy use of functional programming.

To take a simple example, let's consider the following code, which defines a simple 
infinite operation using promises:

function leakingLoop () {
  return delay(1)
    .then(() => {
      console.log(`Tick ${Date.now()}`)
      return leakingLoop()
    })
}

The leakingLoop() function that we just defined uses the delay() function (which 
we created at the beginning of this chapter) to simulate an asynchronous operation. 
When the given number of milliseconds has elapsed, we print the current timestamp 
and we invoke leakingLoop() recursively to start the operation over again. The 
interesting part is that the Promise returned by leakingLoop() never resolves 
because its status depends on the next invocation of leakingLoop(), which in turn 
depends on the next invocation of leakingLoop() and so on. This situation creates 
a chain of promises that never settle, and it will cause a memory leak in Promise 
implementations that strictly follow the Promises/A+ specification, including 
JavaScript ES6 promises.

To demonstrate the leak, we can try running the leakingLoop() function many times 
to accentuate the effects of the leak:

for (let i = 0; i < 1e6; i++) {
  leakingLoop()
}

Then we can take a look at the memory footprint of the process using our favorite 
process inspector and notice how it grows indefinitely until (after a few minutes) the 
process crashes entirely.

The solution to the problem is to break the chain of Promise resolution. We can do 
that by making sure that the status of the Promise returned by leakingLoop() does 
not depend on the promise returned by the next invocation of leakingLoop(). 
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We can ensure that by simply removing a return instruction:

function nonLeakingLoop () {
  delay(1)
    .then(() => {
      console.log(`Tick ${Date.now()}`)
      nonLeakingLoop()
    })
}

Now, if we use this new function in our sample program, we should see that the 
memory footprint of the process will go up and down, following the schedule of the 
various runs of the garbage collector, which means that there is no memory leak.

However, the solution we have just proposed radically changes the behavior of the 
original leakingLoop() function. In particular, this new function won't propagate 
eventual errors produced deeply within the recursion, since there is no link between 
the status of the various promises. This inconvenience may be mitigated by adding 
some extra logging within the function. But sometimes the new behavior itself may 
not be an option. So, a possible solution involves wrapping the recursive function 
with a Promise constructor, such as in the following code sample:

function nonLeakingLoopWithErrors () {
  return new Promise((resolve, reject) => {
    (function internalLoop () {
      delay(1)
        .then(() => {
          console.log(`Tick ${Date.now()}`)
          internalLoop()
        })
        .catch(err => {
          reject(err)
        })
    })()
  })
}

In this case, we still don't have any link between the promises created at 
the various stages of the recursion; however, the Promise returned by the 
nonLeakingLoopWithErrors() function will still reject if any asynchronous 
operation fails, no matter at what depth in the recursion that happens.
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A third solution makes use of async/await. In fact, with async/await we can simulate 
a recursive Promise chain with a simple infinite while loop, such as the following:

async function nonLeakingLoopAsync () {
  while (true) {
    await delay(1)
    console.log(`Tick ${Date.now()}`)
  }
}

In this function too, we preserve the behavior of the original recursive function, 
whereby any error thrown by the asynchronous task (in this case delay()) is 
propagated to the original function caller.

We should note that we would still have a memory leak if instead of a while loop, we 
chose to implement the async/await solution with an actual asynchronous recursive 
step, such as the following:

async function leakingLoopAsync () {
  await delay(1)
  console.log(`Tick ${Date.now()}`)
  return leakingLoopAsync()
}

The code above would still create an infinite chain of promises that never resolve and 
therefore it's still affected by the same memory leak issue of the equivalent promise-
based implementation.

So, the next time you are building an infinite promise chain, remember to double-
check if there are the conditions for creating a memory leak, as you learned in this 
section. If that's the case, you can apply one of the proposed solutions, making sure 
to choose the one that is best suited to your context.

If you are interested in knowing more about the memory leak 
discussed in this section, you can check the related Node.js issue at 
nodejsdp.link/node-6673 or the related issue on the Promises/
A+ GitHub repository at nodejsdp.link/promisesaplus-
memleak.

http://nodejsdp.link/node-6673
http://nodejsdp.link/promisesaplus-memleak
http://nodejsdp.link/promisesaplus-memleak
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Summary
In this chapter, we've learned how to use promises and async/await syntax to write 
asynchronous code that is more concise, cleaner, and easier to read.

As we've seen, promises and async/await greatly simplify the serial execution flow, 
which is the most commonly used control flow. In fact, with async/await, writing a 
sequence of asynchronous operations is almost as easy as writing synchronous code. 
Running some asynchronous operations in parallel is also very easy thanks to the 
Promise.all() utility.

But the advantages of using promises and async/await don't stop here. We've 
learned that they provide a transparent shield against tricky situations such as code 
with mixed synchronous/asynchronous behavior (a.k.a. Zalgo, which we discussed 
in Chapter 3, Callbacks and Events). On top of that, error management with promises 
and async/await is much more intuitive and leaves less room for mistakes (such 
as forgetting to forward errors, which is a serious source of bugs in code using 
callbacks).

In terms of patterns and techniques, we should definitely keep in mind the chain 
of promises (to run tasks in series), promisification, and the Producer-Consumer 
pattern. Also, pay attention when using Array.forEach() with async/await (you are 
probably doing it wrong) and keep in mind the difference between a simple return 
and return await in async functions.

Callbacks are still widely used in the Node.js and JavaScript world. We find them in 
legacy APIs, in code that interacts with native libraries, or when there is the need to 
micro-optimize particular routines. That's why they are still relevant to us, Node.js 
developers; however, for most of our day-to-day programming tasks, promises and 
async/await are a huge step ahead compared to callbacks and therefore they are now 
the de facto standard for dealing with asynchronous code in Node.js. That's why we 
will be using promises and async/await throughout the rest of the book too to write 
our asynchronous code.

In the next chapter, we will explore another fascinating topic relative to 
asynchronous code execution, which is also another fundamental building 
block in the whole Node.js ecosystem, that is, streams.
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Exercises
• 5.1 Dissecting Promise.all(): Implement your own version of Promise.

all() leveraging promises, async/await, or a combination of the two. 
The function must be functionally equivalent to its original counterpart.

• 5.2 TaskQueue with promises: Migrate the TaskQueue class internals from 
promises to async/await where possible. Hint: you won't be able to use 
async/await everywhere.

• 5.3 Producer-consumer with promises: Update the TaskQueuePC class 
internal methods so that they use just promises, removing any use of the 
async/await syntax. Hint: the infinite loop must become an asynchronous 
recursion. Beware of the recursive Promise resolution memory leak!

• 5.4 An asynchronous map(): Implement a parallel asynchronous version 
of Array.map() that supports promises and a concurrency limit. The 
function should not directly leverage the TaskQueue or TaskQueuePC 
classes we presented in this chapter, but it can use the underlying patterns. 
The function, which we will define as mapAsync(iterable, callback, 
concurrency), will accept the following as inputs:

• An iterable, such as an array.
• A callback, which will receive as the input each item of the iterable 

(exactly like in the original Array.map()) and can return either 
a Promise or a simple value.

• A concurrency, which defines how many items in the iterable can 
be processed by callback in parallel at each given time.
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6
Coding with Streams

Streams are one of the most important components and patterns of Node.js. There 
is a motto in the community that goes, "stream all the things!", and this alone should 
be enough to describe the role of streams in Node.js. Dominic Tarr, a top contributor 
to the Node.js community, defines streams as "Node's best and most misunderstood 
idea." There are different reasons that make Node.js streams so attractive; again, it's 
not just related to technical properties, such as performance or efficiency, but it's 
more about their elegance and the way they fit perfectly into the Node.js philosophy.

This chapter aims to provide a complete understanding of Node.js streams. The first 
half of this chapter serves as an introduction to the main ideas, the terminology, 
and the libraries behind Node.js streams. In the second half, we will cover more 
advanced topics and, most importantly, we will explore useful streaming patterns 
that can make your code more elegant and effective in many circumstances.

In this chapter, you will learn about the following topics:

• Why streams are so important in Node.js
• Understanding, using, and creating streams
• Streams as a programming paradigm: leveraging their power in many 

different contexts and not just for I/O
• Streaming patterns and connecting streams together in different 

configurations

Without further ado, let's discover together why streams are one of the cornerstones 
of Node.js.
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Discovering the importance of streams
In an event-based platform such as Node.js, the most efficient way to handle I/O is 
in real time, consuming the input as soon as it is available and sending the output as 
soon as the application produces it.

In this section, we will give you an initial introduction to Node.js streams and their 
strengths. Please bear in mind that this is only an overview, as a more detailed 
analysis on how to use and compose streams will follow later in this chapter.

Buffering versus streaming
Almost all the asynchronous APIs that we've seen so far in this book work using 
buffer mode. For an input operation, buffer mode causes all the data coming from 
a resource to be collected into a buffer until the operation is completed; it is then 
passed back to the caller as one single blob of data. The following diagram shows a 
visual example of this paradigm:

Figure 6.1: Buffering
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In Figure 6.1, we can see that, at time t1, some data is received from the resource and 
saved into the buffer. At time t2, another data chunk is received—the final one—
which completes the read operation, so that, at t3, the entire buffer is sent to the 
consumer.

On the other side, streams allow us to process the data as soon as it arrives from the 
resource. This is shown in the following diagram:

Figure 6.2: Streaming

This time, Figure 6.2 shows you that as soon as each new chunk of data is received 
from the resource, it is immediately passed to the consumer, who now has the 
chance to process it straight away, without waiting for all the data to be collected 
in the buffer.

But what are the differences between these two approaches? Purely from an 
efficiency perspective, streams can be more efficient in terms of both space (memory 
usage) and time (computation clock time). However, Node.js streams have another 
important advantage: composability. Let's now see what impact these properties 
have on the way we design and write our applications.

Spatial efficiency
First of all, streams allow us to do things that would not be possible by buffering 
data and processing it all at once. For example, consider the case in which we have 
to read a very big file, let's say, in the order of hundreds of megabytes or even 
gigabytes. Clearly, using an API that returns a big buffer when the file is completely 
read is not a good idea. Imagine reading a few of these big files concurrently; our 
application would easily run out of memory. Besides that, buffers in V8 are limited 
in size. You cannot allocate more than a few gigabytes of data, so we may hit a wall 
way before running out of physical memory.
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Gzipping using a buffered API
To make a concrete example, let's consider a simple command-line application that 
compresses a file using the GZIP format. Using a buffered API, such an application 
will look like the following in Node.js (error handling is omitted for brevity):

import { promises as fs } from 'fs'
import { gzip } from 'zlib'
import { promisify } from 'util'
const gzipPromise = promisify(gzip)

const filename = process.argv[2]

async function main () {
  const data = await fs.readFile(filename)
  const gzippedData = await gzipPromise(data)
  await fs.writeFile(`${filename}.gz`, gzippedData)
  console.log('File successfully compressed')
}

main()

Now, we can try to put the preceding code in a file named gzip-buffer.js and then 
run it with the following command:

node gzip-buffer.js <path to file>

If we choose a file that is big enough (for instance, about 8 GB), we will most likely 
receive an error message saying that the file that we are trying to read is bigger than 
the maximum allowed buffer size:

RangeError [ERR_FS_FILE_TOO_LARGE]: File size (8130792448) is greater 
than possible Buffer: 2147483647 bytes

That's exactly what we expected, and it's a symptom of the fact that we are using the 
wrong approach.

The actual maximum size of a buffer changes across platforms and 
versions of Node.js. If you are curious to find out what's the limit 
in bytes in a given platform, you can run this code:

import buffer from 'buffer'
console.log(buffer.constansts.MAX_LENGTH)
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Gzipping using streams
The simplest way we have to fix our Gzip application and make it work with big 
files is to use a streaming API. Let's see how this can be achieved. Let's write a new 
module with the following code:

// gzip-stream.js
import { createReadStream, createWriteStream } from 'fs'
import { createGzip } from 'zlib'

const filename = process.argv[2]

createReadStream(filename)
  .pipe(createGzip())
  .pipe(createWriteStream(`${filename}.gz`))
  .on('finish', () => console.log('File successfully compressed'))

"Is that it?" you may ask. Yes! As we said, streams are amazing because of their 
interface and composability, thus allowing clean, elegant, and concise code. We will 
see this in a while in more detail, but for now, the important thing to realize is that 
the program will run smoothly against files of any size and with constant memory 
utilization. Try it yourself (but consider that compressing a big file may take a while).

Time efficiency
Let's now consider the case of an application that compresses a file and uploads it to 
a remote HTTP server, which, in turn, decompresses it and saves it on the filesystem. 
If the client component of our application was implemented using a buffered API, 
the upload would start only when the entire file had been read and compressed. 
On the other hand, the decompression would start on the server only when all the 
data had been received. A better solution to achieve the same result involves the 
use of streams. On the client machine, streams allow us to compress and send the 
data chunks as soon as they are read from the filesystem, whereas on the server, 
they allow us to decompress every chunk as soon as it is received from the remote 
peer. Let's demonstrate this by building the application that we mentioned earlier, 
starting from the server side.

Note that, in the previous example, we omitted error handling 
for brevity. We will discuss the nuances of proper error handling 
with streams later in this chapter. Until then, be aware that most 
examples will be lacking proper error handling.
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Let's create a module named gzip-receive.js containing the following code:

import { createServer } from 'http'
import { createWriteStream } from 'fs'
import { createGunzip } from 'zlib'
import { basename, join } from 'path'

const server = createServer((req, res) => {
  const filename = basename(req.headers['x-filename'])
  const destFilename = join('received_files', filename)
  console.log(`File request received: ${filename}`)
  req
    .pipe(createGunzip())
    .pipe(createWriteStream(destFilename))
    .on('finish', () => {
      res.writeHead(201, { 'Content-Type': 'text/plain' })
      res.end('OK\n')
      console.log(`File saved: ${destFilename}`)
    })
})

server.listen(3000, () => console.log('Listening on http://
localhost:3000'))

In the preceding example, req is a stream object that is used by the server to receive 
the request data in chunks from the network. Thanks to Node.js streams, every 
chunk of data is decompressed and saved to disk as soon as it is received.

 You might have noticed that, in our server application, we are 
using basename() to remove any possible path from the name of 
the received file. This is a security best practice as we want to make 
sure that the received file is saved exactly within our received_
files folder. Without basename(), a malicious user could craft 
a request that could effectively override system files and inject 
malicious code into the server machine. Imagine, for instance, what 
happens if filename is set to /usr/bin/node? In such a case, the 
attacker could effectively replace our Node.js interpreter with any 
arbitrary file.
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The client side of our application will go into a module named gzip-send.js, and it 
looks as follows:

import { request } from 'http'
import { createGzip } from 'zlib'
import { createReadStream } from 'fs'
import { basename } from 'path'

const filename = process.argv[2]
const serverHost = process.argv[3]

const httpRequestOptions = {
  hostname: serverHost,
  port: 3000,
  path: '/',
  method: 'PUT',
  headers: {
    'Content-Type': 'application/octet-stream',
    'Content-Encoding': 'gzip',
    'X-Filename': basename(filename)
  }
}

const req = request(httpRequestOptions, (res) => {
  console.log(`Server response: ${res.statusCode}`)
})

createReadStream(filename)
  .pipe(createGzip())
  .pipe(req)
  .on('finish', () => {
    console.log('File successfully sent')
  })

In the preceding code, we are again using streams to read the data from the file, and 
then compressing and sending each chunk as soon as it is read from the filesystem.

Now, to try out the application, let's first start the server using the following 
command:

node gzip-receive.js
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Then, we can launch the client by specifying the file to send and the address of the 
server (for example, localhost):

node gzip-send.js <path to file> localhost

If we choose a file big enough, we can appreciate how the data flows from the client 
to the server. But why exactly is this paradigm—where we have flowing data—more 
efficient compared to using a buffered API? Figure 6.3 should make this concept 
easier to grasp:

Figure 6.3: Buffering and streaming compared

When a file is processed, it goes through a number of sequential stages:

1. [Client] Read from the filesystem
2. [Client] Compress the data
3. [Client] Send it to the server
4. [Server] Receive from the client
5. [Server] Decompress the data
6. [Server] Write the data to disk

To complete the processing, we have to go through each stage like in an assembly 
line, in sequence, until the end. In Figure 6.3, we can see that, using a buffered API, 
the process is entirely sequential. To compress the data, we first have to wait for the 
entire file to be read, then, to send the data, we have to wait for the entire file to be 
both read and compressed, and so on.
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Using streams, the assembly line is kicked off as soon as we receive the first chunk 
of data, without waiting for the entire file to be read. But more amazingly, when the 
next chunk of data is available, there is no need to wait for the previous set of tasks 
to be completed; instead, another assembly line is launched in parallel. This works 
perfectly because each task that we execute is asynchronous, so it can be parallelized 
by Node.js. The only constraint is that the order in which the chunks arrive in each 
stage must be preserved. The internal implementation of Node.js streams takes care 
of maintaining the order for us.

As we can see from Figure 6.3, the result of using streams is that the entire process 
takes less time, because we waste no time waiting for all the data to be read and 
processed all at once.

Composability
The code we have seen so far has already given us an overview of how streams can 
be composed thanks to the pipe() method, which allows us to connect the different 
processing units, each being responsible for one single functionality, in perfect 
Node.js style. This is possible because streams have a uniform interface, and they 
can understand each other in terms of API. The only prerequisite is that the next 
stream in the pipeline has to support the data type produced by the previous stream, 
which can be either binary, text, or even objects, as we will see later in this chapter.

To take a look at another demonstration of the power of this property, we can try 
to add an encryption layer to the gzip-send/gzip-receive application that we 
built previously.

In order to do this, we will need to apply some small changes to both our client 
and server.

Adding client-side encryption
Let's start with the client:

// ...
import { createCipheriv, randomBytes } from 'crypto'       // (1)
const filename = process.argv[2]
const serverHost = process.argv[3]
const secret = Buffer.from(process.argv[4], 'hex')         // (2)
const iv = randomBytes(16)                                 // (3)
// ...
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Let's review what we changed here:

1. First of all, we import the createCipheriv() Transform stream and the 
randomBytes() function from the crypto module.

2. We get the server's encryption secret from the command line. We expect the 
string to be passed as a hexadecimal string, so we read this value and load it 
in memory using a buffer set to hex mode.

3. Finally, we generate a random sequence of bytes that we will be using as an 
initialization vector for the file encryption.

Now, we can update the piece of code responsible for creating the HTTP request:

const httpRequestOptions = {
  hostname: serverHost,
  headers: {
    'Content-Type': 'application/octet-stream',
    'Content-Encoding': 'gzip',
    'X-Filename': basename(filename),
    'X-Initialization-Vector': iv.toString('hex')          // (1)
  }
}

// ...

const req = request(httpRequestOptions, (res) => {
  console.log(`Server response: ${res.statusCode}`)
})

createReadStream(filename)
  .pipe(createGzip())
  .pipe(createCipheriv('aes192', secret, iv))              // (2)
  .pipe(req)

// ...

The main changes here are:

1. We pass the initialization vector to the server as an HTTP header.
2. We encrypt the data, just after the Gzip phase.

That's all for the client side.
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Adding server-side decryption
Let's now refactor the server. The first thing that we need to do is import some utility 
functions from the core crypto module, which we can use to generate a random 
encryption key (the secret):

// ...
import { createDecipheriv, randomBytes } from 'crypto'
const secret = randomBytes(24)
console.log(`Generated secret: ${secret.toString('hex')}`)

The generated secret is printed to the console as a hex string so that we can share that 
with our clients.

Now, we need to update the file reception logic:

const server = createServer((req, res) => {
  const filename = basename(req.headers['x-filename'])
  const iv = Buffer.from(
    req.headers['x-initialization-vector'], 'hex')         // (1)
  const destFilename = join('received_files', filename)
  console.log(`File request received: ${filename}`)
  req
    .pipe(createDecipheriv('aes192', secret, iv))          // (2)
    .pipe(createGunzip())
    .pipe(createWriteStream(destFilename))
    // ...

Here, we are applying two changes:

1. We have to read the encryption initialization vector (nodejsdp.link/iv) sent 
by the client.

2. The first step of our streaming pipeline is now responsible for decrypting 
the incoming data using the createDecipheriv Transform stream from the 
crypto module.

With very little effort (just a few lines of code), we added an encryption layer to 
our application; we simply had to use some already available Transform streams 
(createCipheriv and createDecipheriv) and included them in the stream processing 
pipelines for the client and the server. In a similar way, we can add and combine 
other streams, as if we were playing with Lego bricks.

http://nodejsdp.link/iv
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The main advantage of this approach is reusability, but as we can see from the 
code so far, streams also enable cleaner and more modular code. For these reasons, 
streams are often used not just to deal with pure I/O, but also as a means to simplify 
and modularize the code.

Now that we have introduced streams, we are ready to explore, in a more structured 
way, the different types of streams available in Node.js.

Getting started with streams
In the previous section, we learned why streams are so powerful, but also that 
they are everywhere in Node.js, starting from its core modules. For example, we 
have seen that the fs module has createReadStream() for reading from a file and 
createWriteStream() for writing to a file, the HTTP request and response objects 
are essentially streams, the zlib module allows us to compress and decompress 
data using a streaming interface and, finally, even the crypto module exposes some 
useful streaming primitives like createCipheriv and createDecipheriv.

Now that we know why streams are so important, let's take a step back and start to 
explore them in more detail.

Anatomy of streams
Every stream in Node.js is an implementation of one of the four base abstract classes 
available in the stream core module:

• Readable

• Writable

• Duplex

• Transform

Each stream class is also an instance of EventEmitter. Streams, in fact, can produce 
several types of event, such as end when a Readable stream has finished reading, 
finish when a Writable stream has completed writing, or error when something goes 
wrong.

One reason why streams are so flexible is the fact that they can handle not just binary 
data, but almost any JavaScript value. In fact, they support two operating modes:

• Binary mode: To stream data in the form of chunks, such as buffers or strings
• Object mode: To stream data as a sequence of discrete objects (allowing us to 

use almost any JavaScript value)
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These two operating modes allow us to use streams not just for I/O, but also as a 
tool to elegantly compose processing units in a functional fashion, as we will see 
later in this chapter.

Let's start our deep dive of Node.js streams by introducing the class of Readable 
streams.

Readable streams
A Readable stream represents a source of data. In Node.js, it's implemented using 
the Readable abstract class, which is available in the stream module.

Reading from a stream
There are two approaches to receive the data from a Readable stream: non-flowing 
(or paused) and flowing. Let's analyze these modes in more detail.

The non-flowing mode
The non-flowing or paused mode is the default pattern for reading from a Readable 
stream. It involves attaching a listener to the stream for the readable event, which 
signals the availability of new data to read. Then, in a loop, we read the data 
continuously until the internal buffer is emptied. This can be done using the read() 
method, which synchronously reads from the internal buffer and returns a Buffer 
object representing the chunk of data. The read() method has the following signature:

readable.read([size])

Using this approach, the data is imperatively pulled from the stream on demand.

To show how this works, let's create a new module named read-stdin.js, which 
implements a simple program that reads from the standard input (which is also a 
Readable stream) and echoes everything back to the standard output:

process.stdin
  .on('readable', () => {
    let chunk
    console.log('New data available')
    while ((chunk = process.stdin.read()) !== null) {
      console.log(
        `Chunk read (${chunk.length} bytes): "${chunk.toString()}"`
      )
    }
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  })
  .on('end', () => console.log('End of stream'))

The read() method is a synchronous operation that pulls a data chunk from the 
internal buffers of the Readable stream. The returned chunk is, by default, a Buffer 
object if the stream is working in binary mode.

The data is read solely from within the Readable listener, which is invoked as soon 
as new data is available. The read() method returns null when there is no more data 
available in the internal buffers; in such a case, we have to wait for another readable 
event to be fired, telling us that we can read again, or wait for the end event that 
signals the end of the stream. When a stream is working in binary mode, we can also 
specify that we are interested in reading a specific amount of data by passing a size 
value to the read() method. This is particularly useful when implementing network 
protocols or when parsing specific data formats.

Now, we are ready to run the read-stdin.js module and experiment with it. 
Let's type some characters into the console and then press Enter to see the data 
echoed back into the standard output. To terminate the stream and hence generate 
a graceful end event, we need to insert an EOF (end-of-file) character (using Ctrl + Z 
on Windows or Ctrl + D on Linux and macOS).

In a Readable stream working in binary mode, we can read strings 
instead of buffers by calling setEncoding(encoding) on the 
stream, and providing a valid encoding format (for example, utf8). 
This approach is recommended when streaming UTF-8 text data 
as the stream will properly handle multibyte characters, doing the 
necessary buffering to make sure that no character ends up being 
split into separate chunks. In other words, every chunk produced 
by the stream will be a valid UTF-8 sequence of bytes.

Note that you can call setEncoding() as many times as you want 
on a Readable stream, even after you've started consuming the 
data from the stream. The encoding will be switched dynamically 
on the next available chunk. Streams are inherently binary; 
encoding is just a view over the binary data that is emitted by the 
stream.
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Flowing mode
Another way to read from a stream is by attaching a listener to the data event. This 
will switch the stream into using flowing mode, where the data is not pulled using 
read(), but instead is pushed to the data listener as soon as it arrives. For example, 
the read-stdin.js application that we created earlier will look like this using 
flowing mode:

process.stdin
  .on('data', (chunk) => {
    console.log('New data available')
    console.log(
      `Chunk read (${chunk.length} bytes): "${chunk.toString()}"`
    )
  })
  .on('end', () => console.log('End of stream'))

Flowing mode offers less flexibility to control the flow of data compared to non-
flowing mode. The default operating mode for streams is non-flowing, so to enable 
flowing mode, it's necessary to attach a listener to the data event or explicitly invoke 
the resume() method. To temporarily stop the stream from emitting data events, 
we can invoke the pause() method, causing any incoming data to be cached in the 
internal buffer. Calling pause() will switch the stream back to non-flowing mode.

We can also try to connect our program with other processes. This 
is possible using the pipe operator (|), which redirects the standard 
output of a program to the standard input of another. For example, 
we can run a command such as the following:

cat <path to a file> | node read-stdin.js

This is an amazing demonstration of how the streaming paradigm 
is a universal interface that enables our programs to communicate, 
regardless of the language they are written in.
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Async iterators
Readable streams are also async iterators; therefore, we could rewrite our 
read-stdin.js example as follows:

async function main () {
  for await (const chunk of process.stdin) {
    console.log('New data available')
    console.log(
      `Chunk read (${chunk.length} bytes): "${chunk.toString()}"`
    )
  }
  console.log('End of stream')
}

main()

We will discuss async iterators in greater detail in Chapter 9, Behavioral Design 
Patterns, so don't worry too much about the syntax in the preceding example 
for now. What's important to know is that if you need to write a function that 
consumes an entire Readable stream and returns a Promise, this syntax could 
come in very handy.

Implementing Readable streams
Now that we know how to read from a stream, the next step is to learn how to 
implement a new custom Readable stream. To do this, it's necessary to create a new 
class by inheriting the prototype Readable from the stream module. The concrete 
stream must provide an implementation of the _read() method, which has the 
following signature:

readable._read(size)

The internals of the Readable class will call the _read() method, which, in turn, will 
start to fill the internal buffer using push():

readable.push(chunk)

Please note that read() is a method called by the stream 
consumers, while _read() is a method to be implemented 
by a stream subclass and should never be called directly. The 
underscore usually indicates that the method is not public and 
should not be called directly.
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To demonstrate how to implement new Readable streams, we can try to implement 
a stream that generates random strings. Let's create a new module called 
random-stream.js that contains the code of our random string generator:

import { Readable } from 'stream'
import Chance from 'chance'

const chance = new Chance()

export class RandomStream extends Readable {
  constructor (options) {
    super(options)
    this.emittedBytes = 0
  }

  _read (size) {
    const chunk = chance.string({ length: size })          // (1)
    this.push(chunk, 'utf8')                               // (2)
    this.emittedBytes += chunk.length
    if (chance.bool({ likelihood: 5 })) {                  // (3)
      this.push(null)
    }
  }
}

At the top of the file, we load our dependencies. There is nothing special there, 
except that we are loading an npm module called chance (nodejsdp.link/chance), 
which is a library for generating all sorts of random values, from numbers to strings 
to entire sentences.

The next step is to create a new class called RandomStream, which specifies Readable 
as its parent. In the preceding code, invoking super(options) in the RandomStream 
constructor will call the constructor of the parent class, allowing us to initialize the 
stream's internal state.

If you have a constructor that only invokes super(options), 
you can remove it as you will inherit the parent constructor. Just 
be careful to remember to call super(options) every time you 
need to write a custom constructor.

http://nodejsdp.link/chance
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The possible parameters that can be passed through the options object include the 
following:

• The encoding argument, which is used to convert buffers into strings 
(defaults to null)

• A flag to enable object mode (objectMode, defaults to false)
• The upper limit of the data stored in the internal buffer, after which no more 

reading from the source should be done (highWaterMark, defaults to 16KB)

Okay, now let's explain the _read() method:

1. The method generates a random string of length equal to size using chance.
2. It pushes the string into the internal buffer. Note that since we are pushing 

strings, we also need to specify the encoding, utf8 (this is not necessary if the 
chunk is simply a binary Buffer).

3. It terminates the stream randomly, with a likelihood of 5 percent, by pushing 
null into the internal buffer to indicate an EOF situation or, in other words, 
the end of the stream.

Note that the size argument in the _read() function is an advisory parameter. It's 
good to honor it and push only the amount of data that was requested by the caller, 
even though it is not mandatory to do so.

That's it for RandomStream, we are now ready to use it. Let's see how to instantiate a 
RandomStream object and pull some data from it:

// index.js
import { RandomStream } from './random-stream.js'

const randomStream = new RandomStream()
randomStream
  .on('data', (chunk) => {
    console.log(`Chunk received (${chunk.length} bytes): ${chunk.
toString()}`)
  })

When we invoke push(), we should check whether it returns 
false. When that happens, it means that the internal buffer of the 
receiving stream has reached the highWaterMark limit and we 
should stop adding more data to it. This is called backpressure, 
and we will be discussing it in more detail in the next section of 
this chapter.
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  .on('end', () => {
    console.log(`Produced ${randomStream.emittedBytes} bytes of random 
data`)
  })

Now, everything is ready for us to try our new custom stream. Simply execute the 
index.js module as usual and watch a random set of strings flowing on the screen.

Simplified construction
For simple custom streams, we can avoid creating a custom class by using the 
Readable stream's simplified construction approach. With this approach, we only 
need to invoke new Readable(options) and pass a method named read() in the set 
of options. The read() method here has exactly the same semantic as the _read() 
method that we saw in the class extension approach. Let's rewrite our RandomStream 
using the simplified constructor approach:

import { Readable } from 'stream'
import Chance from 'chance'

const chance = new Chance()
let emittedBytes = 0

const randomStream = new Readable({
  read (size) {
    const chunk = chance.string({ length: size })
    this.push(chunk, 'utf8')
    emittedBytes += chunk.length
    if (chance.bool({ likelihood: 5 })) {
      this.push(null)
    }
  }
})

// now use randomStream instance directly ...

This approach can be particularly useful when you don't need to manage a 
complicated state and allows you to take advantage of a more succinct syntax. In the 
previous example, we created a single instance of our custom stream. If we want to 
adopt the simplified constructor approach but we need to create multiple instances 
of the custom stream, we can wrap the initialization logic in a factory function that 
we can invoke multiple times to create those instances.



Coding with Streams

[ 178 ]

Readable streams from iterables
You can easily create Readable stream instances from arrays or other iterable objects 
(that is, generators, iterators, and async iterators) using the Readable.from() helper.

In order to get accustomed with this helper, let's look at a simple example where we 
convert data from an array into a Readable stream:

import { Readable } from 'stream'

const mountains = [
  { name: 'Everest', height: 8848 },
  { name: 'K2', height: 8611 },
  { name: 'Kangchenjunga', height: 8586 },
  { name: 'Lhotse', height: 8516 },
  { name: 'Makalu', height: 8481 }
]

const mountainsStream = Readable.from(mountains)
mountainsStream.on('data', (mountain) => {
  console.log(`${mountain.name.padStart(14)}\t${mountain.height}m`)
})

As we can see from this code, the Readable.from() method is quite simple to 
use: the first argument is an iterable instance (in our case, the mountains array). 
Readable.from() accepts an additional optional argument that can be used to specify 
stream options like objectMode.

Running the previous code will produce the following output:

       Everest    8848m
            K2    8611m
 Kangchenjunga    8586m
        Lhotse    8516m
        Makalu    8481m

Note that we didn't have to explicitly set objectMode to true. By 
default, Readable.from() will set objectMode to true, unless this 
is explicitly opted out by setting it to false. Stream options can be 
passed as a second argument to the function.
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Writable streams
A Writable stream represents a data destination. Imagine, for instance, a file on the 
filesystem, a database table, a socket, the standard error, or the standard output 
interface. In Node.js, it's implemented using the Writable abstract class, which is 
available in the stream module.

Writing to a stream
Pushing some data down a Writable stream is a straightforward business; all we 
have to do is use the write() method, which has the following signature:

writable.write(chunk, [encoding], [callback])

The encoding argument is optional and can be specified if chunk is a string (it defaults to 
utf8, and it's ignored if chunk is a buffer). The callback function, on the other hand, is 
called when the chunk is flushed into the underlying resource and is optional as well.

To signal that no more data will be written to the stream, we have to use the end() 
method:

writable.end([chunk], [encoding], [callback])

We can provide a final chunk of data through the end() method; in this case, the 
callback function is equivalent to registering a listener to the finish event, which 
is fired when all the data written in the stream has been flushed into the underlying 
resource.

Try not to instantiate large arrays in memory. Imagine if, in the 
previous example, we wanted to list all the mountains in the 
world. There are about 1 million mountains, so if we were to 
load all of them in an array upfront, we would allocate a quite 
significant amount of memory. Even if we then consume the 
data in the array through a Readable stream, all the data has 
already been preloaded, so we are effectively voiding the memory 
efficiency of streams. It's always preferable to load and consume 
the data in chunks, and you could do so by using native streams 
such as fs.createReadStream, by building a custom stream, or 
by using Readable.from with lazy iterables such as generators, 
iterators, or async iterators. We will see some examples of the latter 
approach in Chapter 9, Behavioral Design Patterns.
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Now, let's show how this works by creating a small HTTP server that outputs a 
random sequence of strings:

// entropy-server.js
import { createServer } from 'http'
import Chance from 'chance'

const chance = new Chance()
const server = createServer((req, res) => {
  res.writeHead(200, { 'Content-Type': 'text/plain' })     // (1)
  while (chance.bool({ likelihood: 95 })) {                // (2)
    res.write(`${chance.string()}\n`)                      // (3)
  }
  res.end('\n\n')                                          // (4)
  res.on('finish', () => console.log('All data sent'))     // (5)
})
server.listen(8080, () => {
  console.log('listening on http://localhost:8080')
})

The HTTP server that we created writes into the res object, which is an instance of 
http.ServerResponse and also a Writable stream. What happens is explained as 
follows:

1. We first write the head of the HTTP response. Note that writeHead() is not a 
part of the Writable interface; in fact, it's an auxiliary method exposed by the 
http.ServerResponse class and is specific to the HTTP protocol.

2. We start a loop that terminates with a likelihood of 5% (we instruct chance.
bool() to return true 95% of the time).

3. Inside the loop, we write a random string into the stream.
4. Once we are out of the loop, we call end() on the stream, indicating that no 

more data will be written. Also, we provide a final string containing two new 
line characters to be written into the stream before ending it.

5. Finally, we register a listener for the finish event, which will be fired when 
all the data has been flushed into the underlying socket.

To test the server, we can open a browser at the address http://localhost:8080 or 
use curl from the terminal as follows:

curl localhost:8080
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At this point, the server should start sending random strings to the HTTP client that 
you chose (please bear in mind that some browsers might buffer the data, and the 
streaming behavior might not be apparent).

Backpressure
Similar to a liquid flowing in a real piping system, Node.js streams can also suffer 
from bottlenecks, where data is written faster than the stream can consume it. 
The mechanism to cope with this problem involves buffering the incoming data; 
however, if the stream doesn't give any feedback to the writer, we may incur 
a situation where more and more data is accumulated in the internal buffer, leading 
to undesired levels of memory usage.

To prevent this from happening, writable.write() will return false when 
the internal buffer exceeds the highWaterMark limit. In Writable streams, the 
highWaterMark property is the limit of the internal buffer size, beyond which the 
write() method starts returning false, indicating that the application should now 
stop writing. When the buffer is emptied, the drain event is emitted, communicating 
that it's safe to start writing again. This mechanism is called backpressure.

Backpressure is an advisory mechanism. Even if write() returns false, we could 
ignore this signal and continue writing, making the buffer grow indefinitely. The 
stream won't be blocked automatically when the highWaterMark threshold is reached; 
therefore, it is recommended to always be mindful and respect the backpressure.

We can quickly demonstrate how to take into account the backpressure of a Writable 
stream by modifying the entropy-server.js module that we created previously:

// ...
const server = createServer((req, res) => {
  res.writeHead(200, { 'Content-Type': 'text/plain' })
  function generateMore () {                                // (1)
    while (chance.bool({ likelihood: 95 })) {
      const randomChunk = chance.string({                   // (2)
        length: (16 * 1024) - 1
      })

The mechanism described in this section is similarly applicable 
to Readable streams. In fact, backpressure exists in Readable 
streams too, and it's triggered when the push() method, which is 
invoked inside _read(), returns false. However, that's a problem 
specific to stream implementers, so we usually have to deal with it 
less frequently.
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      const shouldContinue = res.write(`${randomChunk}\n`)  // (3)
      if (!shouldContinue) {
        console.log('back-pressure')
        return res.once('drain', generateMore)
      }
    }
    res.end('\n\n')
  }
  generateMore()
  res.on('finish', () => console.log('All data sent'))
})
// ...

The most important steps of the previous code can be summarized as follows:

1. We wrapped the main logic in a function called generateMore().
2. To increase the chances of receiving some backpressure, we increased the 

size of the data chunk to 16 KB minus 1 byte, which is very close to the 
default highWaterMark limit.

3. After writing a chunk of data, we check the return value of res.write(). If 
we receive false, it means that the internal buffer is full and we should stop 
sending more data. When this happens, we exit the function and register 
another cycle of writes using generateMore() for when the drain event is 
emitted.

If we now try to run the server again, and then generate a client request with 
curl, there is a high probability that there will be some backpressure, as the server 
produces data at a very high rate, faster than the underlying socket can handle.

Implementing Writable streams
We can implement a new Writable stream by inheriting the class Writable and 
providing an implementation for the _write() method. Let's try to do it immediately 
while discussing the details along the way.

Let's build a Writable stream that receives objects in the following format:

{
  path: <path to a file>
  content: <string or buffer>
}
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For each one of these objects, our stream has to save the content property into a 
file created at the given path. We can immediately see that the inputs of our stream 
are objects, and not strings or buffers. This means that our stream has to work in 
object mode.

Let's call the module to-file-stream.js:

import { Writable } from 'stream'
import { promises as fs } from 'fs'
import { dirname } from 'path'
import mkdirp from 'mkdirp-promise'

export class ToFileStream extends Writable {
  constructor (options) {
    super({ ...options, objectMode: true })
  }

  _write (chunk, encoding, cb) {
    mkdirp(dirname(chunk.path))
      .then(() => fs.writeFile(chunk.path, chunk.content))
      .then(() => cb())
      .catch(cb)
  }
}

We created a new class for our new stream, which extends Writable from the stream 
module.

We had to invoke the parent constructor to initialize its internal state; we also needed 
to make sure that the options object specifies that the stream works in object mode 
(objectMode: true). Other options accepted by Writable are as follows:

• highWaterMark (the default is 16 KB): This controls the backpressure limit.
• decodeStrings (defaults to true): This enables the automatic decoding of 

strings into binary buffers before passing them to the _write() method. This 
option is ignored in object mode.

Finally, we provided an implementation for the _write() method. As you can see, 
the method accepts a data chunk and an encoding (which makes sense only if we 
are in binary mode and the stream option decodeStrings is set to false). Also, 
the method accepts a callback function (cb), which needs to be invoked when the 
operation completes; it's not necessary to pass the result of the operation but, if 
needed, we can still pass an error that will cause the stream to emit an error event.
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Now, to try the stream that we just built, we can create a new module and perform 
some write operations against the stream:

import { join } from 'path'
import { ToFileStream } from './to-file-stream.js'
const tfs = new ToFileStream()

tfs.write({
  path: join('files', 'file1.txt'), content: 'Hello' })
tfs.write({
  path: join('files', 'file2.txt'), content: 'Node.js' })
tfs.write({
  path: join('files', 'file3.txt'), content: 'streams' })
tfs.end(() => console.log('All files created'))

Here, we created and used our first custom Writable stream. Run the new module as 
usual and check its output. You will see that after the execution, three new files will 
be created within a new folder called files.

Simplified construction
As we saw for Readable streams, Writable streams also offer a simplified 
construction mechanism. If we were to rewrite our ToFileStream using the simplified 
construction for Writable streams, it would look like this:

// ...
const tfs = new Writable({
  objectMode: true,
  write (chunk, encoding, cb) {
    mkdirp(dirname(chunk.path))
      .then(() => fs.writeFile(chunk.path, chunk.content))
      .then(() => cb())
      .catch(cb)
  }
})
// ...

With this approach, we are simply using the Writable constructor and passing a 
write() function that implements the custom logic of our Writable instance. Note 
that with this approach, the write() function doesn't have an underscore in the 
name. We can also pass other construction options like objectMode.



Chapter 6

[ 185 ]

Duplex streams
A Duplex stream is a stream that is both Readable and Writable. It is useful when we 
want to describe an entity that is both a data source and a data destination, such as 
network sockets, for example. Duplex streams inherit the methods of both stream.
Readable and stream.Writable, so this is nothing new to us. This means that we can 
read() or write() data, or listen for both readable and drain events.

To create a custom Duplex stream, we have to provide an implementation for both 
_read() and _write(). The options object passed to the Duplex() constructor is 
internally forwarded to both the Readable and Writable constructors. The options are 
the same as those we already discussed in the previous sections, with the addition of 
a new one called allowHalfOpen (defaults to true) that, if set to false, will cause both 
parts (Readable and Writable) of the stream to end if only one of them does.

Transform streams
Transform streams are a special kind of Duplex stream that are specifically designed 
to handle data transformations. Just to give you a few concrete examples, the 
functions zlib.createGzip() and crypto.createCipheriv() that we discussed at the 
beginning of this chapter create Transform streams for compression and encryption, 
respectively.

In a simple Duplex stream, there is no immediate relationship between the data read 
from the stream and the data written into it (at least, the stream is agnostic to such a 
relationship). Think about a TCP socket, which just sends and receives data to and 
from the remote peer; the socket is not aware of any relationship between the input 
and output. Figure 6.4 illustrates the data flow in a Duplex stream:

Figure 6.4: Duplex stream schematic representation

If we need to have a Duplex stream working in object mode on 
one side and binary mode on the other, we can use the options 
readableObjectMode and writableObjectMode independently.
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On the other hand, Transform streams apply some kind of transformation to 
each chunk of data that they receive from their Writable side, and then make the 
transformed data available on their Readable side. Figure 6.5 shows how the data 
flows in a Transform stream:

Figure 6.5: Transform stream schematic representation

From the outside, the interface of a Transform stream is exactly like that of a Duplex 
stream. However, when we want to build a new Duplex stream, we have to provide 
both the _read() and _write() methods, while for implementing a new Transform 
stream, we have to fill in another pair of methods: _transform() and _flush().

Let's see how to create a new Transform stream with an example.

Implementing Transform streams
Let's implement a Transform stream that replaces all the occurrences of a given 
string. To do this, we have to create a new module named replaceStream.js. Let's 
jump directly to the implementation:

import { Transform } from 'stream'

export class ReplaceStream extends Transform {
  constructor (searchStr, replaceStr, options) {
    super({ ...options })
    this.searchStr = searchStr
    this.replaceStr = replaceStr
    this.tail = ''
  }

  _transform (chunk, encoding, callback) {
    const pieces = (this.tail + chunk).split(this.searchStr)  // (1)
    const lastPiece = pieces[pieces.length - 1]               // (2)
    const tailLen = this.searchStr.length - 1
    this.tail = lastPiece.slice(-tailLen)
    pieces[pieces.length - 1] = lastPiece.slice(0, -tailLen)
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    this.push(pieces.join(this.replaceStr))                   // (3)
    callback()
  }

  _flush (callback) {
    this.push(this.tail)
    callback()
  }
}

In this example, we created a new class extending the Transform base class. The 
constructor of the class accepts three arguments: searchStr, replaceStr, and options. 
As you can imagine, they allow us to define the text to match and the string to use as 
a replacement, plus an options object for advanced configuration of the underlying 
Transform stream. We also initialize an internal tail variable, which will be used 
later by the _transform() method.

Now, let's analyze the _transform() method, which is the core of our new class. 
The _transform() method has practically the same signature as the _write() method 
of the Writable stream, but instead of writing data into an underlying resource, it 
pushes it into the internal read buffer using this.push(), exactly as we would do 
in the _read() method of a Readable stream. This shows how the two sides of a 
Transform stream are connected.

The _transform() method of ReplaceStream implements the core of our algorithm. 
To search for and replace a string in a buffer is an easy task; however, it's a 
totally different story when the data is streaming, and possible matches might be 
distributed across multiple chunks. The procedure followed by the code can be 
explained as follows:

1. Our algorithm splits the data in memory (tail data and the current chunk) 
using searchStr as a separator.

2. Then, it takes the last item of the array generated by the operation and 
extracts the last searchString.length - 1 characters. The result is saved 
in the tail variable and will be prepended to the next chunk of data.

3. Finally, all the pieces resulting from split() are joined together using 
replaceStr as a separator and pushed into the internal buffer.

When the stream ends, we might still have some content in the tail variable not 
pushed into the internal buffer. That's exactly what the _flush() method is for; 
it is invoked just before the stream is ended, and this is where we have one final 
chance to finalize the stream or push any remaining data before completely ending 
the stream.
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The _flush() method only takes in a callback, which we have to make sure to invoke 
when all the operations are complete, causing the stream to be terminated. With this, 
we have completed our ReplaceStream class.

Now, it's time to try the new stream. Let's create a script that writes some data into 
the stream and then reads the transformed result:

import { ReplaceStream } from './replace-stream.js'

const replaceStream = new ReplaceStream('World', 'Node.js')
replaceStream.on('data', chunk => console.log(chunk.toString()))

replaceStream.write('Hello W')
replaceStream.write('orld!')
replaceStream.end()

To make life a little bit harder for our stream, we spread the search term (which is 
World) across two different chunks, then, using the flowing mode, we read from the 
same stream, logging each transformed chunk. Running the preceding program 
should produce the following output:

Hel
lo Node.js
!

Simplified construction
Unsurprisingly, even Transform streams support simplified construction. At this 
point, we should have developed an instinct for how this API might look, so let's get 
our hands dirty straight away and rewrite the previous example using this approach:

const searchStr = 'World'
const replaceStr = 'Node.js'
let tail = ''

Please note that the preceding output is broken into multiple lines 
because we are using console.log() to print it out. This allows 
us to demonstrate that our implementation is able to replace string 
matches correctly, even when the matching text spans multiple 
chunks of data.
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const replaceStream = new Transform({
  defaultEncoding: 'utf8',

  transform (chunk, encoding, cb) {
    const pieces = (tail + chunk).split(searchStr)
    const lastPiece = pieces[pieces.length - 1]
    const tailLen = searchStr.length - 1
    tail = lastPiece.slice(-tailLen)
    pieces[pieces.length - 1] = lastPiece.slice(0, -tailLen)
    this.push(pieces.join(replaceStr))
    cb()
  },

  flush (cb) {
    this.push(tail)
    cb()
  }
})
// now write to replaceStream ...

As expected, simplified construction works by directly instantiating a new Transform 
object and passing our specific transformation logic through the transform() and 
flush() functions directly through the options object. Note that transform() and 
flush() don't have a prepended underscore here.

Filtering and aggregating data with Transform 
streams
As we mentioned in the previous section, Transform streams are the perfect 
building blocks for implementing data transformation pipelines. In the previous 
section, we illustrated an example of a Transform stream that can replace words in a 
stream of text. But Transform streams can be used to implement other types of data 
transformation as well. For instance, it's quite common to use Transform streams to 
implement data filtering and data aggregation.

Just to make a practical example, let's imagine we are asked by a Fortune 500 
company to analyze a big file containing all the sales for the year 2020. The company 
wants us to use data.csv, a sales report in CSV format, to calculate the total profit for 
the sales made in Italy.
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For simplicity, let's imagine the sales data that is stored in the CSV file contains three 
fields per line: item type, country of sale, and profit. So, such a file could look like 
this:

type,country,profit
Household,Namibia,597290.92
Baby Food,Iceland,808579.10
Meat,Russia,277305.60
Meat,Italy,413270.00
Cereal,Malta,174965.25
Meat,Indonesia,145402.40
Household,Italy,728880.54
[... many more lines]

Now, it's clear that we have to find all the records that have "Italy" as country and, in 
the process, sum up the profit value of the matching lines into a single number.

In order to process a CSV file in a streaming fashion, we can use the excellent csv-
parse module (nodejsdp.link/csv-parse).

If we assume for a moment that we have already implemented our custom streams 
to filter and aggregate the data, a possible solution to this task might look like this:

import { createReadStream } from 'fs'
import parse from 'csv-parse'
import { FilterByCountry } from './filter-by-country.js'
import { SumProfit } from './sum-profit.js'

const csvParser = parse({ columns: true })

createReadStream('data.csv')             // (1)
  .pipe(csvParser)                       // (2)
  .pipe(new FilterByCountry('Italy'))    // (3)
  .pipe(new SumProfit())                 // (4)
  .pipe(process.stdout)                  // (5)

The streaming pipeline proposed here consists of five steps:

1. We read the source CSV file as a stream.
2. We use the csv-parse library to parse every line of the document as a 

CSV record. For every line, this stream will emit an object containing the 
properties type, country, and profit.

http://nodejsdp.link/csv-parse
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3. We filter all the records by country, retaining only the records that match the 
country "Italy." All the records that don't match "Italy" are dropped, which 
means that they will not be passed to the other steps in the pipeline. Note 
that this is one of the custom Transform streams that we have to implement.

4. For every record, we accumulate the profit. This stream will eventually emit 
one single string, which represents the value of the total profit for products 
sold in Italy. This value will be emitted by the stream only when all the data 
from the original file has been completely processed. Note that this is the 
second custom Transform stream that we have to implement to complete this 
project.

5. Finally, the data emitted from the previous step is displayed in the standard 
output.

Now, let's implement the FilterByCountry stream:

import { Transform } from 'stream'

export class FilterByCountry extends Transform {
  constructor (country, options = {}) {
    options.objectMode = true
    super(options)
    this.country = country
  }

  _transform (record, enc, cb) {
    if (record.country === this.country) {
      this.push(record)
    }
    cb()
  }
}

FilterByCountry is a custom Transform stream. We can see that the constructor 
accepts an argument called country, which allows us to specify the country name 
we want to filter on. In the constructor, we also set the stream to run in objectMode 
because we know it will be used to process objects (records from the CSV file).

In the _transform method, we check if the country of the current record matches 
the country specified at construction time. If it's a match, then we pass the record on 
to the next stage of the pipeline by calling this.push(). Regardless of whether the 
record matches or not, we need to invoke cb() to indicate that the current record has 
been successfully processed and that the stream is ready to receive another record.
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Finally, let's implement the SumProfit filter:

import { Transform } from 'stream'

export class SumProfit extends Transform {
  constructor (options = {}) {
    options.objectMode = true
    super(options)
    this.total = 0
  }

  _transform (record, enc, cb) {
    this.total += Number.parseFloat(record.profit)
    cb()
  }

  _flush (cb) {
    this.push(this.total.toString())
    cb()
  }
}

This stream needs to run in objectMode as well, because it will receive objects 
representing records from the CSV file. Note that, in the constructor, we also 
initialize an instance variable called total and we set its value to 0.

In the _transform() method, we process every record and use the current profit 
value to increase the total. It's important to note that this time, we are not calling 
this.push(). This means that no value is emitted while the data is flowing through 
the stream. We still need to call cb(), though, to indicate that the current record has 
been processed and the stream is ready to receive another one.

In order to emit the final result when all the data has been processed, we have to 
define a custom flush behavior using the _flush() method. Here, we finally call 
this.push() to emit a string representation of the resulting total value. Remember 
that _flush() is automatically invoked before the stream is closed.

Pattern: Transform filter

Invoke this.push() in a conditional way to allow only some data 
to reach the next stage of the pipeline.
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This completes our example. Now, you can grab the CSV file from the code 
repository and execute this program to see what the total profit for Italy is. 
No surprise it's going to be a lot of money since we are talking about the profit 
of a Fortune 500 company!

PassThrough streams
There is a fifth type of stream that is worth mentioning: PassThrough. This type of 
stream is a special type of Transform that outputs every data chunk without applying 
any transformation.

PassThrough is possibly the most underrated type of stream, but there are actually 
several circumstances in which it can be a very valuable tool in our toolbelt. For 
instance, PassThrough streams can be useful for observability or to implement late 
piping and lazy stream patterns.

Observability
If we want to observe how much data is flowing through one or more streams, we 
could do so by attaching a data event listener to a PassThrough instance and then 
piping this instance in a given point of a stream pipeline. Let's a see a simplified 
example to be able to appreciate this concept:

import { PassThrough } from 'stream'

let bytesWritten = 0
const monitor = new PassThrough()
monitor.on('data', (chunk) => {
  bytesWritten += chunk.length
})
monitor.on('finish', () => {
  console.log(`${bytesWritten} bytes written`)
})

monitor.write('Hello!')
monitor.end()

Pattern: Streaming aggregation

Use _transform() to process the data and accumulate the partial 
result, then call this.push() only in the _flush() method to emit 
the result when all the data has been processed.
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In this example, we are creating a new instance of PassThrough and using the data 
event to count how many bytes are flowing through the stream. We also use the 
finish event to dump the total amount to the console. Finally we write some data 
directly into the stream using write() and end(). This is just an illustrative example; 
in a more realistic scenario, we would be piping our monitor instance in a given 
point of a stream pipeline. For instance, if we wanted to monitor how many bytes are 
written to disk in our first file compression example of this chapter, we could easily 
achieve that by doing something like this:

createReadStream(filename)
  .pipe(createGzip())
  .pipe(monitor)
  .pipe(createWriteStream(`${filename}.gz`))

The beauty of this approach is that we didn't have to touch any of the other existing 
streams in the pipeline, so if we need to observe other parts of the pipeline (for 
instance, imagine we want to know the number of bytes of the uncompressed data), 
we can move monitor around with very little effort.

Late piping
In some circumstances, we might have to use APIs that accept a stream as an input 
parameter. This is generally not a big deal because we already know how to create 
and use streams. However, it may get a little bit more complicated if the data we 
want to read or write through the stream is available after we've called the given 
API.

To visualize this scenario in more concrete terms, let's imagine that we have to use an 
API that gives us the following function to upload a file to a data storage service:

function upload (filename, contentStream) {
  // ...
}

Note that you could implement an alternative version of the 
monitor stream by using a custom transform stream instead. In 
such a case, you would have to make sure that the received chunks 
are pushed without any modification or delay, which is something 
that a PassThrough stream would do automatically for you. Both 
approaches are equally valid, so pick the approach that feels more 
natural to you.
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Now, if we want to upload a file from the filesystem, this is a trivial operation, and 
we can do something like this:

import { createReadStream } from 'fs'
upload('a-picture.jpg', createReadStream('/path/to/a-picture.jpg'))

But what if we want to do some processing to the file stream before the upload. For 
instance, let's say we want to compress or encrypt the data? Also, what if we have to 
do this transformation asynchronously after the upload function has been called?

In such cases, we can provide a PassThrough stream to the upload() function, which 
will effectively act as a placeholder. The internal implementation of upload() will 
immediately try to consume data from it, but there will be no data available in the 
stream until we actually write to it. Also, the stream won't be considered complete 
until we close it, so the upload() function will have to wait for data to flow through 
the PassThrough instance to initiate the upload.

Let's see a possible command-line script that uses this approach to upload a file from 
the filesystem and also compresses it using the Brotli compression. We are going to 
assume that the third-party upload() function is provided in a file called upload.js:

import { createReadStream } from 'fs'
import { createBrotliCompress } from 'zlib'
import { PassThrough } from 'stream'
import { basename } from 'path'
import { upload } from './upload.js'

const filepath = process.argv[2]                           // (1)
const filename = basename(filepath)
const contentStream = new PassThrough()                    // (2)

upload(`${filename}.br`, contentStream)                    // (3)
  .then((response) => {
    console.log(`Server response: ${response.data}`)
  })
  .catch((err) => {

This function is effectively a simplified version of what is 
commonly available in the SDK of file storage services like Amazon 
Simple Storage Service (S3) or Azure Blob Storage service. Often, 
those libraries will provide the user with a more flexible function 
that can receive the content data in different formats (for example, 
a string, a buffer, or a Readable stream).
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    console.error(err)
    process.exit(1)
  })

createReadStream(filepath)                                 // (4)
  .pipe(createBrotliCompress())
  .pipe(contentStream)

Let's review what's happening in the previous example:

1. We get the path to the file we want to upload from the first command-line 
argument and use basename to extrapolate the filename from the given path.

2. We create a placeholder for our content stream as a PassThrough instance.
3. Now, we invoke the upload function by passing our filename (with the 

added .br suffix, indicating that it is using the Brotli compression) and the 
placeholder content stream.

4. Finally, we create a pipeline by chaining a filesystem Readable stream, a 
Brotli compression Transform stream, and finally our content stream as the 
destination.

When this code is executed, the upload will start as soon as we invoke the upload() 
function (possibly establishing a connection to the remote server), but the data will 
start to flow only later, when our pipeline is initialized. Note that our pipeline will 
also close the contentStream when the processing completes, which will indicate to 
the upload() function that all the content has been fully consumed.

In this book's repository, you will find a complete implementation 
of this example that allows you to upload files to an HTTP server 
that you can run locally.

Pattern

Use a PassThrough stream when you need to provide a 
placeholder for data that will be read or written in the future.
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We can also use this pattern to transform the interface of the upload() function. 
Instead of accepting a Readable stream as input, we can make it return a Writeable 
stream, which can then be used to provide the data we want to upload:

function createUploadStream (filename) {
  // ...
  // returns a writable stream that can be used to upload data
}

If we were tasked to implement this function, we could achieve that in a very elegant 
way by using a PassThrough instance, as in the following example implementation:

function createUploadStream (filename) {
  const connector = new PassThrough()
  upload(filename, connector)
  return connector
}

In the preceding code, we are using a PassThrough stream as a connector. This stream 
becomes a perfect abstraction for a case where the consumer of the library can write 
data at any later stage.

The createUploadStream() function can then be used as follows:

const upload = createUploadStream('a-file.txt')
upload.write('Hello World')
upload.end()

Lazy streams
Sometimes, we need to create a large number of streams at the same time, for 
example, to pass them to a function for further processing. A typical example is 
when using archiver (nodejsdp.link/archiver), a package for creating archives 
such as TAR and ZIP. The archiver package allows you to create an archive from 
a set of streams, representing the files to add. The problem is that if we want to 
pass a large number of streams, such as from files on the filesystem, we would 
likely get an EMFILE, too many open files error. This is because functions like 
createReadStream() from the fs module will actually open a file descriptor every 
time a new stream is created, even before you start to read from those streams.

This book's repository also contains an HTTP upload example that 
adopts this alternative pattern.

http://nodejsdp.link/archiver
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In more generic terms, creating a stream instance might initialize expensive 
operations straight away (for example, open a file or a socket, initialize a connection 
to a database, and so on), even before we actually start to use such a stream. This 
might not be desirable if you are creating a large number of stream instances for later 
consumption.

In these cases, you might want to delay the expensive initialization until you actually 
need to consume data from the stream.

It is possible to achieve this by using a library like lazystream (nodejsdp.link/
lazystream). This library allows you to effectively create proxies for actual stream 
instances, where the proxied instance is not created until some piece of code is 
actually starting to consume data from the proxy.

In the following example, lazystream allows us to create a lazy Readable stream for 
the special Unix file /dev/urandom:

import lazystream from 'lazystream'
const lazyURandom = new lazystream.Readable(function (options) {
  return fs.createReadStream('/dev/urandom')
})

The function we pass as a parameter to new lazystream.Readable() is effectively a 
factory function that generates the proxied stream when necessary.

Behind the scenes, lazystream is implemented using a PassThrough stream that, only 
when its _read() method is invoked for the first time, creates the proxied instance by 
invoking the factory function, and pipes the generated stream into the PassThrough 
itself. The code that consumes the stream is totally agnostic of the proxying that is 
happening here, and it will consume the data as if it was flowing directly from the 
PassThrough stream. lazystream implements a similar utility to create lazy Writable 
streams as well.

Creating lazy Readable and Writable streams from scratch could be an interesting 
exercise that is left to you. If you get stuck, have a look at the source code of 
lazystream for inspiration on how to implement this pattern.

In the next section, we will discuss the .pipe() method in greater detail and also see 
other ways to connect different streams to form a processing pipeline.

Connecting streams using pipes
The concept of Unix pipes was invented by Douglas Mcllroy. This enabled the 
output of a program to be connected to the input of the next. Take a look at the 
following command:

http://nodejsdp.link/lazystream
http://nodejsdp.link/lazystream
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echo Hello World! | sed s/World/Node.js/g

In the preceding command, echo will write Hello World! to its standard output, 
which is then redirected to the standard input of the sed command (thanks to the 
pipe | operator). Then, sed replaces any occurrence of World with Node.js and prints 
the result to its standard output (which, this time, is the console).

In a similar way, Node.js streams can be connected using the pipe() method of the 
Readable stream, which has the following interface:

readable.pipe(writable, [options])

Very intuitively, the pipe() method takes the data that is emitted from the readable 
stream and pumps it into the provided writable stream. Also, the writable stream is 
ended automatically when the readable stream emits an end event (unless we specify 
{end: false} as options). The pipe() method returns the writable stream passed in 
the first argument, allowing us to create chained invocations if such a stream is also 
Readable (such as a Duplex or Transform stream).

Piping two streams together will create suction, which allows the data to flow 
automatically to the writable stream, so there is no need to call read() or write(), 
but most importantly, there is no need to control the backpressure anymore, because 
it's automatically taken care of.

To provide a quick example, we can create a new module that takes a text stream from 
the standard input, applies the replace transformation discussed earlier when we built 
our custom ReplaceStream, and then pushes the data back to the standard output:

// replace.js
import { ReplaceStream } from './replace-stream.js'

process.stdin
  .pipe(new ReplaceStream(process.argv[2], process.argv[3]))
  .pipe(process.stdout)

The preceding program pipes the data that comes from the standard input into an 
instance of ReplaceStream and then back to the standard output. Now, to try this 
small application, we can leverage a Unix pipe to redirect some data into its standard 
input, as shown in the following example:

echo Hello World! | node replace.js World Node.js

This should produce the following output:

Hello Node.js!
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This simple example demonstrates that streams (and in particular, text streams) are a 
universal interface and that pipes are the way to compose and interconnect all these 
interfaces almost magically.

Pipes and error handling
The error events are not propagated automatically through the pipeline when using 
pipe(). Take, for example, this code fragment:

stream1
  .pipe(stream2)
  .on('error', () => {})

In the preceding pipeline, we will catch only the errors coming from stream2, which 
is the stream that we attached the listener to. This means that, if we want to catch any 
error generated from stream1, we have to attach another error listener directly to it, 
which will make our example look like this:

stream1
  .on('error', () => {})
  .pipe(stream2)
  .on('error', () => {})

This is clearly not ideal, especially when dealing with pipelines with a significant 
number of steps. To make this worse, in the event of an error, the failing stream is 
only unpiped from the pipeline. The failing stream is not properly destroyed, which 
might leave dangling resources (for example, file descriptors, connections, and so on) 
and leak memory. A more robust (yet inelegant) implementation of the preceding 
snippet might look like this:

function handleError (err) {
  console.error(err)
  stream1.destroy()
  stream2.destroy()
}

stream1
  .on('error', handleError)
  .pipe(stream2)
  .on('error', handleError)



Chapter 6

[ 201 ]

In this example, we registered a handler for the error event for both stream1 and 
stream2. When an error happens, our handleError() function is invoked, and we can 
log the error and destroy every stream in the pipeline. This allows us to ensure that 
all the allocated resources are properly released, and the error is handled gracefully.

Better error handling with pipeline()
Handling errors manually in a pipeline is not just cumbersome, but also error-
prone—definitely something we should avoid if we can!

Luckily, the core stream package offers us an excellent utility function that can make 
building pipelines a much safer and more enjoyable practice, which is the pipeline() 
helper function.

In a nutshell, you can use the pipeline() function as follows:

pipeline(stream1, stream2, stream3, ... , cb)

This helper pipes every stream passed in the arguments list to the next one. For 
each stream, it will also register a proper error and close listeners. This way, all the 
streams are properly destroyed when the pipeline completes successfully or when 
it's interrupted by an error. The last argument is an optional callback that will be 
called when the stream finishes. If it finishes because of an error, the callback will be 
invoked with the given error as the first argument.

In order to build up some practice with this helper, let's write a simple command-
line script that implements the following pipeline:

• Reads a Gzip data stream from the standard input
• Decompresses the data
• Makes all the text uppercase
• Gzips the resulting data
• Sends the data back to the standard output

Let's call this module uppercasify-gzipped.js:

import { createGzip, createGunzip } from 'zlib'          // (1)
import { Transform, pipeline } from 'stream'

const uppercasify = new Transform({                      // (2)
  transform (chunk, enc, cb) {
    this.push(chunk.toString().toUpperCase())
    cb()
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  }
})

pipeline(                                                // (3)
  process.stdin,
  createGunzip(),
  uppercasify,
  createGzip(),
  process.stdout,
  (err) => {                                             // (4)
    if (err) {
      console.error(err)
      process.exit(1)
    }
  }
)

In this example:

1. We are importing the necessary dependencies from zlib and the stream 
modules.

2. We create a simple Transform stream that makes every chunk uppercase.
3. We define our pipeline, where we list all the stream instances in order.
4. We add a callback to monitor the completion of the stream. In the event of 

an error, we print the error in the standard error interface, and we exit with 
error code 1.

The pipeline will start automatically by consuming data from the standard input and 
producing data for the standard output.

We could test our script with the following command:

echo 'Hello World!' | gzip | node uppercasify-gzipped.js | gunzip

This should produce the following output:

HELLO WORLD!

If we try to remove the gzip step from the preceding sequence of commands, our 
script will fail with an error similar to the following:
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Error: unexpected end of file
    at Zlib.zlibOnError [as onerror] (zlib.js:180:17) {
  errno: -5,
  code: 'Z_BUF_ERROR'
}

This error is raised by the stream created with the createGunzip() function, which 
is responsible for decompressing the data. If the data is not actually gzipped, the 
decompression algorithm won't be able to process the data and it will fail. In such 
a case, pipeline() will take care of cleaning up after the error and destroy all the 
streams in the pipeline.

Now that we have built a solid understanding of Node.js streams, we are ready 
to move into some more involved stream patterns like control flow and advanced 
piping patterns.

Asynchronous control flow patterns with 
streams
Going through the examples that we have presented so far, it should be clear that 
streams can be useful not only to handle I/O, but also as an elegant programming 
pattern that can be used to process any kind of data. But the advantages do not end 
at its simple appearance; streams can also be leveraged to turn "asynchronous control 
flow" into "flow control," as we will see in this section.

Sequential execution
By default, streams will handle data in sequence. For example, the _transform() 
function of a Transform stream will never be invoked with the next chunk of data 
until the previous invocation completes by calling callback(). This is an important 
property of streams, crucial for processing each chunk in the right order, but it can 
also be exploited to turn streams into an elegant alternative to the traditional control 
flow patterns.

The pipeline() function can be easily promisified by using the 
promisify() helper from the core util module.
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Some code is always better than too much explanation, so let's work on an example 
to demonstrate how we can use streams to execute asynchronous tasks in sequence. 
Let's create a function that concatenates a set of files received as input, making sure 
to honor the order in which they are provided. Let's create a new module called 
concat-files.js and define its contents as follows:

import { createWriteStream, createReadStream } from 'fs'
import { Readable, Transform } from 'stream'

export function concatFiles (dest, files) {
  return new Promise((resolve, reject) => {
    const destStream = createWriteStream(dest)
    Readable.from(files)                                    // (1)
      .pipe(new Transform({                                 // (2)
        objectMode: true,
        transform (filename, enc, done) {
          const src = createReadStream(filename)
          src.pipe(destStream, { end: false })
          src.on('error', done)
          src.on('end', done)                               // (3)
        }
      }))
      .on('error', reject)
      .on('finish', () => {                                 // (4)
        destStream.end()
        resolve()
      })
  })
}

The preceding function implements a sequential iteration over the files array by 
transforming it into a stream. The algorithm can be explained as follows:

1. First, we use Readable.from() to create a Readable stream from the files 
array. This stream operates in object mode (the default setting for streams 
created with Readable.from()) and it will emit filenames: every chunk is a 
string indicating the path to a file. The order of the chunks respects the order 
of the files in the files array.
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2. Next, we create a custom Transform stream to handle each file in the 
sequence. Since we are receiving strings, we set the option objectMode to 
true. In our transformation logic, for each file, we create a Readable stream 
to read the file content and pipe it into destStream (a Writable stream for the 
destination file). We make sure not to close destStream after the source file 
finishes reading by specifying { end: false } in the pipe() options.

3. When all the contents of the source file have been piped into destStream, 
we invoke the done function to communicate the completion of the current 
processing, which is necessary to trigger the processing of the next file.

4. When all the files have been processed, the finish event is fired; we can 
finally end destStream and invoke the cb() function of concatFiles(), 
which signals the completion of the whole operation.

We can now try to use the little module we just created. Let's do that in a new file, 
called concat.js:

import { concatFiles } from './concat-files.js'

async function main () {
  try {
    await concatFiles(process.argv[2], process.argv.slice(3))
  } catch (err) {
    console.error(err)
    process.exit(1)
  }

  console.log('All files concatenated successfully')
}
main()

We can now run the preceding program by passing the destination file as the first 
command-line argument, followed by a list of files to concatenate; for example:

node concat.js all-together.txt file1.txt file2.txt

This should create a new file called all-together.txt containing, in order, the 
contents of file1.txt and file2.txt.

With the concatFiles() function, we were able to obtain an asynchronous 
sequential iteration using only streams. This is an elegant and compact solution that 
enriches our toolbelt, along with the techniques we already explored in Chapter 4, 
Asynchronous Control Flow Patterns with Callbacks, and Chapter 5, Asynchronous Control 
Flow Patterns with Promises and Async/Await.
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In the next section, we will discover how to use Node.js streams to implement 
unordered parallel task execution.

Unordered parallel execution
We just saw that streams process each data chunk in sequence, but sometimes, this 
can be a bottleneck as we would not make the most of the concurrency of Node.js. 
If we have to execute a slow asynchronous operation for every data chunk, it can 
be advantageous to parallelize the execution and speed up the overall process. Of 
course, this pattern can only be applied if there is no relationship between each 
chunk of data, which might happen frequently for object streams, but very rarely for 
binary streams.

To parallelize the execution of a Transform stream, we can apply the same patterns 
that we learned in Chapter 4, Asynchronous Control Flow Patterns with Callbacks, but 
with some adaptations to get them working with streams. Let's see how this works.

Implementing an unordered parallel stream
Let's immediately demonstrate how to implement an unordered parallel stream with 
an example. Let's create a module called parallel-stream.js and define a generic 
Transform stream that executes a given transform function in parallel:

import { Transform } from 'stream'

export class ParallelStream extends Transform {
  constructor (userTransform, opts) {                    // (1)
    super({ objectMode: true, ...opts })
    this.userTransform = userTransform
    this.running = 0
    this.terminateCb = null

Pattern

Use a stream, or combination of streams, to easily iterate over a set 
of asynchronous tasks in sequence.

Caution

Unordered parallel streams cannot be used when the order in 
which the data is processed is important.
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  }

  _transform (chunk, enc, done) {                        // (2)
    this.running++
    this.userTransform(
      chunk,
      enc,
      this.push.bind(this),
      this._onComplete.bind(this)
    )
    done()
  }

  _flush (done) {                                        // (3)
    if (this.running > 0) {
      this.terminateCb = done
    } else {
      done()
    }
  }

  _onComplete (err) {                                    // (4)
    this.running--
    if (err) {
      return this.emit('error', err)
    }
    if (this.running === 0) {
      this.terminateCb && this.terminateCb()
    }
  }
}

Let's analyze this new class step by step:

1. As you can see, the constructor accepts a userTransform() function, which is 
then saved as an instance variable. We invoke the parent constructor and for 
convenience, we enable the object mode by default.
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2. Next, it is the _transform() method's turn. In this method, we execute the 
userTransform() function and then increment the count of running tasks. 
Finally, we notify the Transform stream that the current transformation 
step is complete by invoking done(). The trick for triggering the processing 
of another item in parallel is exactly this. We are not waiting for the 
userTransform() function to complete before invoking done(); instead, 
we do it immediately. On the other hand, we provide a special callback to 
userTransform(), which is the this._onComplete() method. This allows us to 
get notified when the execution of userTransform() completes.

3. The _flush() method is invoked just before the stream terminates, so if there 
are still tasks running, we can put the release of the finish event on hold by 
not invoking the done() callback immediately. Instead, we assign it to the 
this.terminateCallback variable.

4. To understand how the stream is then properly terminated, we have to look 
into the _onComplete() method. This last method is invoked every time an 
asynchronous task completes. It checks whether there are any more tasks 
running and, if there are none, it invokes the this.terminateCallback() 
function, which will cause the stream to end, releasing the finish event that 
was put on hold in the _flush() method.

The ParallelStream class we just built allows us to easily create a Transform stream 
that executes its tasks in parallel, but there is a caveat: it does not preserve the order 
of the items as they are received. In fact, asynchronous operations can complete 
and push data at any time, regardless of when they are started. We immediately 
understand that this property does not play well with binary streams where the 
order of data usually matters, but it can surely be useful with some types of object 
streams.

Implementing a URL status monitoring application
Now, let's apply our ParallelStream to a concrete example. Let's imagine that 
we want to build a simple service to monitor the status of a big list of URLs. Let's 
imagine all these URLs are contained in a single file and are newline separated.

Streams can offer a very efficient and elegant solution to this problem, especially if 
we use our ParallelStream class to parallelize the checking of the URLs.

Let's build this simple application immediately in a new module called 
check-urls.js:

import { pipeline } from 'stream'
import { createReadStream, createWriteStream } from 'fs'
import split from 'split'
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import superagent from 'superagent'
import { ParallelStream } from './parallel-stream.js'

pipeline(
  createReadStream(process.argv[2]),                       // (1)
  split(),                                                 // (2)
  new ParallelStream(                                      // (3)
    async (url, enc, push, done) => {
      if (!url) {
        return done()
      }
      try {
        await superagent.head(url, { timeout: 5 * 1000 })
        push(`${url} is up\n`)
      } catch (err) {
        push(`${url} is down\n`)
      }
      done()
    }
  ),
  createWriteStream('results.txt'),                        // (4)
  (err) => {
    if (err) {
      console.error(err)
      process.exit(1)
    }
    console.log('All urls have been checked')
  }
)

As we can see, with streams, our code looks very elegant and straightforward: 
everything is contained in a single streaming pipeline. Let's see how it works:

1. First, we create a Readable stream from the file given as input.
2. We pipe the contents of the input file through split (nodejsdp.link/split), 

a Transform stream that ensures each line is emitted in a different chunk.
3. Then, it's time to use our ParallelStream to check the URL. We do this by 

sending a head request and waiting for a response. When the operation 
completes, we push the result down the stream.

4. Finally, all the results are piped into a file, results.txt.

Now, we can run the check-urls.js module with a command such as this:

http://nodejsdp.link/split
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node check-urls.js urls.txt

Here, the file urls.txt contains a list of URLs (one per line); for example:

https://mario.fyi
https://loige.co
http://thiswillbedownforsure.com

When the command finishes running, we will see that a file, results.txt, was 
created. This contains the results of the operation; for example:

http://thiswillbedownforsure.com is down
https://mario.fyi is up
https://loige.co is up

There is a good probability that the order in which the results are written is different 
from the order in which the URLs were specified in the input file. This is clear 
evidence that our stream executes its tasks in parallel, and it does not enforce any 
order between the various data chunks in the stream.

In the next section, we will see how to extend this pattern to limit the number of 
parallel tasks running at a given time.

Unordered limited parallel execution
If we try to run the check-urls.js application against a file that contains thousands 
or millions of URLs, we will surely run into issues. Our application will create an 
uncontrolled number of connections all at once, sending a considerable amount of 
data in parallel, and potentially undermining the stability of the application and the 
availability of the entire system. As we already know, the solution to keep the load 
and resource usage under control is to limit the concurrency of the parallel tasks.

Let's see how this works with streams by creating a limited-parallel-stream.js 
module, which is an adaptation of parallel-stream.js we created in the 
previous section.

For the sake of curiosity, we might want to try replacing 
ParallelStream with a normal Transform stream and compare 
the behavior and performance of the two (you might want to 
do this as an exercise). Using Transform directly is way slower, 
because each URL is checked in sequence, but on the other hand 
the order of the results in the file results.txt is preserved.
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Let's see what it looks like, starting from its constructor (we will highlight the 
changed parts):

export class LimitedParallelStream extends Transform {
  constructor (concurrency, userTransform, opts) {
    super({ ...opts, objectMode: true })
    this.concurrency = concurrency
    this.userTransform = userTransform
    this.running = 0
    this.continueCb = null
    this.terminateCb = null
  }
// ...

We need a concurrency limit to be taken as input, and this time, we are going to save 
two callbacks, one for any pending _transform method (continueCb—more on this 
next) and another one for the callback of the _flush method (terminateCb).

Next is the _transform() method:

  _transform (chunk, enc, done) {
    this.running++
    this.userTransform(
      chunk,
      enc,
      this.push.bind(this),
      this._onComplete.bind(this)
    )
    if (this.running < this.concurrency) {
      done()
    } else {
      this.continueCb = done
    }
  }

This time, in the _transform() method, we have to check whether we have any free 
execution slots before we can invoke done() and trigger the processing of the next 
item. If we have already reached the maximum number of concurrently running 
streams, we can simply save the done() callback in the continueCb variable so that 
it can be invoked as soon as a task finishes.
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The _flush() method remains exactly the same as in the ParallelStream class, so 
let's move directly to implementing the _onComplete() method:

  _onComplete (err) {
    this.running--
    if (err) {
      return this.emit('error', err)
    }
    const tmpCb = this.continueCb
    this.continueCb = null
    tmpCb && tmpCb()
    if (this.running === 0) {
      this.terminateCb && this.terminateCb()
    }
  }

Every time a task completes, we invoke any saved continueCb() that will cause the 
stream to unblock, triggering the processing of the next item.

That's it for the LimitedParallelStream class. We can now use it in the check-urls.js 
module in place of ParallelStream and have the concurrency of our tasks limited to 
the value that we set.

Ordered parallel execution
The parallel streams that we created previously may shuffle the order of the emitted 
data, but there are situations where this is not acceptable. Sometimes, in fact, it is 
necessary to have each chunk emitted in the same order in which it was received. 
However, not all hope is lost: we can still run the transform function in parallel; 
all we have to do is to sort the data emitted by each task so that it follows the same 
order in which the data was received.

This technique involves the use of a buffer to reorder the chunks while they 
are emitted by each running task. For brevity, we are not going to provide an 
implementation of such a stream, as it's quite verbose for the scope of this book. 
What we are going to do instead is reuse one of the available packages on npm built 
for this specific purpose, that is, parallel-transform (nodejsdp.link/parallel-
transform).

We can quickly check the behavior of an ordered parallel execution by modifying 
our existing check-urls module. Let's say that we want our results to be written in 
the same order as the URLs in the input file, while executing our checks in parallel. 
We can do this using parallel-transform:

http://nodejsdp.link/parallel-transform
http://nodejsdp.link/parallel-transform
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//...
import parallelTransform from 'parallel-transform'

pipeline(
  createReadStream(process.argv[2]),
  split(),
  parallelTransform(4, async function (url, done) {
    if (!url) {
      return done()
    }
    console.log(url)
    try {
      await request.head(url, { timeout: 5 * 1000 })
      this.push(`${url} is up\n`)
    } catch (err) {
      this.push(`${url} is down\n`)
    }
    done()
  }),
  createWriteStream('results.txt'),
  (err) => {
    if (err) {
      console.error(err)
      process.exit(1)
    }
    console.log('All urls have been checked')
  }
)

In the example here, parallelTransform() creates a Transform stream in object 
mode that executes our transformation logic with a maximum concurrency of 4. If 
we try to run this new version of check-urls.js, we will now see that the results.
txt file lists the results in the same order as the URLs appear in the input file. It is 
important to see that, even though the order of the output is the same as the input, 
the asynchronous tasks still run in parallel and can possibly complete in any order.



Coding with Streams

[ 214 ]

With this, we conclude our analysis of the asynchronous control flow patterns with 
streams. Next, we are going to focus on some piping patterns.

Piping patterns
As in real-life plumbing, Node.js streams can also be piped together by following 
different patterns. We can, in fact, merge the flow of two different streams into one, 
split the flow of one stream into two or more pipes, or redirect the flow based on 
a condition. In this section, we are going to explore the most important plumbing 
patterns that can be applied to Node.js streams.

Combining streams
In this chapter, we have stressed the fact that streams provide a simple infrastructure 
to modularize and reuse our code, but there is one last piece missing in this puzzle: 
what if we want to modularize and reuse an entire pipeline? What if we want to 
combine multiple streams so that they look like one from the outside? The following 
figure shows what this means:

Figure 6.6: Combining streams

When using the ordered parallel execution pattern, we need to be 
aware of slow items blocking the pipeline or growing the memory 
indefinitely. In fact, if there is an item that requires a very long time 
to complete, depending on the implementation of the pattern, it 
will either cause the buffer containing the pending ordered results 
to grow indefinitely or the entire processing to block until the 
slow item completes. With the first strategy, we are optimizing for 
performance, while with the second, we get predictable memory 
usage. parallel-transform implementation opts for predictable 
memory utilization and maintains an internal buffer that will not 
grow more than the specified maximum concurrency.
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From Figure 6.6, we should already get a hint of how this works:

• When we write into the combined stream, we are actually writing into the 
first stream of the pipeline.

• When we read from the combined stream, we are actually reading from the 
last stream of the pipeline.

A combined stream is usually a Duplex stream, which is built by connecting the first 
stream to its Writable side and the last stream to its Readable side.

But that's not enough. In fact, another important characteristic of a combined stream 
is that it has to capture and propagate all the errors that are emitted from any stream 
inside the pipeline. As we already mentioned, any error event is not automatically 
propagated down the pipeline when we use pipe(), and we should explicitly attach 
an error listener to each stream. We saw that we could use the pipeline() helper 
function to overcome the limitations of pipe() with error management, but the issue 
with both pipe() and the pipeline() helper is that the two functions return only the 
last stream of the pipeline, so we only get the (last) Readable component and not the 
(first) Writable component. 

We can verify this very easily with the following snippet of code:

import { createReadStream, createWriteStream } from 'fs'
import { Transform, pipeline } from 'stream'
import { strict as assert } from 'assert'

const streamA = createReadStream('package.json')
const streamB = new Transform({
  transform (chunk, enc, done) {
    this.push(chunk.toString().toUpperCase())
    done()
  }
})
const streamC = createWriteStream('package-uppercase.json')

const pipelineReturn = pipeline(
  streamA,
  streamB,

To create a Duplex stream out of two different streams, one 
Writable and one Readable, we can use an npm module such 
as duplexer2 (nodejsdp.link/duplexer2) or duplexify 
(nodejsdp.link/duplexify).

http://nodejsdp.link/duplexer2
http://nodejsdp.link/duplexify
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  streamC,
  () => {
    // handle errors here
  })
assert.strictEqual(streamC, pipelineReturn) // valid

const pipeReturn = streamA.pipe(streamB).pipe(streamC)
assert.strictEqual(streamC, pipeReturn) // valid

From the preceding code, it should be clear that with just pipe() or pipeline(), 
it would not be trivial to construct a combined stream.

To recap, a combined stream has two major advantages:

• We can redistribute it as a black box by hiding its internal pipeline.
• We have simplified error management, as we don't have to attach an error 

listener to each stream in the pipeline, but just to the combined stream itself.

Combining streams is a pretty common practice, so if we don't have any particular 
need, we might just want to reuse an existing library such as pumpify (nodejsdp.
link/pumpify).

This library offers a very simple interface. In fact, all you have to do to obtain a 
combined stream is to call pumpify(), passing all the streams you want in your 
pipeline. This is very similar to the signature of pipeline(), except that there's no 
callback:

const combinedStream = pumpify(streamA, streamB, streamC)

When we do something like this, pumpify will create a pipeline out of our streams, 
return a new combined stream that abstracts away the complexity of our pipeline, 
and provide the advantages discussed previously.

If you are curious to see what it takes to build a library like 
pumpify, you should check its source code on GitHub (nodejsdp.
link/pumpify-gh). One interesting fact is that, internally, pumpify 
uses pump (nodejsdp.link/pump), a module that was born before 
the Node.js pipeline() helper. pump is effectively the module 
that inspired the development of pipeline(). If you compare 
their source code, you will find out that, unsurprisingly, the two 
modules have a lot in common.

http://nodejsdp.link/pumpify
http://nodejsdp.link/pumpify
http://nodejsdp.link/pumpify-gh
http://nodejsdp.link/pumpify-gh
http://nodejsdp.link/pump
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Implementing a combined stream
To illustrate a simple example of combining streams, let's consider the case of the 
following two Transform streams:

• One that both compresses and encrypts the data
• One that both decrypts and decompresses the data

Using a library such as pumpify, we can easily build these streams (in a file called 
combined-streams.js) by combining some of the streams that we already have 
available from the core libraries:

import { createGzip, createGunzip } from 'zlib'
import {
  createCipheriv,
  createDecipheriv,
  scryptSync
} from 'crypto'
import pumpify from 'pumpify'
function createKey (password) {
  return scryptSync(password, 'salt', 24)
}

export function createCompressAndEncrypt (password, iv) {
  const key = createKey(password)
  const combinedStream = pumpify(
    createGzip(),
    createCipheriv('aes192', key, iv)
  )
  combinedStream.iv = iv

  return combinedStream
}

export function createDecryptAndDecompress (password, iv) {
  const key = createKey(password)
  return pumpify(
    createDecipheriv('aes192', key, iv),
    createGunzip()
  )
}
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We can now use these combined streams as if they were black boxes, for example, to 
create a small application that archives a file by compressing and encrypting it. Let's 
do that in a new module named archive.js:

import { createReadStream, createWriteStream } from 'fs'
import { pipeline } from 'stream'
import { randomBytes } from 'crypto'
import { createCompressAndEncrypt } from './combined-streams.js'

const [,, password, source] = process.argv
const iv = randomBytes(16)
const destination = `${source}.gz.enc`

pipeline(
  createReadStream(source),
  createCompressAndEncrypt(password, iv),

  createWriteStream(destination),
  (err) => {
    if (err) {
      console.error(err)
      process.exit(1)
    }
    console.log(`${destination} created with iv: ${iv.
toString('hex')}`)
  }
)

Note how we don't have to worry about how many steps there are within 
archiveFile. In fact, we just treat it as a single stream within our current pipeline. 
This makes our combined stream easily reusable in other contexts.

Now, to run the archive module, simply specify a password and a file in the 
command-line arguments:

node archive.js mypassword /path/to/a/file.txt

This command will create a file called /path/to/a/file.txt.gz.enc and it will print 
the generated initialization vector to the console.

Now, as an exercise, you could use the createDecryptAndDecompress() function to 
create a similar script that takes a password, an initialization vector, and an archived 
file and unarchives it.
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With this example, we have clearly demonstrated how important it is to combine 
streams. From one side, it allows us to create reusable compositions of streams, and 
from the other, it simplifies the error management of a pipeline.

Forking streams
We can perform a fork of a stream by piping a single Readable stream into multiple 
Writable streams. This is useful when we want to send the same data to different 
destinations; for example, two different sockets or two different files. It can also 
be used when we want to perform different transformations on the same data, or 
when we want to split the data based on some criteria. If you are familiar with the 
Unix command tee (nodejsdp.link/tee), this is exactly the same concept applied to 
Node.js streams!

Figure 6.7 gives us a graphical representation of this pattern:

Figure 6.7: Forking a stream

In real-life applications, it is generally preferable to include the 
initialization vector as part of the encrypted data, rather than 
requiring the user to pass it around. One way to implement this 
is by having the first 16 bytes emitted by the archive stream to be 
representing the initialization vector. The unarchive utility would 
need to be updated accordingly to consume the first 16 bytes before 
starting to process the data in a streaming fashion. This approach 
would add some additional complexity, which is outside the scope 
of this example, therefore we opted for a simpler solution. Once 
you feel comfortable with streams, we encourage you to try to 
implement as an exercise a solution where the initialization vector 
doesn't have to be passed around by the user.

http://nodejsdp.link/tee
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Forking a stream in Node.js is quite easy, but there are a few caveats to keep in mind. 
Let's start by discussing this pattern with an example. It will be easier to appreciate 
the caveats of this pattern once we have an example at hand.

Implementing a multiple checksum generator
Let's create a small utility that outputs both the sha1 and md5 hashes of a given file. 
Let's call this new module generate-hashes.js:

import { createReadStream, createWriteStream } from 'fs'
import { createHash } from 'crypto'

const filename = process.argv[2]
const sha1Stream = createHash('sha1').setEncoding('hex')
const md5Stream = createHash('md5').setEncoding('hex')
const inputStream = createReadStream(filename)

inputStream
  .pipe(sha1Stream)
  .pipe(createWriteStream(`${filename}.sha1`))

inputStream
  .pipe(md5Stream)
  .pipe(createWriteStream(`${filename}.md5`))

Very simple, right? The inputStream variable is piped into sha1Stream on one side 
and md5Stream on the other. There are a few things to note that happen behind the 
scenes:

• Both md5Stream and sha1Stream will be ended automatically when 
inputStream ends, unless we specify { end: false } as an option when 
invoking pipe().

• The two forks of the stream will receive the same data chunks, so we must 
be very careful when performing side-effect operations on the data, as that 
would affect every stream that we are sending data to.

• Backpressure will work out of the box; the flow coming from inputStream 
will go as fast as the slowest branch of the fork. In other words, if one 
destination pauses the source stream to handle backpressure for a long 
time, all the other destinations will be waiting as well. Also, one destination 
blocking indefinitely will block the entire pipeline!
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• If we pipe to an additional stream after we've started consuming the data at 
source (async piping), the new stream will only receive new chunks of data. 
In those cases, we can use a PassThrough instance as a placeholder to collect 
all the data from the moment we start consuming the stream. Then, the 
PassThrough stream can be read at any future time without the risk of losing 
any data. Just be aware that this approach might generate backpressure and 
block the entire pipeline, as discussed in the previous point.

Merging streams
Merging is the opposite operation to forking and involves piping a set of Readable 
streams into a single Writable stream, as shown in Figure 6.8:

Figure 6.8: Merging streams

Merging multiple streams into one is, in general, a simple operation; however, we 
have to pay attention to the way we handle the end event, as piping using the default 
options (whereby { end: true }) causes the destination stream to end as soon as 
one of the sources ends. This can often lead to an error, as the other active sources 
continue to write to an already terminated stream. 

The solution to this problem is to use the option { end: false } when piping 
multiple sources to a single destination and then invoke end() on the destination 
only when all the sources have completed reading.

Merging text files
To make a simple example, let's implement a small program that takes an output 
path and an arbitrary number of text files, and then merges the lines of every file 
into the destination file. Our new module is going to be called merge-lines.js. 
Let's define its contents, starting from some initialization steps:

import { createReadStream, createWriteStream } from 'fs'
import split from 'split'
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const dest = process.argv[2]
const sources = process.argv.slice(3)

In the preceding code, we are just loading all the dependencies and initializing the 
variables that contain the name of the destination (dest) file and all the source files 
(sources).

Next, we will create the destination stream:

const destStream = createWriteStream(dest)

Now, it's time to initialize the source streams:

let endCount = 0
for (const source of sources) {
  const sourceStream = createReadStream(source, { highWaterMark: 16 })
  sourceStream.on('end', () => {
    if (++endCount === sources.length) {
      destStream.end()
      console.log(`${dest} created`)
    }
  })
  sourceStream
    .pipe(split((line) => line + '\n'))
    .pipe(destStream, { end: false })
}

In the preceding code, we created a Readable stream for every source file. Then, for 
each source stream, we attached an end listener, which will terminate the destination 
stream only when all the files have been read completely. Finally, we piped every 
source stream to split(), a Transform stream that makes sure that we produce a 
chunk for every line of text, and finally, we piped the results to our destination 
stream. This is when the real merge happens. We are piping multiple source streams 
into one single destination.

We can now execute this code with the following command:

node merge-lines.js <destination> <source1> <source2> <source3> ...

If you run this code with large enough files, you will notice that the destination file 
will contain lines that are randomly intermingled from all the source files (a low 
highWaterMark of 16 bytes makes this property even more apparent). This kind of 
behavior can be acceptable in some types of object streams and some text streams 
split by line (as in our current example), but it is often undesirable when dealing 
with most binary streams.
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There is one variation of the pattern that allows us to merge streams in order; it 
consists of consuming the source streams one after the other. When the previous 
one ends, the next one starts emitting chunks (it is like concatenating the output of all 
the sources). As always, on npm, we can find some packages that also deal with this 
situation. One of them is multistream (https://npmjs.org/package/multistream).

Multiplexing and demultiplexing
There is a particular variation of the merge stream pattern in which we don't really 
want to just join multiple streams together but, instead, use a shared channel to 
deliver the data of a set of streams. This is a conceptually different operation because 
the source streams remain logically separated inside the shared channel, which 
allows us to split the stream again once the data reaches the other end of the shared 
channel. Figure 6.9 clarifies this situation:

Figure 6.9: Multiplexing and demultiplexing streams

The operation of combining multiple streams (in this case, also known as channels) 
to allow transmission over a single stream is called multiplexing, while the opposite 
operation, namely reconstructing the original streams from the data received from 
a shared stream, is called demultiplexing. The devices that perform these operations 
are called multiplexer (or mux) and demultiplexer (or demux), respectively. This 
is a widely studied area in computer science and telecommunications in general, 
as it is one of the foundations of almost any type of communication media such as 
telephony, radio, TV, and, of course, the Internet itself. For the scope of this book, 
we will not go too far with the explanations, as this is a vast topic.

What we want to demonstrate in this section is how it's possible to use a shared 
Node.js stream to transmit multiple logically separated streams that are then 
separated again at the other end of the shared stream.

https://npmjs.org/package/multistream
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Building a remote logger
Let's use an example to drive our discussion. We want a small program that starts a 
child process and redirects both its standard output and standard error to a remote 
server, which, in turn, saves the two streams in two separate files. So, in this case, the 
shared medium is a TCP connection, while the two channels to be multiplexed are 
the stdout and stderr of a child process. We will leverage a technique called packet 
switching, the same technique that is used by protocols such as IP, TCP, and UDP. 
Packet switching involves wrapping the data into packets, allowing us to specify 
various meta information that's useful for multiplexing, routing, controlling the flow, 
checking for corrupted data, and so on. The protocol that we are implementing in 
our example is very minimalist. We wrap our data into simple packets, as illustrated 
in Figure 6.10:

Figure 6.10: Bytes structure of the data packet for our remote logger

As shown in Figure 6.10, the packet contains the actual data, but also a header 
(Channel ID + Data length), which will make it possible to differentiate the data of 
each stream and enable the demultiplexer to route the packet to the right channel.

Client side – multiplexing
Let's start to build our application from the client side. With a lot of creativity, we 
will call the module client.js. This represents the part of the application that is 
responsible for starting a child process and multiplexing its streams.

So, let's start by defining the module. First, we need some dependencies:

import { fork } from 'child_process'
import { connect } from 'net'

Now, let's implement a function that performs the multiplexing of a list of sources:

function multiplexChannels (sources, destination) {
  let openChannels = sources.length
  for (let i = 0; i < sources.length; i++) {
    sources[i]
      .on('readable', function () {                           // (1)
        let chunk
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        while ((chunk = this.read()) !== null) {
          const outBuff = Buffer.alloc(1 + 4 + chunk.length)  // (2)
          outBuff.writeUInt8(i, 0)
          outBuff.writeUInt32BE(chunk.length, 1)
          chunk.copy(outBuff, 5)
          console.log(`Sending packet to channel: ${i}`)
          destination.write(outBuff)                          // (3)
        }
      })
      .on('end', () => {                                      // (4)
        if (--openChannels === 0) {
          destination.end()
        }
      })
  }
}

The multiplexChannels() function takes in, as input, the source streams to be 
multiplexed and the destination channel, and then it performs the following steps:

1. For each source stream, it registers a listener for the readable event, where 
we read the data from the stream using the non-flowing mode.

2. When a chunk is read, we wrap it into a packet that contains, in order, 1 byte 
(UInt8) for the channel ID, 4 bytes (UInt32BE) for the packet size, and then the 
actual data.

3. When the packet is ready, we write it into the destination stream.
4. Finally, we register a listener for the end event so that we can terminate the 

destination stream when all the source streams have ended.

Now, the last part of our client becomes very easy:

const socket = connect(3000, () => {                       // (1)
  const child = fork(                                      // (2)
    process.argv[2],
    process.argv.slice(3),
    { silent: true }

Our protocol is to be able to multiplex up to 256 different source 
streams because we only have 1 byte to identify the channel.
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  )
  multiplexChannels([child.stdout, child.stderr], socket)  // (3)
})

In this last code fragment, we perform the following operations:

1. We create a new TCP client connection to the address localhost:3000.
2. We start the child process by using the first command-line argument as the 

path, while we provide the rest of the process.argv array as arguments for 
the child process. We specify the option {silent: true} so that the child 
process does not inherit stdout and stderr of the parent.

3. Finally, we take stdout and stderr of the child process and we multiplex 
them into the socket's Writable stream using the mutiplexChannels() 
function.

Server side – demultiplexing
Now, we can take care of creating the server side of the application (server.js), 
where we demultiplex the streams from the remote connection and pipe them into 
two different files. 

Let's start by creating a function called demultiplexChannel():

import { createWriteStream } from 'fs'
import { createServer } from 'net'

function demultiplexChannel (source, destinations) {
  let currentChannel = null
  let currentLength = null

  source
    .on('readable', () => {                                  // (1)
      let chunk
      if (currentChannel === null) {                         // (2)
        chunk = source.read(1)
        currentChannel = chunk && chunk.readUInt8(0)
      }

      if (currentLength === null) {                          // (3)
        chunk = source.read(4)
        currentLength = chunk && chunk.readUInt32BE(0)



Chapter 6

[ 227 ]

        if (currentLength === null) {
          return null
        }
      }

      chunk = source.read(currentLength)                     // (4)
      if (chunk === null) {
        return null
      }

      console.log(`Received packet from: ${currentChannel}`)
      destinations[currentChannel].write(chunk)              // (5)
      currentChannel = null
      currentLength = null
    })
    .on('end', () => {                                       // (6)
      destinations.forEach(destination => destination.end())
      console.log('Source channel closed')
    })
}

The preceding code might look complicated, but it is not. Thanks to the features of 
Node.js Readable streams, we can easily implement the demultiplexing of our little 
protocol as follows:

1. We start reading from the stream using the non-flowing mode.
2. First, if we have not read the channel ID yet, we try to read 1 byte from the 

stream and then transform it into a number.
3. The next step is to read the length of the data. We need 4 bytes for that, so 

it's possible (even if unlikely) that we don't have enough data in the internal 
buffer, which will cause the this.read() invocation to return null. In such 
a case, we simply interrupt the parsing and retry at the next readable event.

4. When we can finally also read the data size, we know how much data to pull 
from the internal buffer, so we try to read it all.

5. When we read all the data, we can write it to the right destination channel, 
making sure that we reset the currentChannel and currentLength variables 
(these will be used to parse the next packet).

6. Lastly, we make sure to end all the destination channels when the source 
channel ends.
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Now that we can demultiplex the source stream, let's put our new function to work:

const server = createServer((socket) => {
  const stdoutStream = createWriteStream('stdout.log')
  const stderrStream = createWriteStream('stderr.log')
  demultiplexChannel(socket, [stdoutStream, stderrStream])
})
server.listen(3000, () => console.log('Server started'))

In the preceding code, we first start a TCP server on port 3000; then, for each 
connection that we receive, we create two Writable streams pointing to two 
different files: one for the standard output and the other for the standard error. 
These are our destination channels. Finally, we use demultiplexChannel() to 
demultiplex the socket stream into stdoutStream and stderrStream.

Running the mux/demux application
Now, we are ready to try our new mux/demux application, but first, let's 
create a small Node.js program to produce some sample output; let's call it  
generate-data.js:

console.log('out1')
console.log('out2')
console.error('err1')
console.log('out3')
console.error('err2')

Okay; now, we are ready to try our remote logging application. First, let's start the 
server:

node server.js

Then, we'll start the client by providing the file that we want to start as a child 
process:

node client.js generateData.js

The client will run almost immediately, but at the end of the process, the standard 
input and standard output of the generate-data.js application will have traveled 
through one single TCP connection and then, on the server, be demultiplexed into 
two separate files.



Chapter 6

[ 229 ]

Multiplexing and demultiplexing object streams
The example that we have just shown demonstrates how to multiplex and 
demultiplex a binary/text stream, but it's worth mentioning that the same rules 
apply to object streams. The biggest difference is that when using objects, we already 
have a way to transmit the data using atomic messages (the objects), so multiplexing 
would be as easy as setting a channelID property in each object. Demultiplexing 
would simply involve reading the channelID property and routing each object 
toward the right destination stream.

Another pattern involving only demultiplexing is routing the data coming from a 
source depending on some condition. With this pattern, we can implement complex 
flows, such as the one shown in Figure 6.11:

Figure 6.11: Demultiplexing an object stream

The demultiplexer used in the system in Figure 6.11 takes a stream of objects 
representing animals and distributes each of them to the right destination stream 
based on the class of the animal: reptiles, amphibians, or mammals.

Using the same principle, we can also implement an if...else statement for 
streams. For some inspiration, take a look at the ternary-stream package (nodejsdp.
link/ternary-stream), which allows us to do exactly that.

Please make a note that, as we are using child_process.fork() 
(nodejsdp.link/fork), our client will only be able to launch other 
Node.js modules.

http://nodejsdp.link/ternary-stream
http://nodejsdp.link/ternary-stream
http://nodejsdp.link/fork
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Summary
In this chapter, we have shed some light on Node.js streams and some of their 
most common use cases. We learned why streams are so acclaimed by the Node.js 
community and we mastered their basic functionality, enabling us to discover more 
and navigate comfortably in this new world. We analyzed some advanced patterns 
and started to understand how to connect streams in different configurations, 
grasping the importance of interoperability, which is what makes streams so 
versatile and powerful.

If we can't do something with one stream, we can probably do it by connecting other 
streams together, and this works great with the one thing per module philosophy. 
At this point, it should be clear that streams are not just a good to know feature of 
Node.js; they are an essential part—a crucial pattern to handle binary data, strings, 
and objects. It's not by chance that we dedicated an entire chapter to them.

In the next few chapters, we will focus on the traditional object-oriented design 
patterns. But don't be fooled; even though JavaScript is, to some extent, an object-
oriented language, in Node.js, the functional or hybrid approach is often preferred. 
Get rid of every prejudice before reading the next chapters.

Exercises
• 6.1 Data compression efficiency: Write a command-line script that takes a 

file as input and compresses it using the different algorithms available in the 
zlib module (Brotli, Deflate, Gzip). You want to produce a summary table 
that compares the algorithm's compression time and compression efficiency 
on the given file. Hint: This could be a good use case for the fork pattern, but 
remember that we made some important performance considerations when 
we discussed it earlier in this chapter.

• 6.2 Stream data processing: On Kaggle, you can find a lot of interesting data 
sets, such as the London Crime Data (nodejsdp.link/london-crime). You can 
download the data in CSV format and build a stream processing script that 
analyzes the data and tries to answer the following questions:

• Did the number of crimes go up or down over the years?
• What are the most dangerous areas of London?
• What is the most common crime per area?
• What is the least common crime?

http://nodejsdp.link/london-crime
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Hint: You can use a combination of Transform streams and PassThrough 
streams to parse and observe the data as it is flowing. Then, you can build in-
memory aggregations for the data, which can help you answer the preceding 
questions. Also, you don't need to do everything in one pipeline; you could 
build very specialized pipelines (for example, one per question) and use the 
fork pattern to distribute the parsed data across them.

• 6.3 File share over TCP: Build a client and a server to transfer files over TCP. 
Extra points if you add a layer of encryption on top of that and if you can 
transfer multiple files at once. Once you have your implementation ready, 
give the client code and your IP address to a friend or a colleague, then ask 
them to send you some files! Hint: You could use mux/demux to receive 
multiple files at once.

• 6.4 Animations with Readable streams: Did you know you can create 
amazing terminal animations with just Readable streams? Well, to 
understand what we are talking about here, try to run curl parrot.live 
in your terminal and see what happens! If you think that this is cool, why 
don't you try to create something similar? Hint: If you need some help with 
figuring out how to implement this, you can check out the actual source code 
of parrot.live by simply accessing its URL through your browser.
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7
Creational Design Patterns

A design pattern is a reusable solution to a recurring problem. The term is really 
broad in its definition and can span multiple domains of an application. However, 
the term is often associated with a well-known set of object-oriented patterns that 
were popularized in the 90s by the book, Design Patterns: Elements of Reusable Object-
Oriented Software, Pearson Education, by the almost legendary Gang of Four (GoF): 
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. We will often refer 
to these specific sets of patterns as traditional design patterns or GoF design patterns.

Applying this set of object-oriented design patterns in JavaScript is not as linear and 
formal as it would be in a classical object-oriented language. As we know, JavaScript 
is object-oriented, prototype-based, and has dynamic typing. It also treats functions 
as first-class citizens and allows functional programming styles. These characteristics 
make JavaScript a very versatile language, which gives tremendous power to 
the developer but at the same time, it causes fragmentation of programming 
styles, conventions, techniques, and ultimately the patterns of its ecosystem. With 
JavaScript, there are so many ways to achieve the same result that each developer 
has their own opinion on what's the best way to approach a problem. A clear 
demonstration of this phenomenon is the abundance of frameworks and opinionated 
libraries in the JavaScript ecosystem; probably no other language has ever seen 
so many, especially now that Node.js has given new astonishing possibilities to 
JavaScript and has created so many new scenarios.

In this context, the nature of JavaScript affects traditional design patterns too. 
There are so many ways in which traditional design patterns can be implemented 
in JavaScript that the traditional, strongly object-oriented implementation stops 
being relevant.
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In some cases, the traditional implementation of these design patterns is not even 
possible because JavaScript, as we know, doesn't have real classes or abstract 
interfaces. What doesn't change, though, is the original idea at the base of each 
pattern, the problem it solves, and the concepts at the heart of the solution.

In this chapter and in the two that follow, we will see how some of the most 
important GoF design patterns apply to Node.js and its philosophy, thus 
rediscovering their importance from another perspective. Among these traditional 
patterns, we will also have a look at some "less traditional" design patterns born 
from within the JavaScript ecosystem itself.

In this chapter, in particular, we'll take a look at a class of design patterns called 
creational. As the name suggests, these patterns address problems related to the 
creation of objects. For example, the Factory pattern allows us to encapsulate the 
creation of an object within a function. The Revealing Constructor pattern allows us 
to expose private object properties and methods only during the object's creation, 
while the Builder pattern simplifies the creation of complex objects. Finally, the 
Singleton pattern and the Dependency Injection pattern help us with wiring the 
modules within our applications.

Factory
We'll begin our journey from one of the most common design patterns in 
Node.js: Factory. As you will see, the Factory pattern is very versatile and has more 
than just one purpose. Its main advantage is its ability to decouple the creation of 
an object from one particular implementation. This allows us, for example, to create 
an object whose class is determined at runtime. Factory also allows us to expose 
"a surface area" that is much smaller than that of a class; a class can be extended or 
manipulated, while a factory, being just a function, offers fewer options to the user, 
making it more robust and easier to understand. Finally, a factory can also be used 
to enforce encapsulation by leveraging closures.

This chapter, as well as the following two, assume that you have 
some notion of how inheritance works in JavaScript. Please also be 
advised that we will often use generic and more intuitive diagrams 
to describe a pattern in place of standard UML. This is because 
many patterns can have an implementation based not only on 
classes but also on objects and even functions.
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Decoupling object creation and 
implementation
We already stressed the fact that, in JavaScript, the functional paradigm is often 
preferred to a purely object-oriented design for its simplicity, usability, and small 
surface area. This is especially true when creating new object instances. In fact, 
invoking a factory, instead of directly creating a new object from a class using 
the new operator or Object.create(), is so much more convenient and flexible 
in several respects.

First and foremost, a factory allows us to separate the creation of an object from its 
implementation. Essentially, a factory wraps the creation of a new instance, giving 
us more flexibility and control in the way we do it. Inside the factory, we can choose 
to create a new instance of a class using the new operator, or leverage closures to 
dynamically build a stateful object literal, or even return a different object type based 
on a particular condition. The consumer of the factory is totally agnostic about how 
the creation of the instance is carried out. The truth is that, by using new, we are 
binding our code to one specific way of creating an object, while with a factory, we 
can have much more flexibility, almost for free. As a quick example, let's consider 
a simple factory that creates an Image object:

function createImage (name) {
  return new Image(name)
}
const image = createImage('photo.jpeg')

The createImage() factory might look totally unnecessary; why not instantiate 
the Image class by using the new operator directly? Why not write something like 
the following:

const image = new Image(name)

As we already mentioned, using new binds our code to one particular type of object, 
which in the preceding case is to the Image object type. A factory, on the other hand, 
gives us much more flexibility. Imagine that we want to refactor the Image class, 
splitting it into smaller classes, one for each image format that we support. 
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If we exposed a factory as the only means to create new images, we could simply 
rewrite it as follows, without breaking any of the existing code:

function createImage (name) {
  if (name.match(/\.jpe?g$/)) {
    return new ImageJpeg(name)
  } else if (name.match(/\.gif$/)) {
    return new ImageGif(name)
  } else if (name.match(/\.png$/)) {
    return new ImagePng(name)
  } else {
    throw new Error('Unsupported format')
  }
}

Our factory also allows us to keep the classes hidden and prevents them from being 
extended or modified (remember the principle of small surface area?). In JavaScript, 
this can be achieved by exporting only the factory, while keeping the classes private.

A mechanism to enforce encapsulation
A factory can also be used as an encapsulation mechanism, thanks to closures.

Encapsulation refers to controlling the access to some internal details of a component 
by preventing external code from manipulating them directly. The interaction with 
the component happens only through its public interface, isolating the external code 
from the changes in the implementation details of the component. Encapsulation 
is a fundamental principle of object-oriented design, together with inheritance, 
polymorphism, and abstraction.

In JavaScript, one of the main ways to enforce encapsulation is through function 
scopes and closures. A factory makes it straightforward to enforce private variables. 
Consider the following, for example:

function createPerson (name) {
  const privateProperties = {}

  const person = {
    setName (name) {
      if (!name) {
        throw new Error('A person must have a name')
      }
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      privateProperties.name = name
    },
    getName () {
      return privateProperties.name
    }
  }

  person.setName(name)
  return person
}

In the preceding code, we leverage a closure to create two objects: a person object, 
which represents the public interface returned by the factory, and a group 
of privateProperties that are inaccessible from the outside and that can be 
manipulated only through the interface provided by the person object. For example, 
in the preceding code, we make sure that a person's name is never empty; this would 
not be possible to enforce if name was just a normal property of the person object.

Using closures is not the only technique that we have for enforcing 
encapsulation. In fact, other possible approaches are:

• Using private class fields (the hashbang # prefix syntax), 
introduced in Node.js 12. More on this at nodejsdp.
link/tc39-private-fields. This is the most modern 
approach, but at the time of writing, the feature is still 
experimental and has yet to be included in the official 
ECMAScript specification.

• Using WeakMaps. More on this at nodejsdp.link/
weakmaps-private.

• Using symbols, as explained in the following article: 
nodejsdp.link/symbol-private.

• Defining private variables in a constructor (as 
recommended by Douglas Crockford: nodejsdp.link/
crockford-private). This is the legacy but also the best-
known approach.

• Using conventions, for example, prefixing the name of a 
property with an underscore "_". However, this does not 
technically prevent a member from being read or modified 
from the outside.

http://nodejsdp.link/tc39-private-fields
http://nodejsdp.link/tc39-private-fields
http://nodejsdp.link/weakmaps-private
http://nodejsdp.link/weakmaps-private
http://nodejsdp.link/symbol-private
http://nodejsdp.link/crockford-private
http://nodejsdp.link/crockford-private


Creational Design Patterns

[ 238 ]

Building a simple code profiler
Now, let's work on a complete example using a factory. Let's build a simple code 
profiler, an object with the following properties:

• A start() method that triggers the start of a profiling session
• An end() method to terminate the session and log its execution time to 

the console

Let's start by creating a file named profiler.js, which will have the following 
content:

class Profiler {
  constructor (label) {
    this.label = label
    this.lastTime = null
  }

  start () {
    this.lastTime = process.hrtime()
  }

  end () {
    const diff = process.hrtime(this.lastTime)
    console.log(`Timer "${this.label}" took ${diff[0]} seconds ` +
      `and ${diff[1]} nanoseconds.`)
  }
}

The Profiler class we just defined uses the default high resolution timer of Node.js 
to save the current time when start() is invoked, and then calculate the elapsed 
time when end() is executed, printing the result to the console.

Now, if we are going to use such a profiler in a real-world application to calculate 
the execution time of different routines, we can easily imagine the huge amount of 
profiling information printed to the console, especially in a production environment. 
What we may want to do instead is redirect the profiling information to another 
source, for example, a dedicated log file, or alternatively, disable the profiler 
altogether if the application is running in production mode. It's clear that if we were 
to instantiate a Profiler object directly by using the new operator, we would need 
some extra logic in the client code or in the Profiler object itself in order to switch 
between the different logics. 
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Alternatively, we can use a factory to abstract the creation of the Profiler object 
so that, depending on whether the application runs in production or development 
mode, we can return a fully working Profiler instance or a mock object with the 
same interface but with empty methods. This is exactly what we are going to do 
in our profiler.js module. Instead of exporting the Profiler class, we will export 
only our factory. The following is its code:

const noopProfiler = {
  start () {},
  end () {}
}

export function createProfiler (label) {
  if (process.env.NODE_ENV === 'production') {
    return noopProfiler
  }

  return new Profiler(label)
}

The createProfiler() function is our factory and its role is abstracting the creation 
of a Profiler object from its implementation. If the application is running in 
production mode, we return noopProfiler, which essentially doesn't do anything, 
effectively disabling any profiling. If the application is not running in production 
mode, then we create and return a new, fully functional Profiler instance.

Thanks to JavaScript's dynamic typing, we were able to return an object instantiated 
with the new operator in one circumstance and a simple object literal in the other 
(this is also known as duck typing, and you can read more about it at nodejsdp.
link/duck-typing). This confirms how we can create objects in any way we like 
inside the factory function. We could also execute additional initialization steps 
or return a different type of object based on particular conditions, all of this while 
isolating the consumer of the object from all these details. We can easily understand 
the power of this simple pattern.

Now, let's play with our profiler factory a bit. Let's create an algorithm to calculate 
all the factors of a given number and use our profiler to record its running time:

// index.js
import { createProfiler } from './profiler.js'

http://nodejsdp.link/duck-typing
http://nodejsdp.link/duck-typing
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function getAllFactors (intNumber) {
  const profiler = createProfiler(
    `Finding all factors of ${intNumber}`)

  profiler.start()
  const factors = []
  for (let factor = 2; factor <= intNumber; factor++) {
    while ((intNumber % factor) === 0) {
      factors.push(factor)
      intNumber = intNumber / factor
    }
  }
  profiler.end()

  return factors
}

const myNumber = process.argv[2]
const myFactors = getAllFactors(myNumber)
console.log(`Factors of ${myNumber} are: `, myFactors)

The profiler variable contains our Profiler object, whose implementation will 
be decided by the createProfiler() factory at runtime, based on the NODE_ENV 
environment variable.

For example, if we run the module in production mode, we will get no profiling 
information:

NODE_ENV=production node index.js 2201307499

While if we run the module in development mode, we will see the profiling 
information printed to the console:

node index.js 2201307499

The example that we just presented is just a simple application of the factory function 
pattern, but it clearly shows the advantages of separating an object's creation from its 
implementation.
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In the wild
As we said, factories are very common in Node.js. We can find one example in the 
popular Knex (nodejsdp.link/knex) package. Knex is a SQL query builder that 
supports multiple databases. Its package exports just a function, which is a factory. 
The factory performs various checks, selects the right dialect object to use based on 
the database engine, and finally creates and returns the Knex object. Take a look at 
the code at nodejsdp.link/knex-factory.

Builder
Builder is a creational design pattern that simplifies the creation of complex objects 
by providing a fluent interface, which allows us to build the object step by step. This 
greatly improves the readability and the general developer experience when creating 
such complex objects.

The most apparent situation in which we could benefit from the Builder pattern is 
a class with a constructor that has a long list of arguments, or takes many complex 
parameters as input. Usually, these kinds of classes require so many parameters in 
advance because all of them are necessary to build an instance that is complete and 
in a consistent state, so it's necessary to take this into account when considering 
potential solutions.

So, let's see the general structure of the pattern. Imagine having a Boat class with a 
constructor such as the following:

class Boat {
  constructor (hasMotor, motorCount, motorBrand, motorModel,
               hasSails, sailsCount, sailsMaterial, sailsColor,
               hullColor, hasCabin) {
    // ...
  }
}

Invoking such a constructor would create some hard to read code, which is easily 
prone to errors (which argument is what?). Take the following code, for example:

const myBoat = new Boat(true, 2, 'Best Motor Co. ', 'OM123', true, 1,
                        'fabric', 'white', 'blue', false)

http://nodejsdp.link/knex
http://nodejsdp.link/knex-factory
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A first step to improve the design of this constructor is to aggregate all arguments in 
a single object literal, such as the following:

class Boat {
  constructor (allParameters) {
    // ...
  }
}

const myBoat = new Boat({
  hasMotor: true,
  motorCount: 2,
  motorBrand: 'Best Motor Co. ',
  motorModel: 'OM123',
  hasSails: true,
  sailsCount: 1,
  sailsMaterial: 'fabric',
  sailsColor: 'white',
  hullColor: 'blue',
  hasCabin: false
})

As we can note from the previous code, this new constructor is indeed much better 
than the original one as it allows us to clearly see what is the parameter that receives 
each value. However, we can do even better than this. One drawback of using a 
single object literal to pass all inputs at once is that the only way to know what the 
actual inputs are is to look at the class documentation or, even worse, into the code of 
the class. In addition to that, there is no enforced protocol that guides the developers 
toward the creation of a coherent class. For example, if we specify hasMotor: true, 
then we are required to also specify a motorCount, a motorBrand, and a motorModel, 
but there is nothing in this interface that conveys this information to us.

The Builder pattern fixes even these last few flaws and provides a fluent interface 
that is simple to read, self-documenting, and that provides guidance toward the 
creation of a coherent object. Let's take a look at the BoatBuilder class, which 
implements the Builder pattern for the Boat class:

class BoatBuilder {
  withMotors (count, brand, model) {
    this.hasMotor = true
    this.motorCount = count
    this.motorBrand = brand
    this.motorModel = model
    return this
  }
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  withSails (count, material, color) {
    this.hasSails = true
    this.sailsCount = count
    this.sailsMaterial = material
    this.sailsColor = color
    return this
  }

  hullColor (color) {
    this.hullColor = color
    return this
  }

  withCabin () {
    this.hasCabin = true
    return this
  }

  build() {
    return new Boat({
      hasMotor: this.hasMotor,
      motorCount: this.motorCount,
      motorBrand: this.motorBrand,
      motorModel: this.motorModel,
      hasSails: this.hasSails,
      sailsCount: this.sailsCount,
      sailsMaterial: this.sailsMaterial,
      sailsColor: this.sailsColor,
      hullColor: this.hullColor,
      hasCabin: this.hasCabin
    })
  }
}

To fully appreciate the positive impact that the Builder pattern has on the way we 
create our Boat objects, let's see an example of that:

const myBoat = new BoatBuilder()
  .withMotors(2, 'Best Motor Co. ', 'OM123')
  .withSails(1, 'fabric', 'white')
  .withCabin()
  .hullColor('blue')
  .build()
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As we can see, the role of our BoatBuilder class is to collect all the parameters 
needed to create a Boat using some helper methods. We usually have a method for 
each parameter or set of related parameters, but there is not an exact rule to that. It 
is down to the designer of the Builder class to decide the name and behavior of each 
method responsible for collecting the input parameters.

We can instead summarize some general rules for implementing the Builder pattern, 
as follows:

• The main objective is to break down a complex constructor into multiple, 
more readable, and more manageable steps.

• Try to create builder methods that can set multiple related parameters at 
once.

• Deduce and implicitly set parameters based on the values received as input 
by a setter method, and in general, try to encapsulate as much parameter 
setting related logic into the setter methods so that the consumer of the 
builder interface is free from doing so.

• If necessary, it's possible to further manipulate the parameters (for example, 
type casting, normalization, or extra validation) before passing them to the 
constructor of the class being built to simplify the work left to do by the 
builder class consumer even more.

Next, we will work on a more concrete example that makes use of the Builder 
pattern we've just learned.

Implementing a URL object builder
We want to implement a Url class that can hold all the components of a standard 
URL, validate them, and format them back into a string. This class in going to be 
intentionally simple and minimal, so for standard production use, we recommend 
the built-in URL class (nodejsdp.link/docs-url).

In JavaScript, the Builder pattern can also be applied to invoke 
functions, not just to build objects using their constructor. In 
fact, from a technical point of view, the two scenarios are almost 
identical. The major difference when dealing with functions is that 
instead of having a build() method, we would have an invoke() 
method that invokes the complex function with the parameters 
collected by the builder object and returns any eventual result to 
the caller.

http://nodejsdp.link/docs-url
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Now, let's implement our custom Url class in a file called url.js:

export class Url {
  constructor (protocol, username, password, hostname,
    port, pathname, search, hash) {
    this.protocol = protocol
    this.username = username
    this.password = password
    this.hostname = hostname
    this.port = port
    this.pathname = pathname
    this.search = search
    this.hash = hash

    this.validate()
  }

  validate () {
    if (!this.protocol || !this.hostname) {
      throw new Error('Must specify at least a ' +
        'protocol and a hostname')
    }
  }

  toString () {
    let url = ''
    url += `${this.protocol}://`
    if (this.username && this.password) {
      url += `${this.username}:${this.password}@`
    }
    url += this.hostname
    if (this.port) {
      url += this.port
    }
    if (this.pathname) {
      url += this.pathname
    }
    if (this.search) {
      url += `?${this.search}`
    }
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    if (this.hash) {
      url += `#${this.hash}`
    }
    return url
  }
}

A standard URL is made of several components, so to take them all in, the Url class' 
constructor is inevitably big. Invoking such a constructor can be a challenge, as we 
have to keep track of the argument position to know what component of the URL 
we are passing. Take a look at the following example to get an idea of this:

return new Url('https', null, null, 'example.com', null, null, null,
  null)

This is the perfect situation for applying the Builder pattern we just learned. Let's 
do that now. The plan is to create a UrlBuilder class, which has a setter method for 
each parameter (or set of related parameters) needed to instantiate the Url class. 
Finally, the builder is going to have a build() method to retrieve a new Url instance 
that's been created using all the parameters that have been set in the builder. So, let's 
implement the builder in a file called urlBuilder.js:

export class UrlBuilder {
  setProtocol (protocol) {
    this.protocol = protocol
    return this
  }

  setAuthentication (username, password) {
    this.username = username
    this.password = password
    return this
  }

  setHostname (hostname) {
    this.hostname = hostname
    return this
  }

  setPort (port) {
    this.port = port
    return this
  }
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  setPathname (pathname) {
    this.pathname = pathname
    return this
  }

  setSearch (search) {
    this.search = search
    return this
  }

  setHash (hash) {
    this.hash = hash
    return this
  }

  build () {
    return new Url(this.protocol, this.username, this.password,
      this.hostname, this.port, this.pathname, this.search,
      this.hash)
  }
}

This should be pretty straightforward. Just note the way we coupled together the 
username and password parameters into a single setAuthentication() method. This 
clearly conveys the fact that if we want to specify any authentication information in 
the Url, we have to provide both username and password.

Now, we are ready to try our UrlBuilder and witness its benefits over using the Url 
class directly. We can do that in a file called index.js:

import { UrlBuilder } from './urlBuilder.js'

const url = new UrlBuilder()
  .setProtocol('https')
  .setAuthentication('user', 'pass')
  .setHostname('example.com')
  .build()

console.log(url.toString())

As we can see, the readability of the code has improved dramatically. Each setter 
method clearly gives us a hint of what parameter we are setting, and on top of that, 
they provide some guidance on how those parameters must be set (for example, 
username and password must be set together).
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In the wild
The Builder pattern is a quite common pattern in Node.js and JavaScript as it 
provides a very elegant solution to the problem of creating complex objects or 
invoking complex functions. One perfect example is creating new HTTP(S) client 
requests with the request() API from the http and https built-in modules. If we 
look at its documentation (available at nodejsdp.link/docs-http-request), we can 
immediately see it accepts a large amount of options, which is the usual sign that 
the Builder pattern can potentially provide a better interface. In fact, one of the most 
popular HTTP(S) request wrappers, superagent (nodejsdp.link/superagent), aims 
to simplify the creation of new requests by implementing the Builder pattern, thus 
providing a fluent interface to create new requests step by step. See the following 
code fragment for an example:

superagent
  .post('https://example.com/api/person')
  .send({ name: 'John Doe', role: 'user' })
  .set('accept', 'json')
  .then((response) => {
    // deal with the response
  })

The Builder pattern can also be implemented directly into the 
target class. For example, we could have refactored the Url class 
by adding an empty constructor (and therefore no validation at 
the object's creation time) and the setter methods for the various 
components, rather than creating a separate UrlBuilder class. 
However, this approach has a major flaw. Using a builder that 
is separate from the target class has the advantage of always 
producing instances that are guaranteed to be in a consistent state. 
For example, every Url object returned by UrlBuilder.build() 
is guaranteed to be valid and in a consistent state; calling 
toString() on such objects will always return a valid URL. The 
same cannot be said if we implemented the Builder pattern on the 
Url class directly. In fact, in this case, if we invoke toString() 
while we are still setting the various URL components, its return 
value may not be valid. This can be mitigated by adding extra 
validations, but at the cost of adding more complexity.

http://nodejsdp.link/docs-http-request
http://nodejsdp.link/superagent
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From the previous code, we can note that this is an unusual builder; in fact, we 
don't have a build() or invoke() method (or any other method with a similar 
purpose), and have not used the new operator. What triggers the request instead is an 
invocation to the then() method. It's interesting to note that the superagent request 
object is not a promise but rather a custom thenable where the then() method triggers 
the execution of the request we have built with the builder object.

If you take a look at the library's code, you will see the Builder pattern in action in 
the Request class (nodejsdp.link/superagent-src-builder).

This concludes our exploration of the Builder pattern. Next, we'll look at the 
Revealing Constructor pattern.

Revealing Constructor
The Revealing Constructor pattern is one of those patterns that you won't find in the 
"Gang of Four" book, since it originated directly from the JavaScript and the Node.js 
community. It solves a very tricky problem, which is: how can we "reveal" some 
private functionality of an object only at the moment of the object's creation? This is 
particularly useful when we want to allow an object's internals to be manipulated 
only during its creation phase. This allows for a few interesting scenarios, such as:

• Creating objects that can be modified only at creation time
• Creating objects whose custom behavior can be defined only at creation time
• Creating objects that can be initialized only once at creation time

These are just a few possibilities enabled by the Revealing Constructor pattern. But 
to better understand all the possible use cases, let's see what the pattern is about by 
looking at the following code fragment:

//                    (1)               (2)          (3)
const object = new SomeClass(function executor(revealedMembers) {
  // manipulation code ...
})

We already discussed thenables in Chapter 5, Asynchronous Control 
Flow Patterns with Promises and Async/Await.

http://nodejsdp.link/superagent-src-builder
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As we can see from the previous code, the Revealing Constructor pattern is made 
of three fundamental elements; a constructor (1) that takes a function as input (the 
executor (2)), which is invoked at creation time and receives a subset of the object's 
internals as input (revealed members (3)).

For the pattern to work, the revealed functionality must otherwise be not accessible 
by the users of the object once it is created. This can be achieved with one of the 
encapsulation techniques we've mentioned in the previous section regarding the 
Factory pattern.

Now, let's look at a couple of examples to better understand how the Revealing 
Constructor pattern works.

Building an immutable buffer
Immutable objects and data structures have many excellent properties that make 
them ideal to use in countless situations in place of their mutable (or changeable) 
counterparts. Immutable refers to the property of an object by which its data or state 
becomes unmodifiable once it's been created.

With immutable objects, we don't need to create defensive copies before passing 
them around to other libraries or functions. We simply have a strong guarantee, by 
definition, that they won't be modified, even when they are passed to code that we 
don't know or control.

Modifying an immutable object can only be done by creating a new copy and can 
make the code more maintainable and easier to reason about. We do this to make 
it easier to keep track of state changes.

Another common use case for immutable objects is efficient change detection. 
Since every change requires a copy and if we assume that every copy corresponds 
to a modification, then detecting a change is as simple as using the strict equality 
operator (or triple equal ===). This technique is used extensively in frontend 
programming to efficiently detect if the UI needs refreshing.

In this context, let's now create a simple immutable version of the Node.js Buffer 
component (nodejsdp.link/docs-buffer) using the Revealing Constructor pattern. 
The pattern allows us to manipulate an immutable buffer only at creation time.

Domenic Denicola was the first to identify and name the pattern 
in one of his blog posts, which can be found at nodejsdp.link/
domenic-revealing-constructor.

http://nodejsdp.link/docs-buffer
http://nodejsdp.link/domenic-revealing-constructor
http://nodejsdp.link/domenic-revealing-constructor
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Let's implement our immutable buffer in a new file called immutableBuffer.js, as 
follows:

const MODIFIER_NAMES = ['swap', 'write', 'fill']

export class ImmutableBuffer {
  constructor (size, executor) {
    const buffer = Buffer.alloc(size)                         // (1)
    const modifiers = {}                                      // (2)
    for (const prop in buffer) {                              // (3)
      if (typeof buffer[prop] !== 'function') {
        continue
      }

      if (MODIFIER_NAMES.some(m => prop.startsWith(m))) {     // (4)
        modifiers[prop] = buffer[prop].bind(buffer)
      } else {
        this[prop] = buffer[prop].bind(buffer)                // (5)
      }
    }

    executor(modifiers)                                       // (6)
  }
}

Let's now see how our new ImmutableBuffer class works:

1. First, we allocate a new Node.js Buffer (buffer) of the size specified in the 
size constructor argument.

2. Then, we create an object literal (modifiers) to hold all the methods that can 
mutate the buffer.

3. After that, we iterate over all the properties (own and inherited) of our 
internal buffer, making sure to skip all those that are not functions.

4. Next, we try to identify if the current prop is a method that allows us to 
modify the buffer. We do that by trying to match its name with one of the 
strings in the MODIFIER_NAMES array. If we have such a method, we bind it to 
the buffer instance, and then we add it to the modifiers object.

5. If our method is not a modifier method, then we add it directly to the current 
instance (this).

6. Finally, we invoke the executor function received as input in the constructor 
and pass the modifiers object as an argument, which will allow executor to 
mutate our internal buffer.
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In practice, our ImmutableBuffer is acting as a proxy between its consumers and 
the internal buffer object. Some of the methods of the buffer instance are exposed 
directly through the ImmutableBuffer interface (mainly the read-only methods), 
while others are provided to the executor function (the modifier methods).

We will analyze the Proxy pattern in more detail in Chapter 8, Structural Design 
Patterns.

Now, let's write some code to demonstrate how to use our new ImmutableBuffer 
class. Let's create a new file, index.js, containing the following code:

import { ImmutableBuffer } from './immutableBuffer.js'

const hello = 'Hello!'
const immutable = new ImmutableBuffer(hello.length,
  ({ write }) => {                                         // (1)
    write(hello)
  })

console.log(String.fromCharCode(immutable.readInt8(0)))    // (2)

// the following line will throw
// "TypeError: immutable.write is not a function"

// immutable.write('Hello?')                               // (3)

The first thing we can note from the previous code is how the executor function uses 
the write() function (which is part of the modifier methods) to write a string into the 
buffer (1). In a similar way, the executor function could've used fill(), writeInt8(), 
swap16() or any other method exposed in the modifiers object.

The code we've just seen also demonstrates how the new ImmutableBuffer instance 
exposes only the methods that don't mutate the buffer, such as readInt8() (2), while 
it doesn't provide any method to change the content of the buffer (3).

Please keep in mind that this is just a demonstration of the 
Revealing Constructor pattern, so the implementation of the 
immutable buffer is intentionally kept simple. For example, we 
are not exposing the size of the buffer or providing other means 
to initialize the buffer. We'll leave this to you as an exercise.
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In the wild
The Revealing Constructor pattern offers very strong guarantees and for this reason, 
it's mainly used in contexts where we need to provide foolproof encapsulation. A 
perfect application of the pattern would be in components used by hundreds of 
thousands of developers that have to provide unopinionated interfaces and strict 
encapsulation. However, we can also use the pattern in our projects to improve 
reliability and simplify code sharing with other people and teams (since it can make 
an object safer to use by third parties).

A popular application of the Revealing Constructor pattern is in the JavaScript 
Promise class. Some of you may have already noticed it. When we create a new 
Promise from scratch, its constructor accepts as input an executor function that will 
receive the resolve() and reject() functions used to mutate the internal state of the 
Promise. Let's provide a reminder of what this looks like:

return new Promise((resolve, reject) => {
  // ...
})

Once created, the Promise state cannot be altered by any other means. All we can 
do is receive its fulfilment value or rejection reason using the methods we already 
learned about in Chapter 5, Asynchronous Control Flow Patterns with Promises and 
Async/Await.

Singleton
Now, we are going to spend a few words on a pattern that is among the most used 
in object-oriented programming, which is the Singleton pattern. As we will see, 
Singleton is one of those patterns that has a trivial implementation in Node.js that's 
almost not worth discussing. However, there are a few caveats and limitations that 
every good Node.js developer must know.

The purpose of the Singleton pattern is to enforce the presence of only one instance 
of a class and centralize its access. There are a few reasons for using a single instance 
across all the components of an application:

• For sharing stateful information
• For optimizing resource usage
• To synchronize access to a resource
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As you can imagine, those are quite common scenarios. Take, for example, a typical 
Database class, which provides access to a database:

// 'Database.js'
export class Database {
  constructor (dbName, connectionDetails) {
    // ...
  }
  // ...
}

Typical implementations of such a class usually keep a pool of database connections, 
so it doesn't make sense to create a new Database instance for each request. Plus, a 
Database instance may store some stateful information, such as the list of pending 
transactions. So, our Database class meets two criterions for justifying the Singleton 
pattern. Therefore, what we usually want is to configure and instantiate one single 
Database instance at the start of our application and let every component use that 
single shared Database instance.

A lot of people new to Node.js get confused about how to implement the Singleton 
pattern correctly; however, the answer is easier than what we might think. Simply 
exporting an instance from a module is already enough to obtain something very 
similar to the Singleton pattern. Consider, for example, the following lines of code:

// file 'dbInstance.js'
import { Database } from './Database.js'

export const dbInstance = new Database('my-app-db', {
    url: 'localhost:5432',
    username: 'user',
    password: 'password'
})

By simply exporting a new instance of our Database class, we can already assume 
that within the current package (which can easily be the entire code of our 
application), we are going to have only one instance of the dbInstance module. This 
is possible because, as we know from Chapter 2, The Module System, Node.js will 
cache the module, making sure not to execute its code at every import.

For example, we can easily obtain a shared instance of the dbInstance module, which 
we defined earlier, with the following line of code:

import { dbInstance } from './dbInstance.js'
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But there is a caveat. The module is cached using its full path as the lookup key, so it 
is only guaranteed to be a singleton within the current package. In fact, each package 
may have its own set of private dependencies inside its node_modules directory, 
which might result in multiple instances of the same package and therefore of the 
same module, resulting in our singleton not really being unique anymore! This is, of 
course, a rare scenario, but it's important to understand what its consequences are.

Consider, for example, the case in which the Database.js and dbInstance.js files 
that we saw earlier are wrapped into a package named mydb. The following lines of 
code would be in its package.json file:

{
  "name": "mydb",
  "version": "2.0.0",
  "type": "module",
  "main": "dbInstance.js"
}

Next, consider two packages (package-a and package-b), both of which have a single 
file called index.js containing the following code:

import { dbInstance } from 'mydb'

export function getDbInstance () {
  return dbInstance
}

Both package-a and package-b have a dependency on the mydb package. However, 
package-a depends on version 1.0.0 of the mydb package, while package-b depends 
on version 2.0.0 of the same package (which, for our example, has an identical 
implementation, but just a different version specified in its package.json file).

Given the structure we just described, we would end up with the following package 
dependency tree:

app/
`-- node_modules
    |-- package-a
    |  `-- node_modules
    |      `-- mydb
    `-- package-b
        `-- node_modules
            `-- mydb



Creational Design Patterns

[ 256 ]

We end up with a directory structure like the one here because package-a and 
package-b require two different incompatible versions of the mydb module (for 
example, 1.0.0 versus 2.0.0). In this case, a typical package manager such as npm 
or yarn would not "hoist" the dependency to the top node_modules directory, but it 
will instead install a private copy of each package in an attempt to fix the version 
incompatibility.

With the directory structure we just saw, both package-a and package-b have 
a dependency on the mydb package; in turn, the app package, which is our root 
package, depends on both package-a and package-b.

The scenario we just described will break the assumption about the uniqueness of 
the database instance. In fact, consider the following file (index.js) located in the 
root folder of the app package:

import { getDbInstance as getDbFromA } from 'package-a'
import { getDbInstance as getDbFromB } from 'package-b'

const isSame = getDbFromA() === getDbFromB()
console.log('Is the db instance in package-a the same ' +
  `as package-b? ${isSame ? 'YES' : 'NO'}`)

If you run the previous file, you will notice that the answer to Is the db instance in 
package-a the same as package-b? is NO. In fact, package-a and package-b will actually 
load two different instances of the dbInstance object because the mydb module will 
resolve to a different directory, depending on the package it is required from. This 
clearly break the assumptions of the Singleton pattern.

If instead, both package-a and package-b required two versions 
of the mydb package compatible with each other, for example, 
^2.0.1 and ^2.0.7, then the package manager would install the 
mydb package into the top-level node_modules directory (a practice 
known as dependency hoisting), effectively sharing the same 
instance with package-a, package-b, and the root package.
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At this point, we can easily say that the Singleton pattern, as described in the 
literature, does not exist in Node.js, unless we use a real global variable to store it, 
such as the following:

global.dbInstance = new Database('my-app-db', {/*...*/})

This guarantees that the instance is the only one shared across the entire application 
and not just the same package. However, please consider that most of the time, we 
don't really need a pure singleton. In fact, we usually create and import singletons 
within the main package of an application or, at worst, in a subcomponent of the 
application that has been modularized into a dependency.

Throughout this book, for simplicity, we will use the term singleton to describe a 
class instance or a stateful object exported by a module, even if this doesn't represent 
a real singleton in the strict definition of the term.

Next, we are going to see the two main approaches for dealing with dependencies 
between modules, one based on the Singleton pattern and the other leveraging the 
Dependency Injection pattern.

Wiring modules
Every application is the result of the aggregation of several components and, as the 
application grows, the way we connect these components becomes a win or lose 
factor for the maintainability and success of the project.

When a component, A, needs component B to fulfill a given functionality, we 
say that "A is dependent on B" or, conversely, that "B is a dependency of A." To 
appreciate this concept, let's present an example.

Let's say we want to write an API for a blogging system that uses a database to store 
its data. We can have a generic module implementing a database connection (db.js) 
and a blog module that exposes the main functionality to create and retrieve blog 
posts from the database (blog.js).

If you are creating a package that is going to be used by third 
parties, try to keep it stateless to avoid the issues we've discussed 
in this section.
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The following figure illustrates the relationship between the database module and 
the blog module:

Figure 7.1: Dependency graph between the blog module and the database module

In this section, we are going to see how we can model this dependency using two 
different approaches, one based on the Singleton pattern and the other using the 
Dependency Injection pattern.

Singleton dependencies
The simplest way to wire two modules together is by leveraging Node.js' module 
system. Stateful dependencies wired in this way are de facto singletons, as we 
discussed in the previous section.

To see how this works in practice, we are going to implement the simple blogging 
application that we described earlier using a singleton instance for the database 
connection. Let's see a possible implementation of this approach (the file db.js):

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import sqlite3 from 'sqlite3'
const __dirname = dirname(fileURLToPath(import.meta.url))
export const db = new sqlite3.Database(
  join(__dirname, 'data.sqlite'))

In the previous code, we are using SQLite (nodejsdp.link/sqlite) as a database to 
store our posts. To interact with SQLite, we are using the module sqlite3 (nodejsdp.
link/sqlite3) from npm. SQLite is a database system that keeps all the data in a 
single local file. In our database module, we decided to use a file called data.sqlite 
saved in the same folder as the module.

http://nodejsdp.link/sqlite
http://nodejsdp.link/sqlite3
http://nodejsdp.link/sqlite3
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The preceding code creates a new instance of the database pointing to our data file 
and exports the database connection object as a singleton with the name db.

Now, let's see how we can implement the blog.js module:

import { promisify } from 'util'
import { db } from './db.js'

const dbRun = promisify(db.run.bind(db))
const dbAll = promisify(db.all.bind(db))

export class Blog {
  initialize () {
    const initQuery = `CREATE TABLE IF NOT EXISTS posts (
      id TEXT PRIMARY KEY,
      title TEXT NOT NULL,
      content TEXT,
      created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
    );`

    return dbRun(initQuery)
  }

  createPost (id, title, content, createdAt) {
    return dbRun('INSERT INTO posts VALUES (?, ?, ?, ?)',
      id, title, content, createdAt)
  }

  getAllPosts () {
    return dbAll('SELECT * FROM posts ORDER BY created_at DESC')
  }
}

The blog.js module exports a class called Blog containing three methods:

• initialize(): Creates the posts table if it doesn't exist. The table will be used 
to store the blog post's data.

• createPost(): Takes all the necessary parameters needed to create a post. It 
will execute an INSERT statement to add the new post to the database.

• getAllPosts(): Retrieves all the posts available in the database and returns 
them as an array.
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Now, let's create a module to try out the functionality of the blog module we just 
created (the file index.js):

import { Blog } from './blog.js'

async function main () {
  const blog = new Blog()
  await blog.initialize()
  const posts = await blog.getAllPosts()
  if (posts.length === 0) {
    console.log('No post available. Run `node import-posts.js`' +
      ' to load some sample posts')
  }

  for (const post of posts) {
    console.log(post.title)
    console.log('-'.repeat(post.title.length))
    console.log(`Published on ${new Date(post.created_at)
      .toISOString()}`)
    console.log(post.content)
  }
}

main().catch(console.error)

This preceding module is very simple. We retrieve the array with all the posts using 
blog.getAllPosts() and then we loop over it and display the data for every single 
post, giving it a bit of formatting.

You can use the provided import-posts.js module to load some sample posts into 
the database before running index.js. You can find import-posts.js in the code 
repository of this book, along with the rest of the files for this example.

As we can see from the preceding code, we can implement a very simple command-
line blog management system by leveraging the Singleton pattern to pass the db 
instance around. Most of the time, this is how we manage stateful dependencies in 
our application; however, there are situations in which this may not be enough.

As a fun exercise, you could try to modify the index.js module to 
generate HTML files; one for the blog index and then a dedicated 
file for each blog post. This way, you would build your own 
minimalistic static website generator!
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Using a singleton, as we have done in the previous example, is certainly the most 
simple, immediate, and readable solution to pass stateful dependencies around. 
However, what happens if we want to mock our database during our tests? What 
can we do if we want to let the user of the blogging CLI or the blogging API select 
another database backend, instead of the standard SQLite backend that we provide 
by default? For these use cases, a singleton can be an obstacle for implementing a 
properly structured solution.

We could introduce if statements in our db.js module to pick different 
implementations based on some environment condition or some configuration. 
Alternatively, we could fiddle with the Node.js module system to intercept the 
import of the database file and replace it with something else. But, as you can image, 
these solutions are far from elegant.

In the next section, we will learn about another strategy for wiring modules, which 
can be the ideal solution to some of the issues we discussed here.

Dependency Injection
The Node.js module system and the Singleton pattern can serve as great tools for 
organizing and wiring together the components of an application. However, these 
do not always guarantee success. If, on the one hand, they are simple to use and 
very practical, then on the other, they might introduce a tighter coupling between 
components.

In the previous example, we can see that the blog.js module is tightly coupled with 
the db.js module. In fact, our blog.js module cannot work without the database.js 
module by design, nor can it use a different database module if necessary. We 
can easily fix this tight coupling between the two modules by leveraging the 
Dependency Injection pattern.

Dependency Injection (DI) is a very simple pattern in which the dependencies 
of a component are provided as input by an external entity, often referred to as the 
injector.

The injector initializes the different components and ties their dependencies together. 
It can be a simple initialization script or a more sophisticated global container that 
maps all the dependencies and centralizes the wiring of all the modules of the 
system. The main advantage of this approach is improved decoupling, especially for 
modules depending on stateful instances (for example, a database connection). Using 
DI, each dependency, instead of being hardcoded into the module, is received from 
the outside. This means that the dependent module can be configured to use any 
compatible dependency, and therefore the module itself can be reused in different 
contexts with minimal effort.
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The following diagram illustrates this idea:

Figure 7.2: Dependency injection schematic

In Figure 7.2, we can see that a generic service expects a dependency with a 
predetermined interface. It's the responsibility of the injector to retrieve or create an 
actual concrete instance that implements such an interface and passes it (or "injects 
it") into the service. In other words, the injector has the goal of providing an instance 
that fulfills the dependency for the service.

To demonstrate this pattern in practice, let's refactor the simple blogging system 
that we built in the previous section by using DI to wire its modules. Let's start by 
refactoring the blog.js module:

import { promisify } from 'util'

export class Blog {
  constructor (db) {
    this.db = db
    this.dbRun = promisify(db.run.bind(db))
    this.dbAll = promisify(db.all.bind(db))
  }

  initialize () {
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    const initQuery = `CREATE TABLE IF NOT EXISTS posts (
      id TEXT PRIMARY KEY,
      title TEXT NOT NULL,
      content TEXT,
      created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
    );`

    return this.dbRun(initQuery)
  }

  createPost (id, title, content, createdAt) {
    return this.dbRun('INSERT INTO posts VALUES (?, ?, ?, ?)',
      id, title, content, createdAt)
  }

  getAllPosts () {
    return this.dbAll(
      'SELECT * FROM posts ORDER BY created_at DESC')
  }
}

If you compare the new version with the previous one, they are almost identical. 
There are only two small but important differences:

• We are not importing the database module anymore
• The Blog class constructor takes db as an argument

The new constructor argument db is the expected dependency that needs to be 
provided at runtime by the client component of the Blog class. This client component 
is going to be the injector of the dependency. Since JavaScript doesn't have any way 
to represent abstract interfaces, the provided dependency is expected to implement 
the db.run() and db.all() methods. This is called duck typing, as mentioned earlier 
in this book.

Let's now rewrite our db.js module. The goal here is to get rid of the Singleton 
pattern and to come up with an implementation that is more reusable and 
configurable:

import sqlite3 from 'sqlite3'

export function createDb (dbFile) {
  return new sqlite3.Database(dbFile)
}
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This new implementation of the db module provides a factory function called 
createDb(), which allows us to create new instances of the database at runtime. 
It also allows us to pass the path to the database file at creation time so that we 
can create independent instances that can write to different files if we have to.

At this point, we have almost all the building blocks in place, we are only missing 
the injector. We will give an example of the injector by reimplementing the index.js 
module:

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { Blog } from './blog.js'
import { createDb } from './db.js'

const __dirname = dirname(fileURLToPath(import.meta.url))

async function main () {
  const db = createDb(join(__dirname, 'data.sqlite'))
  const blog = new Blog(db)
  await blog.initialize()
  const posts = await blog.getAllPosts()
  if (posts.length === 0) {
    console.log('No post available. Run `node import-posts.js`' +
      ' to load some sample posts')
  }
  for (const post of posts) {
    console.log(post.title)
    console.log('-'.repeat(post.title.length))
    console.log(`Published on ${new Date(post.created_at)
      .toISOString()}`)
    console.log(post.content)
  }
}

main().catch(console.error)

This code is also quite similar to the previous implementation, except for two 
important changes (highlighted in the preceding code):

1. We create the database dependency (db) using the factory function 
createDb().

2. We explicitly "inject" the database instance when we instantiate the Blog class.
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In this implementation of our blogging system, the blog.js module is totally 
decoupled from the actual database implementation, making it more composable 
and easy to test in isolation.

Unfortunately, the advantages in terms of decoupling and reusability offered by 
the Dependency Injection pattern come with a price to pay. In general, the inability 
to resolve a dependency at coding time makes it more difficult to understand the 
relationship between the various components of a system. This is especially true 
in large applications where we might have a significant amount of services with 
a complex dependency graph.

Also, if we look at the way we instantiated our database dependency in our 
preceding example script, we can see that we had to make sure that the database 
instance was created before we could invoke any function from our Blog instance. 
This means that, when used in its raw form, Dependency Injection forces us to build 
the dependency graph of the entire application by hand, making sure that we do it 
in the right order. This can become unmanageable when the number of modules to 
wire becomes too high.

We saw how to inject dependencies as constructor arguments 
(constructor injection), but dependencies can also be passed 
when invoking a function or method (function injection) or 
injected explicitly by assigning the relevant properties of an 
object (property injection).

Another pattern, called Inversion of Control, allows us to 
shift the responsibility of wiring the modules of an application 
to a third-party entity. This entity can be a service locator (a 
simple component used to retrieve a dependency, for example, 
serviceLocator.get('db')) or a dependency injection 
container (a system that injects the dependencies into a component 
based on some metadata specified in the code itself or in a 
configuration file). You can find more about these components 
on Martin Fowler's blog at nodejsdp.link/ioc-containers. 
Even though these techniques derail a bit from the Node.js way of 
doing things, some of them have recently gained some popularity. 
Check out inversify (nodejsdp.link/inversify) and awilix 
(nodejsdp.link/awilix) to find out more.

http://nodejsdp.link/ioc-containers
http://nodejsdp.link/inversify
http://nodejsdp.link/awilix
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Summary
In this chapter, you were gently introduced to a set of traditional design patterns 
concerning the creation of objects. Some of those patterns are so basic, and yet 
essential at the same time, that you have probably already used them in one way 
or another.

Patterns such as Factory and Singleton are, for example, two of the most ubiquitous 
in object-oriented programming in general. However, in JavaScript, their 
implementation and significance are very different from what was thought up by the 
Gang of Four book. For example, Factory becomes a very versatile pattern that works 
in perfect harmony with the hybrid nature of the JavaScript language, that is, half 
object-oriented and half functional. On the other hand, Singleton becomes so trivial 
to implement that it's almost a non-pattern, but it carries a set of caveats that you 
should have learned to take into account.

Among the patterns you've learned in this chapter, the Builder pattern may seem 
the one that has retained most of its traditional object-oriented form. However, 
we've shown you that it can also be used to invoke complex functions and not just 
to build objects.

The Revealing Constructor pattern, on the other hand, deserves a category of its own. 
Born from necessities arising from the JavaScript language itself, it provides an elegant 
solution to the problem of "revealing" certain private object properties at construction 
time only. It provides strong guarantees in a language that is relaxed by nature.

Finally, you learned about the two main techniques for wiring components together: 
Singleton and Dependency Injection. We've seen how the first is the simplest and 
most practical approach, while the second is more powerful but also potentially 
more complex to implement.

As we already mentioned, this was just the first of a series of three chapters entirely 
dedicated to traditional design patterns. In these chapters, we will try to teach the 
right balance between creativity and rigor. We want to show not only that there are 
patterns that can be reused to improve our code, but also that their implementation 
is not the most important detail; in fact, it can vary a lot, or even overlap with other 
patterns. What really matters, however, is the blueprint, the guidelines, and the idea 
at the base of each pattern. This is the real reusable piece of information that we can 
exploit to design better Node.js applications in a fun way.

In the next chapter, you will learn about another category of traditional design 
patterns, called structural patterns. As the name suggests, these patterns are aimed 
at improving the way we combine objects together to build more complex, yet 
flexible and reusable structures.
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Exercises
• 7.1 Console color factory: Create a class called ColorConsole that has just 

one empty method called log(). Then, create three subclasses: RedConsole, 
BlueConsole, and GreenConsole. The log() method of every ColorConsole 
subclass will accept a string as input and will print that string to the console 
using the color that gives the name to the class. Then, create a factory 
function that takes color as input, such as 'red', and returns the related 
ColorConsole subclass. Finally, write a small command-line script to try 
the new console color factory. You can use this Stack Overflow answer as 
a reference for using colors in the console: nodejsdp.link/console-colors.

• 7.2 Request builder: Create your own Builder class around the built-in 
http.request() function. The builder must be able to provide at least basic 
facilities to specify the HTTP method, the URL, the query component of 
the URL, the header parameters, and the eventual body data to be sent. To 
send the request, provide an invoke() method that returns a Promise for the 
invocation. You can find the docs for http.request() at the following URL: 
nodejsdp.link/docs-http-request.

• 7.3 A tamper-free queue: Create a Queue class that has only one publicly 
accessible method called dequeue(). Such a method returns a Promise 
that resolves with a new element extracted from an internal queue data 
structure. If the queue is empty, then the Promise will resolve when a new 
item is added. The Queue class must also have a revealing constructor that 
provides a function called enqueue() to the executor that pushes a new 
element to the end of the internal queue. The enqueue() function can be 
invoked asynchronously and it must also take care of "unblocking" any 
eventual Promise returned by the dequeue() method. To try out the Queue 
class, you could build a small HTTP server into the executor function. Such 
a server would receive messages or tasks from a client and would push them 
into the queue. A loop would then consume all those messages using the 
dequeue() method.

http://nodejsdp.link/console-colors
http://nodejsdp.link/docs-http-request
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8
Structural Design Patterns

In this chapter, we will explore some of the most popular structural design patterns 
and discover how they apply to Node.js. Structural design patterns are focused on 
providing ways to realize relationships between entities.

In particular, in this chapter, we will examine the following patterns:

• Proxy: A pattern that allows us to control access to another object
• Decorator: A common pattern to augment the behavior of an existing object 

dynamically
• Adapter: A pattern that allows us to access the functionality of an object 

using a different interface

Throughout the chapter, we will also explore some interesting concepts such 
as reactive programming (RP), and we will also spend some time playing with 
LevelDB, a database technology that is commonly adopted in the Node.js ecosystem.

By the end of this chapter, you will be familiar with several scenarios in which 
structural design patterns can be useful and you will be able to implement them 
effectively in your Node.js applications.

Proxy
A proxy is an object that controls access to another object, called the subject. The 
proxy and the subject have an identical interface, and this allows us to swap one for 
the other transparently; in fact, the alternative name for this pattern is surrogate. 
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A proxy intercepts all or some of the operations that are meant to be executed on the 
subject, augmenting or complementing their behavior. Figure 8.1 shows a schematic 
representation of this pattern:

Figure 8.1: Proxy pattern schematic

Figure 8.1 shows us how the proxy and the subject have the same interface, and how 
this is transparent to the client, who can use one or the other interchangeably. The 
proxy forwards each operation to the subject, enhancing its behavior with additional 
preprocessing or postprocessing.

A proxy can be useful in several circumstances, for example:

• Data validation: The proxy validates the input before forwarding it to the 
subject

• Security: The proxy verifies that the client is authorized to perform the 
operation, and it passes the request to the subject only if the outcome of the 
check is positive

• Caching: The proxy keeps an internal cache so that the proxied operations 
are executed on the subject only if the data is not yet present in the cache

• Lazy initialization: If creating the subject is expensive, the proxy can delay 
it until it's really necessary

• Logging: The proxy intercepts the method invocations and the relative 
parameters, recoding them as they happen

• Remote objects: The proxy can take a remote object and make it appear local

There are more Proxy pattern applications, but these should give us an idea of 
its purpose.

It's important to observe that we are not talking about proxying 
between classes; the Proxy pattern involves wrapping an actual 
instance of the subject, thus preserving its internal state.
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Techniques for implementing proxies
When proxying an object, we can decide to intercept all of its methods or only some 
of them, while delegating the rest directly to the subject. There are several ways in 
which this can be achieved, and in this section, we will present some of them.

We will be working on a simple example, a StackCalculator class that looks like this:

class StackCalculator {
  constructor () {
    this.stack = []
  }

  putValue (value) {
    this.stack.push(value)
  }

  getValue () {
    return this.stack.pop()
  }

  peekValue () {
    return this.stack[this.stack.length - 1]
  }

  clear () {
    this.stack = []
  }

  divide () {
    const divisor = this.getValue()
    const dividend = this.getValue()
    const result = dividend / divisor
    this.putValue(result)
    return result
  }

  multiply () {
    const multiplicand = this.getValue()
    const multiplier = this.getValue()
    const result = multiplier * multiplicand
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    this.putValue(result)
    return result
  }
}

This class implements a simplified version of a stack calculator. The idea of this 
calculator is to keep all operands (values) in a stack. When you perform an operation, 
for example a multiplication, the multiplicand and the multiplier are extracted from 
the stack and the result of the multiplication is pushed back into the stack. This 
is not too different from how the calculator application on your mobile phone is 
actually implemented.

Here's an example of how we might use StackCalculator to perform some 
multiplications and divisions:

const calculator = new StackCalculator()
calculator.putValue(3)
calculator.putValue(2)
console.log(calculator.multiply()) // 3*2 = 6
calculator.putValue(2)
console.log(calculator.multiply()) // 6*2 = 12

There are also some utility methods such as peekValue(), which allows us to peek 
the value at the top of the stack (the last value inserted or the result of the last 
operation), and clear(), which allows us to reset the stack.

Fun fact: In JavaScript, when you perform a division by 0, you get back a mysterious 
value called Infinity. In many other programming languages dividing by 0 is 
an illegal operation that results in the program panicking or throwing a runtime 
exception.

Our task in the next few sections will be to leverage the Proxy pattern to enhance 
a StackCalculator instance by providing a more conservative behavior for division 
by 0: rather than returning Infinity, we will throw an explicit error.

Object composition
Composition is a technique whereby an object is combined with another object for 
the purpose of extending or using its functionality. In the specific case of the Proxy 
pattern, a new object with the same interface as the subject is created, and a reference 
to the subject is stored internally in the proxy in the form of an instance variable 
or a closure variable. The subject can be injected from the client at creation time or 
created by the proxy itself.
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The following example implements a safe calculator using object composition:

class SafeCalculator {
  constructor (calculator) {
    this.calculator = calculator
  }

  // proxied method
  divide () {
    // additional validation logic
    const divisor = this.calculator.peekValue()
    if (divisor === 0) {
      throw Error('Division by 0')
    }
    // if valid delegates to the subject
    return this.calculator.divide()
  }

  // delegated methods
  putValue (value) {
    return this.calculator.putValue(value)
  }

  getValue () {
    return this.calculator.getValue()
  }

  peekValue () {
    return this.calculator.peekValue()
  }

  clear () {
    return this.calculator.clear()
  }

  multiply () {
    return this.calculator.multiply()
  }
}

const calculator = new StackCalculator()



Structural Design Patterns

[ 274 ]

const safeCalculator = new SafeCalculator(calculator)

calculator.putValue(3)
calculator.putValue(2)
console.log(calculator.multiply())     // 3*2 = 6

safeCalculator.putValue(2)
console.log(safeCalculator.multiply()) // 6*2 = 12

calculator.putValue(0)
console.log(calculator.divide())       // 12/0 = Infinity

safeCalculator.clear()
safeCalculator.putValue(4)
safeCalculator.putValue(0)
console.log(safeCalculator.divide())   // 4/0 -> Error

The safeCalculator object is a proxy for the original calculator instance. By 
invoking multiply() on safeCalculator, we will end up calling the same method on 
calculator. The same goes for divide(), but in this case we can see that, if we try to 
divide by zero, we will get different outcomes depending on whether we perform 
the division on the subject or on the proxy.

To implement this proxy using composition, we had to intercept the methods that we 
were interested in manipulating (divide()), while simply delegating the rest of them 
to the subject (putValue(), getValue(), peekValue(), clear(), and multiply()).

Note that the calculator state (the values in the stack) is still maintained by the 
calculator instance; safeCalculator will only invoke methods on calculator 
to read or mutate the state as needed.

An alternative implementation of the proxy presented in the preceding code 
fragment might just use an object literal and a factory function:

function createSafeCalculator (calculator) {
  return {
    // proxied method
    divide () {
      // additional validation logic
      const divisor = calculator.peekValue()
      if (divisor === 0) {
        throw Error('Division by 0')
      }
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      // if valid delegates to the subject
      return calculator.divide()
    },
    // delegated methods
    putValue (value) {
      return calculator.putValue(value)
    },
    getValue () {
      return calculator.getValue()
    },
    peekValue () {
      return calculator.peekValue()
    },
    clear () {
      return calculator.clear()
    },
    multiply () {
      return calculator.multiply()
    }
  }
}

const calculator = new StackCalculator()
const safeCalculator = createSafeCalculator(calculator)
   // ...

This implementation is simpler and more concise than the class-based one, but, once 
again, it forces us to delegate all the methods to the subject explicitly.

Having to delegate many methods for complex classes can be very tedious and 
might make it harder to implement these techniques. One way to create a proxy 
that delegates most of its methods is to use a library that generates all the methods 
for us, such as delegates (nodejsdp.link/delegates). A more modern and native 
alternative is to use the Proxy object, which we will discuss later in this chapter.

Object augmentation
Object augmentation (or monkey patching) is probably the simplest and most 
common way of proxying just a few methods of an object. It involves modifying the 
subject directly by replacing a method with its proxied implementation. 

http://nodejsdp.link/delegates
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In the context of our calculator example, this could be done as follows:

function patchToSafeCalculator (calculator) {
  const divideOrig = calculator.divide
  calculator.divide = () => {
    // additional validation logic
    const divisor = calculator.peekValue()
    if (divisor === 0) {
      throw Error('Division by 0')
    }
    // if valid delegates to the subject
    return divideOrig.apply(calculator)
  }

  return calculator
}

const calculator = new StackCalculator()
const safeCalculator = patchToSafeCalculator(calculator)
// ...

This technique is definitely convenient when we need to proxy only one or a few 
methods. Did you notice that we didn't have to reimplement the multiply() method 
and all the other delegated methods here?

Unfortunately, simplicity comes at the cost of having to mutate the subject object 
directly, which can be dangerous.

In the next section, we will explore the built-in Proxy object, which is a powerful 
alternative for implementing the Proxy pattern and more.

Mutations should be avoided at all costs when the subject is shared 
with other parts of the codebase. In fact, "monkey patching" the 
subject might create undesirable side effects that affect other 
components of our application. Use this technique only when 
the subject exists in a controlled context or in a private scope. If 
you want to appreciate why "monkey patching" is a dangerous 
practice, you could try to invoke a division by zero in the original 
calculator instance. If you do so, you will see that the original 
instance will now throw an error rather than returning Infinity. 
The original behavior has been altered, and this might have 
unexpected effects on other parts of the application.
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The built-in Proxy object
The ES2015 specification introduced a native way to create powerful proxy objects.

We are talking about the ES2015 Proxy object, which consists of a Proxy constructor 
that accepts a target and a handler as arguments:

const proxy = new Proxy(target, handler)

Here, target represents the object on which the proxy is applied (the subject for our 
canonical definition), while handler is a special object that defines the behavior of the 
proxy.

The handler object contains a series of optional methods with predefined names 
called trap methods (for example, apply, get, set, and has) that are automatically 
called when the corresponding operations are performed on the proxy instance.

To better understand how this API works, let's see how we can use the Proxy object 
to implement our safe calculator proxy:

const safeCalculatorHandler = {
  get: (target, property) => {
    if (property === 'divide') {
      // proxied method
      return function () {
        // additional validation logic
        const divisor = target.peekValue()
        if (divisor === 0) {
          throw Error('Division by 0')
        }
        // if valid delegates to the subject
        return target.divide()
      }
    }

    // delegated methods and properties
    return target[property]
  }
}
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const calculator = new StackCalculator()
const safeCalculator = new Proxy(
  calculator,
  safeCalculatorHandler
)
// ...

In this implementation of the safe calculator proxy using the Proxy object, we 
adopted the get trap to intercept access to properties and methods of the original 
object, including calls to the divide() method. When access to divide() is 
intercepted, the proxy returns a modified version of the function that implements 
the additional logic to check for possible divisions by zero. Note that we can simply 
return all other methods and properties unchanged by using target[property].

Finally, it is important to mention that the Proxy object inherits the prototype of 
the subject, therefore running safeCalculator instanceof StackCalculator will 
return true.

With this example, it should be clear that the Proxy object allows us to avoid 
mutating the subject while giving us an easy way to proxy only the bits that we 
need to enhance, without having to explicitly delegate all the other properties and 
methods.

Additional capabilities and limitations of the Proxy object
The Proxy object is a feature deeply integrated into the JavaScript language itself, 
which enables developers to intercept and customize many operations that can be 
performed on objects. This characteristic opens up new and interesting scenarios that 
were not easily achievable before, such as meta-programming, operator overloading, and 
object virtualization.

Let's see another example to clarify this concept:

const evenNumbers = new Proxy([], {
  get: (target, index) => index * 2,
  has: (target, number) => number % 2 === 0
})

console.log(2 in evenNumbers) // true
console.log(5 in evenNumbers) // false
console.log(evenNumbers[7])   // 14
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In this example, we are creating a virtual array that contains all even numbers. It 
can be used as a regular array, which means we can access items in the array with 
the regular array syntax (for example, evenNumbers[7]), or check the existence of an 
element in the array with the in operator (for example, 2 in evenNumbers). The array 
is considered virtual because we never store data in it.

Looking at the implementation, this proxy uses an empty array as the target and then 
defines the get and has traps in the handler:

• The get trap intercepts access to the array elements, returning the even 
number for the given index

• The has trap instead intercepts the usage of the in operator and checks 
whether the given number is even or not

The Proxy object supports several other interesting traps such as set, delete, and 
construct, and allows us to create proxies that can be revoked on demand, disabling 
all the traps and restoring the original behavior of the target object.

Analyzing all these features goes beyond the scope of this chapter; what is important 
here is understanding that the Proxy object provides a powerful foundation for 
implementing the Proxy design pattern.

While the Proxy object is a powerful functionality of the JavaScript language, it 
suffers from a very important limitation: the Proxy object cannot be fully transpiled 
or polyfilled. This is because some of the Proxy object traps can be implemented 
only at the runtime level and cannot be simply rewritten in plain JavaScript. This is 
something to be aware of if you are working with old browsers or old versions of 
Node.js that don't support the Proxy object directly.

It is very important to note that, while the previous code snippet 
is a very interesting example that aims to showcase some of the 
advanced capabilities of the Proxy object, it is not implementing 
the Proxy pattern. This example allows us to see that, even though 
the Proxy object is commonly used to implement the Proxy pattern 
(hence the name), it can also be used to implement other patterns 
and use cases. As an example, we will see later in this chapter how 
to use the Proxy object—to implement the Decorator pattern.

If you are curious to discover all the capabilities and trap methods 
offered by the Proxy object, you can read more in the related MDN 
article at nodejsdp.link/mdn-proxy. Another good source is this 
detailed article from Google at nodejsdp.link/intro-proxy.

http://nodejsdp.link/mdn-proxy
http://nodejsdp.link/intro-proxy
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A comparison of the different proxying techniques
Composition can be considered a simple and safe way of creating a proxy because 
it leaves the subject untouched without mutating its original behavior. Its only 
drawback is that we have to manually delegate all the methods, even if we want to 
proxy only one of them. Also, we might have to delegate access to the properties of 
the subject.

Object augmentation, on the other hand, modifies the subject, which might not 
always be ideal, but it does not suffer from the various inconveniences related to 
delegation. For this reason, between these two approaches, object augmentation is 
generally the preferred technique in all those circumstances in which modifying the 
subject is an option.

However, there is at least one situation where composition is almost necessary; this 
is when we want to control the initialization of the subject, for example, to create 
it only when needed (lazy initialization).

Finally, the Proxy object is the go-to approach if you need to intercept function calls 
or have different types of access to object attributes, even dynamic ones. The Proxy 
object provides an advanced level of access control that is simply not available with 
the other techniques. For example, the Proxy object allows us to intercept the deletion 
of a key in an object and to perform property existence checks.

Transpilation: Short for transcompilation. It indicates the action 
of compiling source code by translating it from one source 
programming language to another. In the case of JavaScript, this 
technique is used to convert a program using new capabilities of 
the language into an equivalent program that can also run on older 
runtimes that do not support these new capabilities.

Polyfill: Code that provides an implementation for a standard 
API in plain JavaScript and that can be imported in environments 
where this API is not available (generally older browsers or 
runtimes). core-js (nodejsdp.link/corejs) is one of the 
most complete polyfill libraries for JavaScript.

Object properties can be delegated using Object.
defineProperty(). Find out more at nodejsdp.link/define-
prop.

http://nodejsdp.link/corejs
http://nodejsdp.link/define-prop
http://nodejsdp.link/define-prop
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Once again, it's worth highlighting that the Proxy object does not mutate the subject, 
so it can be safely used in contexts where the subject is shared between different 
components of the application. We also saw that with the Proxy object, we can 
easily perform delegation of all the methods and attributes that we want to leave 
unchanged.

In the next section, we present a more realistic example leveraging the Proxy 
pattern and use it to compare the different techniques we have discussed so far 
for implementing this pattern.

Creating a logging Writable stream
To see the Proxy pattern applied to a real example, we will now build an object that 
acts as a proxy to a Writable stream, which intercepts all the calls to the write() 
method and logs a message every time this happens. We will use the Proxy object to 
implement our proxy. Let's write our code in a file called logging-writable.js:

export function createLoggingWritable (writable) {
  return new Proxy(writable, {                             // (1)
    get (target, propKey, receiver) {                      // (2)
      if (propKey === 'write') {                           // (3)
        return function (...args) {                        // (4)
          const [chunk] = args
          console.log('Writing', chunk)
          return writable.write(...args)
        }
      }
      return target[propKey]                               // (5)
    }
  })
}

In the preceding code, we created a factory that returns a proxied version of the 
writable object passed as an argument. Let's see what the main points of the 
implementation are:

1. We create and return a proxy for the original writable object using the 
ES2015 Proxy constructor.

2. We use the get trap to intercept access to the object properties.
3. We check whether the property accessed is the write method. If that is the 

case, we return a function to proxy the original behavior.
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4. The proxy implementation logic here is simple: we extract the current chunk 
from the list of arguments passed to the original function, we log the content 
of the chunk, and finally, we invoke the original method with the given list 
of arguments.

5. We return unchanged any other property.

We can now use this newly created function and test our proxy implementation:

import { createWriteStream } from 'fs'
import { createLoggingWritable } from './logging-writable.js'

const writable = createWriteStream('test.txt')
const writableProxy = createLoggingWritable(writable)

writableProxy.write('First chunk')
writableProxy.write('Second chunk')
writable.write('This is not logged')
writableProxy.end()

The proxy did not change the original interface of the stream or its external behavior, 
but if we run the preceding code, we will now see that every chunk that is written 
into the writableProxy stream is transparently logged to the console.

Change observer with Proxy
The Change Observer pattern is a design pattern in which an object (the subject) 
notifies one or more observers of any state changes, so that they can "react" to 
changes as soon as they happen.

Proxies turn out to be quite an effective tool to create observable objects. Let's see 
a possible implementation with create-observable.js:

export function createObservable (target, observer) {
  const observable = new Proxy(target, {
    set (obj, prop, value) {

Although very similar, the Change Observer pattern should not 
be confused with the Observer pattern discussed in Chapter 3, 
Callbacks and Events. The Change Observer pattern focuses on 
allowing the detection of property changes, while the Observer 
pattern is a more generic pattern that adopts an event emitter to 
propagate information about events happening in the system.
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      if (value !== obj[prop]) {
        const prev = obj[prop]
        obj[prop] = value
        observer({ prop, prev, curr: value })
      }
      return true
    }
  })

  return observable
}

In the previous code, createObservable() accepts a target object (the object to 
observe for changes) and an observer (a function to invoke every time a change is 
detected).

Here, we create the observable instance through an ES2015 Proxy. The proxy 
implements the set trap, which is triggered every time a property is set. The 
implementation compares the current value with the new one and, if they are 
different, the target object is mutated, and the observer gets notified. When the 
observer is invoked, we pass an object literal that contains information related to 
the change (the name of the property, the previous value, and the current value).

Let's see now how we can take advantage of observable objects with a trivial invoice 
application where the invoice total is updated automatically based on observed 
changes in the various fields of the invoice:

import { createObservable } from './create-observable.js'
function calculateTotal (invoice) {                          // (1)
  return invoice.subtotal -
    invoice.discount +
    invoice.tax
}

const invoice = {

This is a simplified implementation of the Change Observer 
pattern. More advanced implementations support multiple 
observers and use more traps to catch other types of mutation, 
such as field deletions or changes of prototype. Moreover, our 
implementation does not recursively create proxies for nested 
objects or arrays—a more advanced implementation takes care of 
these cases as well.
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  subtotal: 100,
  discount: 10,
  tax: 20
}
let total = calculateTotal(invoice)
console.log(`Starting total: ${total}`)

const obsInvoice = createObservable(                         // (2)
  invoice,
  ({ prop, prev, curr }) => {
    total = calculateTotal(invoice)
    console.log(`TOTAL: ${total} (${prop} changed: ${prev} -> 
${curr})`)
  }
)
                                                             // (3)
obsInvoice.subtotal = 200 // TOTAL: 210
obsInvoice.discount = 20  // TOTAL: 200
obsInvoice.discount = 20  // no change: doesn't notify
obsInvoice.tax = 30       // TOTAL: 210

console.log(`Final total: ${total}`)

In the previous example, an invoice is composed of a subtotal value, a discount 
value, and a tax value. The total amount can be calculated from these three values. 
Let's discuss the implementation in greater detail:

1. We declare a function that calculates the total for a given invoice, then we 
create an invoice object and a value to hold the total for it.

2. Here we create an observable version of the invoice object. Every time there 
is a change in the original invoice object, we recalculate the total and we also 
print some logs to keep track of the changes.

3. Finally, we apply some changes to the observable invoice. Every time we 
mutate the obsInvoice object the observer function is triggered, the total gets 
updated, and some logs are printed on the screen.

If we run this example, we will see the following output in the console:

Starting total: 110
TOTAL: 210 (subtotal changed: 100 -> 200)
TOTAL: 200 (discount changed: 10 -> 20)
TOTAL: 210 (tax changed: 20 -> 30)
Final total: 210
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In this example, we could make the total calculation logic arbitrarily complicated, 
for instance, by introducing new fields in the computation (shipping costs, other 
taxes, and so on). In this case, it will be fairly trivial to introduce the new fields in 
the invoice object and update the calculateTotal() function. Once we do that, 
every change to the new properties will be observed and the total will be kept up 
to date with every change.

In the wild
The Proxy pattern and more specifically the Change Observer pattern are widely 
adopted patterns, which can be found on backend projects and libraries as well as 
in the frontend world. Some popular projects that take advantage of these patterns 
include the following:

• LoopBack (nodejsdp.link/loopback) is a popular Node.js web framework 
that uses the Proxy pattern to provide the capability to intercept and enhance 
method calls on controllers. This capability can be used to build custom 
validation or authentication mechanisms.

• Version 3 of Vue.js (nodejsdp.link/vue), a very popular JavaScript reactive 
UI framework, has reimplemented observable properties using the Proxy 
pattern with the Proxy object.

• MobX (nodejsdp.link/mobx) is a famous reactive state management library 
commonly used in frontend applications in combination with React or Vue.js. 
Like Vue.js, MobX implements reactive observables using the Proxy object.

Decorator
Decorator is a structural design pattern that consists in dynamically augmenting the 
behavior of an existing object. It's different from classical inheritance, because the 
behavior is not added to all the objects of the same class, but only to the instances 
that are explicitly decorated.

Implementation-wise, it is very similar to the Proxy pattern, but instead of enhancing 
or modifying the behavior of the existing interface of an object, it augments it with 
new functionalities, as described in Figure 8.2:

Observables are the cornerstone of reactive programming (RP) 
and functional reactive programming (FRP). If you are curious 
to know more about these styles of programming check out the 
Reactive Manifesto, at nodejsdp.link/reactive-manifesto.

http://nodejsdp.link/loopback
http://nodejsdp.link/vue
http://nodejsdp.link/mobx
http://nodejsdp.link/reactive-manifesto
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Figure 8.2: Decorator pattern schematic

In Figure 8.2, the Decorator object is extending the Component object by adding the 
methodC() operation. The existing methods are usually delegated to the decorated 
object without further processing but, in some cases, they might also be intercepted 
and augmented with extra behaviors.

Techniques for implementing decorators
Although proxy and decorator are conceptually two different patterns with different 
intents, they practically share the same implementation strategies. We will review 
them shortly. This time we want to use the Decorator pattern to be able to take 
an instance of our StackCalculator class and "decorate it" so that it also exposes 
a new method called add(), which we can use to perform additions between two 
numbers. We will also use the decorator to intercept all the calls to the divide() 
method and implement the same division-by-zero check that we already saw in our 
SafeCalculator example.

Composition
Using composition, the decorated component is wrapped around a new object that 
usually inherits from it. The decorator in this case simply needs to define the new 
methods, while delegating the existing ones to the original component:

class EnhancedCalculator {
  constructor (calculator) {
    this.calculator = calculator
  }

  // new method
  add () {
    const addend2 = this.getValue()
    const addend1 = this.getValue()
    const result = addend1 + addend2
    this.putValue(result)
    return result
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  }

  // modified method
  divide () {
    // additional validation logic
    const divisor = this.calculator.peekValue()
    if (divisor === 0) {
      throw Error('Division by 0')
    }
    // if valid delegates to the subject
    return this.calculator.divide()
  }

  // delegated methods
  putValue (value) {
    return this.calculator.putValue(value)
  }

  getValue () {
    return this.calculator.getValue()
  }

  peekValue () {
    return this.calculator.peekValue()
  }

  clear () {
    return this.calculator.clear()
  }

  multiply () {
    return this.calculator.multiply()
  }
}

const calculator = new StackCalculator()
const enhancedCalculator = new EnhancedCalculator(calculator)

enhancedCalculator.putValue(4)
enhancedCalculator.putValue(3)
console.log(enhancedCalculator.add())      // 4+3 = 7
enhancedCalculator.putValue(2)
console.log(enhancedCalculator.multiply()) // 7*2 = 14
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If you remember our composition implementation for the Proxy pattern, you can 
probably see that the code here looks quite similar.

We created the new add() method and enhanced the behavior of the original 
divide() method (effectively replicating the feature we saw in the previous 
SafeCalculator example). Finally, we delegated the putValue(), getValue(), 
peekValue(), clear(), and multiply() methods to the original subject.

Object augmentation
Object decoration can also be achieved by simply attaching new methods directly to 
the decorated object (monkey patching), as follows:

function patchCalculator (calculator) {
  // new method
  calculator.add = function () {
    const addend2 = calculator.getValue()
    const addend1 = calculator.getValue()
    const result = addend1 + addend2
    calculator.putValue(result)
    return result
  }

  // modified method
  const divideOrig = calculator.divide
  calculator.divide = () => {
    // additional validation logic
    const divisor = calculator.peekValue()
    if (divisor === 0) {
      throw Error('Division by 0')
    }
    // if valid delegates to the subject
    return divideOrig.apply(calculator)
  }

  return calculator
}

const calculator = new StackCalculator()
const enhancedCalculator = patchCalculator(calculator)
// ...



Chapter 8

[ 289 ]

Note that in this example, calculator and enhancedCalculator reference the same 
object (calculator == enhancedCalculator). This is because patchCalculator() is 
mutating the original calculator object and then returning it. You can confirm this 
by invoking calculator.add() or calculator.divide().

Decorating with the Proxy object
It's possible to implement object decoration by using the Proxy object. A generic 
example might look like this:

const enhancedCalculatorHandler = {
  get (target, property) {
    if (property === 'add') {
      // new method
      return function add () {
        const addend2 = target.getValue()
        const addend1 = target.getValue()
        const result = addend1 + addend2
        target.putValue(result)
        return result
      }
    } else if (property === 'divide') {
      // modified method
      return function () {
        // additional validation logic
        const divisor = target.peekValue()
        if (divisor === 0) {
          throw Error('Division by 0')
        }
        // if valid delegates to the subject
        return target.divide()
      }
    }

    // delegated methods and properties
    return target[property]
  }
}

const calculator = new StackCalculator()
const enhancedCalculator = new Proxy(
  calculator,
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  enhancedCalculatorHandler
)
// ...

If we were to compare these different implementations, the same caveats discussed 
during the analysis of the Proxy pattern would also apply for the decorator. Let's 
focus instead on practicing the pattern with a real-life example!

Decorating a LevelUP database
Before we start coding the next example, let's say a few words about LevelUP, the 
module that we are now going to work with.

Introducing LevelUP and LevelDB
LevelUP (nodejsdp.link/levelup) is a Node.js wrapper around Google's LevelDB, 
a key-value store originally built to implement IndexedDB in the Chrome browser, 
but it's much more than that. LevelDB has been defined as the "Node.js of databases" 
because of its minimalism and extensibility. Like Node.js, LevelDB provides 
blazingly fast performance and only the most basic set of features, allowing 
developers to build any kind of database on top of it.

The Node.js community, and in this case Rod Vagg, did not miss the chance to bring 
the power of this database into the Node.js world by creating LevelUP. Born as a 
wrapper for LevelDB, it then evolved to support several kinds of backends, from 
in-memory stores, to other NoSQL databases such as Riak and Redis, to web storage 
engines such as IndexedDB and localStorage, allowing us to use the same API on 
both the server and the client, opening up some really interesting scenarios.

Today, there is a vast ecosystem around LevelUP made of plugins and modules that 
extend the tiny core to implement features such as replication, secondary indexes, 
live updates, query engines, and more. Complete databases were also built on top of 
LevelUP, including CouchDB clones such as PouchDB (nodejsdp.link/pouchdb), and 
even a graph database, LevelGraph (nodejsdp.link/levelgraph), which can work 
both on Node.js and the browser!

Find out more about the LevelUP ecosystem at nodejsdp.link/
awesome-level.

http://nodejsdp.link/levelup
http://nodejsdp.link/pouchdb
http://nodejsdp.link/levelgraph
http://nodejsdp.link/awesome-level
http://nodejsdp.link/awesome-level
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Implementing a LevelUP plugin
In the next example, we are going to show you how we can create a simple plugin 
for LevelUP using the Decorator pattern, and in particular, the object augmentation 
technique, which is the simplest but also the most pragmatic and effective way to 
decorate objects with additional capabilities.

What we want to build is a plugin for LevelUP that allows us to receive notifications 
every time an object with a certain pattern is saved into the database. For example, 
if we subscribe to a pattern such as {a: 1}, we want to receive a notification when 
objects such as {a: 1, b: 3} or {a: 1, c: 'x'} are saved into the database.

Let's start to build our small plugin by creating a new module called level-
subscribe.js. We will then insert the following code:

export function levelSubscribe (db) {
  db.subscribe = (pattern, listener) => {                // (1)
    db.on('put', (key, val) => {                         // (2)
      const match = Object.keys(pattern).every(
        k => (pattern[k] === val[k])                     // (3)
      )
      if (match) {
        listener(key, val)                               // (4)
      }
    })
  }

  return db
}

That's it for our plugin; it's extremely simple. Let's briefly analyze the preceding code:

1. We decorate the db object with a new method named subscribe(). We 
simply attach the method directly to the provided db instance (object 
augmentation).

2. We listen for any put operation performed on the database.

For convenience, we are going to use the level package 
(nodejsdp.link/level), which bundles both levelup and the 
default adapter called leveldown, which uses LevelDB as the 
backend.

http://nodejsdp.link/level
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3. We perform a very simple pattern-matching algorithm, which verifies that 
all the properties in the provided pattern are also available in the data being 
inserted.

4. If we have a match, we notify the listener.

Let's now write some code to try out our new plugin:

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import level from 'level'
import { levelSubscribe } from './level-subscribe.js'

const __dirname = dirname(fileURLToPath(import.meta.url))

const dbPath = join(__dirname, 'db')
const db = level(dbPath, { valueEncoding: 'json' })      // (1)
levelSubscribe(db)                                       // (2)

db.subscribe(                                            // (3)
  { doctype: 'tweet', language: 'en' },
  (k, val) => console.log(val)
)
db.put('1', {                                            // (4)
  doctype: 'tweet',
  text: 'Hi',
  language: 'en'
})
db.put('2', {
  doctype: 'company',
  name: 'ACME Co.'
})

This is how the preceding code works:

1. First, we initialize our LevelUP database, choosing the directory where the 
files are stored and the default encoding for the values.

2. Then, we attach our plugin, which decorates the original db object.
3. At this point, we are ready to use the new feature provided by our plugin, 

which is the subscribe() method, where we specify that we are interested in 
all the objects with doctype: 'tweet' and language: 'en'.
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4. Finally, we save some values in the database using put. The first call triggers 
the callback associated with our subscription and we should see the stored 
object printed to the console. This is because, in this case, the object matches 
the subscription. The second call does not generate any output because the 
stored object does not match the subscription criteria.

This example shows a real application of the Decorator pattern in its simplest 
implementation, which is object augmentation. It may look like a trivial pattern, 
but it has undoubted power if used appropriately.

In the wild
For more examples of how decorators are used in the real world, you can inspect the 
code of some more LevelUP plugins:

• level-inverted-index (nodejsdp.link/level-inverted-index): This is a 
plugin that adds inverted indexes to a LevelUP database, allowing us to 
perform simple text searches across the values stored in the database

• levelplus (nodejsdp.link/levelplus): This is a plugin that adds atomic 
updates to a LevelUP database

Aside from LevelUP plugins, the following projects are also good examples of the 
adoption of the Decorator pattern:

• json-socket (nodejsdp.link/json-socket): This module makes it easier to 
send JSON data over a TCP (or a Unix) socket. It is designed to decorate an 
existing instance of net.Socket, which gets enriched with additional methods 
and behaviors.

• fastify (nodejsdp.link/fastify) is a web application framework that 
exposes an API to decorate a Fastify server instance with additional 
functionality or configuration. With this approach, the additional 
functionality is made accessible to different parts of the application. This is 
a quite generalized implementation of the Decorator pattern. Check out the 
dedicated documentation page to find out more at nodejsdp.link/fastify-
decorators.

For simplicity, our plugin works only in combination with put 
operations, but it can be easily expanded to work even with batch 
operations (nodejsdp.link/levelup-batch).

http://nodejsdp.link/level-inverted-index
http://nodejsdp.link/levelplus
http://nodejsdp.link/json-socket
http://nodejsdp.link/fastify
http://nodejsdp.link/fastify-decorators
http://nodejsdp.link/fastify-decorators
http://nodejsdp.link/levelup-batch
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The line between proxy and decorator
At this point in the book, you might have some legitimate doubts about the 
differences between the Proxy and the Decorator patterns. These two patterns are 
indeed very similar and they can sometimes be used interchangeably.

In its classic incarnation, the Decorator pattern is defined as a mechanism that allows 
us to enhance an existing object with new behavior, while the Proxy pattern is used 
to control access to a concrete or virtual object.

There is a conceptual difference between the two patterns, and it's mostly based on 
the way they are used at runtime.

You can look at the Decorator pattern as a wrapper; you can take different types of 
objects and decide to wrap them with a decorator to enhance their capabilities with 
extra functionality. A proxy, instead, is used to control the access to an object and it 
does not change the original interface. For this reason, once you have created a proxy 
instance, you can pass it over to a context that expects the original object.

When it comes to implementation, these differences are generally much more 
obvious with strongly typed languages where the type of the objects you pass 
around is checked at compile time. In the Node.js ecosystem, given the dynamic 
nature of the JavaScript language, the line between the Proxy and the Decorator 
patterns is quite blurry, and often the two names are used interchangeably. We have 
also seen how the same techniques can be used to implement both patterns.

When dealing with JavaScript and Node.js, our advice is to avoid getting bogged 
down with the nomenclature and the canonical definition of these two patterns. 
We encourage you to look at the class of problems that proxy and decorator 
solve as a whole and treat these two patterns as complementary and sometimes 
interchangeable tools.

Adapter
The Adapter pattern allows us to access the functionality of an object using a 
different interface.

A real-life example of an adapter would be a device that allows you to plug a USB 
Type-A cable into a USB Type-C port. In a generic sense, an adapter converts an 
object with a given interface so that it can be used in a context where a different 
interface is expected.
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In software, the Adapter pattern is used to take the interface of an object (the 
adaptee) and make it compatible with another interface that is expected by a given 
client. Let's have a look at Figure 8.3 to clarify this idea:

Figure 8.3: Adapter pattern schematic

In Figure 8.3, we can see how the adapter is essentially a wrapper for the adaptee, 
exposing a different interface. The diagram also highlights the fact that the 
operations of the adapter can also be a composition of one or more method 
invocations on the adaptee. From an implementation perspective, the most common 
technique is composition, where the methods of the adapter provide a bridge to the 
methods of the adaptee. This pattern is pretty straightforward, so let's immediately 
work on an example.

Using LevelUP through the filesystem API
We are now going to build an adapter around the LevelUP API, transforming it 
into an interface that is compatible with the core fs module. In particular, we will 
make sure that every call to readFile() and writeFile() will translate into calls 
to db.get() and db.put(). This way we will be able to use a LevelUP database 
as a storage backend for simple filesystem operations.

Let's start by creating a new module named fs-adapter.js. We will begin by loading 
the dependencies and exporting the createFsAdapter() factory that we are going to 
use to build the adapter:

import { resolve } from 'path'

export function createFSAdapter (db) {
  return ({
    readFile (filename, options, callback) {
      // ...
    },
    writeFile (filename, contents, options, callback) {
      // ...
    }
  })
}
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Next, we will implement the readFile() function inside the factory and ensure that 
its interface is compatible with the one of the original function from the fs module:

    readFile (filename, options, callback) {
      if (typeof options === 'function') {
        callback = options
        options = {}
      } else if (typeof options === 'string') {
        options = { encoding: options }
      }

      db.get(resolve(filename), {                           // (1)
        valueEncoding: options.encoding
      },
      (err, value) => {
        if (err) {
          if (err.type === 'NotFoundError') {               // (2)
            err = new Error(`ENOENT, open "${filename}"`)
            err.code = 'ENOENT'
            err.errno = 34
            err.path = filename
          }
          return callback && callback(err)
        }
        callback && callback(null, value)                   // (3)
      })
    }

In the preceding code, we had to do some extra work to make sure that the behavior 
of our new function is as close as possible to the original fs.readFile() function. The 
steps performed by the function are described as follows:

1. To retrieve a file from the db instance, we invoke db.get(), using filename 
as a key, by making sure to always use its full path (using resolve()). We 
set the value of the valueEncoding option used by the database to be equal to 
any eventual encoding option received as an input.

2. If the key is not found in the database, we create an error with ENOENT as the 
error code, which is the code used by the original fs module to indicate a 
missing file. Any other type of error is forwarded to callback (for the scope 
of this example, we are adapting only the most common error condition).

3. If the key-value pair is retrieved successfully from the database, we will 
return the value to the caller using the callback.
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The function that we created does not want to be a perfect replacement for the 
fs.readFile() function, but it definitely does its job in the most common situations.

To complete our small adapter, let's now see how to implement the writeFile() 
function:

    writeFile (filename, contents, options, callback) {
      if (typeof options === 'function') {
        callback = options
        options = {}
      } else if (typeof options === 'string') {
        options = { encoding: options }
      }

      db.put(resolve(filename), contents, {
        valueEncoding: options.encoding
      }, callback)
    }

As we can see, we don't have a perfect wrapper in this case either. We are ignoring 
some options such as file permissions (options.mode), and we are forwarding any 
error that we receive from the database as is.

Our new adapter is now ready. If we now write a small test module, we can try to 
use it:

import fs from 'fs'

fs.writeFile('file.txt', 'Hello!', () => {
  fs.readFile('file.txt', { encoding: 'utf8' }, (err, res) => {
    if (err) {
      return console.error(err)
    }
    console.log(res)
  })
})

// try to read a missing file
fs.readFile('missing.txt', { encoding: 'utf8' }, (err, res) => {
  console.error(err)
})
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The preceding code uses the original fs API to perform a few read and write 
operations on the filesystem, and should print something like the following to 
the console:

Error: ENOENT, open "missing.txt"
Hello!

Now, we can try to replace the fs module with our adapter, as follows:

import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import level from 'level'
import { createFSAdapter } from './fs-adapter.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const db = level(join(__dirname, 'db'), {
  valueEncoding: 'binary'
})
const fs = createFSAdapter(db)
// ...

Running our program again should produce the same output, except for the fact 
that no parts of the file that we specified are read or written using the filesystem API 
directly. Instead, any operation performed using our adapter will be converted into 
an operation performed on a LevelUP database.

The adapter that we just created might look silly; what's the purpose of using a 
database in place of the real filesystem? However, we should remember that LevelUP 
itself has adapters that enable the database to also run in the browser. One of these 
adapters is level-js (nodejsdp.link/level-js). Now our adapter makes perfect 
sense. We could use something similar to allow code leveraging the fs module to run 
on both Node.js and a browser. We will soon realize that Adapter is an extremely 
important pattern when it comes to sharing code with the browser, as we will see in 
more detail in Chapter 10, Universal JavaScript for Web Applications.

In the wild
There are plenty of real-world examples of the Adapter pattern. We've listed some of 
the most notable examples here for you to explore and analyze:

http://nodejsdp.link/level-js
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• We already know that LevelUP is able to run with different storage 
backends, from the default LevelDB to IndexedDB in the browser. This 
is made possible by the various adapters that are created to replicate the 
internal (private) LevelUP API. Take a look at some of them to see how they 
are implemented at nodejsdp.link/level-stores.

• JugglingDB is a multi-database ORM and of course, multiple adapters are 
used to make it compatible with different databases. Take a look at some of 
them at nodejsdp.link/jugglingdb-adapters.

• nanoSQL (nodejsdp.link/nanosql) is a modern multi-model database 
abstraction library that makes heavy usage of the Adapter pattern to support 
a significant variety of databases.

• The perfect complement to the example that we created is level-filesystem 
(nodejsdp.link/level-filesystem), which is the proper implementation of 
the fs API on top of LevelUP.

Summary
Structural design patterns are definitely some of the most widely adopted design 
patterns in software engineering and it is important to be confident with them. In 
this chapter, we explored the Proxy, the Decorator, and the Adapter patterns and 
we discussed different ways to implement these in the context of Node.js.

We saw how the Proxy pattern can be a very valuable tool to control access to 
existing objects. In this chapter, we also mentioned how the Proxy pattern can enable 
different programming paradigms such as reactive programming using the Change 
Observer pattern.

In the second part of the chapter, we found out that the Decorator pattern is an 
invaluable tool to be able to add additional functionality to existing objects. We saw 
that its implementation doesn't differ much from the Proxy pattern and we explored 
some examples built around the LevelDB ecosystem.

Finally, we discussed the Adapter pattern, which allows us to wrap an existing 
object and expose its functionality through a different interface. We saw that this 
pattern can be useful to expose a piece of existing functionality to a component 
that expects a different interface. In our examples, we saw how this pattern can be 
used to implement an alternative storage layer that is compatible with the interface 
provided by the fs module to interact with files.

http://nodejsdp.link/level-stores
http://nodejsdp.link/jugglingdb-adapters
http://nodejsdp.link/nanosql
http://nodejsdp.link/level-filesystem
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Proxy, decorator and adapter are very similar, the difference between them can 
be appreciated from the perspective of the interface consumer: proxy provides the 
same interface as the wrapped object, decorator provides an enhanced interface, and 
adapter provides a different interface.

In the next chapter, we will complete our journey through traditional design patterns 
in Node.js by exploring the category of behavioral design patterns. This category 
includes important patterns such as the Strategy pattern, the Middleware pattern, 
and the Iterator pattern. Are you ready to discover behavioral design patterns?

Exercises
• 8.1 HTTP client cache: Write a proxy for your favorite HTTP client library 

that caches the response of a given HTTP request, so that if you make 
the same request again, the response is immediately returned from the 
local cache, rather than being fetched from the remote URL. If you need 
inspiration, you can check out the superagent-cache module (nodejsdp.
link/superagent-cache).

• 8.2 Timestamped logs: Create a proxy for the console object that enhances 
every logging function (log(), error(), debug(), and info()) by prepending 
the current timestamp to the message you want to print in the logs. For 
instance, executing consoleProxy.log('hello') should print something like 
2020-02-18T15:59:30.699Z hello in the console.

• 8.3 Colored console output: Write a decorator for the console that adds 
the red(message), yellow(message), and green(message) methods. These 
methods will have to behave like console.log(message) except they will 
print the message in red, yellow, or green, respectively. In one of the 
exercises from the previous chapter, we already pointed you to some useful 
packages to to create colored console output. If you want to try something 
different this time, have a look at ansi-styles (nodejsdp.link/ansi-styles).

• 8.4 Virtual filesystem: Modify our LevelDB filesystem adapter example to 
write the file data in memory rather than in LevelDB. You can use an object 
or a Map instance to store the key-value pairs of filenames and the associated 
data.

• 8.5 The lazy buffer: Can you implement createLazyBuffer(size), a factory 
function that generates a virtual proxy for a Buffer of the given size? The 
proxy instance should instantiate a Buffer object (effectively allocating 
the given amount of memory) only when write() is being invoked for the 
first time. If no attempt to write into the buffer is made, no Buffer instance 
should be created.

http://nodejsdp.link/superagent-cache
http://nodejsdp.link/superagent-cache
http://nodejsdp.link/ansi-styles


[ 301 ]

9
Behavioral Design Patterns

In the last two chapters, we have learned patterns that aid us in the creation of 
objects and with building complex object structures. Now it's time to move onto 
another aspect of software design, which concerns the behavior of components. 
In this chapter, we will learn how to combine objects and how to define the 
way they communicate so that the behavior of the resulting structure becomes 
extensible, modular, reusable, and adaptable. Problems such as "How do I change 
parts of an algorithm at runtime?", "How can I change the behavior of an object 
based on its state?", and "How can I iterate over a collection without knowing its 
implementation?" are the typical kinds of problems solved by the patterns presented 
in this chapter.

You've already met a notable member of this category of patterns, and that is 
the Observer pattern, which we presented in Chapter 3, Callbacks and Events. The 
Observer pattern is one of the foundational patterns of the Node.js platform as 
it provides us with a simple interface for dealing with events and subscriptions, 
which are the life force of Node's event-driven architecture.

If you are already familiar with the Gang of Four (GoF) design patterns, in this 
chapter, you will witness once again how the implementation of some of those 
patterns can be radically different in JavaScript compared to a purer object-oriented 
approach. A great example of this thesis can be found in the Iterator pattern, which 
you will meet later in the chapter. To implement the Iterator pattern, in fact, we 
won't need to extend any class or build any complex hierarchy. Instead, we will 
just need to add a special method to a class. Moreover, one particular pattern in this 
chapter, Middleware, tightly resembles another popular GoF pattern, which is the 
Chain of Responsibility pattern, but its implementation in Node.js has become such 
a standard that it can be considered a pattern of its own.
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Now, it's time to roll up your sleeves and get your hands dirty with some behavioral 
design patterns. In this chapter, you will learn about the following:

• The Strategy pattern, which helps us change parts of a component to adapt it 
to specific needs

• The State pattern, which allows us to change the behavior of a component 
based on its state

• The Template pattern, which allows us to reuse the structure of a component 
to define new ones

• The Iterator pattern, which provides us with a common interface to iterate 
over a collection

• The Middleware pattern, which allows us to define a modular chain of 
processing steps

• The Command pattern, which materializes the information required to 
execute a routine, allowing such information to be easily transferred, stored, 
and processed

Strategy
The Strategy pattern enables an object, called the context, to support variations 
in its logic by extracting the variable parts into separate, interchangeable objects 
called strategies. The context implements the common logic of a family of 
algorithms, while a strategy implements the mutable parts, allowing the context to 
adapt its behavior depending on different factors, such as an input value, a system 
configuration, or user preferences.

Strategies are usually part of a family of solutions and all of them implement the 
same interface expected by the context. The following figure shows the situation 
we just described:
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Figure 9.1: General structure of the Strategy pattern

Figure 9.1 shows you how the context object can plug different strategies into its 
structure as if they were replaceable parts of a piece of machinery. Imagine a car; its 
tires can be considered its strategy for adapting to different road conditions. We can 
fit winter tires to go on snowy roads thanks to their studs, while we can decide to fit 
high-performance tires for traveling mainly on motorways for a long trip. On the one 
hand, we don't want to change the entire car for this to be possible, and on the other, 
we don't want a car with eight wheels so that it can go on every possible road.

We quickly understand how powerful this pattern is. Not only does it help with 
separating the concerns within a given problem, but it also enables our solution to 
have better flexibility and adapt to different variations of the same problem.

The Strategy pattern is particularly useful in all those situations where supporting 
variations in the behavior of a component requires complex conditional logic 
(lots of if...else or switch statements) or mixing different components of the 
same family. Imagine an object called Order that represents an online order on an 
e-commerce website. The object has a method called pay() that, as it says, finalizes 
the order and transfers the funds from the user to the online store.

To support different payment systems, we have a couple of options:

• Use an if...else statement in the pay() method to complete the operation 
based on the chosen payment option

• Delegate the logic of the payment to a strategy object that implements the 
logic for the specific payment gateway selected by the user
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In the first solution, our Order object cannot support other payment methods unless 
its code is modified. Also, this can become quite complex when the number of 
payment options grows. Instead, using the Strategy pattern enables the Order object 
to support a virtually unlimited number of payment methods and keeps its scope 
limited to only managing the details of the user, the purchased items, and the 
relative price while delegating the job of completing the payment to another object.

Let's now demonstrate this pattern with a simple, realistic example.

Multi-format configuration objects
Let's consider an object called Config that holds a set of configuration parameters 
used by an application, such as the database URL, the listening port of the server, 
and so on. The Config object should be able to provide a simple interface to access 
these parameters, but also a way to import and export the configuration using 
persistent storage, such as a file. We want to be able to support different formats 
to store the configuration, for example, JSON, INI, or YAML.

By applying what we learned about the Strategy pattern, we can immediately 
identify the variable part of the Config object, which is the functionality that allows 
us to serialize and deserialize the configuration. This is going to be implemented by 
our strategies.

Let's create a new module called config.js, and let's define the generic part of our 
configuration manager:

import { promises as fs } from 'fs'
import objectPath from 'object-path'

export class Config {
  constructor (formatStrategy) {                           // (1)
    this.data = {}
    this.formatStrategy = formatStrategy
  }

  get (configPath) {                                       // (2)
    return objectPath.get(this.data, configPath)
  }

  set (configPath, value) {                                // (2)



Chapter 9

[ 305 ]

    return objectPath.set(this.data, configPath, value)
  }
  async load (filePath) {                                  // (3)
    console.log(`Deserializing from ${filePath}`)
    this.data = this.formatStrategy.deserialize(
      await fs.readFile(filePath, 'utf-8')
    )
  }

  async save (filePath) {                                  // (3)
    console.log(`Serializing to ${filePath}`)
    await fs.writeFile(filePath,
      this.formatStrategy.serialize(this.data))
  }
}

This is what's happening in the preceding code:

1. In the constructor, we create an instance variable called data to hold the 
configuration data. Then we also store formatStrategy, which represents 
the component that we will use to parse and serialize the data.

2. We provide two methods, set() and get(), to access the configuration 
properties using a dotted path notation (for example, property.subProperty) 
by leveraging a library called object-path (nodejsdp.link/object-path).

3. The load() and save() methods are where we delegate, respectively, the 
deserialization and serialization of the data to our strategy. This is where the 
logic of the Config class is altered based on the formatStrategy passed as an 
input in the constructor.

As we can see, this very simple and neat design allows the Config object to 
seamlessly support different file formats when loading and saving its data. The best 
part is that the logic to support those various formats is not hardcoded anywhere, 
so the Config class can adapt without any modification to virtually any file format, 
given the right strategy.

To demonstrate this characteristic, let's now create a couple of format strategies in a 
file called strategies.js. Let's start with a strategy for parsing and serializing data 
using the INI file format, which is a widely used configuration format (more info 
about it here: nodejsdp.link/ini-format). 

http://nodejsdp.link/object-path
http://nodejsdp.link/ini-format
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For the task, we will use an npm package called ini (nodejsdp.link/ini):

import ini from 'ini'

export const iniStrategy = {
  deserialize: data => ini.parse(data),
  serialize: data => ini.stringify(data)
}

Nothing really complicated! Our strategy simply implements the agreed interface, so 
that it can be used by the Config object.

Similarly, the next strategy that we are going to create allows us to support the JSON 
file format, widely used in JavaScript and in the web development ecosystem in 
general:

export const jsonStrategy = {
  deserialize: data => JSON.parse(data),
  serialize: data => JSON.stringify(data, null, '  ')
}

Now, to show you how everything comes together, let's create a file named index.js, 
and let's try to load and save a sample configuration using different formats:

import { Config } from './config.js'
import { jsonStrategy, iniStrategy } from './strategies.js'

async function main () {
  const iniConfig = new Config(iniStrategy)
  await iniConfig.load('samples/conf.ini')
  iniConfig.set('book.nodejs', 'design patterns')
  await iniConfig.save('samples/conf_mod.ini')

  const jsonConfig = new Config(jsonStrategy)
  await jsonConfig.load('samples/conf.json')
  jsonConfig.set('book.nodejs', 'design patterns')
  await jsonConfig.save('samples/conf_mod.json')
}

main()

http://nodejsdp.link/ini
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Our test module reveals the core properties of the Strategy pattern. We defined only 
one Config class, which implements the common parts of our configuration manager, 
then, by using different strategies for serializing and deserializing data, we created 
different Config class instances supporting different file formats.

The example we've just seen showed us only one of the possible alternatives that we 
had for selecting a strategy. Other valid approaches might have been the following:

• Creating two different strategy families: One for the deserialization and the 
other for the serialization. This would have allowed reading from a format 
and saving to another.

• Dynamically selecting the strategy: Depending on the extension of the 
file provided, the Config object could have maintained a map extension → 
strategy and used it to select the right algorithm for the given extension.

As we can see, we have several options for selecting the strategy to use, and the right 
one only depends on your requirements and the tradeoff in terms of features and the 
simplicity you want to obtain.

Furthermore, the implementation of the pattern itself can vary a lot as well. For 
example, in its simplest form, the context and the strategy can both be simple 
functions:

function context(strategy) {...}

Even though this may seem insignificant, it should not be underestimated in a 
programming language such as JavaScript, where functions are first-class citizens 
and used as much as fully-fledged objects.

Between all these variations, though, what does not change is the idea behind the 
pattern; as always, the implementation can slightly change but the core concepts 
that drive the pattern are always the same.

The structure of the Strategy pattern may look similar to that of 
the Adapter pattern. However, there is a substantial difference 
between the two. The adapter object does not add any behavior to 
the adaptee; it just makes it available under another interface. This 
can also require some extra logic to be implemented to convert 
one interface into another, but this logic is limited to this task only. 
In the Strategy pattern, however, the context and the strategy 
implement two different parts of an algorithm and therefore both 
implement some kind of logic and both are essential to build the 
final algorithm (when combined together).
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In the wild
Passport (nodejsdp.link/passportjs) is an authentication framework for 
Node.js, which allows a web server to support different authentication schemes. 
With Passport, we can provide a login with Facebook or login with Twitter functionality 
to our web application with minimal effort. Passport uses the Strategy pattern 
to separate the common logic used during an authentication process from the 
parts that can change, namely the actual authentication step. For example, 
we might want to use OAuth in order to obtain an access token to access a 
Facebook or Twitter profile, or simply use a local database to verify a username/
password pair. For Passport, these are all different strategies for completing the 
authentication process and, as we can imagine, this allows the library to support a 
virtually unlimited number of authentication services. Take a look at the number 
of different authentication providers supported at nodejsdp.link/passport-
strategies to get an idea of what the Strategy pattern can do.

State
The State pattern is a specialization of the Strategy pattern where the strategy 
changes depending on the state of the context.

We have seen in the previous section how a strategy can be selected based on 
different variables such as a configuration property or an input parameter, and once 
this selection is done, the strategy remains unchanged for the rest of the lifespan of 
the context object. In the State pattern, instead, the strategy (also called the state in 
this circumstance) is dynamic and can change during the lifetime of the context, thus 
allowing its behavior to adapt depending on its internal state.

The following figure shows us a representation of the pattern:

Figure 9.2: The State pattern

Figure 9.2 shows how a context object transitions through three states (A, B, and C). 
With the State pattern, at each different context state, we select a different strategy. 
This means that the context object will adopt a different behavior based on the state 
it's in.

http://nodejsdp.link/passportjs
http://nodejsdp.link/passport-strategies
http://nodejsdp.link/passport-strategies
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To make this easier to understand, let's consider an example: imagine we have 
a hotel booking system and an object called Reservation that models a room 
reservation. This is a typical situation where we have to adapt the behavior of 
an object based on its state.

Consider the following series of events:

• When the reservation is initially created, the user can confirm (using a 
method called confirm()) the reservation. Of course, they cannot cancel it 
(using cancel()), because it's still not confirmed (the caller would receive an 
exception, for example). They can, however, delete it (using delete()) if they 
change their mind before buying.

• Once the reservation is confirmed, using the confirm() method again 
does not make any sense; however, now it should be possible to cancel the 
reservation but no longer delete it, because it has to be kept for the records.

• On the day before the reservation date, it should not be possible to cancel the 
reservation anymore; it's too late for that.

Now, imagine that we have to implement the reservation system that we 
just described in one monolithic object. We can already picture all the if...
else or switch statements that we would have to write to enable/disable 
each action depending on the state of the reservation.

Figure 9.3: An example application of the State pattern

As illustrated in Figure 9.3, the State pattern is, instead, perfect in this situation: 
there would be three strategies, all implementing the three methods described 
(confirm(), cancel(), and delete()) and each one implementing only one 
behavior—the one corresponding to the modeled state. By using this pattern, it 
should be very easy for the Reservation object to switch from one behavior to 
another; this would simply require the activation of a different strategy (state object) 
on each state change.
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Let's now work on a more concrete example so that we can apply what we learned 
about the State pattern.

Implementing a basic failsafe socket
Let's build a TCP client socket that does not fail when the connection with the 
server is lost; instead, we want to queue all the data sent during the time in which 
the server is offline and then try to send it again as soon as the connection is 
reestablished. We want to leverage this socket in the context of a simple monitoring 
system, where a set of machines sends some statistics about their resource utilization 
at regular intervals. If the server that collects these resources goes down, our socket 
will continue to queue the data locally until the server comes back online.

Let's start by creating a new module called failsafeSocket.js that defines our 
context object:

import { OfflineState } from './offlineState.js'
import { OnlineState } from './onlineState.js'

export class FailsafeSocket {
  constructor (options) {                                  // (1)
    this.options = options
    this.queue = []
    this.currentState = null
    this.socket = null
    this.states = {
      offline: new OfflineState(this),
      online: new OnlineState(this)
    }
    this.changeState('offline')
  }
  changeState (state) {                                    // (2)
    console.log(`Activating state: ${state}`)
    this.currentState = this.states[state]
    this.currentState.activate()
  }

The state transition can be initiated and controlled by the context 
object, by the client code, or by the state objects themselves. This 
last option usually provides the best results in terms of flexibility 
and decoupling, as the context does not have to know about all the 
possible states and how to transition between them.
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  send (data) {                                            // (3)
    this.currentState.send(data)
  }
}

The FailsafeSocket class is made of three main elements:

1. The constructor initializes various data structures, including the queue that 
will contain any data sent while the socket is offline. Also, it creates a set of 
two states: one for implementing the behavior of the socket while it's offline, 
and another one when the socket is online.

2. The changeState() method is responsible for transitioning from one state 
to another. It simply updates the currentState instance variable and 
calls activate() on the target state.

3. The send() method contains the main functionality of the FailsafeSocket 
class. This is where we want to have a different behavior based on the 
offline/online state. As we can see, this is done by delegating the operation 
to the currently active state.

Let's now see what the two states look like, starting from the offlineState.js 
module:

import jsonOverTcp from 'json-over-tcp-2'                  // (1)

export class OfflineState {
  constructor (failsafeSocket) {
    this.failsafeSocket = failsafeSocket
  }

  send (data) {                                            // (2)
    this.failsafeSocket.queue.push(data)
  }
  activate () {                                            // (3)
    const retry = () => {
      setTimeout(() => this.activate(), 1000)
    }

    console.log('Trying to connect...')
    this.failsafeSocket.socket = jsonOverTcp.connect(
      this.failsafeSocket.options,
      () => {
        console.log('Connection established')
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        this.failsafeSocket.socket.removeListener('error', retry)
        this.failsafeSocket.changeState('online')
      }
    )
    this.failsafeSocket.socket.once('error', retry)
  }
}

The module that we just created is responsible for managing the behavior of the 
socket while it's offline. This is how it works:

1. Instead of using a raw TCP socket, we will use a little library called json-
over-tcp-2 (nodejsdp.link/json-over-tcp-2). This will greatly simplify our 
work since the library will take care of all the parsing and formatting of the 
data going through the socket into JSON objects.

2. The send() method is only responsible for queuing any data it receives. We 
are assuming that we are offline, so we'll save those data objects for later. 
That's all we need to do here.

3. The activate() method tries to establish a connection with the server using 
the json-over-tcp-2 socket. If the operation fails, it tries again after one 
second. It continues trying until a valid connection is established, in which 
case the state of failsafeSocket is transitioned to online.

Next, let's create the onlineState.js module, which is where we will implement the 
OnlineState class:

export class OnlineState {
  constructor (failsafeSocket) {
    this.failsafeSocket = failsafeSocket
    this.hasDisconnected = false
  }
  send (data) {                                            // (1)
    this.failsafeSocket.queue.push(data)
    this._safeWrite(data)
  }
  _safeWrite (data) {                                      // (2)
    this.failsafeSocket.socket.write(data, (err) => {
      if (!this.hasDisconnected && !err) {
        this.failsafeSocket.queue.shift()
      }
    })
  }

http://nodejsdp.link/json-over-tcp-2
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  activate () {                                            // (3)
    this.hasDisconnected = false
    for (const data of this.failsafeSocket.queue) {
      this._safeWrite(data)
    }

    this.failsafeSocket.socket.once('error', () => {
      this.hasDisconnected = true
      this.failsafeSocket.changeState('offline')
    })
  }
}

The OnlineState class models the behavior of the FailsafeSocket when there is an 
active connection with the server. This is how it works:

1. The send() method queues the data and then immediately tries to write it 
directly into the socket, as we assume that we are online. It'll use the internal 
_safeWrite() method to do that.

2. The _safeWrite() method tries to write the data into the socket writable 
stream (see the official docs at nodejsdp.link/writable-write) and it waits 
for the data to be written into the underlying resource. If no errors are 
returned and if the socket didn't disconnect in the meantime, it means that 
the data was sent successfully and therefore we remove it from the queue.

3. The activate() method flushes any data that was queued while the socket 
was offline and it also starts listening for any error event; we will take this as 
a symptom that the socket went offline (for simplicity). When this happens, 
we transition to the offline state.

That's it for our FailsafeSocket. Now we are ready to build a sample client and 
a server to try it out. Let's put the server code in a module named server.js:

import jsonOverTcp from 'json-over-tcp-2'

const server = jsonOverTcp.createServer({ port: 5000 })
server.on('connection', socket => {
  socket.on('data', data => {
    console.log('Client data', data)
  })
})

http://nodejsdp.link/writable-write
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server.listen(5000, () => console.log('Server started'))

Then, the client-side code, which is what we are really interested in, goes 
into client.js:

import { FailsafeSocket } from './failsafeSocket.js'

const failsafeSocket = new FailsafeSocket({ port: 5000 })

setInterval(() => {
  // send current memory usage
  failsafeSocket.send(process.memoryUsage())
}, 1000)

Our server simply prints to the console any JSON message it receives, while our 
clients are sending a measurement of their memory utilization every second, 
leveraging a FailsafeSocket object.

To try the small system that we built, we should run both the client and 
the server, then we can test the features of failsafeSocket by stopping and 
then restarting the server. We should see that the state of the client changes 
between online and offline and that any memory measurement collected while the 
server is offline is queued and then resent as soon as the server goes back online.

This sample should be a clear demonstration of how the State pattern can help 
increase the modularity and readability of a component that has to adapt its 
behavior depending on its state.

The FailsafeSocket class that we built in this section is only for 
demonstrating the State pattern and doesn't want to be a complete 
and 100% reliable solution for handling connectivity issues with 
TCP sockets. For example, we are not verifying that all the data 
written into the socket stream is received by the server, which 
would require some more code not strictly related to the pattern 
that we wanted to describe. For a production alternative, you can 
count on ZeroMQ (nodejsdp.link/zeromq). We'll talk about 
some patterns using ZeroMQ later in the book in Chapter 13, 
Messaging and Integration Patterns.

http://nodejsdp.link/zeromq
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Template
The next pattern that we are going to analyze is called Template and it has a lot in 
common with the Strategy pattern. The Template pattern defines an abstract class 
that implements the skeleton (representing the common parts) of a component, 
where some of its steps are left undefined. Subclasses can then fill the gaps in the 
component by implementing the missing parts, called template methods. The intent 
of this pattern is to make it possible to define a family of classes that are all variations 
of a family of components. The following UML diagram shows the structure that we 
just described:

Figure 9.4: UML diagram of the Template pattern

The three concrete classes shown in Figure 9.4, extend the template class and provide 
an implementation for templateMethod(), which is abstract or pure virtual, to use C++ 
terminology. In JavaScript, we don't have a formal way to define abstract classes, 
so all we can do is leave the method undefined or assign it to a function that always 
throws an exception, indicating that the method has to be implemented. The Template 
pattern can be considered a more traditionally object-oriented pattern than the other 
patterns we have seen so far, because inheritance is a core part of its implementation.

The purpose of Template and Strategy is very similar, but the main difference 
between the two lies in their structure and implementation. Both allow us to change 
the variable parts of a component while reusing the common parts. However, while 
Strategy allows us to do it dynamically at runtime, with Template, the complete 
component is determined the moment the concrete class is defined. Under these 
assumptions, the Template pattern might be more suitable in those circumstances 
where we want to create prepackaged variations of a component. As always, the 
choice between one pattern and the other is up to the developer, who has to consider 
the various pros and cons for each use case.

Let's now work on an example.
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A configuration manager template
To have a better idea of the differences between Strategy and Template, let's now 
reimplement the Config object that we defined in the Strategy pattern section, but 
this time using Template. As in the previous version of the Config object, we want to 
have the ability to load and save a set of configuration properties using different file 
formats.

Let's start by defining the template class. We will call it ConfigTemplate:

import { promises as fsPromises } from 'fs'
import objectPath from 'object-path'

export class ConfigTemplate {
  async load (file) {
    console.log(`Deserializing from ${file}`)
    this.data = this._deserialize(
      await fsPromises.readFile(file, 'utf-8'))
  }

  async save (file) {
    console.log(`Serializing to ${file}`)
    await fsPromises.writeFile(file, this._serialize(this.data))
  }

  get (path) {
    return objectPath.get(this.data, path)
  }

  set (path, value) {
    return objectPath.set(this.data, path, value)
  }

  _serialize () {
    throw new Error('_serialize() must be implemented')
  }

  _deserialize () {
    throw new Error('_deserialize() must be implemented')
  }
}
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The ConfigTemplate class implements the common parts of the configuration 
management logic, namely setting and getting properties, plus loading and 
saving it to the disk. However, it leaves the implementation of _serialize() and 
_deserialize() open; those are in fact our template methods, which will allow the 
creation of concrete Config classes supporting specific configuration formats. The 
underscore at the beginning of the template methods' names indicates that they are 
for internal use only, an easy way to flag protected methods. Since in JavaScript we 
cannot declare a method as abstract, we simply define them as stubs, throwing an 
error if they are invoked (in other words, if they are not overridden by a concrete 
subclass).

Let's now create a concrete class using our template, for example, one that allows us 
to load and save the configuration using the JSON format:

import { ConfigTemplate } from './configTemplate.js'

export class JsonConfig extends ConfigTemplate {
  _deserialize (data) {
    return JSON.parse(data)
  }

  _serialize (data) {
    return JSON.stringify(data, null, '  ')
  }
}

The JsonConfig class extends our template class, ConfigTemplate, and provides 
a concrete implementation for the _deserialize() and _serialize() methods.

Similarly, we can implement an IniConfig class supporting the .ini file format 
using the same template class:

import { ConfigTemplate } from './configTemplate.js'
import ini from 'ini'

export class IniConfig extends ConfigTemplate {
  _deserialize (data) {
    return ini.parse(data)
  }

  _serialize (data) {
    return ini.stringify(data)
  }
}
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Now we can use our concrete configuration manager classes to load and save some 
configuration data:

import { JsonConfig } from './jsonConfig.js'
import { IniConfig } from './iniConfig.js'

async function main () {
  const jsonConfig = new JsonConfig()
  await jsonConfig.load('samples/conf.json')
  jsonConfig.set('nodejs', 'design patterns')
  await jsonConfig.save('samples/conf_mod.json')

  const iniConfig = new IniConfig()
  await iniConfig.load('samples/conf.ini')
  iniConfig.set('nodejs', 'design patterns')
  await iniConfig.save('samples/conf_mod.ini')
}

main()

Note the difference with the Strategy pattern: the logic for formatting and parsing the 
configuration data is baked into the class itself, rather than being chosen at runtime.

With minimal effort, the Template pattern allowed us to obtain a new, fully working 
configuration manager by reusing the logic and the interface inherited from the 
parent template class and providing only the implementation of a few abstract 
methods.

In the wild
This pattern should not look entirely new to us. We already encountered it in 
Chapter 6, Coding with Streams, when we were extending the different stream classes 
to implement our custom streams. In that context, the template methods were the _
write(), _read(), _transform(), or _flush() methods, depending on the stream class 
that we wanted to implement. To create a new custom stream, we needed to inherit 
from a specific abstract stream class, providing an implementation for the template 
methods.

Next, we are going to learn about a very important and ubiquitous pattern that is 
also built into the JavaScript language itself, which is the Iterator pattern.
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Iterator
The Iterator pattern is a fundamental pattern and it's so important and commonly 
used that it's usually built into the programming language itself. All major 
programming languages implement the pattern in one way or another, including, 
of course, JavaScript (starting from the ECMAScript2015 specification).

The Iterator pattern defines a common interface or protocol for iterating the elements 
of a container, such as an array or a tree data structure. Usually, the algorithm 
for iterating over the elements of a container is different depending on the actual 
structure of the data. Think about iterating over an array versus traversing a tree: 
in the first situation, we need just a simple loop; in the second, a more complex tree 
traversal algorithm is required (nodejsdp.link/tree-traversal). With the Iterator 
pattern, we hide the details about the algorithm being used or the structure of 
the data and provide a common interface for iterating over any type of container. 
In essence, the Iterator pattern allows us to decouple the implementation of the 
traversal algorithm from the way we consume the results (the elements) of the 
traversal operation.

In JavaScript, however, iterators work great even with other types of constructs, 
which are not necessarily containers, such as event emitters and streams. Therefore, 
we can say in more general terms that the Iterator pattern defines an interface to 
iterate over elements produced or retrieved in sequence.

The iterator protocol
In JavaScript, the Iterator pattern is implemented through protocols rather than 
through formal constructs, such as inheritance. This essentially means that the 
interaction between the implementer and the consumer of the Iterator pattern will 
communicate using interfaces and objects whose shape is agreed in advance.

The starting point for implementing the Iterator pattern in JavaScript is the iterator 
protocol, which defines an interface for producing a sequence of values. So, we'll 
call iterator an object implementing a next() method having the following behavior: 
each time the method is called, the function returns the next element in the iteration 
through an object, called the iterator result, having two properties—done and value:

• done is set to true when the iteration is complete, or in other words, when 
there are no more elements to return. Otherwise, done will be undefined 
or false.

http://nodejsdp.link/tree-traversal
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• value contains the current element of the iteration and it can be left 
undefined if done is true. If value is set even when done is true, then it is said 
that value contains the return value of the iteration, a value which is not part 
of the elements being iterated, but it's related to the iteration itself as a whole 
(for example, the time spent iterating all the elements or the average of all the 
elements iterated if the elements are numbers).

Let's use a quick example to demonstrate how to implement the iterator protocol. 
Let's implement a factory function called createAlphabetIterator(), which creates 
an iterator that allows us to traverse all the letters of the English alphabet. Such a 
function would look like this:

const A_CHAR_CODE = 65
const Z_CHAR_CODE = 90

function createAlphabetIterator () {
  let currCode = A_CHAR_CODE

  return {
    next () {
      const currChar = String.fromCodePoint(currCode)
      if (currCode > Z_CHAR_CODE) {
        return { done: true }
      }

      currCode++
      return { value: currChar, done: false }
    }
  }
}

The logic of the iteration is actually very straightforward; at each invocation of the 
next() method, we simply increment a number representing the letter's character 
code, convert it to a character, and then return it using the object shape defined by 
the iterator protocol.

Nothing prevents us from adding extra properties to the object 
returned by an iterator. However, those properties will be simply 
ignored by the built-in constructs or APIs consuming the iterator 
(we'll meet those in a moment).
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The important aspect to note is that an iterator is very often a stateful object since we 
have to keep track in some way of the current position of the iteration. In the previous 
example, we managed to keep the state in a closure (the currCode variable) but this 
is just one of the ways we can do so. We could have, for example, kept the state in an 
instance variable. This is usually better in terms of debuggability since we can read 
the status of the iteration from the iterator itself at any time, but on the other side, 
it does not prevent external code from modifying the instance variable and hence 
tampering with the status of the iteration. It's up to you to decide the pros and cons 
of each option.

Iterators can indeed be fully stateless as well. Examples are iterators returning 
random elements and either completing randomly or never completing, and iterators 
stopping at the first iteration.

Now, let's see how we can use the iterator we just built. Consider the following code 
fragment:

const iterator = createAlphabetIterator()

let iterationResult = iterator.next()
while (!iterationResult.done) {
  console.log(iterationResult.value)
  iterationResult = iterator.next()
}

As we can see from the previous code, the code that consumes an iterator can be 
considered a pattern itself. However, as we will see later in this section, it's not 
the only way we have to consume an iterator. JavaScript has, in fact, much more 
convenient and elegant ways to use iterators.

It's not a requirement for an iterator to ever return done: true. 
In fact, there can be many situations in which an iterator is 
infinite. An example is an iterator that returns a random number 
at each iteration. Another example is an iterator that calculates a 
mathematical series, such as the Fibonacci series or the digits of the 
constant pi (as an exercise, you can try to convert the following 
algorithm to use iterators: nodejsdp.link/pi-js). Note that even 
if an iterator is theoretically infinite, it doesn't mean that it won't 
have computational or spatial limits. For example, the number 
returned by the Fibonacci sequence will get very big very soon.

http://nodejsdp.link/pi-js
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The iterable protocol
The iterable protocol defines a standardized means for an object to return an 
iterator. Such objects are called iterables. Usually, an iterable is a container of 
elements, such as a data structure, but it can also be an object virtually representing a 
set of elements, such as a Directory object, which would allow us to iterate over the 
files in a directory.

In JavaScript, we can define an iterable by making sure it implements the @@iterator 
method, or in other words, a method accessible through the built-in symbol 
Symbol.iterator.

Such an @@iterator method should return an iterator object, which can be used to 
iterate over the elements represented by the iterable. For example, if our iterable is a 
class, we would have something like the following:

class MyIterable {
  // other methods...
  [Symbol.iterator] () {
    // return an iterator
  }
}

To show how this works in practice, let's build a class to manage information 
organized in a bidimensional matrix structure. We want this class to be 
implementing the iterable protocol, so that we can scan all the elements in the matrix 
using an iterator. Let's create a file called matrix.js containing the following content:

export class Matrix {
  constructor (inMatrix) {
    this.data = inMatrix

Iterators can optionally specify two additional methods: 
return([value]) and throw(error). The first is by convention 
used to signal to the iterator that the consumer has stopped 
the iteration before its completion, while the second is used to 
communicate to the iterator that an error condition has occurred. 
Both methods are rarely used by built-in iterators.

The @@name convention indicates a well-known symbol according 
to the ES6 specification. To find out more, you can check out the 
relative section of the ES6 specification at nodejsdp.link/es6-
well-known-symbols.

http://nodejsdp.link/es6-well-known-symbols
http://nodejsdp.link/es6-well-known-symbols
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  }

  get (row, column) {
    if (row >= this.data.length ||
      column >= this.data[row].length) {
      throw new RangeError('Out of bounds')
    }
    return this.data[row][column]
  }

  set (row, column, value) {
    if (row >= this.data.length ||
      column >= this.data[row].length) {
      throw new RangeError('Out of bounds')
    }
    this.data[row][column] = value
  }

  [Symbol.iterator] () {
    let nextRow = 0
    let nextCol = 0

    return {
      next: () => {
        if (nextRow === this.data.length) {
          return { done: true }
        }

        const currVal = this.data[nextRow][nextCol]

        if (nextCol === this.data[nextRow].length - 1) {
          nextRow++
          nextCol = 0
        } else {
          nextCol++
        }

        return { value: currVal }
      }
    }
  }
}



Behavioral Design Patterns

[ 324 ]

As we can see, the class contains the basic methods for getting and setting values in 
the matrix, as well as the @@iterator method, implementing our iterable protocol. 
The @@iterator method will return an iterator, as specified by the iterable protocol 
and such an iterator adheres to the iterator protocol. The logic of the iterator is very 
straightforward: we are simply traversing the matrix's cells from the top left to the 
bottom right, by scanning each column of each row; we are doing that by leveraging 
two indexes, nextRow and nextCol.

Now, it's time to try out our iterable Matrix class. We can do that in a file called 
index.js:

import { Matrix } from './matrix.js'

const matrix2x2 = new Matrix([
  ['11', '12'],
  ['21', '22']
])

const iterator = matrix2x2[Symbol.iterator]()
let iterationResult = iterator.next()
while (!iterationResult.done) {
  console.log(iterationResult.value)
  iterationResult = iterator.next()
}

All we are doing in the previous code is creating a sample Matrix instance and then 
obtaining an iterator using the @@iterator method. What comes next, as we already 
know, is just boilerplate code that iterates over the elements returned by the iterator. 
The output of the iteration should be '11', '12', '21', '22'.

Iterators and iterables as a native JavaScript 
interface
At this point, you may ask: "what's the point of having all these protocols for 
defining iterators and iterables?" Well, having a standardized interface allows third 
party code as well as the language itself to be modeled around the two protocols 
we've just seen. This way, we can have APIs (even native) as well as syntax 
constructs accepting iterables as an input.
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For example, the most obvious syntax construct accepting an iterable is the for...of 
loop. We've just seen in the last code sample that iterating over a JavaScript iterator 
is a pretty standard operation, and its code is mostly boilerplate. In fact, we'll always 
have an invocation to next() to retrieve the next element and a check to verify if 
the done property of the iteration result is set to true, which indicates the end of 
the iteration. But, worry not, simply pass an iterable to the for...of instruction to 
seamlessly loop over the elements returned by its iterator. This allows us to process 
the iteration with an intuitive and compact syntax:

for (const element of matrix2x2) {
  console.log(element)
}

Another construct compatible with iterables is the spread operator:

const flattenedMatrix = [...matrix2x2]
console.log(flattenedMatrix)

Similarly, we can use an iterable with the destructuring assignment operation:

const [oneOne, oneTwo, twoOne, twoTwo] = matrix2x2
console.log(oneOne, oneTwo, twoOne, twoTwo)

The following are some JavaScript built-in APIs accepting iterables:

• Map([iterable]): nodejsdp.link/map-constructor
• WeakMap([iterable]): nodejsdp.link/weakmap-constructor
• Set([iterable]): nodejsdp.link/set-constructor
• WeakSet([iterable]): nodejsdp.link/weakset-constructor
• Promise.all(iterable): nodejsdp.link/promise-all
• Promise.race(iterable): nodejsdp.link/promise-race
• Array.from(iterable): nodejsdp.link/array-from

On the Node.js side, one notable API accepting an iterable is stream.Readable.
from(iterable, [options]) (nodejsdp.link/readable-from), which creates a 
readable stream out of an iterable object.

http://nodejsdp.link/map-constructor
http://nodejsdp.link/weakmap-constructor
http://nodejsdp.link/set-constructor
http://nodejsdp.link/weakset-constructor
http://nodejsdp.link/promise-all
http://nodejsdp.link/promise-race
http://nodejsdp.link/array-from
http://nodejsdp.link/readable-from
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JavaScript itself defines many iterables that can be used with the APIs and constructs 
we've just seen. The most notable iterable is Array, but also other data structures, 
such as Map and Set, and even String all implement the @@iterable method. In 
Node.js land, Buffer is probably the most notable iterable.

Generators
The ES2015 specification introduced a syntax construct that is closely related to 
iterators. We are talking about generators, also known as semicoroutines. They 
are a generalization of standard functions, in which there can be different entry 
points. In a standard function, we can have only one entry point, which corresponds 
to the invocation of the function itself, but a generator can be suspended (using 
the yield statement) and then resumed at a later time. Among other things, 
generators are very well suited to implement iterators, in fact, as we will see in a bit, 
the generator object returned by a generator function is indeed both an iterator and 
an iterable.

Note that all the APIs and syntax constructs we've just seen 
accept as input an iterable and not an iterator. But, what can we 
do if we have a function returning an iterator, such as in our 
createAlphabetIterator() example? How can we leverage 
all the built-in APIs and syntax constructs? A possible solution is 
implementing the @@iterator method in the iterator object itself, 
which will simply return the iterator object itself. This way we'll be 
able to write something such as the following:

for (const letter of createAlphabetIterator()) {
  //...
}

A trick to make sure that an array doesn't contain duplicate 
elements is the following: const uniqArray = Array.from(new 
Set(arrayWithDuplicates)). This also shows us how iterables 
offer a way for different components to talk to each other using a 
shared interface.
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Generators in theory
To define a generator function, we need to use the function* declaration (the 
function keyword followed by an asterisk):

function * myGenerator () {
  // generator body
}

Invoking a generator function will not execute its body immediately. Rather, it will 
return a generator object, which, as we already mentioned, is both an iterator and 
an iterable. But it doesn't end here; invoking next() on the generator object will 
start or resume the execution of the generator until the yield instruction is invoked 
or the generator returns (either implicitly or explicitly with a return instruction). 
Within the generator, using the keyword yield followed by a value x is equivalent 
to returning {done: false, value: x} from the iterator, while returning a value x is 
equivalent to returning {done: true, value: x}.

A simple generator function
To demonstrate what we just learned, let's see a simple generator called 
fruitGenerator(), which will yield two names of fruits and return their ripening 
season:

function * fruitGenerator () {
  yield 'peach'
  yield 'watermelon'
  return 'summer'
}

const fruitGeneratorObj = fruitGenerator()
console.log(fruitGeneratorObj.next())                      // (1)
console.log(fruitGeneratorObj.next())                      // (2)
console.log(fruitGeneratorObj.next())                      // (3)

The preceding code will print the following text:

    { value: 'peach', done: false }
    { value: 'watermelon', done: false }
    { value: 'summer', done: true }
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This is a short explanation of what happened:

1. The first time fruitGeneratorObj.next() was invoked, the generator started 
its execution until it reached the first yield command, which put the 
generator on pause and returned the value 'peach' to the caller.

2. At the second invocation of fruitGeneratorObj.next(), the generator 
resumed, starting from the second yield command, which in turn put the 
execution on pause again, while returning the value 'watermelon' to the 
caller.

3. The last invocation of fruitGeneratorObj.next() caused the execution 
of the generator to resume from its last instruction, a return statement, 
which terminates the generator, returns the value 'summer', and sets 
the done property to true in the result object.

Since a generator object is also an iterable, we can use it in a for...of loop. For 
example:

for (const fruit of fruitGenerator()) {
  console.log(fruit)
}

The preceding loop will print:

peach
watermelon

Controlling a generator iterator
Generator objects are more than standard iterators, in fact, their next() method 
optionally accepts an argument (whereas, as specified by the iterator protocol, it does 
not need to accept one). Such an argument is passed as the return value of the yield 
instruction. To show this, let's create a new simple generator:

function * twoWayGenerator () {
  const what = yield null
  yield 'Hello ' + what
}

Why is summer not being printed? Well, summer is not yielded 
by our generator, but instead, it is returned, which indicates that 
the iteration is complete with summer as a return value (not as an 
element).
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const twoWay = twoWayGenerator()
twoWay.next()
console.log(twoWay.next('world'))

When executed, the preceding code prints Hello world. This means that the 
following has happened:

1. The first time the next() method is invoked, the generator reaches the 
first yield statement and is then put on pause.

2. When next('world') is invoked, the generator resumes from the point where 
it was put on pause, which is on the yield instruction, but this time we have 
a value that is passed back to the generator. This value will then be set to 
the what variable. The generator then appends the what variable to the string 
'Hello ' and yields the result.

Two other extra features provided by generator objects are the optional throw() and 
return() iterator methods. The first behaves like next() but it will also throw an 
exception within the generator as if it was thrown at the point of the last yield, and 
returns the canonical iterator object with the done and value properties. The second, 
the return() method, forces the generator to terminate and returns an object such as 
the following: {done: true, value: returnArgument} where returnArgument is the 
argument passed to the return() method.

The following code shows a demonstration of these two methods:

function * twoWayGenerator () {
  try {
    const what = yield null
    yield 'Hello ' + what
  } catch (err) {
    yield 'Hello error: ' + err.message
  }
}

console.log('Using throw():')
const twoWayException = twoWayGenerator()
twoWayException.next()
console.log(twoWayException.throw(new Error('Boom!')))

console.log('Using return():')
const twoWayReturn = twoWayGenerator()
console.log(twoWayReturn.return('myReturnValue'))
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Running the previous code will print the following to the console:

Using throw():
{ value: 'Hello error: Boom!', done: false }
Using return():
{ value: 'myReturnValue', done: true }

As we can see, the twoWayGenerator() function will receive an exception as soon as 
the first yield instruction returns. This works exactly as if an exception was thrown 
from inside the generator, and this means that it can be caught and handled like 
any other exception using a try...catch block. The return() method, instead, will 
simply stop the execution of the generator causing the given value to be provided as 
a return value by the generator.

How to use generators in place of iterators
Generator objects are also iterators. This means that generator functions can be 
used to implement the @@iterator method of iterable objects. To demonstrate this, 
let's convert our previous Matrix iteration example to generators. Let's update our 
matrix.js file as follows:

export class Matrix {
  // ...rest of the methods (stay unchanged)

  * [Symbol.iterator] () {                                 // (1)
    let nextRow = 0                                        // (2)
    let nextCol = 0

    while (nextRow !== this.data.length) {                 // (3)
      yield this.data[nextRow][nextCol]

      if (nextCol === this.data[nextRow].length - 1) {
        nextRow++
        nextCol = 0
      } else {
        nextCol++
      }
    }
  }
}
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There are a few interesting aspects in the code fragment we've just seen. Let's analyze 
them in more detail:

1. The first thing to notice is that the @@iterator method is now a generator 
(note the asterisk * before the method name).

2. The variables we use to maintain the state of the iteration are now just local 
variables for the generator, while in the previous version of the Matrix class, 
those two variables were part of a closure. This is possible because when a 
generator is invoked, its local state is preserved between reentries.

3. We are using a standard loop to iterate over the elements of the matrix. This 
is certainly more intuitive than trying to imagine a loop that invokes the 
next() method of an iterator.

As we can see, generators are an excellent alternative to writing iterators from 
scratch. They will improve the readability of our iteration routine and will offer the 
same level of functionality (or even better).

Async iterators
The iterators we've seen so far return a value synchronously from their next() 
method. However, in JavaScript and especially in Node.js, it's very common to have 
iterations over items that require an asynchronous operation to be produced.

Imagine, for example, to iterate over the requests received by an HTTP server, or 
over the results of an SQL query, or over the elements of a paginated REST API. In 
all those situations, it would be handy to be able to return a promise from the next() 
method of an iterator, or even better, use the async/await construct.

Well, that's exactly what async iterators are; they are iterators returning a promise, 
and since that's the only extra requirement, it means that we can also use an async 
function to define the next() method of the iterator. Similarly, async iterables are 
objects that implement an @@asyncIterator method, or in other words, a method 
accessible through the Symbol.asyncIterator key, which returns (synchronously) 
an async iterator.

The generator delegation instruction, yield * iterable, 
is another example of a JavaScript built-in syntax accepting 
an iterable as an argument. The instruction will loop over the 
elements of the iterable and yield each element one by one.
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Async iterables can be looped over using the for await...of syntax, which can only 
be used inside an async function. With the for await...of syntax, we are essentially 
implementing a sequential asynchronous execution flow on top of the Iterator 
pattern. Essentially, it's just syntactic sugar for the following loop:

const asyncIterator = iterable[Symbol.asyncIterator]()
let iterationResult = await asyncIterator.next()
while (!iterationResult.done) {
  console.log(iterationResult.value)
  iterationResult = await asyncIterator.next()
}

This means that the for await...of syntax can also be used to iterate over a simple 
iterable (not just async iterables) as, for example, over an array of promises. It will 
work even if not all the elements (or none) of the iterator are promises.

To quickly demonstrate this, let's build a class that takes a list of URLs as input 
and allows us to iterate over their availability status (up/down). Let's call the class 
CheckUrls:

import superagent from 'superagent'

export class CheckUrls {
  constructor (urls) {                                     // (1)
    this.urls = urls
  }

  [Symbol.asyncIterator] () {
    const urlsIterator = this.urls[Symbol.iterator]()      // (2)

    return {
      async next () {                                      // (3)
        const iteratorResult = urlsIterator.next()         // (4)
        if (iteratorResult.done) {
          return { done: true }
        }

        const url = iteratorResult.value
        try {
          const checkResult = await superagent             // (5)
            .head(url)
            .redirects(2)
          return {
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            done: false,
            value: `${url} is up, status: ${checkResult.status}`
          }
        } catch (err) {
          return {
            done: false,
            value: `${url} is down, error: ${err.message}`
          }
        }
      }
    }
  }
}

Let's analyze the previous code's most important parts:

1. The CheckUrls class constructor takes as input a list of URLs. Since we now 
know how to use iterators and iterables, we can say that this list of URLs can 
be just any iterable.

2. In our @@asyncIterator method, we obtain an iterator from the this.urls 
object, which, as we just said, should be an iterable. We can do that by simply 
invoking its @@iterable method.

3. Note how the next() method is now an async function. This means that it 
will always return a promise, as requested by the async iterable protocol.

4. In the next() method, we use the urlsIterator to get the next URL in the 
list, unless there are no more, in which case we simply return {done: true}.

5. Note how we can now use the await instruction to asynchronously get the 
result of the HEAD request sent to the current URL.

Now, let's use the for await...of syntax we mentioned earlier to iterate over a 
CheckUrls object:

import { CheckUrls } from './checkUrls.js'

async function main () {
  const checkUrls = new CheckUrls([
    'https://nodejsdesignpatterns.com',
    'https://example.com',
    'https://mustbedownforsurehopefully.com'
  ])

  for await (const status of checkUrls) {



Behavioral Design Patterns

[ 334 ]

    console.log(status)
  }
}

main()

As we can see, the for await...of syntax is a very intuitive way to iterate over an 
async iterable and, as we will see in a while, it can be used in conjunction with some 
interesting built-in iterables to obtain alternative new ways to access asynchronous 
information.

Async generators
As well as async iterators, we can also have async generators. To define an async 
generator function, simply prepend the keyword async to the function definition:

async function * generatorFunction() {
  // ...generator body
}

As you can well imagine, async generators allow the use of the await instruction 
within their body and the return value of their next() method is a promise that 
resolves to an object having the canonical done and value properties. This way, async 
generator objects are also valid async iterators. They are also valid async iterables, so 
they can be used in for await...of loops.

To demonstrate how async generators can simplify the implementation of async 
iterators, let's convert the CheckUrls class we saw in the previous example to use an 
async generator:

export class CheckUrls {
  constructor (urls) {
    this.urls = urls
  }

  async * [Symbol.asyncIterator] () {
    for (const url of this.urls) {

The for await...of loop (as well as its synchronous version) will 
call the optional return() method of the iterator if it's prematurely 
interrupted with a break, a return, or an exception. This can be 
used to immediately perform any cleanup task that would usually 
be performed when the iteration completes.
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      try {
        const checkResult = await superagent
          .head(url)
          .redirects(2)
        yield `${url} is up, status: ${checkResult.status}`
      } catch (err) {
        yield `${url} is down, error: ${err.message}`
      }
    }
  }
}

Interestingly, using an async generator in place of a bare async iterator allowed us to 
save a few lines of code and the resulting logic is also more readable and explicit.

Async iterators and Node.js streams
If we stop for a second and think about the relationship between async iterators and 
Node.js readable streams, we would be surprised by how similar they are in both 
purpose and behavior. In fact, we can say that async iterators are indeed a stream 
construct, as they can be used to process the data of an asynchronous resource piece 
by piece, exactly as it happens for readable streams.

It's not a coincidence that stream.Readable implements the @@asyncIterator method, 
making it an async iterable. This provides us with an additional, and probably even 
more intuitive, mechanism to read data from a readable stream, thanks to the for 
await...of construct.

To quickly demonstrate this, consider the following example where we take the 
stdin stream of the current process and we pipe it into the split() transform stream, 
which will emit a new chunk when it finds a newline character. Then, we iterate over 
each line using the for await...of loop:

import split from 'split2'

async function main () {
  const stream = process.stdin.pipe(split())
  for await (const line of stream) {
    console.log(`You wrote: ${line}`)
  }
}

main()
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This sample code will print back whatever we have written to the standard input 
only after we have pressed the Return key. To quit the program, you can just press 
Ctrl + C.

As we can see, this alternative way of consuming a readable stream is indeed 
very intuitive and compact. The previous example also shows us how similar the 
two paradigms—iterators and streams—are. They are so similar that they can 
interoperate almost seamlessly. To prove this point even further, just consider that 
the function stream.Readable.from(iterable, [options]) takes an iterable as an 
argument, which can be both synchronous or asynchronous. The function will return 
a readable stream that wraps the provided iterable, "adapting" its interface to that of 
a readable stream (this is also a good example of the Adapter pattern, which we have 
already met in Chapter 8, Structural Design Patterns.

So, if streams and async iterators as so closely related, which one should you actually 
use? This, as always, depends on the use case and many other factors; however, to 
help you with the decision, this is a list of aspects that set the two constructs apart:

• Streams are push, meaning that data is pushed into the internal buffers by 
the stream and then consumed from the buffers. Async iterators are pull 
by default (unless another logic is explicitly implemented by the iterator), 
meaning that data is only retrieved/produced on demand by the consumer.

• Streams are better suited to process binary data since they natively provide 
internal buffering and backpressure.

• Streams can be composed using a well-known and streamlined API, pipe(), 
while async iterators do not offer any standardized composition method.

In the wild
Iterators and, in particular, async iterators are quickly gaining popularity in the 
Node.js ecosystem. In fact, in many circumstances, they are becoming a preferred 
alternative to streams and are replacing custom-built iteration mechanisms.

For example, the packages @databases/pg, @databases/mysql and @databases/
sqlite are popular libraries for accessing Postgres, MySQL, and SQLite databases 
respectively (more at nodejsdp.link/atdatabases). 

We can iterate an EventEmitter as well. Using the 
events.on(emitter, eventName) utility function, we can in 
fact get an async iterable whose iterator will return all the events 
matching the specified eventName.

http://nodejsdp.link/atdatabases
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They all expose a function called queryStream(), which returns an async iterable, 
which can be used to easily iterate over the results of a query. For example:

for await (const record of db.queryStream(sql`SELECT * FROM my_table`)) 
{
  // do something with record
}

Internally, the iterator will automatically handle the cursor for a query result, so all 
we have to do is simply loop with the for await...of construct.

Another example of a library heavily relying on iterators for its API is the zeromq 
package (nodejsdp.link/npm-zeromq). We'll see a detailed example of it in the next 
section, about the Middleware pattern, as we move on to other behavioral patterns.

Middleware
One of the most distinctive patterns in Node.js is definitely Middleware. 
Unfortunately, it's also one of the most confusing for the inexperienced, especially 
for developers coming from the enterprise programming world. The reason for 
the disorientation is probably connected to the traditional meaning of the term 
middleware, which in enterprise architecture jargon represents the various software 
suites that help to abstract lower-level mechanisms such as OS APIs, network 
communications, memory management, and so on, allowing the developer to focus 
only on the business case of the application. In this context, the term middleware 
recalls topics such as CORBA, enterprise service bus, Spring, JBoss, and WebSphere, 
but in its more generic meaning, it can also define any kind of software layer that 
acts as glue between lower-level services and the application (literally, the software in 
the middle).

Middleware in Express
Express (nodejsdp.link/express) popularized the term middleware in the Node.js 
world, binding it to a very specific design pattern. In Express, in fact, middleware 
represents a set of services, typically functions, that are organized in a pipeline and 
are responsible for processing incoming HTTP requests and relative responses.

Express is famous for being a very non-opinionated and minimalist web framework 
and the Middleware pattern is the main reason for that. Express middleware is, in 
fact, an effective strategy for allowing developers to easily create and distribute new 
features that can be easily added to an application, without the need to grow the 
minimalistic core of the framework.

http://nodejsdp.link/npm-zeromq
http://nodejsdp.link/express
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An Express middleware has the following signature:

function (req, res, next) { ... }

Here, req is the incoming HTTP request, res is the response, and next is the callback 
to be invoked when the current middleware has completed its tasks, and that in turn 
triggers the next middleware in the pipeline.

Examples of the tasks carried out by Express middleware include the following:

• Parsing the body of the request
• Compressing/decompressing requests and responses
• Producing access logs
• Managing sessions
• Managing encrypted cookies
• Providing Cross-Site Request Forgery (CSRF) protection

If we think about it, these are all tasks that are not strictly related to the main 
business logic of an application, nor are they essential parts of the minimal core of 
a web server. They are accessories, components providing support to the rest of the 
application and allowing the actual request handlers to focus only on their main 
business logic. Essentially, those tasks are "software in the middle."

Middleware as a pattern
The technique used to implement middleware in Express is not new, in fact, it 
can be considered the Node.js incarnation of the Intercepting Filter pattern and 
the Chain of Responsibility pattern. In more generic terms, it also represents a 
processing pipeline, which reminds us of streams. Today, in Node.js, the word 
middleware is used well beyond the boundaries of the Express framework, and 
indicates a particular pattern whereby a set of processing units, filters, and handlers, 
under the form of functions, are connected to form an asynchronous sequence in 
order to perform the preprocessing and postprocessing of any kind of data. The main 
advantage of this pattern is flexibility. In fact, the Middleware pattern allows us to 
obtain a plugin infrastructure with incredibly little effort, providing an unobtrusive 
way to extend a system with new filters and handlers.

If you want to know more about the Intercepting Filter pattern, the 
following article is a good starting point: nodejsdp.link/
intercepting-filter. Similarly, a nice overview of the Chain of 
Responsibility pattern is available at this URL: nodejsdp.link/
chain-of-responsibility.

http://nodejsdp.link/intercepting-filter
http://nodejsdp.link/intercepting-filter
http://nodejsdp.link/chain-of-responsibility
http://nodejsdp.link/chain-of-responsibility
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The following diagram shows the components of the Middleware pattern:

Figure 9.5: The structure of the Middleware pattern

The essential component of the pattern is the Middleware Manager, which is 
responsible for organizing and executing the middleware functions. The most 
important implementation details of the pattern are as follows:

• New middleware can be registered by invoking the use() function (the 
name of this function is a common convention in many implementations 
of the Middleware pattern, but we can choose any name). Usually, new 
middleware can only be appended at the end of the pipeline, but this is not a 
strict rule.

• When new data is received for processing, the registered middleware is 
invoked in an asynchronous sequential execution flow. Each unit in the 
pipeline receives the result of the execution of the previous unit as input.

• Each piece of middleware can decide to stop further processing of the data. 
This can be done by invoking a special function, by not invoking the callback 
(in case the middleware uses callbacks), or by propagating an error. An error 
situation usually triggers the execution of another sequence of middleware 
that is specifically dedicated to handling errors.

There is no strict rule on how the data is processed and propagated in the pipeline. 
The strategies for propagating the data modifications in the pipeline include:

• Augmenting the data received as input with additional properties or 
functions

• Maintaining the immutability of the data and always return fresh copies as 
the result of the processing

The right approach depends on the way the Middleware Manager is implemented 
and on the type of processing carried out by the middleware itself.
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Creating a middleware framework for ZeroMQ
Let's now demonstrate the pattern by building a middleware framework around 
the ZeroMQ (nodejsdp.link/zeromq) messaging library. ZeroMQ (also known as 
ZMQ, or ØMQ) provides a simple interface for exchanging atomic messages across 
the network using a variety of protocols. It shines for its performance, and its basic 
set of abstractions are specifically built to facilitate the implementation of custom 
messaging architectures. For this reason, ZeroMQ is often chosen to build complex 
distributed systems.

The interface of ZeroMQ is pretty low-level as it only allows us to use strings and 
binary buffers for messages. So, any encoding or custom formatting of data has to be 
implemented by the users of the library.

In the next example, we are going to build a middleware infrastructure to abstract 
the preprocessing and postprocessing of the data passing through a ZeroMQ socket, 
so that we can transparently work with JSON objects, but also seamlessly compress 
messages traveling over the wire.

The Middleware Manager
The first step toward building a middleware infrastructure around ZeroMQ is to 
create a component that is responsible for executing the middleware pipeline when 
a new message is received or sent. For this purpose, let's create a new module 
called zmqMiddlewareManager.js and let's define it:

export class ZmqMiddlewareManager {
  constructor (socket) {                                     // (1)
    this.socket = socket
    this.inboundMiddleware = []
    this.outboundMiddleware = []

    this.handleIncomingMessages()
      .catch(err => console.error(err))
  }

  async handleIncomingMessages () {                          // (2)
    for await (const [message] of this.socket) {

In Chapter 13, Messaging and Integration Patterns, we will have the 
chance to analyze the features of ZeroMQ in more detail.

http://nodejsdp.link/zeromq
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      await this
        .executeMiddleware(this.inboundMiddleware, message)
        .catch(err => {
          console.error('Error while processing the message', err)
        })
    }
  }

  async send (message) {                                     // (3)
    const finalMessage = await this
      .executeMiddleware(this.outboundMiddleware, message)
    return this.socket.send(finalMessage)
  }

  use (middleware) {                                         // (4)
    if (middleware.inbound) {
      this.inboundMiddleware.push(middleware.inbound)
    }
    if (middleware.outbound) {
      this.outboundMiddleware.unshift(middleware.outbound)
    }
  }

  async executeMiddleware (middlewares, initialMessage) {    // (5)
    let message = initialMessage
    for await (const middlewareFunc of middlewares) {
      message = await middlewareFunc.call(this, message)
    }
    return message
  }
}

Let's discuss in detail how we implemented our ZmqMiddlewareManager:

1. In the first part of the class, we define the constructor that accepts 
a ZeroMQ socket as an argument. In the constructor, we create two 
empty lists that will contain our middleware functions, one for inbound 
messages and another one for outbound messages. Next, we immediately 
start processing the messages coming from the socket. We do that in the 
handleIncomingMessages() method.

2. In the handleIncomingMessages() method, we use the ZeroMQ socket as an 
async iterable and with a for await...of loop, we process any incoming 
message and we pass it down the inboundMiddleware list of middlewares.
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3. Similarly to handleIncomingMessages(), the send() method will pass the 
message received as an argument down the outboundMiddleware pipeline. The 
result of the processing is stored in the finalMessage variable and then sent 
through the socket.

4. The use() method is used for appending new middleware functions to 
our internal pipelines. In our implementation, each middleware comes 
in pairs; it's an object that contains two properties, inbound and outbound. 
Each property can be used to define the middleware function to be added 
to the respective list. It's important to observe here that the inbound 
middleware is pushed to the end of the inboundMiddleware list, while the 
outbound middleware is inserted (using unshift()) at the beginning of the 
outboundMiddleware list. This is because complementary inbound/outbound 
middleware functions usually need to be executed in inverted order. For 
example, if we want to decompress and then deserialize an inbound message 
using JSON, it means that for the outbound, we should instead first serialize 
and then compress. This convention for organizing the middleware in pairs 
is not strictly part of the general pattern, but only an implementation detail of 
our specific example.

5. The last method, executeMiddleware(), represents the core of our component 
as it's the part responsible for executing the middleware functions. Each 
function in the middleware array received as input is executed one after the 
other, and the result of the execution of a middleware function is passed to 
the next. Note that we are using the await instruction on each result returned 
by each middleware function; this allows the middleware function to return 
a value synchronously as well as asynchronously using a promise. Finally, 
the result of the last middleware function is returned back to the caller.

Implementing the middleware to process messages
Now that we have implemented our Middleware Manager, we can create our first 
pair of middleware functions to demonstrate how to process inbound and outbound 
messages. As we said, one of the goals of our middleware infrastructure is to 
have a filter that serializes and deserializes JSON messages. So, let's create a new 
middleware to take care of this. In a new module called jsonMiddleware.js, let's 
include the following code:

For brevity, we are not supporting an error middleware pipeline. 
Normally, when a middleware function propagates an error, 
another set of middleware functions specifically dedicated to 
handling errors is executed. This can be easily implemented using 
the same technique that we are demonstrating here. For instance, 
we could accept an extra (optional) errorMiddleware function in 
addition to inboundMiddleware and outboundMiddleware.
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export const jsonMiddleware = function () {
  return {
    inbound (message) {
      return JSON.parse(message.toString())
    },
    outbound (message) {
      return Buffer.from(JSON.stringify(message))
    }
  }
}

The inbound part of our middleware deserializes the message received as input, 
while the outbound part serializes the data into a string, which is then converted into 
a buffer.

In a similar way, we can implement a pair of middleware functions in a file called 
zlibMiddleware.js, to inflate/deflate the message using the zlib core module 
(nodejsdp.link/zlib):

import { inflateRaw, deflateRaw } from 'zlib'
import { promisify } from 'util'

const inflateRawAsync = promisify(inflateRaw)
const deflateRawAsync = promisify(deflateRaw)

export const zlibMiddleware = function () {
  return {
    inbound (message) {
      return inflateRawAsync(Buffer.from(message))
    },
    outbound (message) {
      return deflateRawAsync(message)
    }
  }
}

Compared to the JSON middleware, our zlib middleware functions are asynchronous 
and return a promise as a result. As we already know, this is perfectly supported by 
our Middleware Manager.

You can note how the middleware used by our framework is quite different from the 
one used in Express. This is totally normal and a perfect demonstration of how we 
can adapt this pattern to fit our specific needs.

http://nodejsdp.link/zlib
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Using the ZeroMQ middleware framework
We are now ready to use the middleware infrastructure that we just created. To do 
that, we are going to build a very simple application, with a client sending a ping to a 
server at regular intervals and the server echoing back the message received.

From an implementation perspective, we are going to rely on a Request/Reply 
messaging pattern using the req/rep socket pair provided by ZeroMQ (nodejsdp.
link/zmq-req-rep). We will then wrap the sockets with our ZmqMiddlewareManager to 
get all the advantages from the middleware infrastructure that we built, including 
the middleware for serializing/deserializing JSON messages.

The server
Let's start by creating the server-side of our application in a file called server.js:

import zeromq from 'zeromq'                                  // (1)
import { ZmqMiddlewareManager } from './zmqMiddlewareManager.js'
import { jsonMiddleware } from './jsonMiddleware.js'
import { zlibMiddleware } from './zlibMiddleware.js'

async function main () {
  const socket = new zeromq.Reply()                          // (2)
  await socket.bind('tcp://127.0.0.1:5000')

  const zmqm = new ZmqMiddlewareManager(socket)              // (3)
  zmqm.use(zlibMiddleware())
  zmqm.use(jsonMiddleware())
  zmqm.use({                                                 // (4)
    async inbound (message) {
      console.log('Received', message)
      if (message.action === 'ping') {
        await this.send({ action: 'pong', echo: message.echo })
      }
      return message
    }
  })

We'll analyze the Request/Reply pattern and other messaging 
patterns in Chapter 13, Messaging and Integration Patterns.

http://nodejsdp.link/zmq-req-rep
http://nodejsdp.link/zmq-req-rep
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  console.log('Server started')
}

main()

The server-side of our application works as follows:

1. We first load the necessary dependencies. The zeromq package is essentially 
a JavaScript interface over the native ZeroMQ library. See nodejsdp.link/
npm-zeromq.

2. Next, in the main() function, we create a new ZeroMQ Reply socket and bind 
it to port 5000 on localhost.

3. Then comes the part where we wrap ZeroMQ with our middleware manager 
and then add the zlib and JSON middlewares.

4. Finally, we are ready to handle a request coming from the client. We will 
do this by simply adding another middleware, this time using it as a request 
handler.

Since our request handler comes after the zlib and JSON middlewares, we will 
receive a decompressed and deserialized version of the received message. On 
the other hand, any data passed to send() will be processed by the outbound 
middleware, which in our case will serialize and then compress the data.

The client
On the client-side of our little application, in a file called client.js, we will have the 
following code:

import zeromq from 'zeromq'
import { ZmqMiddlewareManager } from './zmqMiddlewareManager.js'
import { jsonMiddleware } from './jsonMiddleware.js'
import { zlibMiddleware } from './zlibMiddleware.js'

async function main () {
  const socket = new zeromq.Request()                      // (1)
  await socket.connect('tcp://127.0.0.1:5000')

  const zmqm = new ZmqMiddlewareManager(socket)
  zmqm.use(zlibMiddleware())
  zmqm.use(jsonMiddleware())
  zmqm.use({
    inbound (message) {
      console.log('Echoed back', message)

http://nodejsdp.link/npm-zeromq
http://nodejsdp.link/npm-zeromq
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      return message
    }
  })

  setInterval(() => {                                      // (2)
    zmqm.send({ action: 'ping', echo: Date.now() })
      .catch(err => console.error(err))
  }, 1000)

  console.log('Client connected')
}

main()

Most of the code of the client application is very similar to that of the server. The 
notable differences are:

1. We create a Request socket, rather than a Reply socket, and we connect it to 
a remote (or local) host rather than binding it on a local port. The rest of the 
middleware setup is exactly the same as in the server, except for the fact that 
our request handler now just prints any message it receives. Those messages 
should be the pong reply to our ping requests.

2. The core logic of the client application is a timer that sends a ping message 
every second.

Now, we're ready to try our client/server pair and see the application in action. First, 
start the server:

node server.js

We can then start the client in another terminal with the following command:

node client.js

At this point, we should see the client sending messages and the server echoing 
them back.

Our middleware framework did its job. It allowed us to decompress/compress and 
deserialize/serialize our messages transparently, leaving the handlers free to focus 
on their business logic.
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In the wild
We opened this section by saying that the library that popularized the Middleware 
pattern in Node.js is Express (nodejsdp.link/express). So, we can easily say that 
Express is also the most notable example of the Middleware pattern out there.

Two other interesting examples are:

• Koa (nodejsdp.link/koa), which is known as the successor of Express. It was 
created by the same team behind Express and it shares with it its philosophy 
and main design principles. Koa's middleware is slightly different than that 
of Express since it uses modern programming techniques such as async/
await instead of callbacks.

• Middy (nodejsdp.link/middy) is a classic example of the Middleware pattern 
applied to something different than a web framework. Middy is, in fact, a 
middleware engine for AWS Lambda functions.

Next, we are going to explore the Command pattern, which, as we will see shortly, is 
a very flexible and multiform pattern.

Command
Another design pattern with huge importance in Node.js is Command. In its most 
generic definition, we can consider a command any object that encapsulates all the 
information necessary to perform an action at a later time. So, instead of invoking 
a method or a function directly, we create an object representing the intention to 
perform such an invocation. It will then be the responsibility of another component 
to materialize the intent, transforming it into an actual action. Traditionally, this 
pattern is built around four major components, as shown in Figure 9.6:

Figure 9.6: The components of the Command pattern

http://nodejsdp.link/express
http://nodejsdp.link/koa
http://nodejsdp.link/middy
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The typical configuration of the Command pattern can be described as follows:

• Command is the object encapsulating the information necessary to invoke 
a method or function.

• Client is the component that creates the command and provides it to the 
invoker.

• Invoker is the component responsible for executing the command on the 
target.

• Target (or receiver) is the subject of the invocation. It can be a lone function 
or a method of an object.

As we will see, these four components can vary a lot depending on the way we want 
to implement the pattern. This should not sound new at this point.

Using the Command pattern instead of directly executing an operation has several 
applications:

• A command can be scheduled for execution at a later time.
• A command can be easily serialized and sent over the network. This simple 

property allows us to distribute jobs across remote machines, transmit 
commands from the browser to the server, create remote procedure call 
(RPC) systems, and so on.

• Commands make it easy to keep a history of all the operations executed on a 
system.

• Commands are an important part of some algorithms for data 
synchronization and conflict resolution.

• A command scheduled for execution can be canceled if it's not yet executed. 
It can also be reverted (undone), bringing the state of the application to the 
point before the command was executed.

• Several commands can be grouped together. This can be used to create 
atomic transactions or to implement a mechanism whereby all the operations 
in the group are executed at once.

• Different kinds of transformation can be performed on a set of commands, 
such as duplicate removal, joining and splitting, or applying more complex 
algorithms such as operational transformation (OT), which is the base for most 
of today's real-time collaborative software, such as collaborative text editing.

A great explanation of how OT works can be found at nodejsdp.
link/operational-transformation.

http://nodejsdp.link/operational-transformation
http://nodejsdp.link/operational-transformation
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The preceding list clearly shows us how important this pattern is, especially on 
a platform such as Node.js where networking and asynchronous execution are 
essential players.

Now, we are going to explore in more detail a couple of different implementations 
of the Command pattern, just to give you an idea of its scope.

The Task pattern
We can start off with the most basic and trivial implementation of the Command 
pattern: the Task pattern. The easiest way in JavaScript to create an object 
representing an invocation is, of course, by creating a closure around a function 
definition or a bound function:

function createTask(target, ...args) {
  return () => {
    target(...args)
  }
}

This is (mostly) equivalent to doing:

const task = target.bind(null, ...args)

This should not look new at all. In fact, we have used this pattern already so many 
times throughout the book, and in particular in Chapter 4, Asynchronous Control Flow 
Patterns with Callbacks. This technique allowed us to use a separate component to 
control and schedule the execution of our tasks, which is essentially equivalent to 
the invoker of the Command pattern.

A more complex command
Let's now work on a more articulated example leveraging the Command pattern. 
This time, we want to support undo and serialization. Let's start with the target of 
our commands, a little object that is responsible for sending status updates to a 
Twitter-like service. We will use a mockup of such a service for simplicity (the 
statusUpdateService.js file):

const statusUpdates = new Map()

// The Target
export const statusUpdateService = {
  postUpdate (status) {
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    const id = Math.floor(Math.random() * 1000000)
    statusUpdates.set(id, status)
    console.log(`Status posted: ${status}`)
    return id
  },

  destroyUpdate (id) => {
    statusUpdates.delete(id)
    console.log(`Status removed: ${id}`)
  }
}

The statusUpdateService we just created represents the target of our Command 
pattern. Now, let's implement a factory function that creates a command to 
represent the posting of a new status update. We'll do that in a file called 
createPostStatusCmd.js:

export function createPostStatusCmd (service, status) {
  let postId = null

  // The Command
  return {
    run () {
      postId = service.postUpdate(status)
    },
    undo () {
      if (postId) {
        service.destroyUpdate(postId)
        postId = null
      }
    },
    serialize () {
      return { type: 'status', action: 'post', status: status }
    }
  }
}

The preceding function is a factory that produces commands to model "post status" 
intentions. Each command implements the following three functionalities:

• A run() method that, when invoked, will trigger the action. In other words, it 
implements the Task pattern that we have seen before. The command, when 
executed, will post a new status update using the methods of the target service.
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• An undo() method that reverts the effects of the post operation. In our case, 
we are simply invoking the destroyUpdate() method on the target service.

• A serialize() method that builds a JSON object that contains all the 
necessary information to reconstruct the same command object.

After this, we can build an invoker. We can start by implementing its constructor and 
its run() method (the invoker.js file):

import superagent from 'superagent'

// The Invoker
export class Invoker {
  constructor () {
    this.history = []
  }

  run (cmd) {
    this.history.push(cmd)
    cmd.run()
    console.log('Command executed', cmd.serialize())
  }

  // ...rest of the class

The run() method is the basic functionality of our Invoker. It is responsible for 
saving the command into the history instance variable and then triggering the 
execution of the command itself.

Next, we can add to the Invoker a new method that delays the execution of a 
command:

delay (cmd, delay) {
  setTimeout(() => {
    console.log('Executing delayed command', cmd.serialize())
    this.run(cmd)
  }, delay)
}

Then, we can implement an undo() method that reverts the last command:
undo () {
  const cmd = this.history.pop()
  cmd.undo()
  console.log('Command undone', cmd.serialize())
}
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Finally, we also want to be able to run a command on a remote server, by serializing 
and then transferring it over the network using a web service:

async runRemotely (cmd) {
  await superagent
    .post('http://localhost:3000/cmd')
    .send({ json: cmd.serialize() })

  console.log('Command executed remotely', cmd.serialize())
}

Now that we have the command, the invoker, and the target, the only component 
missing is the client, which we will implement in a file called client.js. Let's start 
by importing all the necessary dependencies and by instantiating Invoker:

import { createPostStatusCmd } from './createPostStatusCmd.js'
import { statusUpdateService } from './statusUpdateService.js'
import { Invoker } from './invoker.js'

const invoker = new Invoker()

Then, we can create a command using the following line of code:

const command = createPostStatusCmd(statusUpdateService, 'HI!')

We now have a command representing the posting of a status message. We can then 
decide to dispatch it immediately:

invoker.run(command)

Oops, we made a mistake, let's revert our timeline to the state it was before posting 
the last message:

invoker.undo()

We can also decide to schedule the message to be sent in 3 seconds from now:

invoker.delay(command, 1000 * 3)

Alternatively, we can distribute the load of the application by migrating the task to 
another machine:

invoker.runRemotely(command)
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The little example that we have just implemented shows how wrapping an operation 
in a command can open a world of possibilities, and that's just the tip of the iceberg.

As the last remarks, it is worth noting that a fully-fledged Command pattern should 
be used only when strictly necessary. We saw, in fact, how much additional code we 
had to write to simply invoke a method of the statusUpdateService. If all that we 
need is only an invocation, then a complex command would be overkill. If, however, 
we need to schedule the execution of a task or run an asynchronous operation, 
then the simpler Task pattern offers the best compromise. If instead, we need more 
advanced features such as undo support, transformations, conflict resolution, or one 
of the other fancy use cases that we described previously, using a more complex 
representation for the command is almost necessary.

Summary
We opened this chapter with three closely related patterns, which are Strategy, State, 
and Template.

Strategy allows us to extract the common parts of a family of closely related 
components into a component called the context and allows us to define strategy 
objects that the context can use to implement specific behaviors. The State pattern is a 
variation of the Strategy pattern where the strategies are used to model the behavior 
of a component when under different states. The Template pattern, instead, can be 
considered the "static" version of the Strategy pattern, where the different specific 
behaviors are implemented as subclasses of the template class, which models the 
common parts of the component.

Next, we learned about what has now become a core pattern in Node.js, which is 
Iterator. We learned how JavaScript offers native support for the pattern (with the 
iterator and iterable protocols), and how async iterators can be used as an alternative 
to complex async iteration patterns and even to Node.js streams.

Then, we examined Middleware, which is a very distinctive pattern born from 
within the Node.js ecosystem. We learned how it can be used to preprocess and 
postprocess data and requests.

Finally, we had a taste of the possibilities offered by the Command pattern, which 
can be used to implement a myriad of functionality, from simple undo/redo and 
serialization, to more complex operational transformation algorithms.

We have now arrived at the end of the last chapter dedicated to "traditional" design 
patterns. By now, you should have added to your toolbelt a series of patterns that 
will be enormously useful in your everyday programming endeavors.
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In the next chapter, we'll shift our attention to a topic that goes beyond the 
boundaries of server-side development. Thanks to Node.js, in fact, we can create 
"Universal" JavaScript applications, or in other words, applications that can run as 
seamlessly on the server as they run on the browser. Stay tuned, then, to learn about 
the most useful Universal JavaScript patterns.

Exercises
• Exercise 9.1 Logging with Strategy: Implement a logging component having 

at least the following methods: debug(), info(), warn(), and error(). The 
logging component should also accept a strategy that defines where the log 
messages are sent. For example, we might have a ConsoleStrategy to send 
the messages to the console, or a FileStrategy to save the log messages 
to a file.

• Exercise 9.2 Logging with Template: Implement the same logging 
component we defined in the previous exercise, but this time using the 
Template pattern. We would then obtain a ConsoleLogger class to log to 
the console or FileLogger class to log to a file. Appreciate the differences 
between the Template and the Strategy approaches.

• Exercise 9.3 Warehouse item: Imagine we are working on a warehouse 
management program. Our next task is to create a class to model a 
warehouse item and help track it. Such a WarehouseItem class has a 
constructor, which accepts an id and the initial state of the item (which can 
be one of arriving, stored, or delivered). It has three public methods:

• store(locationId) moves the item into the stored state and records 
the locationId where it's stored.

• deliver(address) changes the state of the item to delivered, sets the 
delivery address, and clears the locationId.

• describe() returns a string representation of the current state of the 
item (for example, "Item 5821 is on its way to the warehouse," or 
"Item 3647 is stored in location 1ZH3," or "Item 3452 was delivered to 
John Smith, 1st Avenue, New York."

The arriving state can be set only when the object is created as it cannot be 
transitioned to from the other states. An item can't move back to the arriving 
state once it's stored or delivered, it cannot be moved back to stored once 
it's delivered, and it cannot be delivered if it's not stored first. Use the State 
pattern to implement the WarehouseItem class.
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• Exercise 9.4 Logging with Middleware: Rewrite the logging component 
you implemented for exercises 9.1 and 9.2, but this time use the Middleware 
pattern to postprocess each log message allowing different middlewares to 
customize how to handle the messages and how to output them. We could, 
for example, add a serialize() middleware to convert the log messages to 
a string representation ready to be sent over the wire or saved somewhere. 
Then, we could add a saveToFile() middleware that saves each message 
to a file. This exercise should highlight the flexibility and universality of 
the Middleware pattern.

• Exercise 9.5 Queues with iterators: Implement an AsyncQueue class similar 
to one of the TaskQueue classes we defined in Chapter 5, Asynchronous 
Control Flow Patterns with Promises and Async/Await, but with a slightly 
different behavior and interface. Such an AsyncQueue class will have a 
method called enqueue() to append new items to the queue and then expose 
an @@asyncIterable method, which should provide the ability to process the 
elements of the queue asynchronously, one at a time (so, with a concurrency 
of 1). The async iterator returned from AsyncQueue should terminate only 
after the done() method of AsyncQueue is invoked and only after all items 
in the queue are consumed. Consider that the @@asyncIterable method 
could be invoked in more than one place, thus returning an additional 
async iterator, which would allow you to increase the concurrency with 
which the queue is consumed.
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10
Universal JavaScript for 

Web Applications
JavaScript was born with the goal of giving web developers the power to execute 
code directly on the browser and build dynamic and interactive websites.

Since its inception, JavaScript has grown up a lot. If, at the very beginning, JavaScript 
was a very simple and limited language, today, it can be considered a complete 
general-purpose language that can be used even outside the browser to build almost 
any kind of application. In fact, JavaScript now powers frontend applications, web 
servers, and mobile applications, as well as embedded devices such as wearable 
devices, thermostats, and flying drones.

The language's availability across platforms and devices is fostering a new trend 
among JavaScript developers: being able to simplify code reuse across different 
environments in the same project. With Node.js, developers have the opportunity 
to build web applications where it is easy to share code between the server (backend) 
and the browser (frontend). This quest for code reuse was originally identified with 
the term Isomorphic JavaScript, but today, it's mostly recognized as Universal 
JavaScript.

In this chapter, we are going to explore the wonders of Universal JavaScript, 
specifically in the field of web development, and discover many tools and techniques 
we can use to share code between the server and the browser.
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We will explore what a module bundler is and why we need one. We will then learn 
how module bundlers work and we will practice with one of the most popular, 
webpack. Then, we will discuss some generic patterns that can help us with code 
reuse across platforms.

Finally, we will learn the basic functionalities of React and we will use it to build 
a complete Universal JavaScript application that features universal rendering, 
universal routing, and universal data loading.

To summarize, here's a list of topics we will be covering in this chapter:

• How to share code between the browser and Node.js
• Fundamentals of cross-platform development (code branching, module 

swapping, and other useful patterns)
• A brief introduction to React
• How to build a complete Universal JavaScript application using React and 

Node.js

Sit tight, this is going to be an exciting chapter!

Sharing code with the browser
One of the main selling points of Node.js is the fact that it's based on JavaScript 
and runs on V8, a JavaScript engine that actually powers some of the most popular 
browsers: Google Chrome and Microsoft Edge. We might think that sharing the same 
JavaScript engine is enough to make sharing code between Node.js and the browser 
an easy task; however, as we will see in this chapter, this is not always true, unless 
we want to share only simple, self-contained, and generic fragments of code.

Developing code for both the client and the server requires a non-negligible level of 
effort in making sure that the same code can run properly in two environments that 
are intrinsically different. For example, in Node.js, we don't have the DOM or long-
living views, while on the browser, we surely don't have the filesystem and many 
other interfaces to interact with the underlying operating system.

Another contention point is the level of support for modern JavaScript features. 
When we target Node.js, we can safely adopt modern language features because we 
know which Node.js version runs on our servers. For instance, for our server code, 
we can safely decide to adopt async/await if we know it will run on Node.js version 
8 (or on a more recent version). Unfortunately, we can't have the same confidence 
when writing JavaScript code for the browser. 
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This is because different users will have different browsers with different levels of 
compatibility with the latest language features. Some users might be using a modern 
browser with full support for async/await, while other users might still be using an 
old device with an old browser that does not support async/await.

So, most of the effort required when developing for both platforms is to make 
sure to reduce those differences to a minimum. This can be done with the help of 
abstractions, patterns, and tools that enable the application to switch, dynamically 
or at build time, between browser-compatible code and Node.js code.

Luckily, with the rising interest in this new mind-blowing possibility, many libraries 
and frameworks in the ecosystem have started to support both environments. This 
evolution is also backed by a growing number of tools supporting this new kind of 
workflow, which, over the years, have been refined and perfected. This means that if 
we are using an npm package on Node.js, there is a good probability that it will work 
seamlessly on the browser as well. However, this is often not enough to guarantee 
that our application can run without problems on both the browser and Node.js. As 
we will see, a careful design is always needed when developing cross-platform code.

In this section, we are going to explore the fundamental problems we might 
encounter when writing code for both Node.js and the browser, and we are going 
to propose some tools and patterns that can help us with tackling this new and 
exciting challenge.

JavaScript modules in a cross-platform 
context
The first wall we hit when we want to share some code between the browser and 
the server is the mismatch between the module system used by Node.js and the 
heterogeneous landscape of the module systems used on the browser. Another 
problem is that on the browser, we don't have a require() function or the filesystem 
from which we can resolve modules. Most modern browsers support import and 
ES modules, but again, some of the users visiting our website might not have already 
adopted one of those modern browsers.

In addition to these problems, we have to take into account the differences in 
distributing code for the server and the browser. On the server, modules are loaded 
directly from the filesystem. This is generally a performant operation and therefore 
developers are encouraged to split their code into small modules to keep the 
different logic units small and organized.
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On the browser, the script loading model is totally different. The process generally 
starts with the browser downloading an HTML page from a remote endpoint. The 
HTML code is parsed by the browser, which might find references to script files that 
need to be downloaded and executed. If we are dealing with a large application, 
there might be many scripts to download, so the browser will have to issue a 
significant number of HTTP requests and download and parse multiple script files 
before the application can be fully initialized. The higher the number of script files, 
the larger the performance penalty that we will have to pay to run an application on 
the browser, especially on slow networks. Even though some of this performance 
penalty can be mitigated with the adoption of HTTP/2 Server Push (nodejsdp.
link/http2-server-push), client-side caching, preloading, or similar techniques, the 
underlying problem still stands: having to receive and parse a large number of files is 
generally worse than having to deal with a few optimized files.

A common practice to address this problem is to "build" packages (or bundles) for 
the browser. A typical build process will collate all the source files into a very small 
number of bundles (for instance, one JavaScript file per page) so that the browser 
won't have to download a huge number of scripts for each page visit. A build 
process is not limited to just reducing the number of files, in fact, it can perform other 
interesting optimizations. Another common optimization is code minification, which 
allows us to reduce the number of characters to a minimum without altering the 
functionality. This is generally done by removing comments, removing unused code, 
and renaming function and variable names.

Module bundlers
If we want to write large portions of code that can work as seamlessly as possible 
both on the server and on the browser, we need a tool to help us with "bundling" 
all the dependencies together at build time. These tools are generally called module 
bundlers. Let's visualize this with an example of how shared code can be loaded on 
to the server and the client using a module bundler:

http://nodejsdp.link/http2-server-push
http://nodejsdp.link/http2-server-push


Chapter 10

[ 361 ]

Figure 10.1: Loading shared modules on the server and on the browser (using a module bundler)
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By looking at Figure 10.1, we can see that the code is processed and loaded differently 
on the server side and on the browser:

• On the server side: Node.js can directly execute our serverApp.js, which, in 
turn, will import the modules moduleA.js, moduleB.js, and moduleC.js.

• On the browser: We have browserApp.js, which also imports moduleA.js,  
moduleB.js, and moduleC.js. If our index file were to include browserApp.js  
directly, we would have to download a total of five files (index.html, 
browserApp.js, and the three dependency modules) before the app would be 
fully initialized. The module bundler allows us to reduce the total number 
of files to only two by preprocessing browserApp.js and all its dependencies 
and producing a single equivalent bundle called main.js, which is then 
referenced by index.html and therefore loaded by the browser.

To summarize, on the browser, we generally have to deal with two logical phases, 
build and runtime, while on the server, we generally don't need a build phase and 
we can execute our source code directly.

When it comes to picking a module bundler, the most popular option is probably 
webpack (nodejsdp.link/webpack). Webpack is one of the most complete and 
mature module bundlers currently available and it is the one we are going to use 
in this chapter. It's worth mentioning, though, that there is a quite prosperous 
ecosystem full of alternatives, each one with its own strengths. If you are curious, 
here are some of the most well-known alternatives to webpack:

• Parcel (nodejsdp.link/parcel): Aims to be fast and to work "auto-magically" 
without any configuration.

• Rollup (nodejsdp.link/rollup): One of the first module bundlers to fully 
support ESM and to offer a number of optimizations like tree shaking and 
dead code elimination.

• Browserify (nodejsdp.link/browserify): The first module bundler with 
support for CommonJS and is still widely adopted.

Other trending module bundlers are FuseBox (nodejsdp.link/fusebox), Brunch 
(nodejsdp.link/brunch), and Microbundle (nodejsdp.link/microbundle).

In the next section, we will discuss in greater detail how a module bundler works.

http://nodejsdp.link/webpack
http://nodejsdp.link/parcel
http://nodejsdp.link/rollup
http://nodejsdp.link/browserify
http://nodejsdp.link/fusebox
http://nodejsdp.link/brunch
http://nodejsdp.link/microbundle
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How a module bundler works
We can define a module bundler as a tool that takes the source code of an application 
(in the form of an entry module and its dependencies) and produces one or more 
bundle files. The bundling process doesn't change the business logic of the app; it 
just creates files that are optimized to run on the browser. In a way, we can think of a 
bundler as a compiler for the browser.

In the previous section, we saw how a bundler can help to reduce the total number of 
files that the browser will need to load, but in reality, a bundler can do so much more 
than that. For instance, it can use a transpiler like Babel (nodejsdp.link/babel). 
A transpiler is a tool that processes the source code and makes sure that modern 
JavaScript syntax is converted into equivalent ECMAScript 5 syntax so that a large 
variety of browsers (including older ones) can run the application correctly. Some 
module bundlers allow us to preprocess and optimize not just JavaScript code but 
also other assets such as images and stylesheets.

In this section, we will provide a simplified view of how a module bundler works 
and how it navigates the code of a given application to produce an equivalent bundle 
optimized for the browser. The work of a module bundler can be divided into two 
steps that we will call dependency resolution and packing.

Dependency resolution
The dependency resolution step has the goal of traversing the codebase, starting 
from the main module (also called the entry point), and discovering all the 
dependencies. The way a bundler can do this is by representing dependencies as an 
acyclic direct graph, known as a dependency graph.

Let's explore this concept with an example: a fictional calculator application. The 
implementation is intentionally incomplete as we only want to focus on the module 
structure, how the different modules depend on each other, and how the module 
bundler can build the dependency graph of this application:

// app.js                                                   (1)
import { calculator } from './calculator.js'
import { display } from './display.js'
display(calculator('2 + 2 / 4'))

http://nodejsdp.link/babel
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// display.js                                               (5)
export function display () {
  // ...
}

// calculator.js                                            (2)
import { parser } from './parser.js'
import { resolver } from './resolver.js'
export function calculator (expr) {
  return resolver(parser(expr))
}

// parser.js                                                (3)
export function parser (expr) {
  // ...
}

// resolver.js                                              (4)
export function resolver (tokens) {
  // ...
}

Let's see how the module bundler will walk through this code to figure out the 
dependency graph:

1. The module bundler starts its analysis from the entry point of the 
application, the module app.js. In this phase, the module bundler will 
discover dependencies by looking at import statements. The bundler starts 
to scan the code of the entry point and the first import it finds references the 
calculator.js module. Now, the bundler suspends the analysis of app.js 
and jumps immediately into calculator.js. The bundler will keep tabs 
on the open files: it will remember that the first line of app.js was already 
scanned so that when it eventually restarts processing this file, it will 
continue from the second line.

2. In calculator.js, the bundler immediately finds a new import for parser.js 
so that the processing of calculator.js is interrupted to move into parser.js.

3. In parser.js, there's no import statement, so after the file has been scanned 
entirely, the bundler goes back into calculator.js, where the next import 
statement refers to resolver.js. Again, the analysis of calculator.js is 
suspended and the bundler jumps immediately into resolver.js.
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4. The module resolver.js does not contain any imports, so the control goes 
back to calculator.js. The calculator.js module does not contain other 
imports, so the control goes back to app.js. In app.js, the next import is 
display.js and the bundler jumps straight into it.

5. display.js does not contain any imports. So, again the control goes back 
to app.js. There are no more imports in app.js, so the code has been fully 
explored, and the dependency graph has been fully constructed.

Every time the module bundler jumps from one file to another, it means we are 
discovering a new dependency and adding a new node to the dependency graph. 
A visual representation of the steps described in the preceding list can be found in 
Figure 10.2:

Figure 10.2: Dependency graph resolution

This way of resolving dependencies also works with cyclic dependencies. In fact, if 
the bundler encounters the same dependency for a second time, the dependency will 
be skipped because it's already present in the dependency graph.
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During the dependency resolution phase, the module bundler builds a data structure 
called modules map. This data structure is a hash map that has unique module 
identifiers (for example, file paths) as keys and a representation of the module source 
code as values. In our example, a simplified representation of the modules map 
might look like this:

{
  'app.js': (module, require) => {/* ... */},
  'calculator.js': (module, require) => {/* ... */},
  'display.js': (module, require) => {/* ... */},
  'parser.js': (module, require) => {/* ... */},
  'resolver.js': (module, require) => {/* ... */}
}

Every module in the modules map is a factory function that accepts two arguments: 
module and require. We will see in more detail what those arguments are in the 
next section. What is important to understand now is that every module here is a 
complete representation of the code in the original source module. If we take, for 
example, the code for the calculator.js module, it might be represented as follows:

(module, require) => {
  const { parser } = require('parser.js')
  const { resolver } = require('resolver.js')
  module.exports.calculator = function (expr) {
    return resolver(parser(expr))
  }
}

Tree shaking

It's worth noting that if we have entities (for example, functions, 
classes, or variables) in our project modules that are never 
imported, then these won't appear in this dependency graph, so 
they won't be included in the final bundle.

A more advanced module bundler could also keep track of the 
entities imported from every module and the exported entities 
found in the dependency graph. This allows the bundle to figure 
out if there are exported functionalities that are never used in the 
application so that they can be pruned from the final bundle. This 
optimization technique is called tree shaking (nodejsdp.link/
tree-shaking).

http://nodejsdp.link/tree-shaking
http://nodejsdp.link/tree-shaking
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Packing
The modules map is the final output of the dependency resolution phase. In the 
packing phase, the module bundler takes the modules map and converts it into an 
executable bundle: a single JavaScript file that contains all the business logic of the 
original application.

The idea is simple: we already have a representation of the original codebase of 
our application inside the modules map; we have to find a way to convert it into 
something that the browser can execute correctly and save it into the resulting 
bundle file.

Given the structure of our modules map, this can actually be done with just a few 
lines of code wrapping the modules map:

((modulesMap) => {                                       // (1)
  const require = (name) => {                            // (2)
    const module = { exports: {} }                       // (3)
    modulesMap[name](module, require)                    // (4)
    return module.exports                                // (5)
  }
  require('app.js')                                      // (6)
})(
  {
    'app.js': (module, require) => {/* ... */},
    'calculator.js': (module, require) => {/* ... */},
    'display.js': (module, require) => {/* ... */},
    'parser.js': (module, require) => {/* ... */},
    'resolver.js': (module, require) => {/* ... */},
  }
)

Note how the ESM syntax has been converted into something that 
resembles the syntax of the CommonJS module system. Remember 
that the browser does not support CommonJS and that these 
variables are not global, so there is no risk of a naming collision 
here. In this simplified implementation, we decided to use exactly 
the same identifiers as in CommonJS (module, require, and 
module.exports) to make the similarity with CommonJS look 
more apparent. In reality, every module bundler will use its own 
unique identifiers. For instance, webpack uses identifiers such as 
__webpack_require__ and __webpack_exports__.
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This is not a lot of code, but there's a lot happening here, so let's go through it 
together, step by step:

1. In this code snippet, we have an Immediately Invoked Function Expression 
(IIFE) that receives the entire modules map as an argument.

2. When the function is executed, it defines a custom require function. This 
function receives a module name as input and it will load and execute the 
corresponding module from modulesMap.

3. In the require function, a module object is initialized. This object has only one 
property called exports, which is an object with no attributes.

4. At this point, the factory function of the given module is invoked and we 
pass to it the module object we just created and a reference to the require 
function itself. Note that this is essentially an implementation of the Service 
Locator pattern (nodejsdp.link/service-locator-pattern). Here, the 
factory function, once executed, modifies the module object by attaching to 
it the functionality that the module exports. The factory function can also 
recursively require other modules by using the require function passed as an 
argument.

5. Finally, the require function returns the module.exports object, which was 
populated by the factory function that was invoked in the previous step.

6. The last step is to require the entry point of our dependency graph, which 
in our case is the module app.js. This last step is what actually bootstraps 
the entire application. In fact, by loading the entry point, it will, in turn, load 
and execute all its dependencies in the right order and then execute its own 
business logic.

With this process, we essentially created a self-sufficient module system that is 
capable of loading modules that have been properly organized within the same file. 
In other words, we managed to convert an app originally organized in multiple files 
into an equivalent app where all the code has been moved into a single file. This is 
the resulting bundle file.

Note that the preceding code has been intentionally simplified 
just to illustrate how module bundlers work. There are many edge 
cases that we did not take into account. For instance, what happens 
if we require a module that does not exist in the modules map?

http://nodejsdp.link/service-locator-pattern


Chapter 10

[ 369 ]

Using webpack
Now that we know how a module bundler works, let's build a simple application 
that can work both on Node.js and on the browser. Throughout this exercise, we 
will learn how to write a simple library that can be used without changes from the 
browser app and the server app. We will be using webpack to build the browser 
bundle.

To keep things simple, our application will be nothing more than a simple "hello 
world" for now, but don't worry, we will be building a more realistic application 
in the Creating a Universal JavaScript app section, later in this chapter.

Let's start by installing the webpack CLI in our system with:

npm install --global webpack-cli

Let's now initialize a new project in a new folder with:

npm init

Once the guided project initialization is complete, since we want to use ESM in 
Node.js, we need to add the property "type": "module" to our package.json.

Now, we can run:

webpack-cli init

This guided procedure will install webpack in your project and it will help you to 
automatically generate a webpack configuration file. At the time of writing, using 
webpack 4, the guided procedure does not realize that we want to use ESM in 
Node.js, so we have to apply two small changes to the generated files:

• Rename webpack.config.js to webpack.config.cjs
• Change the following npm scripts in package.json:

"build": "webpack --config webpack.config.cjs"
"start": "webpack-dev-server --config webpack.config.cjs"

Now, we are ready to start writing our application.
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Let's first write the module we want to share in src/say-hello.js:

import nunjucks from 'nunjucks'

const template = '<h1>Hello <i>{{ name }}</i></h1>'

export function sayHello (name) {
  return nunjucks.renderString(template, { name })
}

In this code, we are using the nunjucks template library (nodejsdp.link/nunjucks), 
which must be installed with npm. This module is exporting a simple sayHello function 
that accepts a name as the only argument and uses it to construct an HTML string.

Let's now write the browser application that will use this module (src/index.js):

import { sayHello } from './say-hello.js'

const body = document.getElementsByTagName('body')[0]
body.innerHTML = sayHello('Browser')

This code uses the sayHello function to build an HTML fragment saying Hello 
Browser and then inserts it into the body section of the current HTML page.

If you want to preview this application, you can run npm start in your terminal. This 
should open your default browser and you should see the application running.

If you want to generate a static version of the application, you can run:

npm run build

This will generate a folder called dist containing two files: an index.html and our 
bundle file (whose name will look like main.12345678901234567890.js).

The file name of the bundle is generated by using a hash of the 
file content. This way, every time our source code changes, we 
will obtain a new bundle with a different name. This is a useful 
optimization technique, called cache busting, that webpack adopts 
by default and it is particularly convenient when deploying our 
assets to a content delivery network (CDN). With CDNs, it is 
generally quite expensive to override files that are geographically 
distributed across multiple servers and already cached in multiple 
layers, possibly including our users' browsers. By generating new 
files with every change, we avoid cache invalidation entirely.

http://nodejsdp.link/nunjucks
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You can open the index.html file with your browser to see a preview of your 
application.

If you are curious, you can have a look at the generated bundle file. You will notice 
that it is a bit more convoluted and verbose than the sample bundle we illustrated 
in the previous section. However, you should be able to recognize the structure 
and notice that the entire nunjucks library, as well as our sayHello module, have 
been embedded in the bundle code.

Now, what if we want to build an equivalent application that runs in Node.js? For 
instance, we could use the sayHello function and display the resulting code in the 
terminal:

// src/server.js
import { sayHello } from './say-hello.js'
console.log(sayHello('Node.js'))

That's it!

If we run this code with:

node src/server.js

We will see the following output:

<h1>Hello <i>Node.js</i></h1>

Yes, displaying HTML in the terminal is not particularly useful, but right now we 
achieved our goal of being able to use a library from both the browser and the server 
without any changes in the library codebase.

In the next sections, we will discuss some patterns that allow us to actually change 
the code where necessary if we want to provide more specialized behaviors on the 
browser or Node.js.

Fundamentals of cross-platform 
development
When developing for different platforms, the most common problem we face is how 
can we reuse as much code as possible and, at the same time, provide specialized 
implementations for details that are platform-specific. We will now explore some 
of the principles and the patterns to use when facing this challenge, such as code 
branching and module swapping.
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Runtime code branching
The most simple and intuitive technique for providing different implementations 
based on the host platform is to dynamically branch our code. This requires that we 
have a mechanism to recognize the host platform at runtime and then dynamically 
switch the implementation with an if...else statement. Some generic approaches 
involve checking global variables that are available only on Node.js or only on 
the browser.

For example, we can check the existence of the window global variable. Let's modify 
our say-hello.js module to use this technique to provide a slightly different 
functionality depending on whether the module is running on the browser or on the 
server:

import nunjucks from 'nunjucks'

const template = '<h1>Hello <i>{{ name }}</i></h1>'

export function sayHello (name) {
  if (typeof window !== 'undefined' && window.document) {
    // client-side code
    return nunjucks.renderString(template, { name })
  }

  // Node.js code
  return `Hello \u001b[1m${name}\u001b[0m`
}

Try again to run our application on Node.js and on the browser and see the 
differences! If you do that, you will not see HTML code on the terminal when 
running the Node.js application. Instead, you will see a string with proper terminal 
formatting. The frontend application on the browser remains unchanged.

The escape sequence \u001b[1m is a special terminal formatting 
indicator that sets the text to bold. The sequence \u001b[0m 
instead resets the formatting to normal. If you are curious to find 
out more about escape sequences and their history, check out ANSI 
escape sequences: nodejsdp.link/ansi-escape-sequences.

http://nodejsdp.link/ansi-escape-sequences
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Challenges of runtime code branching
Using a runtime branching approach for switching between Node.js and the browser 
is definitely the most intuitive and simple pattern we can use for this purpose; 
however, there are some inconveniences:

• The code for both platforms is included in the same module and therefore 
in the final bundle. This increases the bundle size, adding unreachable and 
unnecessary code. It is also possible that the unreachable code contains 
sensitive information like encryption keys or API keys that are not meant 
to be sent to a user's browser. In this case, this approach might also raise 
significant security concerns.

• If used too extensively, it can considerably reduce the readability of the code, 
as the business logic would be mixed with logic meant only to add cross-
platform compatibility.

• Using dynamic branching to load a different module, depending on the 
platform, will result in all the modules being added to the final bundle, 
regardless of their target platform. For example, if we consider the following 
code fragment, both clientModule and serverModule will be included in a 
bundle generated with webpack, unless we explicitly exclude one of them 
from the build:

import { clientFunctionality } from 'clientModule'
import { serverFunctionality } from 'serverModule'
if (typeof window !== 'undefined' && window.document) {
  clientFunctionality()
} else {
  serverFunctionality()
}

This last inconvenience happens because of the following reasons:

• Bundlers have no sure way of knowing the value of a runtime variable at 
build time (unless the variable is a constant), so, in the preceding example, 
both branches of the if...else statement are always included in the final 
bundle, even though it is obvious that the browser will always execute only 
one of them.

• ES module imports are always defined declaratively at the top of the file and 
we don't have a way to filter the imports based on the current environment. 
The bundler will not try to understand whether you are conditionally using 
only a subset of the imported feature and it will include all the imported 
code anyway.
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A consequence of this last property is that modules imported dynamically using 
variables are not included in the bundle. For example, from the following code, no 
module will be bundled:

moduleList.forEach(function(module) {
  import(module)
})

It's worth underlining that webpack overcomes some of these limitations and, under 
certain specific circumstances, it is able to guess all the possible values for a dynamic 
requirement. For instance, if you have a snippet of code like the following:

function getControllerModule (controllerName) {
  return import(`./controller/${controllerName}`)
}

Webpack will include all the modules available in the controller folder in the final 
bundle.

It's highly recommended to have a look at the official documentation to understand 
all the supported cases (nodejsdp.link/webpack-dynamic-imports).

Build-time code branching
In this section, we are going to see how to use webpack plugins to remove, at build 
time, all parts of the code that we want to run only on the server. This allows us 
to obtain lighter bundle files and to avoid accidentally exposing code containing 
sensible information (for instance, secrets, passwords, or API keys) that should only 
live on the server.

Webpack offers support for plugins, which allows us to extend webpack's 
capabilities and add new processing steps that can be used to produce the bundle 
file. To perform build-time code branching, we can leverage a built-in plugin called 
DefinePlugin and a third-party plugin called terser-webpack-plugin (nodejsdp.
link/terser-webpack).

DefinePlugin can be used to replace specific code occurrences in our source files 
with custom code or variables. terser-webpack-plugin allows us to compress the 
resulting code and remove unreachable statements (dead code elimination).

Let's start by rewriting our say-hello.js module to explore these concepts:

import nunjucks from 'nunjucks'
export function sayHello (name) {
  if (typeof __BROWSER__ !== 'undefined') {

http://nodejsdp.link/webpack-dynamic-imports
http://nodejsdp.link/terser-webpack
http://nodejsdp.link/terser-webpack


Chapter 10

[ 375 ]

    // client-side code
    const template = '<h1>Hello <i>{{ name }}</i></h1>'
    return nunjucks.renderString(template, { name })
  }
  // Node.js code
  return `Hello \u001b[1m${name}\u001b[0m`
}

Note that we are checking for the existence of a generic variable called __BROWSER__ 
to enable the browser code. This is the variable that we will replace at build time 
using DefinePlugin.

Now, let's install terser-webpack-plugin with:

npm install --save-dev terser-webpack-plugin

Finally, let's update our webpack.config.cjs file:

// ...
const TerserPlugin = require('terser-webpack-plugin')
module.exports = {
  mode: 'production',
  // ...
  plugins: [
    // ...
    new webpack.DefinePlugin({
      __BROWSER__: true
    })
  ],
  // ...
  optimization: {
    // ...
    minimize: true,
    minimizer: [new TerserPlugin()]
  }
}

The first change here is to set the option mode to production. This option will 
enable optimizations such as code minification (or minimization). Optimization 
options are defined in the dedicated optimization object. Here, we are enabling 
minification by setting minimize to true and we are providing a new instance 
of terser-webpack-plugin as the minimizer. Finally, we are also adding 
webpack.DefinePlugin and configuring it to replace the string __BROWSER__ with the 
value true.
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Every value in the configuration object of DefinePlugin represents a piece of 
code that will be evaluated by webpack at build time and then used to replace 
the currently matched snippet of code. This allows us to add external dynamic 
values containing, for instance, the content of an environment variable, the current 
timestamp, or the hash of the last git commit to the bundle.

With this configuration, when we build a new bundle, every occurrence of 
__BROWSER__ is replaced with true. The first if statement will internally look like 
if (true !== 'undefined'), but webpack is smart enough to understand that this 
expression will always be evaluated as true, so it transforms the resulting code again 
into if (true).

Once webpack has finished processing all the code, it will invoke terser-webpack-plugin 
to minimize the resulting code. terser-webpack-plugin is a wrapper around Terser 
(nodejsdp.link/terser), a modern JavaScript minifier. Terser is capable of removing 
dead code as part of its minimization algorithm, so given that, at this stage, our code will 
look like this:

if (true) {
  const template = '<h1>Hello <i>{{ name }}</i></h1>'
  return nunjucks.renderString(template, { name })
}
return `Hello \u001b[1m${name}\u001b[0m`

Terser will reduce it to:

const template = '<h1>Hello <i>{{ name }}</i></h1>'
return nunjucks.renderString(template, { name })

This way, we got rid of all the server-side code in our browser bundle.

Even if build-time code branching is way better than runtime code branching 
because it produces much leaner bundle files, it can still make our source code 
cumbersome when abused. In fact, if you overuse this technique, you will end up 
with code that contains too many if statements, which will be hard to understand 
and debug.

When this happens, it is generally better to move all the platform-specific code into 
dedicated modules. We will discuss this alternative approach in the next section.

http://nodejsdp.link/terser
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Module swapping
Most of the time, we already know at build time what code has to be included in the 
client bundle and what shouldn't. This means that we can take this decision upfront 
and instruct the bundler to replace the implementation of an entire module at build 
time. This often results in a leaner bundle, as we are excluding unnecessary modules, 
and more readable code because we don't have all the if...else statements required 
by runtime and build-time branching.

Let's find out how to adopt module swapping with webpack by updating our example.

The main idea is that we want to have two separate implementations of our sayHello 
functionality: one optimized for the server (say-hello.js) and one optimized for the 
browser (say-hello-browser.js). We will then tell webpack to replace any import of 
say-hello.js with say-hello-browser.js. Let's see what our new implementation 
looks like now:

// src/say-hello.js
import chalk from 'chalk'
export function sayHello (name) {
  return `Hello ${chalk.green(name)}`
}

// src/say-hello-browser.js
import nunjucks from 'nunjucks'
const template = '<h1>Hello <i>{{ name }}</i></h1>'
export function sayHello (name) {
  return nunjucks.renderString(template, { name })
}

Note that, on the server-side version, we introduced a new dependency, chalk 
(nodejsdp.link/chalk), a utility library that allows us to format text for the terminal. 
This is to demonstrate one of the main advantages of this approach. Now that we've 
separated our server-side code from the client-side code, we can introduce new 
functionalities and libraries without worrying about the impact that those might 
have on the frontend-only bundle. At this point, in order to tell webpack to swap the 
modules at build time, we have to replace webpack.DefinePlugin with a new plugin 
in our webpack.config.cjs, as follows:

plugins: [
  // ...
  new webpack.NormalModuleReplacementPlugin(
    /src\/say-hello\.js$/,
    path.resolve(__dirname, 'src', 'say-hello-browser.js')
  )
]

http://nodejsdp.link/chalk
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We are using webpack.NormalModuleReplacementPlugin, which accepts two 
arguments. The first argument is a regular expression and the second one is a string 
representing a path to a resource. At build time, if a module path matches the given 
regular expression, it is replaced with the one provided in the second argument.

Note that this technique is not limited to our internal modules, but it can also be used 
with external libraries in our node_modules folder.

Thanks to webpack and the module replacement plugin, we can easily deal with 
structural differences between platforms. We can focus on writing separate modules 
that are meant to provide platform-specific code and we can then swap Node.js-only 
modules with browser-specific ones in the final bundle.

Design patterns for cross-platform 
development
Let's now revise some of the design patterns we discussed in the previous chapters 
to see how we can leverage those for cross-platform development:

• Strategy and template: These two are probably the most useful patterns 
when sharing code with the browser. Their intent is, in fact, to define the 
common steps of an algorithm, allowing some of its parts to be replaced, 
which is exactly what we need! In cross-platform development, these 
patterns allow us to share the platform-agnostic part of our components, 
while allowing their platform-specific parts to be changed using a different 
strategy or template method (which can be changed using code branching 
(runtime or build-time) or module swapping).

• Adapter: This pattern is probably the most useful when we need to swap 
an entire component. We have already seen several examples in Chapter 8, 
Structural Design Patterns. If your server application is using a database like 
SQLite, you could use the Adapter pattern to provide an alternative data 
storage implementation that works in the browser. For instance you could 
use the localStorage API (nodejsdp.link/localstorage) or the IndexedDB 
API (nodejsdp.link/indexdb).

• Proxy: When code meant to run on the server runs on the browser, we often 
need functionality that is used on the server to be available on the browser as 
well. This is where the remote Proxy pattern is useful. Imagine if we wanted 
to access the filesystem of the server from the browser: we could think of 
creating an fs object on the client that proxies every call to the fs module 
living on the server, using Ajax or WebSockets as a way of exchanging 
commands and return values.

http://nodejsdp.link/localstorage
http://nodejsdp.link/indexdb
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• Dependency injection and service locator: Both dependency injection and 
service locator can be useful to replace the implementation of a module at the 
moment of its injection. When we introduced the concept of modules maps, 
in the Packing section, we also saw how the Service Locator pattern was 
intrinsically used by module bundlers to collate all the code from different 
modules into one file.

As we can see, the arsenal of patterns at our disposal is quite powerful, but the most 
powerful weapon is still the ability of the developer to choose the best approach and 
adapt it to the specific problem at hand.

Now that we understand the fundamentals of module bundlers and we have learned 
a number of useful patterns to write cross-platform code, we are ready to move into 
the second part of this chapter, where we will learn about React and write our first 
universal JavaScript application.

A brief introduction to React
React is a popular JavaScript library created and maintained by Facebook. React is 
focused on providing a comprehensive set of functions and tools to build the view 
layer in web applications. React offers a view abstraction focused on the concept of 
a component. A component could be a button, a form input, a simple container such 
as an HTML div, or any other element in your user interface. The idea is that you 
should be able to construct the user interface of your application by just defining 
and composing highly reusable components with specific responsibilities.

What makes React different from other view libraries for the web is that it is not 
bound to the DOM by design. In fact, it provides a high-level abstraction called the 
virtual DOM (nodejsdp.link/virtual-dom) that fits very well with the web but that 
can also be used in other contexts, for example, for building mobile apps, modeling 
3D environments, or even defining the interaction between hardware components. 
In simple terms, the virtual DOM can be seen as an efficient way to re-render data 
organized in a tree-like structure.

"Learn it once, use it everywhere."
—Facebook

http://nodejsdp.link/virtual-dom
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This is the motto used by Facebook to introduce React. It intentionally mocks the 
famous Java motto Write it once, run it everywhere with the clear intention to underline 
a fundamental shift from the Java philosophy. The original design goal of Java was 
to allow developers to write applications once and run them on as many platforms 
as possible without changes. Conversely, the React philosophy acknowledges that 
every platform is inherently different and therefore encourages developers to write 
different applications that are optimized for the related target platform. React, as a 
library, shifts its focus on providing convenient design and architecture principles and 
tools that, once mastered, can be easily used to write platform-specific code.

The main reason why React is so interesting in the context of Universal JavaScript 
development is because it allows us to render React components both on the client 
and on the server using almost the same code. To put it another way, with React, we 
are able to render the HTML code that is required to display the page directly from 
Node.js. Then, when the page is loaded on the browser, React will perform a process 
called hydration (nodejsdp.link/hydration), which will add all the frontend-only 
side effects like click handlers, animations, additional asynchronous data fetching, 
dynamic routing, and so on. Hydration converts a static markup into a fully 
interactive experience.

This approach allows us to build single-page applications (SPAs), where the first 
render happens mostly on the server, but then, once the page is loaded on the 
browser and the user starts to click around, only the parts of the page that need to be 
changed are dynamically refreshed, without requiring a full page reload.

This design offers two main advantages:

• Better search engine optimization (SEO): Since the page markup is pre-
rendered by the server, various search engines can make sense of the content 
of the page by just looking at the HTML returned by the server. They won't 
need to simulate a browser environment and wait for the page to be fully 
loaded to see what a given page is about.

If you are curious to learn about the applications of React in 
contexts not strictly related to the field of web development, 
you can have a look at the following projects: React Native for 
mobile apps (nodejsdp.link/react-native), React PIXI for 2D 
rendering with OpenGL (nodejsdp.link/react-pixi), react-
three-fiber to create 3D scenes (nodejsdp.link/react-three-
fiber), and React Hardware (nodejsdp.link/react-hardware).

http://nodejsdp.link/hydration
http://nodejsdp.link/react-native
http://nodejsdp.link/react-pixi
http://nodejsdp.link/react-three-fiber
http://nodejsdp.link/react-three-fiber
http://nodejsdp.link/react-hardware
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• Better performance: Since we are pre-rendering the markup, this will be 
already available and visible on the browser, even while the browser is still 
downloading, parsing, and executing the JavaScript code included with 
the page. This approach can lead to a better user experience as the content 
is perceived to load faster and there are less browser "flashes" during 
rendering.

Now that we know what React is, in the next section, we will write our first React 
component!

Hello React
Without further ado, let's start to use React and jump to a concrete example. This will 
be a "Hello World" type of example but it will help us to illustrate the main ideas 
behind React, before we move onto more realistic examples.

Let's start by creating a new webpack project in a new folder with:

npm init -y
npm install --save-dev webpack webpack-cli
node_modules/.bin/webpack init

Then, follow the guided instructions. Now, let's install React:

npm install --save react react-dom

Now, let's create a file, src/index.js, with the following content:

import react from 'react'
import ReactDOM from 'react-dom'

const h = react.createElement                            // (1)

class Hello extends react.Component {                    // (2)
  render () {                                            // (3)

It is worth mentioning that the React virtual DOM is capable of 
optimizing the way changes are rendered. This means that the 
DOM is not rendered in full after every change, but instead React 
uses a smart in-memory diffing algorithm that is able to pre-
calculate the minimum number of changes to apply to the DOM in 
order to update the view. This results in a very efficient mechanism 
for fast browser rendering.
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    return h('h1', null, [                               // (4)
      'Hello ',
      this.props.name || 'World'                         // (5)
    ])
  }
}

ReactDOM.render(                                         // (6)
  h(Hello, { name: 'React' }),
  document.getElementsByTagName('body')[0]
)

Let's review what's happening with this code:

1. The first thing that we do is to create a handy alias for the 
react.createElement function. We will be using this function a couple of 
times in this example to create React elements. These could be plain DOM 
nodes (regular HTML tags) or instances of React components.

2. Now, we define our Hello component, which has to extend the 
react.Component class.

3. Every React component has to implement a render() method. This method 
defines how the component will be displayed on the screen when it is 
rendered on the DOM and it has to return a React element.

4. We are using the react.createElement function to create an h1 DOM 
element. This method expects three or more arguments. The first argument is 
the tag name (as a string) or a React component class. The second argument 
is an object used to pass attributes (or props) to the component (or null if we 
don't need to specify any attribute). Finally, the third argument is an array 
(or you can pass multiple arguments as well) of children elements. Elements 
can also be text (text nodes), as in our current example.

5. Here, we are using this.props to access the attributes that are passed to 
this component at runtime. In this specific case, we are looking for the name 
attribute. If this is passed, we use it to construct a text node; otherwise, we 
default to the string "World".

6. In this last block of code, we use ReactDOM.render() to initialize our 
application. This function is responsible for attaching a React application to 
the existing page. An application is nothing more than an instance of a React 
component. Here, we are instantiating our Hello component and passing the 
string "React" for the name attribute. Finally, as the last argument, we have 
to specify which DOM node in the page will be the parent element of our 
application. In this case, we are using the body element of the page, but you 
can target any existing DOM element in the page.



Chapter 10

[ 383 ]

Now, you can see a preview of your application by running:

npm start

You should now see "Hello React" in your browser window. Congratulations, you 
have built your first React application!

Alternatives to react.createElement
Repeated usage of react.createElement() might compromise the readability of our 
React components. In fact, nesting many invocations of react.createElement(), even 
with our h() alias, will make it hard to understand the HTML structure we want our 
components to render.

For this reason, it is not very common to use react.createElement() directly. To 
address this problem, the React team offers and encourages an alternative syntax 
called JSX (nodejsdp.link/jsx).

JSX is a superset of JavaScript that allows you to embed HTML-like code into 
JavaScript code. JSX makes the creation of React elements similar to writing HTML 
code. With JSX, React components are generally more readable and easier to write. It 
is easier to see what we mean here by looking at a concrete example, so let's rewrite 
our "Hello React" application using JSX:

import react from 'react'
import ReactDOM from 'react-dom'

class Hello extends react.Component {
  render () {
    return <h1>Hello {this.props.name || 'World'}</h1>
  }
}

ReactDOM.render(
  <Hello name="React"/>,
  document.getElementsByTagName('body')[0]
)

Much more readable, isn't it?

http://nodejsdp.link/jsx
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Unfortunately, since JSX is not a standard JavaScript feature, adopting JSX would 
require us to "compile" JSX code into standard equivalent JavaScript code. In the 
context of Universal JavaScript applications, we would have to do this both on the 
client-side code and the server-side code, so, for the sake of simplicity, we are not 
going to use JSX throughout the rest of this chapter.

There are some relatively new JSX alternatives that rely on standard JavaScript 
tagged template literals (you can read more about JavaScript tagged template literals 
at nodejsdp.link/template-literals). Using template literals seems to be a good 
compromise between code that is still quite easy to read and write and not having to 
perform an intermediate compilation process. Two of the most promising libraries 
providing this functionality are htm (nodejsdp.link/htm) and esx (nodejsdp.link/esx).

In the rest of this chapter, we will be using htm, so let's rewrite once more our "Hello 
React" example, this time using htm:

import react from 'react'
import ReactDOM from 'react-dom'
import htm from 'htm'

const html = htm.bind(react.createElement)          // (1)
class Hello extends react.Component {
  render () {                                       // (2)
    return html`<h1>
      Hello ${this.props.name || 'World'}
    </h1>`
  }
}

ReactDOM.render(
  html`<${Hello} name="React"/>`,                   // (3)
  document.getElementsByTagName('body')[0]
)

This code looks quite readable, but let's quickly clarify how we are using htm here:

1. The first thing that we have to do is create the template tag function html. 
This function allows us to use template literals to generate React elements. At 
runtime, this template tag function will be calling react.createElement() for 
us when needed.

http://nodejsdp.link/template-literals
http://nodejsdp.link/htm
http://nodejsdp.link/esx
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2. Here, we use a tagged template literal with the html tag function to create an 
h1 tag. Note that, as this is a standard tagged template literal, we can use the 
regular placeholder syntax (${expression}) to insert dynamic expressions 
into the string. Remember that template literals and tagged template literals 
use backticks (`) instead of single quotes (') to delimit the template string.

3. Similarly, we can use the placeholder syntax to create instances of React 
components (<${ComponentClass}>). Note that, if a component instance 
contains children elements, we can use the special </> tag to indicate the end 
of the component (for example, <${Component}><child/></>). Finally, we can 
pass props to the component as normal HTML attributes.

At this point, we should be able to understand the basic structure of a simple "Hello 
World" React component. In the next section, we will show you how to manage 
states in a React component, an important concept for most real-world applications.

Stateful components
In the previous example, we saw how to build a stateless React component. By 
stateless, we mean that the component only receives input from the outside (in our 
example, it was receiving a name property) and it doesn't need to calculate or manage 
any internal information to be able to render itself to the DOM.

While it's great to have stateless components, sometimes, you have to manage some 
kind of state. React allows us to do that, so let's learn how with an example.

Let's build a React application that displays a list of projects that have been recently 
updated on GitHub.

We can encapsulate all the logic for asynchronously fetching the data from GitHub 
and displaying it on a dedicated component: the RecentGithubProjects component. 
This component is configurable through the query prop, which allows us to filter the 
projects on GitHub. The query prop will receive a keyword such as "javascript" or 
"react", and this value will be used to construct the API call to GitHub.

Let's finally have a look at the code of the RecentGithubProjects component:

// src/RecentGithubProjects.js
import react from 'react'
import htm from 'htm'

const html = htm.bind(react.createElement)

function createRequestUri (query) {
  return `https://api.github.com/search/repositories?q=${
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    encodeURIComponent(query)
  }&sort=updated`
}

export class RecentGithubProjects extends react.Component {
  constructor (props) {                                    // (1)
    super(props)                                           // (2)
    this.state = {                                         // (3)
      loading: true,
      projects: []
    }
  }

  async loadData () {                                      // (4)
    this.setState({ loading: true, projects: [] })
    const response = await fetch(
      createRequestUri(this.props.query),
      { mode: 'cors' }
    )
    const responseBody = await response.json()
    this.setState({
      projects: responseBody.items,
      loading: false
    })
  }

  componentDidMount () {                                   // (5)
    this.loadData()
  }

  componentDidUpdate (prevProps) {                         // (6)
    if (this.props.query !== prevProps.query) {
      this.loadData()
    }
  }

  render () {                                              // (7)
    if (this.state.loading) {
      return 'Loading ...'
    }
                                                           // (8)
    return html`<ul>
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      ${this.state.projects.map(project => html`
        <li key=${project.id}>
          <a href=${project.html_url}>${project.full_name}</a>:
          ${' '}${project.description}
        </li>
      `)}
    </ul>`
  }
}

There are some new React concepts in this component, so let's discuss the main 
details here:

1. In this new component, we are overriding the default constructor. A 
constructor accepts the props passed to the component as an argument.

2. The first thing we have to do is call the original constructor and propagate 
the props so that the component can be initialized correctly by React.

3. Now, we can define the initial component state. Our final state is going to 
be a list of GitHub projects, but those won't be available immediately as we 
will need to load them dynamically. Therefore, we define the initial state as 
a boolean flag, indicating that we are loading the data and the list of projects 
as an empty array.

4. The function loadData() is the function that is responsible for making the 
API request, fetching the necessary data, and updating the internal state 
using this.setState(). Note that this.setState() is called twice: before we 
issue the HTTP request (to activate the loading state) and when the request is 
completed (to unset the loading flag and populate the list of projects). React 
will re-render the component automatically when the state changes.

5. Here, we are introducing another new concept: the componentDidMount 
lifecycle function. This function is automatically invoked by React once the 
component has been successfully instantiated and attached (or mounted) to 
the DOM. This is the perfect place to load our data for the first time.

6. The function componentDidUpdate is another React lifecycle function and it is 
automatically invoked every time the component is updated (for instance, if 
new props have been passed to the component). Here, we check if the query 
prop has changed since the last update. If that's the case, then we need to 
reload the list of projects.
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7. Finally, let's see what happens in our render() function. The main thing to 
note is that here we have to handle the two different states of the component: 
the loading state and the state where we have the list of projects available for 
display. Since React will invoke the render() function every time the state 
or the props change, just having an if statement here will be enough. This 
technique is often called conditional rendering.

8. In this final step, we are rendering a list of elements using Array.map() to 
create a list element for every project fetched using the GitHub API. Note 
that every list element receives a value for the key prop. The key prop is 
a special prop that is recommended whenever you are rendering an array 
of elements. Every element should provide a unique key. This prop helps 
the virtual DOM optimize every rendering pass (If you are curious to 
understand in detail what React does in this situation you can have a look 
at nodejsdp.link/react-reconciliation).

Let's now write the main application component. Here, we want to display a 
navigation menu where the user can select different queries ("JavaScript", "Node.js", 
and "React") to filter for different types of GitHub projects:

// src/App.js
import react from 'react'
import htm from 'htm'
import { RecentGithubProjects } from './RecentGithubProjects.js'

const html = htm.bind(react.createElement)

export class App extends react.Component {
  constructor (props) {
    super(props)
    this.state = {
      query: 'javascript',
      label: 'JavaScript'
    }
    this.setQuery = this.setQuery.bind(this)
  }

You might have noticed that we are not handling potential errors 
while fetching the data. There are several ways we can do this 
in React. The most elegant solution is probably implementing an 
ErrorBoundary component (nodejsdp.link/error-boundary), 
but we will leave that as an exercise for you.

http://nodejsdp.link/react-reconciliation
http://nodejsdp.link/error-boundary
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  setQuery (e) {
    e.preventDefault()
    const label = e.currentTarget.text
    this.setState({ label, query: label.toLowerCase() })
  }

  render () {
    return html`<div>
      <nav>
        <a href="#" onClick=${this.setQuery}>JavaScript</a>
        ${' '}
        <a href="#" onClick=${this.setQuery}>Node.js</a>
        ${' '}
        <a href="#" onClick=${this.setQuery}>React</a>
      </nav>
      <h1>Recently updated ${this.state.label} projects</h1>
      <${RecentGithubProjects} query=${this.state.query}/>
    </div>`
  }
}

This component is using its internal state to track the currently selected query. 
Initially, the "javascript" query is set and passed down to the RecentGithubProjects 
component. Then, every time a keyword in the navigation menu is clicked, we 
update the state with the new selected keyword. When this happens, the render() 
method will be automatically invoked and it will pass the new value for the query 
prop to RecentGithubProjects. In turn, RecentGithubProjects will be marked as 
updated, and it will internally reload and eventually update the list of projects for the 
new query.

One interesting detail to underline is that, in the constructor, we are explicitly 
binding the setQuery() function to the current component instance. The reason why 
we do this is because this function is used directly as an event handler for the click 
event. In this case, the reference to this would be undefined without the bind and it 
would not be possible to call this.setState() from the handler.

At this point, we only need to attach the App component to the DOM to run our 
application. Let's do this:

// src/index.js
import react from 'react'
import ReactDOM from 'react-dom'
import htm from 'htm'
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import { App } from './App.js'

const html = htm.bind(react.createElement)

ReactDOM.render(
  html`<${App}/>`,
  document.getElementsByTagName('body')[0]
)

Finally, let's just run the application with npm start and test it on the browser.

Try to refresh the page and click on the various keywords on the navigation menu. 
After a few seconds, you should see the list of projects being refreshed.

At this point, it should be quite clear to you how React works, how to compose 
components together, and how to take advantage of state and props. Hopefully, this 
simple exercise will also help you to find new, interesting, open source JavaScript 
projects that you might want to contribute to!

We are finally ready to take what we learned about webpack and React to create a 
simple, yet complete, universal JavaScript application.

Note that since we used async/await in our application, the 
default configuration generated by webpack might not work 
straight away. If you have any issues, compare your configuration 
file with the one in the code examples provided with this book 
(nodejsdp.link/wpconf).

We've covered just enough ground for us to be able to build 
our first Universal React application. But if you want to be 
proficient with React, we recommend that you read the official 
React documentation (nodejsdp.link/react-docs) for a more 
exhaustive overview of the library.

http://nodejsdp.link/wpconf
http://nodejsdp.link/react-docs
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Creating a Universal JavaScript app
Now that we've covered the basics, let's start to build a more complete Universal 
JavaScript application. We are going to build a simple "book library" application 
where we can list different authors and see their biography and some of their 
masterpieces. Although this is going to be a very simple application, it will allow 
us to cover more advanced topics such as universal routing, universal rendering, 
and universal data fetching. The idea is that you can later use this application as 
a scaffold for a real project and build on top of it your next universal JavaScript 
application.

In this experiment, we are going to use the following technologies:

• React (nodejsdp.link/react), which we just introduced
• React Router (nodejsdp.link/react-router), a companion routing layer for 

React
• Fastify (nodejsdp.link/fastify), a fast and ergonomic framework to build 

web servers in Node.js
• Webpack as the module bundler

For practical reasons, we selected a very specific set of technologies for this exercise, 
but we will try to focus as much as possible on the design principles and patterns 
rather than the technologies themselves. As you learn these patterns, you should be 
able to use the acquired knowledge with any other combination of technologies and 
achieve similar results.

In order to keep things simple, we will be using webpack only 
to process the frontend code and we will leave the backend code 
unchanged, leveraging the native Node.js support for ESM.

At the time of writing, there are some subtle discrepancies 
between how webpack interprets the semantics of ESM imports 
as opposed to how Node.js does it, especially when importing 
modules written using the CommonJS syntax. For this reason, we 
recommend running the examples in the rest of this chapter using 
esm (nodejsdp.link/esm), a Node.js library that will preprocess 
ESM imports in a way that minimizes those differences. Once you 
have installed the esm module in your project, you can run a script 
with esm as follows:

node –r esm script.js

http://nodejsdp.link/react
http://nodejsdp.link/react-router
http://nodejsdp.link/fastify
http://nodejsdp.link/esm
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Frontend-only app
In this section, we are going to focus on building our app on the frontend only, using 
webpack as a development web server. In the next sections, we will expand and 
update this basic app to convert it to a full Universal JavaScript application.

This time, we will be using a custom webpack configuration, so let's start by creating 
a new folder and copying the package.json and webpack.config.cjs files from the 
code repository provided with this book (nodejsdp.link/frontend-only-app), then 
install all the necessary dependencies with:

npm install

The data we will be using is stored in a JavaScript file (as a simple substitute for a 
database), so make sure you copy the file data/authors.js into your project as well. 
This file contains some sample data in the following format:

export const authors = [
  {
    id: 'author\'s unique id',
    name: 'author\'s name',
    bio: 'author\'s biography',
    books: [ // author's books
      {
        id: 'book unique id',
        title: 'book title',
        year: 1914 // book publishing year
      },
      // ... more books
    ]
  },
  // ... more authors
]

Of course, feel free to change the data in this file if you want to add your favorite 
authors and books!

Now that we have all the configuration in place, let's quickly discuss what we want 
our application to look like.

http://nodejsdp.link/frontend-only-app
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Figure 10.3: Application mockup

Figure 10.3 shows that our application will have two different types of page: an index 
page, where we list all the authors available in our data store, and then a page to 
visualize the details of a given author, where we will see their biography and some 
of their books.

These two types of page will only have a header in common. This will allow us to go 
back to the index page at any time.

We will be exposing the index page at the root path of our server (/), while we will 
be using the path /author/:authorId for the author's page.

Finally, we will also have a 404 page.

In terms of file structure, we will organize our project as follows:

src
├── data
│   └── authors.js              – data file
└── frontend
    ├── App.js                  – application component
    ├── components
    │   ├── Header.js           – header component
    │   └── pages
    │       ├── Author.js       – author page
    │       ├── AuthorsIndex.js – index page
    │       └── FourOhFour.js   – 404 page
    └── index.js                – project entry point
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Let's start by writing the index.js module, which will serve as the entry point for 
loading our frontend application and attaching it to the DOM:

import react from 'react'
import reactDOM from 'react-dom'
import htm from 'htm'
import { BrowserRouter } from 'react-router-dom'
import { App } from './App.js'

const html = htm.bind(react.createElement)

reactDOM.render(
  html`<${BrowserRouter}><${App}/></>`,
  document.getElementById('root')
)

This code is quite simple as we are mainly importing the App component and 
attaching it to the DOM in an element with the ID equal to root. The only detail that 
stands out is that we are wrapping the application into a BrowserRouter component. 
This component comes from the react-router-dom library and it provides our app 
with client-side routing capabilities. Some of the components we will be writing next 
will showcase how to fully take advantage of these routing capabilities and how to 
connect different pages together using links. Later on, we will revisit this routing 
configuration to make it available on the server side as well.

Right now, let's focus on the source code for App.js:

import react from 'react'
import htm from 'htm'
import { Switch, Route } from 'react-router-dom'
import { AuthorsIndex } from './components/pages/AuthorsIndex.js'
import { Author } from './components/pages/Author.js'
import { FourOhFour } from './components/pages/FourOhFour.js'

const html = htm.bind(react.createElement)

export class App extends react.Component {
  render () {
    return html`
      <${Switch}>
        <${Route}
          path="/"
          exact=${true}
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          component=${AuthorsIndex}
        />
        <${Route}
          path="/author/:authorId"
          component=${Author}
        />
        <${Route}
          path="*"
          component=${FourOhFour}
        />
      </>
    `
  }
}

As you can tell from this code, the App component is responsible for loading all the 
page components and configuring the routing for them.

Here, we are using the Switch component from react-router-dom. This component 
allows us to define Route components. Every Route component needs to have a 
path and a component prop associated with it. At render time, Switch will check 
the current URL against the paths defined by the routes, and it will render the 
component associated to the first Route component that matches.

As in a JavaScript switch statement, where the order of case statements is important, 
here, the order of the Route components is important too. Our last route is a catch-all 
route, which will always match if none of the previous routes matches..

Note also that we are setting the prop exact for the first Route. This is needed 
because react-router-dom will match based on prefixes, so a plain / will match any 
URL. By specifying exact: true, we are telling the router to only match this path if it 
is exactly / (and not if it just starts with /).

Let's now have a quick look at our Header component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'

const html = htm.bind(react.createElement)

export class Header extends react.Component {
  render () {
    return html`<header>
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      <h1>
        <${Link} to="/">My library</>
      </h1>
    </header>`
  }
}

This is a very simple component that just renders an h1 title containing "My 
library." The only detail worth discussing here is that the title is wrapped by a Link 
component from the react-router-dom library. This component is responsible for 
rendering a clickable link that can interact with the application router to switch to a 
new route dynamically, without refreshing the entire page.

Now, we have to write, one by one, our page components. Let's start with the 
AuthorsIndex component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import { Header } from '../Header.js'
import { authors } from '../../../data/authors.js'

const html = htm.bind(react.createElement)

export class AuthorsIndex extends react.Component {
  render () {
    return html`<div>
      <${Header}/>
      <div>${authors.map((author) =>
        html`<div key=${author.id}>
          <p>
            <${Link} to="${`/author/${author.id}`}">
              ${author.name}
            </>
          </p>
        </div>`)}
      </div>
    </div>`
  }
}
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Yet another very simple component. Here, we are rendering some markup 
dynamically based on the list of authors available in our data file. Note that we are 
using, once again, the Link component from react-router-dom to create dynamic 
links to the author page.

Now, let's have a look at the Author component code:

import react from 'react'
import htm from 'htm'
import { FourOhFour } from './FourOhFour.js'
import { Header } from '../Header.js'
import { authors } from '../../../data/authors.js'

const html = htm.bind(react.createElement)

export class Author extends react.Component {
  render () {
    const author = authors.find(
      author => author.id === this.props.match.params.authorId
    )

    if (!author) {
      return html`<${FourOhFour} error="Author not found"/>`
    }
    return html`<div>
      <${Header}/>
      <h2>${author.name}</h2>
      <p>${author.bio}</p>
      <h3>Books</h3>
      <ul>
        ${author.books.map((book) =>
          html`<li key=${book.id}>${book.title} (${book.year})</li>`
        )}
      </ul>
    </div>`
  }
}

This component has a little bit of logic in it. In the render() method, we 
filter the authors dataset to find the current author. Notice that we are using 
props.match.params.authorId to get the current author ID. The match prop will be 
passed to the component by the router at render time and the nested params object 
will be populated if the current path has dynamic parameters.
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There's a chance that we are receiving an ID that doesn't match any author in our 
dataset, so in this case, author will be undefined. This is clearly a 404, so instead 
of rendering the author data, we delegate the render logic to the FourOhFour 
component, which is responsible for rendering the 404 error page.

Finally, let's see the source code for the FourOhFour component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)
export class FourOhFour extends react.Component {
  render () {
    return html`<div>
      <${Header}/>
      <div>
        <h2>404</h2>
        <h3>${this.props.error || 'Page not found'}</h3>
        <${Link} to="/">Go back to the home page</>
      </div>
    </div>`
  }
}

This component is responsible for rendering the 404 page. Note that we made the 
error message configurable through the error prop and also that we are using a Link 
from the react-router-dom library to allow the user to travel back to the home page 
when landing on this error page.

It is common practice to memoize (nodejsdp.link/memoization) 
the result of any complex calculation performed in the render() 
method. This prevents the complex calculation from running 
again in case its inputs haven't changed since the last render. In 
our example, a possible target for this type of optimization is 
the call to authors.find(). We leave this to you as an exercise. 
If you want to know more about this technique take a look at 
nodejsdp.link/react-memoization.

http://nodejsdp.link/memoization
http://nodejsdp.link/react-memoization
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This was quite a lot of code, but we are finally ready to run our frontend-only React 
application: just type npm start in your console and you should see the application 
running in your browser. Pretty barebones, but if we did everything correctly, 
it should work as expected and allow us to see our favorite authors and their 
masterpieces.

It is worth using the app with the browser developer tools open so that we can verify 
that our dynamic routing is working correctly, that is, once the first page is loaded, 
transitions to other pages happen without any page refresh.

Server-side rendering
Our application works and this is great news. However, the app is running only 
on the client side, which means that if we try to curl one of the pages, we will see 
something like this:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>My library</title>
  </head>
  <body>
  <div id="root"></div>
  <script type="text/javascript" src="/main.js"></script></body>
</html>

No content whatsoever! There's only an empty container (the root div), which is 
where our application is mounted at runtime.

In this section, we will modify our application to be able to render the content also 
from the server.

For a better understanding of what happens when you interact 
with a React application, you can install and use the React 
Developer Tools browser extension on Chrome (nodejsdp.link/
react-dev-tools-chrome) or Firefox (nodejsdp.link/react-
dev-tools-firefox).

http://nodejsdp.link/react-dev-tools-chrome
http://nodejsdp.link/react-dev-tools-chrome
http://nodejsdp.link/react-dev-tools-firefox
http://nodejsdp.link/react-dev-tools-firefox
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Let's start by adding fastify and esm to our project:

npm install --save fastify fastify-static esm

Now, we can create our server application in src/server.js:

import { resolve, dirname } from 'path'
import { fileURLToPath } from 'url'
import react from 'react'
import reactServer from 'react-dom/server.js'
import htm from 'htm'
import fastify from 'fastify'
import fastifyStatic from 'fastify-static'
import { StaticRouter } from 'react-router-dom'
import { App } from './frontend/App.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const html = htm.bind(react.createElement)

// (1)
const template = ({ content }) => `<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>My library</title>
  </head>
  <body>
    <div id="root">${content}</div>
    <script type="text/javascript" src="/public/main.js"></script>
  </body>
</html>`

const server = fastify({ logger: true })                   // (2)

server.register(fastifyStatic, {                           // (3)
  root: resolve(__dirname, '..', 'public'),
  prefix: '/public/'
})

server.get('*', async (req, reply) => {                    // (4)
  const location = req.raw.originalUrl
                                                           // (5)
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  const serverApp = html`
    <${StaticRouter} location=${location}>
      <${App}/>
    </>
  `
  const content = reactServer.renderToString(serverApp)    // (6)
  const responseHtml = template({ content })

  reply.code(200).type('text/html').send(responseHtml)
})

const port = Number.parseInt(process.env.PORT) || 3000     // (7)
const address = process.env.ADDRESS || '127.0.0.1'

server.listen(port, address, function (err) {
  if (err) {
    console.error(err)
    process.exit(1)
  }
})

There's a lot of code here, so let's discuss step by step the main concepts introduced 
here:

1. Since we are not going to use the webpack dev server, we need to return 
the full HTML code of the page from our server. Here, we are defining the 
HTML template for all our pages using a function and a template literal. We 
will be passing the result of our server-rendered React application as content 
to this template to get the final HTML to return to the client.

2. Here, we create a Fastify server instance and enable logging.
3. As you might have noticed from our template code, our web application 

will load the script /public/main.js. This file is the frontend bundle that is 
generated by webpack. Here, we are letting the Fastify server instance serve 
all static assets from the public folder using the fastify-static plugin.

4. In this line, we define a catch-all route for every GET request to the server. 
The reason why we are doing a catch-all route is because the actual routing 
logic is already contained in the React application. When we render the React 
application, it will display the correct page component based on the current 
URL.
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5. On the server side, we have to use an instance of StaticRouter from 
react-router-dom and wrap our application component with it. 
StaticRouter is a version of React Router that can be used for server-side 
rendering. This router, rather than taking the current URL from the browser 
window, allows us to pass the current URL directly from the server through 
the location prop.

6. Here, we can finally generate the HTML code for our serverApp component 
by using React's renderToString() function. The generated HTML is the 
same as the one generated by the client-side application on a given URL. 
In the next few lines, we wrap this code with our page layout using the 
template() function and finally, we send the result to the client.

7. In the last few lines of code, we tell our Fastify server instance to listen on a 
given address and port defaulting to localhost:3000.

Now, we can run npm run build to create the frontend bundle and finally, we can 
run our server, as follows:

node -r esm src/server.js

Let's open our browser on http://localhost:3000/ and see if our app is still 
working as expected. All good, right? Great! Now, let's try to curl our home page to 
see if the server-generated code looks different:

curl http://localhost:3000/

This time, this is what we should see:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>My library</title>
  </head>
  <body>
    <div id="root"><div><header><h1><a href="/">My library</a></h1></
header><div><h2>Authors</h2><div><div><a href="/author/joyce"><p>James 
Joyce</p></a></div><div><a href="/author/h-g-wells"><p>Herbert George 
Wells</p></a></div><div><a href="/author/orwell"><p>George Orwell</p></
a></div></div></div></div></div>
    <script type="text/javascript" src="/public/main.js"></script>
  </body>
</html>
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Great! This time, our root container is not empty: we are rendering the list of authors 
directly from the server. You should also try some author pages and see that it works 
correctly for those as well. Mission complete! Well, almost... what happens if we try 
to render a page that does not exist? Let's have a look:

curl -i http://localhost:3000/blah

This will print:

HTTP/1.1 200 OK
content-type: text/html
content-length: 367
Date: Sun, 05 Apr 2020 18:38:47 GMT
Connection: keep-alive

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>My library</title>
  </head>
  <body>
    <div id="root"><div><header><h1><a href="/">My library</a></h1></
header><div><h2>404</h2><h3>Page not found</h3><a href="/">Go back to 
the home page</a></div></div></div>
    <script type="text/javascript" src="/public/main.js"></script>
  </body>
</html>

At first glance, this might seem correct because we are rendering our 404 page, but 
we are actually returning a 200 status code… not good!

We can actually fix this with just a little extra effort, so let's do it.

React StaticRouter allows us to pass a generic context prop that can be used to 
exchange information between the React application and the server. We can leverage 
this utility to allow our 404 page to inject some information into this shared context 
so that on the server side, we are aware of whether we should return a 200 or a 404 
status code.
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Let's update the catch-all route on the server side first:

server.get('*', async (req, reply) => {
  const location = req.raw.originalUrl
  const staticContext = {}
  const serverApp = html`
    <${StaticRouter}
      location=${location}
      context=${staticContext}
    >
      <${App}/>
    </>
  `
  const content = reactServer.renderToString(serverApp)
  const responseHtml = template({ content })

  let code = 200
  if (staticContext.statusCode) {
    code = staticContext.statusCode
  }

  reply.code(code).type('text/html').send(responseHtml)
})

The changes from the previous version are highlighted in bold. As you can see, we 
create an empty object called staticContext and pass it to the router instance in the 
context prop. Later on, after the server-side rendering is completed, we check if 
staticContext.statusCode was populated during the rendering process. If it was, it 
will now contain the status code that we have to return to the client, together with 
the rendered HTML code.

Let's now change the FourOhFour component to actually populate this value. To do 
this, we just need to update the render() function with the following code before we 
return the elements to render:

if (this.props.staticContext) {
  this.props.staticContext.statusCode = 404
}

Note that the context prop passed to StaticRouter is passed only to direct children 
of Route components using the prop staticContext. For this reason, if we rebuild the 
frontend bundle and relaunch our server, this time, we will see a correct 404 status 
for http://localhost:3000/blah, but it won't work for URLs that match the author 
page such as http://localhost:3000/author/blah. 
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In order to make this work, we also need to propagate staticContext from the 
Author component into the FourOhFour component. To do this, in the Author 
component's render() method, we have to apply the following change:

if (!author) {
  return html`<${FourOhFour}
    staticContext=${this.props.staticContext}
    error="Author not found"
  />`
}
// ...

Now, the 404 status code will be returned correctly from the server, even on author 
pages for non-existent authors.

Great—we now have a fully functional React application that uses server-side 
rendering! But don't celebrate just yet, we still have some work to do...

Asynchronous data retrieval
Now, imagine for a second that we are asked to build the website for the Library of 
Trinity College in Dublin, one of the most famous libraries in the world. It has about 
300 years of history and about 7 million books. Ok, now let's imagine we have to 
allow the users to browse this massive collection of books. Yes, all 7 million of them... 
a simple data file is not going to be a great idea here!

A better approach would be to have a dedicated API to retrieve the data about the 
books and use it to dynamically fetch only the minimum amount of data needed to 
render a given page. More data will be fetched as the user navigates through the 
various pages of the website.

This approach is valid for most web applications, so let's try to apply the same 
principle to our demo application. We will be using an API with two endpoints:

• /api/authors, to get the list of authors
• /api/author/:authorId, to get the information for a given author

For the sake of this demo application, we will keep things very simple. We only 
want to demonstrate how our application is going to change as soon as we introduce 
asynchronous data fetching, so we are not going to bother with using a real database 
to back our API or with introducing more advanced features like pagination, 
filtering, or search.
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Since building such an API server leveraging our existing data file is a rather trivial 
exercise (one that doesn't add much value in the context of this chapter), we are 
going to skip the walkthrough of the API implementation. You can get the source 
code of the API server from the code repository of this book (nodejsdp.link/
authors-api-server).

We are also going to need an HTTP client that works seamlessly on both the browser 
and Node.js. A good option is superagent (nodejsdp.link/superagent).

Let's install the new dependencies then:

npm install --save fastify-cors superagent

Now we are ready to run our API server:

node -r esm src/api.js

And let's try some requests with curl, for instance:

curl -i http://localhost:3001/api/authors
curl -i http://localhost:3001/api/author/joyce
curl -i http://localhost:3001/api/author/invalid

If everything worked as expected, we are now ready to update our React 
components to use these new API endpoints rather than reading directly from the 
authors dataset. Let's start by updating the AuthorsIndex component:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import superagent from 'superagent'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

This simple API server runs independently from our backend 
server, so it uses another port (or potentially even on another 
domain). In order to allow the browser to make asynchronous 
HTTP requests to a different port or domain, we need our 
API server to support cross-origin resource sharing or CORS 
(nodejsdp.link/cors), a mechanism that allows secure cross-
origin requests. Thankfully, enabling CORS with Fastify is as easy 
as installing the fastify-cors (nodejsdp.link/fastify-cors) 
plugin.

http://nodejsdp.link/authors-api-server
http://nodejsdp.link/authors-api-server
http://nodejsdp.link/superagent
http://nodejsdp.link/cors
http://nodejsdp.link/fastify-cors
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export class AuthorsIndex extends react.Component {
  constructor (props) {
    super(props)
    this.state = {
      authors: [],
      loading: true
    }
  }

  async componentDidMount () {
    const { body } = await superagent.get('http://localhost:3001/api/
authors')
    this.setState({ loading: false, authors: body })
  }

  render () {
    if (this.state.loading) {
      return html`<${Header}/><div>Loading ...</div>`
    }

    return html`<div>
      <${Header}/>
      <div>${this.state.authors.map((author) =>
        html`<div key=${author.id}>
          <p>
            <${Link} to="${`/author/${author.id}`}">
              ${author.name}
            </>
          </p>
        </div>`)}
      </div>
    </div>`
  }
}

The main changes from the previous version are highlighted in bold. Essentially, 
we converted our React component into a stateful component. At construction time, 
we initialized the state to an empty array of authors and we set the loading flag to 
true. Then, we used the componentDidMount lifecycle method to load the authors data 
using the new API endpoint. Finally, we updated the render() method to display a 
loading message while the data was being loaded asynchronously.
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Now, we have to update our Author component:

import react from 'react'
import htm from 'htm'
import superagent from 'superagent'
import { FourOhFour } from './FourOhFour.js'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

export class Author extends react.Component {
  constructor (props) {
    super(props)
    this.state = {
      author: null,
      loading: true
    }
  }

  async loadData () {
    let author = null
    this.setState({ loading: false, author })
    try {
      const { body } = await superagent.get(
        `http://localhost:3001/api/author/${
          this.props.match.params.authorId
        }`)
      author = body
    } catch (e) {}
    this.setState({ loading: false, author })
  }

  componentDidMount () {
    this.loadData()
  }

  componentDidUpdate (prevProps) {
    if (prevProps.match.params.authorId !==
      this.props.match.params.authorId) {
      this.loadData()
    }
  }
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  render () {
    if (this.state.loading) {
      return html`<${Header}/><div>Loading ...</div>`
    }

    if (!this.state.author) {
      return html`<${FourOhFour}
        staticContext=${this.props.staticContext}
        error="Author not found"
      />`
    }

    return html`<div>
      <${Header}/>
      <h2>${this.state.author.name}</h2>
      <p>${this.state.author.bio}</p>
      <h3>Books</h3>
      <ul>
        ${this.state.author.books.map((book) =>
          html`<li key=${book.id}>
            ${book.title} (${book.year})
          </li>`
        )}
      </ul>
    </div>`
  }
}

The changes here are quite similar to the ones we applied to the previous 
component. In this component, we also generalized the data loading operation into 
the loadData() method. We did this because this component implements not just the 
componentDidMount() but also the componentDidUpdate() lifecycle method. This is 
necessary because if we end up passing new props to the same component instance, 
we want the component to update correctly. This will happen, for instance, if we 
have a link in the author page that points to another author page, something that 
could happen if we implement a "related authors" feature in our application.

At this point, we are ready to try this new version of the code. Let's regenerate the 
frontend bundle with npm run build and start both our backend server and our API 
server, then point our browser to http://localhost:3000/.
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If you navigate around the various pages, everything should work as expected. You 
might also notice that page content gets loaded interactively as you navigate through 
the pages.

But what happens to our server-side rendering? If we try to use curl on our home 
page, we should see the following HTML markup being returned:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>My library</title>
  </head>
  <body>
    <div id="root"><div><header><h1><a href="/">My library</a></h1></
header><div>Loading ...</div></div></div>
    <script type="text/javascript" src="/public/main.js"></script>
  </body>
</html>

Did you notice that there's no content anymore, but just a quite useless "Loading …" 
indicator? This is not good. Also, this is not the only problem here. If you try to use 
curl on an invalid author page, you will notice that you will get the same HTML 
markup with the loading indicator and no content and that the returned status code 
is 200 rather than 404!

We don't see any real content on the server-side rendered markup 
because the componentDidMount lifecycle method is executed 
only on the browser while it's ignored by React during server-side 
rendering.
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Furthermore, server-side rendering is a synchronous operation, so even if we 
move our loading code somewhere else, we still won't be able to perform any 
asynchronous data loading while rendering on the server.

In the next section of this chapter, we will explore a pattern that can help us to 
achieve full universal rendering and data loading.

Universal data retrieval
Server-side rendering is a synchronous operation and this makes it tricky to preload 
all the necessary data effectively. Being able to avoid the problems we underlined at 
the end of the previous section is not as straightforward as you might expect.

The root of the problem is that we are keeping our routing logic within the React 
application, so, on the server, we cannot know which page we are actually going 
to render before we call renderToString(). This is why the server cannot establish 
whether we need to preload some data for a particular page.

Universal data retrieval is still quite a nebulous area in React, and different 
frameworks or libraries that facilitate React server-side rendering have come up with 
different solutions to this problem.

As of today, the two patterns that we believe are worth discussing are two-pass 
rendering and async pages. These two techniques have different ways of figuring 
out which data needs to be preloaded. In both cases, once the data is fully loaded on 
the server, the generated HTML page will provide an inline script block to inject all 
the data into the global scope (the window object) so that when the application runs on 
the browser, the same data already loaded on the server won't have to be reloaded 
from the client.



Universal JavaScript for Web Applications

[ 412 ]

Two-pass rendering
The idea of two-pass rendering is to use the React router static context as a vector to 
exchange information between React and the server. Figure 10.4 shows us how this 
works:

Figure 10.4: Two-pass rendering schematic

The steps of two-pass rendering are as follows:

1. The server calls renderToString(), passing the URL received from the client 
and an empty static context object to the React application.
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2. The React application will perform the routing process and select the 
components that need to be rendered for the given URL. Every component 
that requires to load some data asynchronously will need to implement some 
extra logic to allow such data to be preloaded on the server as well. This can 
be done by attaching a promise representing the result of the data loading 
operation to the router static context. This way, at the end of the rendering 
process, the server will receive an incomplete markup (representing the 
current loading state) and the static context will contain a number of 
promises representing data loading operations.

3. At this point, the server can look at the static context and wait for all 
the promises to settle to make sure that all the data has been preloaded 
completely. During this process, the server builds a new static context that 
contains the results returned by the promises. This new static context is used 
for a second round of rendering. This is why this technique is called two-pass 
rendering.

4. Now, the ball is again on the React side of the field. The routing process 
should pick the same components used during the first rendering pass, 
since the URL has not changed. This time, the components that need data 
preloading should see that such data is already available in the static context 
and they can render the view straight away. This step produces a complete 
static markup that the server can now use.

5. At this point, the server has the complete markup and it uses it to render 
the final HTML page. The server can also include all the preloaded data in 
a script tag so that, on the browser, the data will be already available so 
there won't be any need to load it again while visiting the first page of the 
application.

This technique is very powerful and has some interesting advantages. For instance, 
it allows you to organize your React components tree in a very flexible way. You can 
have multiple components requesting asynchronous data, and they can be placed at 
any level of the components tree.

In more advanced use cases, you can also have data being loaded over multiple 
rendering passes. For instance, during the second pass, a new component in the tree 
might be rendered and this component might also need to load data asynchronously 
so it can just add new promises to the static context. To support this particular case, 
the server will have to continue the rendering loop until there are no more promises 
left in the static context. This particular variation of the two-pass rendering technique 
is referred to as multi-pass rendering.

The biggest disadvantage of this technique is that every call to renderToString() is 
not cheap and in real-life applications, this technique might force the server to go 
through multiple rendering passes, making the whole process very slow. 
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This might lead to severe performance degradation on the entire application, which 
can dramatically affect the user experience.

A simpler but potentially more performant alternative will be discussed in the next 
section.

Async pages
The technique we are going to describe here, which we are going to call "async 
pages," is based on a more constrained structure of the React application.

The idea is to structure the top layers of the application components tree in a very 
specific way. Let's have a look at a possible structure first, then it will be easier to discuss 
how this specific approach can help us with asynchronous data loading.

Figure 10.5: Async pages components tree structure
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In Figure 10.5, we have represented the structure that allows us to apply the 
async pages technique. Let's discuss in detail the scope of every layer in the 
components tree:

1. The root of the application is always a Router component (StaticRouter on 
the server and BrowserRouter on the client).

2. The application component is the only child of the Router component.
3. The only child of the application component is a Switch component from the 

react-router-dom package.
4. The Switch component has one or more Route components as children. These 

are used to define all the possible routes and which component should be 
rendered for every route.

5. This is the most interesting layer as we actually introduce the concept of 
a "page component." The idea is that a page component is responsible 
for the look and feel of an entire page. A page component can have an 
arbitrary subtree of components used to render the current view; for 
instance, a header, a body, and a footer. We can have two types of page 
components: regular page components that behave as any other React 
components and AsyncPage components. Async pages are special stateful 
components that need to preload data for the page to be rendered both on 
the server- and the client side. They implement a special static method called 
preloadAsyncData() that contains the logic necessary to preload the data for 
the given page.

You can see that layers 1 to 4 are responsible for the routing logic, while level 5 is 
responsible for data loading and for actually rendering the current page. There are 
no other nested layers for additional routing and data loading.

Now that we've discussed this more rigid structure, let's see how it can be useful to 
avoid multiple rendering passes and achieve universal data retrieval.

Here's the idea: if we have our routes defined in a dedicated file as an array of paths 
and components, we can easily reuse this file on the server side and determine, 
before the React rendering phase, which page component we will actually end up 
rendering.

Technically, there could be additional layers for routing and data 
loading after level 5, but those won't be universally available as 
they will be resolved only on the client side after the page has been 
rendered.
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Then, we can see if this page component is an AsyncPage. If it is, it means we have to 
preload some data on the server side before the rendering. We can do this by calling 
the preloadAsyncData() method from the given component.

Once the data has been preloaded, this can be added in the static context and we can 
render the entire application. During the rendering phase, the AsyncPage component 
will see that its data is already preloaded and available in the static context and it 
will be able to render straight away, skipping the loading state.

Once the rendering is finished, the server can add the same preloaded data in a 
script tag so that, on the browser side, the user won't have to wait for the data to be 
loaded again.

Implementing async pages
Now that we know how to solve our data fetching problems, let's implement the 
async pages technique in our application.

Our components tree is already structured in a way that it's compliant to what's 
expected by this technique. Our pages are the AuthorsIndex component, the Author 
component, and the FourOhFour component. The first two require universal data 
loading, so we will have to convert them into async pages.

Let's start to update our application by extrapolating the route definitions into a 
dedicated file, src/frontend/routes.js:

import { AuthorsIndex } from './components/pages/AuthorsIndex.js'
import { Author } from './components/pages/Author.js'
import { FourOhFour } from './components/pages/FourOhFour.js'

export const routes = [
  {
    path: '/',
    exact: true,
    component: AuthorsIndex
  },
  {
    path: '/author/:authorId',

The Next.js framework (nodejsdp.link/nextjs) is a popular 
framework for Universal JavaScript applications and adopts 
a similar technique to the one described here, so it is a good 
example of this pattern in the wild.

http://nodejsdp.link/nextjs
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    component: Author
  },
  {
    path: '*',
    component: FourOhFour
  }
]

We want this configuration file to be the source of truth for the router configuration 
across the various parts of the application, so let's refactor the frontend App 
component to use this file as well:

// src/frontend/App.js
import react from 'react'
import htm from 'htm'
import { Switch, Route } from 'react-router-dom'
import { routes } from './routes.js'

const html = htm.bind(react.createElement)

export class App extends react.Component {
  render () {
    return html`<${Switch}>
      ${routes.map(routeConfig =>
        html`<${Route}
          key=${routeConfig.path}
          ...${routeConfig}
        />`
      )}
    </>`
  }
}

As you can see, the only change here is that, rather than defining the various 
Route components inline, we build them dynamically starting from the routes 
configuration array. Any change in the routes.js file will be automatically reflected 
in the application as well.

At this point, we can update the server-side logic in src/server.js.

The first thing that we want to do is import a utility function from the 
react-router-dom package that allows us to see if a given URL matches a given 
React router path definition. We also need to import the routes array from the new 
routes.js module.
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// ...
import { StaticRouter, matchPath } from 'react-router-dom'
import { routes } from './frontend/routes.js'
// ...

Now, let's update our server-side HTML template generation function to be able to 
embed preloaded data in our page:

// ...
const template = ({ content, serverData }) => `<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>My library</title>
  </head>
  <body>
    <div id="root">${content}</div>
    ${serverData ? `<script type="text/javascript">
window.__STATIC_CONTEXT__=${JSON.stringify(serverData)}
    </script>` : ''}
    <script type="text/javascript" src="/public/main.js"></script>
  </body>
</html>`
// ...

As you can see, our template now accepts a new argument called serverData. If this 
argument is passed to the template function, it will render a script tag that will 
inject this data into a global variable called window.__STATIC_CONTEXT__.

Now, let's get into the meaty bit; let's rewrite the server-side rendering logic:

// ...
server.get('*', async (req, reply) => {
  const location = req.raw.originalUrl
  let component                                            // (1)
  let match
  for (const route of routes) {
    component = route.component
    match = matchPath(location, route)
    if (match) {
      break
    }
  }
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  let staticData                                           // (2)
  let staticError
  let hasStaticContext = false
  if (typeof component.preloadAsyncData === 'function') {
    hasStaticContext = true
    try {
      const data = await component.preloadAsyncData({ match })
      staticData = data
    } catch (err) {
      staticError = err
    }
  }
  const staticContext = {
    [location]: {
      data: staticData,
      err: staticError
    }
  }
                                                           // (3)
  const serverApp = html`
    <${StaticRouter}
      location=${location}
      context=${staticContext}
    >
      <${App}/>
    </>
  `
  const content = reactServer.renderToString(serverApp)
  const serverData = hasStaticContext ? staticContext : null
  const responseHtml = template({ content, serverData })

  const code = staticContext.statusCode
    ? staticContext.statusCode
    : 200
  reply.code(code).type('text/html').send(responseHtml)
// ...
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There are quite some changes here. Let's discuss the main blocks one by one:

1. The first change aims to detect which page will be rendered for the current 
URL. We loop through the defined routes and we use the matchPath utility 
to verify if location matches the current route definition. If it does, we stop 
the loop and record which component will be rendered in the component 
variable. We can be sure a component will be matched here because 
our last route (the 404 page) will always match. The match variable will 
contain information about the match. For instance, if the route contains 
some parameters, match will contain the path fragment that matched every 
parameter. For instance, for the URL /author/joyce, match will have the 
property params equal to { authorId: 'joyce' }. This is the same prop that 
a page component will receive from the router when rendered.

2. In the second block of changes, we check if the selected component is an 
AsyncPage. We do that by checking if the component has a static method 
called preloadAsyncData. If that's the case, we invoke that function by 
passing an object that contains the match object as an argument (this way, 
we propagate any parameter that might be needed to fetch the data, such as 
authorId). This function should return a promise. If the promise resolves, 
we have successfully preloaded the data for this component. If it rejects, we 
make sure to record the error. Finally, we create the staticContext object. 
This object maps the preloaded data (or the rejection error) to the current 
location. The reason why we keep the location as a key is to be sure that if, 
for any reason, the browser renders another page from the one we preloaded 
(because of a programmatic error or because of a user action, like hitting the 
back button on the browser before the page is fully loaded), we won't end up 
using preloaded data that is not relevant to the current page on the browser.

3. In the last block of changes, we invoke the renderToString() function to get 
the rendered HTML of the application. Note that since we are passing a static 
context containing the preloaded data, we expect that the application will be 
able to completely render the page without returning a loading state view. 
This does not happen magically, of course. We will need to add some logic 
to our React component to check if the necessary data is already available in 
the static context. Once we have the generated HTML, we use our template() 
function to generate the complete page markup and we return it to the 
browser. We also make sure to respect the status code. For instance, if we 
ended up rendering the FourOhFour component, we will have the statusCode 
property in the static context changed, so if that's the case, we use that value 
for the final status code; otherwise, we default to 200.

That's it for our server-side rendering.
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Now, it's time to create the async page abstraction in our React application. Since 
we are going to have two distinct async pages, a good way to reuse some code is 
to create a base class and to use the Template pattern that we already discussed 
in Chapter 9, Behavioral Design Patterns. Let's define this class in src/frontend/
components/pages/AsyncPage.js:

import react from 'react'

export class AsyncPage extends react.Component {
  static async preloadAsyncData (props) {                   // (1)
    throw new Error('Must be implemented by sub class')
  }

  render () {
    throw new Error('Must be implemented by sub class')
  }

  constructor (props) {                                     // (2)
    super(props)
    const location = props.match.url
    this.hasData = false

    let staticData
    let staticError

    const staticContext = typeof window !== 'undefined'
      ? window.__STATIC_CONTEXT__ // client-side
      : this.props.staticContext  // server-side

    if (staticContext && staticContext[location]) {
      const { data, err } = staticContext[location]
      staticData = data
      staticError = err
      this.hasStaticData = true

      typeof window !== 'undefined' &&
        delete staticContext[location]
    }

    this.state = {
      ...staticData,
      staticError,
      loading: !this.hasStaticData
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    }
  }

  async componentDidMount () {                              // (3)
    if (!this.hasStaticData) {
      let staticData
      let staticError
      try {
        const data = await this.constructor.preloadAsyncData(
          this.props
        )
        staticData = data
      } catch (err) {
        staticError = err
      }
      this.setState({
        ...staticData,
        loading: false,
        staticError
      })
    }
  }
}

This class provides helper code for building a stateful component that can handle 
three possible scenarios:

• We are rendering on the server and we already have the data preloaded (no 
need to load the data).

• We are rendering on the client and the data is already available in the page 
through the __STATIC_CONTEXT__ variable (no need to load the data).

• We are rendering on the client and the data is not available (for instance, if 
this page was not rendered by the server, but a page the user navigated to 
after the first load). In this case, the data has to be dynamically loaded from 
the client when the component is mounted.

Let's review the main points of this implementation together:

1. This component class should not be instantiated directly but only extended 
when implementing async pages. When this class is extended, the async 
page component will need to implement the methods static async 
preloadAsyncData(props) and render().
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2. In the constructor, we have to initialize the component state. There are two 
possible outcomes here: the data is already available (so we can set it in the 
state) or the data is not available (so we need to set the state to "loading" and 
let the component load the data once it's mounted on the page). If we are on 
the browser and we load the data from the static context, we also make sure 
to delete this data from the context. This will allow the user to see fresh data 
if they happen to go back to this page during the navigation.

3. The method componentDidMount() is executed by React only on the browser. 
Here, we handle the case where the data was not preloaded and we have to 
dynamically load it at runtime.

Now that we have this useful abstraction in place, we can rewrite our AuthorsIndex 
and Author components and convert them into async pages. Let's start with 
AuthorsIndex:

import react from 'react'
import htm from 'htm'
import { Link } from 'react-router-dom'
import superagent from 'superagent'
import { AsyncPage } from './AsyncPage.js'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

export class AuthorsIndex extends AsyncPage {
  static async preloadAsyncData (props) {
    const { body } = await superagent.get(
      'http://localhost:3001/api/authors'
    )
    return { authors: body }
  }

  render () {
    // unchanged...
  }
}

As you can see here, our AuthorsIndex component now extends AsyncPage. Since the 
AsyncPage template will take care of all the state management in its constructor, we 
don't need a constructor here anymore; we just need to specify the business logic to 
load the data in the preloadAsyncData() method. 
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If you compare this implementation with the previous one, you might notice 
that the logic of this method is almost the same as what we had previously in 
componentDidMount(). The method componentDidMount() has been removed from here 
because the one we inherit from AsyncPage will suffice. The only difference between 
the previous version of componentDidMount() and preloadAsyncData() is that in 
preloadAsyncData(), we don't set the internal state directly; we just need to return the 
data. The underlying code in AsyncPage will update the state as needed for us.

Let's now rewrite the Author component:

import react from 'react'
import htm from 'htm'
import superagent from 'superagent'
import { AsyncPage } from './AsyncPage.js'
import { FourOhFour } from './FourOhFour.js'
import { Header } from '../Header.js'

const html = htm.bind(react.createElement)

export class Author extends AsyncPage {
  static async preloadAsyncData (props) {
    const { body } = await superagent.get(
      `http://localhost:3001/api/author/${
         props.match.params.authorId
      }`
    )
    return { author: body }
  }

  render () {
    // unchanged...
  }
}

The changes here are perfectly in line with the changes we made for the 
AuthorsIndex component. We are only moving the data loading logic into 
preloadAsyncData() and letting the underlying abstraction manage the state 
transition for us.
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Now, we can apply just a last small optimization in our src/frontend/index.js file. 
We can swap the reactDOM.render() function call with reactDOM.hydrate(). Since 
we will produce exactly the same markup from both the server side and the client 
side, this will make React a bit faster to initialize during the first browser load.

We are finally ready to try all these changes. Make sure to rebuild the frontend 
bundle and relaunch the server. Have a look at the application and the code that is 
generated by the server; it should contain all the preloaded data for every page. Also, 
404 errors should be reported correctly for every 404 page, including the ones for 
missing authors.

Great! We finally managed to build an application that efficiently shares code, logic, 
and data between the client and the server: a true Universal JavaScript application!

Summary
In this chapter, we explored the innovative and fast-moving world of Universal 
JavaScript. Universal JavaScript opens up a lot of new opportunities in the field of 
web development and it can help you build single-page applications that load fast, 
are accessible, and are optimized for search engines.

In this chapter, we focused on introducing all the basics of this subject. We started 
from exploring module bundlers, why we need them, and how they work. We 
learned how to use webpack, and then we introduced React and discussed some of 
its functionality. We learned how to build component-oriented user interfaces and 
then started to build an application from scratch to explore universal rendering, 
universal routing, and universal data retrieval.

Even though we discussed a lot of topics, we barely scratched the surface of this 
wide topic, but you should have gained all the necessary knowledge to keep 
exploring this world on your own if you are interested in knowing more. Given that 
this field is still evolving quite rapidly, tools and libraries will probably change a lot 
in the next few years, but all the basic concepts should stay there, so don't be afraid 
to keep exploring and experimenting. Becoming an expert on this topic is now just 
a matter of using the acquired knowledge to build a first real-world app with real, 
business-driven use cases.
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It's also worth underlining that the knowledge acquired here might be useful 
for projects that cross the boundaries of web development, like mobile app 
development. If you are interested in this topic, React Native might be a good 
starting point.

In the next chapter, we are going to take a problem-solution approach to explore 
some more advanced topics. Are you ready?

Exercises
• 10.1 A matter of style: Our little library application looks very barebone. 

It could look a lot better with some style and images. Why don't you try to 
improve the look of the app? If you get stuck or need some inspiration, you 
can check our version of this exercise on GitHub (nodejsdp.link/univ).

• 10.2 Proper data management: As we said, keeping a lot of data in a file is 
not a great idea. Why don't you try to move all the data into a real database 
backend of your choice? At this point, you might also want to take this 
application to the next level and write some script to import data from a 
big collection of books like the Open Library archive (nodejsdp.link/open-
libary-api).

• 10.3 Pagination and search: Now that you have a more significant database, 
it's probably time to add some important features like search and pagination.

• 10.4 A Universal… Blog!: Build a new universal JavaScript app from scratch 
that implements a blog. Then, try the same exercise using a framework like 
Next.js (nodejsdp.link/nextjs) or Gatsby (nodejsdp.link/gatsby).

http://nodejsdp.link/univ
http://nodejsdp.link/open-libary-api
http://nodejsdp.link/open-libary-api
http://nodejsdp.link/nextjs
http://nodejsdp.link/gatsby
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11
Advanced Recipes

In this chapter, we'll take a problem-solution approach and, like in a cookbook, 
we'll present a set of ready-to-use recipes to solve some common Node.js 
programming problems.

You shouldn't be surprised by the fact that most of the problems presented in 
this chapter arise when we try to do things asynchronously. In fact, as we've seen 
repeatedly in the previous chapters of this book, tasks that are trivial in traditional 
synchronous programming can become more complicated when applied to 
asynchronous programming. A typical example is trying to use a component that 
requires an asynchronous initialization step. In this case, we have the inconvenience 
of delaying any attempt to use the component until the initialization completes. We'll 
show you how to solve this elegantly later.

But this chapter is not just about recipes involving asynchronous programming. You 
will also learn the best ways to run CPU-intensive tasks in Node.js.

These are the recipes you will learn in this chapter:

• Dealing with asynchronously initialized components
• Asynchronous request batching and caching
• Canceling asynchronous operations
• Running CPU-bound tasks

Let's get started.
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Dealing with asynchronously initialized 
components
One of the reasons for the existence of synchronous APIs in the Node.js core 
modules and many npm packages is because they are handy to use for implementing 
initialization tasks. For simple programs, using synchronous APIs at initialization 
time can streamline things a lot and the drawbacks associated with their use 
remain contained because they are used only once, which is when the program or a 
particular component is initialized.

Unfortunately, this is not always possible. A synchronous API might not always 
be available, especially for components using the network during their initialization 
phase to, for example, perform handshake protocols or to retrieve configuration 
parameters. This is the case for many database drivers and clients for middleware 
systems such as message queues.

The issue with asynchronously initialized 
components
Let's consider an example where a module called db is used to interact with a remote 
database. The db module will accept API requests only after the connection and 
handshake with the database server have been successfully completed. Therefore, 
no queries or other commands can be sent until the initialization phase is complete. 
The following is the code for such a sample module (the db.js file):

import { EventEmitter } from 'events'

class DB extends EventEmitter {
  connected = false

  connect () {
    // simulate the delay of the connection
    setTimeout(() => {
      this.connected = true
      this.emit('connected')
    }, 500)
  }

  async query (queryString) {
    if (!this.connected) {
      throw new Error('Not connected yet')



Chapter 11

[ 429 ]

    }
    console.log(`Query executed: ${queryString}`)
  }
}

export const db = new DB()

This is a typical example of an asynchronously initialized component. Under 
these assumptions, we usually have two quick and easy solutions to this problem, 
which we can call local initialization check and delayed startup. Let's analyze them 
in more detail.

Local initialization check
The first solution makes sure that the module is initialized before any of its APIs are 
invoked; otherwise, we wait for its initialization. This check has to be done every 
time we want to invoke an operation on the asynchronous module:

import { once } from 'events'
import { db } from './db.js'

db.connect()

async function updateLastAccess () {
  if (!db.connected) {
    await once(db, 'connected')
  }

  await db.query(`INSERT (${Date.now()}) INTO "LastAccesses"`)
}

updateLastAccess()
setTimeout(() => {
  updateLastAccess()
}, 600)

As we already anticipated, any time we want to invoke the query() method on the 
db component, we have to check if the module is initialized; otherwise, we wait for 
its initialization by listening for the 'connected' event. A variation of this technique 
performs the check inside the query() method itself, which shifts the burden of the 
boilerplate code from the consumer to the provider of the service.
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Delayed startup
The second quick and dirty solution to the problem of asynchronously 
initialized components involves delaying the execution of any code relying on 
the asynchronously initialized component until the component has finished its 
initialization routine. We can see an example of such a technique in the following 
code fragment:

import { db } from './db.js'
import { once } from 'events'

async function initialize () {
  db.connect()
  await once(db, 'connected')
}

async function updateLastAccess () {
  await db.query(`INSERT (${Date.now()}) INTO "LastAccesses"`)
}

initialize()
  .then(() => {
    updateLastAccess()
    setTimeout(() => {
      updateLastAccess()
    }, 600)
  })

As we can see from the preceding code, we first wait for the initialization to 
complete, and then we proceed with executing any routine that uses the db object.

The main disadvantage of this technique is that it requires us to know, in advance, 
which components will make use of the asynchronously initialized component, 
which makes our code fragile and exposed to mistakes. One solution to this problem 
is delaying the startup of the entire application until all the asynchronous services 
are initialized. This has the advantage of being simple and effective; however, it can 
add a significant delay to the overall startup time of the application and moreover, it 
won't take into account the case in which the asynchronously initialized component 
has to be reinitialized.

As we will see in the next section, there is a third alternative that allows us 
to transparently and efficiently delay every operation until the asynchronous 
initialization step has completed.
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Pre-initialization queues
Another recipe to make sure that the services of a component are invoked only after 
the component is initialized involves the use of queues and the Command pattern. 
The idea is to queue the method invocations (only those requiring the component to 
be initialized) received while the component is not yet initialized, and then execute 
them as soon as all the initialization steps have been completed.

Let's see how this technique can be applied to our sample db component:

import { EventEmitter } from 'events'

class DB extends EventEmitter {
  connected = false
  commandsQueue = []

  async query (queryString) {
    if (!this.connected) {
      console.log(`Request queued: ${queryString}`)

      return new Promise((resolve, reject) => {            // (1)
        const command = () => {
          this.query(queryString)
            .then(resolve, reject)
        }
        this.commandsQueue.push(command)
      })
    }

    console.log(`Query executed: ${queryString}`)
  }

  connect () {
    // simulate the delay of the connection
    setTimeout(() => {
      this.connected = true
      this.emit('connected')
      this.commandsQueue.forEach(command => command())     // (2)
      this.commandsQueue = []
    }, 500)
  }
}

export const db = new DB()
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As we already mentioned, the technique described here consists of two parts:

1. If the component has not been initialized—which, in our case, is when the 
connected property is false—we create a command from the parameters 
received with the current invocation and push it to the commandsQueue array. 
When the command is executed, it will run the original query() method 
again and forward the result to the Promise we are returning to the caller.

2. When the initialization of the component is completed—which, in our case, 
means that the connection with the database server is established—we go 
through the commandsQueue, executing all the commands that have been 
previously queued.

With the DB class we just implemented, there is no need to check if the component 
is initialized before invoking its methods. In fact, all the logic is embedded in the 
component itself and any consumer can just transparently use it without worrying 
about its initialization status.

We can also go a step further and try to reduce the boilerplate of the DB class we 
just created and, at the same time, improve its modularity. We can achieve that by 
applying the State pattern, which we learned about in Chapter 9, Behavioral Design 
Patterns, with two states:

• The first state implements all the methods that require the component to be 
initialized, and it's activated only when there is a successful initialization. 
Each of these methods implements its own business logic without worrying 
about the initialization status of the db component

• The second state is activated before the initialization has completed and it 
implements the same methods as the first state, but their only role here is 
to add a new command to the queue using the parameters passed to the 
invocation.

Let's see how we can apply the structure we just described to our db component. 
First, we create the InitializedState, which implements the actual business logic of 
our component:

class InitializedState {
  async query (queryString) {
    console.log(`Query executed: ${queryString}`)
  }
}

As we can see, the only method that we need to implement in the InitializedState 
class is the query() method, which will print a message to the console when it 
receives a new query.
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Next, we implement the QueuingState, the core of our recipe. This state implements 
the queuing logic:

const METHODS_REQUIRING_CONNECTION = ['query']
const deactivate = Symbol('deactivate')

class QueuingState {
  constructor (db) {
    this.db = db
    this.commandsQueue = []

    METHODS_REQUIRING_CONNECTION.forEach(methodName => {
      this[methodName] = function (...args) {
        console.log('Command queued:', methodName, args)
        return new Promise((resolve, reject) => {
          const command = () => {
            db[methodName](...args)
              .then(resolve, reject)
          }
          this.commandsQueue.push(command)
        })
      }
    })
  }

  [deactivate] () {
    this.commandsQueue.forEach(command => command())
    this.commandsQueue = []
  }
}

It's interesting to note how the QueuingState is mostly built dynamically at creation 
time. For each method that requires an active connection, we create a new method 
for the current instance, which queues a new command representing the function 
invocation. When the command is executed at a later time, when a connection 
is established, the result of the invocation of the method on the db instance is 
forwarded to the caller (through the returned promise).

The other important part of this state class is [deactivate](). This method is 
invoked when the state is deactivated (which is when the component is initialized) 
and it executes all the commands in the queue. Note how we used a Symbol to name 
the method. 
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This will avoid any name clashes in the future if we add more methods to the state 
(for example, what if we need to decorate a hypothetical deactivate() method of the 
DB class?).

Now, it's time to reimplement the DB class using the two states we just described:

class DB extends EventEmitter {
  constructor () {
    super()
    this.state = new QueuingState(this)                    // (1)
  }

  async query (queryString) {
    return this.state.query(queryString)                   // (2)
  }

  connect () {
    // simulate the delay of the connection
    setTimeout(() => {
      this.connected = true
      this.emit('connected')
      const oldState = this.state                          // (3)
      this.state = new InitializedState(this)
      oldState[deactivate] && oldState[deactivate]()
    }, 500)
  }
}

export const db = new DB()

Let's further analyze the most important parts of the new DB class:

1. In the constructor, we initialize the current state of the instance. It's going 
to be the QueuingState as the asynchronous initialization of the component 
hasn't been completed yet.

2. The only method of our class implementing some (stub) business logic is the 
query() method. Here, all we have to do is invoke the homonymous method 
on the currently active state.

3. Finally, when we establish the connection with the database (initialization 
complete), we switch the current state to the InitializedState and we 
deactivate the old one. The effect of deactivating the QueuedState, as we've 
seen previously, is that any command that had been queued is now executed.
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We can immediately see how this approach allows us to reduce the boilerplate and, 
at the same time, create a class that is purely business logic (the InitializedState) 
free from any repetitive initialization check.

The approach we've just seen will only work if we can modify the code of our 
asynchronously initialized component. In all those cases in which we can't make 
modifications to the component, we will need to create a wrapper or proxy, but 
the technique will be mostly similar to what we've seen here.

In the wild
The pattern we just presented is used by many database drivers and ORM libraries. 
The most notable is Mongoose (nodejsdp.link/mongoose), which is an ORM 
for MongoDB. With Mongoose, it's not necessary to wait for the database connection 
to open in order to be able to send queries. This is because each operation is queued 
and then executed later when the connection with the database is fully established, 
exactly as we've described in this section. This is clearly a must for any API that 
wants to provide a good developer experience (DX).

Take a look at the code of Mongoose to see how every method in the native driver 
is proxied to add the pre-initialization queue. This also demonstrates an alternative 
way of implementing the recipe we presented in this section. You can find the 
relevant code fragment at nodejsdp.link/mongoose-init-queue.

Similarly, the pg package (nodejsdp.link/pg), which is a client for the PostgreSQL 
database, leverages pre-initialization queues, but in a slightly different fashion. 
pg queues every query, regardless of the initialization status of the database, and 
then immediately tries to execute all the commands in the queue. Take a look at the 
relevant code line at nodejsdp.link/pg-queue.

Asynchronous request batching and 
caching
In high-load applications, caching plays a critical role and it's used almost 
everywhere on the web, from static resources such as web pages, images, and 
stylesheets, to pure data such as the result of database queries. In this section, we 
are going to learn how caching applies to asynchronous operations and how a high 
request throughput can be turned to our advantage.

http://nodejsdp.link/mongoose
http://nodejsdp.link/mongoose-init-queue
http://nodejsdp.link/pg
http://nodejsdp.link/pg-queue
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What's asynchronous request batching?
When dealing with asynchronous operations, the most basic level of caching can 
be achieved by batching together a set of invocations to the same API. The idea is 
very simple: if we invoke an asynchronous function while there is still another one 
pending, we can piggyback on the already running operation instead of creating a 
brand new request. Take a look at the following diagram:

Figure 11.1: Two asynchronous requests with no batching

The previous diagram shows two clients invoking the same asynchronous operation 
with exactly the same input. Of course, the natural way to picture this situation is with 
the two clients starting two separate operations that will complete at two different 
moments.
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Now, consider the following scenario:

Figure 11.2: Batching of two asynchronous requests

Figure 11.2 shows us how two identical requests—which invoke the same API with 
the same input—can be batched, or in other words, appended to the same running 
operation. By doing this, when the operation completes, both clients are notified, 
even though the async operation is actually executed only once. This represents 
a simple, yet extremely powerful, way to optimize the load of an application while 
not having to deal with more complex caching mechanisms, which usually require 
an adequate memory management and invalidation strategy.

Optimal asynchronous request caching
Request batching is less effective if the operation is fast enough or if matching 
requests are spread across a longer period of time. Also, most of the time, we can 
safely assume that the result of two identical API invocations will not change so 
often, so simple request batching will not provide the best performance. In all these 
circumstances, the best candidate to reduce the load of an application and increase 
its responsiveness is definitely a more aggressive caching mechanism.
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The idea is simple: as soon as a request completes, we store its result in the cache, 
which can be an in-memory variable or an item in a specialized caching server 
(such as Redis). Hence, the next time the API is invoked, the result can be retrieved 
immediately from the cache, instead of spawning another request.

The idea of caching should not be new to an experienced developer, but what makes 
this technique different in asynchronous programming is that it should be combined 
with request batching to be optimal. The reason for this is because multiple requests 
might run concurrently while the cache is not set and when those requests complete, 
the cache would be set multiple times.

Based on these assumptions, we can illustrate the Combined Request Batching and 
Caching pattern as follows:

Figure 11.3: Combined batching and caching

The preceding figure shows the two phases of an optimal asynchronous caching 
algorithm:

• The first phase is totally identical to the batching pattern. Any request 
received while the cache is not set will be batched together. When the request 
completes, the cache is set, once.

• When the cache is finally set, any subsequent request will be served directly 
from it.
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Another crucial detail to consider is the Zalgo anti-pattern (as we saw in Chapter 3, 
Callbacks and Events). Since we are dealing with asynchronous APIs, we must be 
sure to always return the cached value asynchronously, even if accessing the cache 
involves only a synchronous operation, such as in the case in which the cached value 
is retrieved from an in-memory variable.

An API server without caching or batching
Before we start diving into this new challenge, let's implement a small 
demo server that we will use as a reference to measure the impact of the various 
techniques we are going to implement.

Let's consider an API server that manages the sales of an e-commerce company. 
In particular, we want to query our server for the sum of all the transactions of a 
particular type of merchandise. For this purpose, we are going to use a LevelUP 
database through the level npm package (nodejsdp.link/level). The data model 
that we are going to use is a simple list of transactions stored in the sales sublevel 
(a subsection of the database), which is organized in the following format:

transactionId {amount, product}

The key is represented by transactionId and the value is a JSON object that contains 
the amount of the sale (amount) and the product type (product).

The data to process is really basic, so let's implement a simple query over the 
database that we can use for our experiments. Let's say that we want to get the 
total amount of sales for a particular product. The routine would look as follows 
(file totalSales.js):

import level from 'level'
import sublevel from 'subleveldown'

const db = level('example-db')
const salesDb = sublevel(db, 'sales', { valueEncoding: 'json' })

export async function totalSales (product) {
  const now = Date.now()
  let sum = 0
  for await (const transaction of salesDb.createValueStream()) {
    if (!product || transaction.product === product) {
      sum += transaction.amount
    }
  }

http://nodejsdp.link/level
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  console.log(`totalSales() took: ${Date.now() - now}ms`)

  return sum
}

The totalSales() function iterates over all the transactions of the sales sublevel 
and calculates the sum of the amounts of a particular product. The algorithm is 
intentionally slow as we want to highlight the effect of batching and caching later on. 
In a real-world application, we would have used an index to query the transactions 
by product or, even better, we could have used an incremental map/reduce 
algorithm to continuously calculate the sum for every product

We can now expose the totalSales() API through a simple HTTP server (the 
server.js file):

import { createServer } from 'http'
import { totalSales } from './totalSales.js'

createServer(async (req, res) => {
  const url = new URL(req.url, 'http://localhost')
  const product = url.searchParams.get('product')
  console.log(`Processing query: ${url.search}`)

  const sum = await totalSales(product)

  res.setHeader('Content-Type', 'application/json')
  res.writeHead(200)
  res.end(JSON.stringify({
    product,
    sum
  }))
}).listen(8000, () => console.log('Server started'))

Before we start the server for the first time, we need to populate the database with 
some sample data. We can do this with the populateDb.js script, which can be found 
in this book's code repository in the folder dedicated to this section. This script 
creates 100,000 random sales transactions in the database so that our query spends 
some time crunching data:

node populateDb.js
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Okay! Now, everything is ready. Let's start the server:

node server.js

To query the server, you can simply navigate with a browser to the following URL:

http://localhost:8000?product=book

However, to have a better idea of the performance of our server, we will need more 
than one request. So, we will use a small script named loadTest.js, which sends 20 
requests at intervals of 200 ms. The script can be found in the code repository of this 
book and it's already configured to connect to the local URL of the server, so, to run 
it, just execute the following command:

node loadTest.js

We will see that the 20 requests will take a while to complete. Take note of the 
total execution time of the test. Now, we are going to apply our optimizations and 
measure how much time we can save. We'll start by implementing both batching and 
caching by leveraging the properties of promises.

Batching and caching with promises
Promises are a great tool for implementing asynchronous batching and caching of 
requests. Let's see why.

If we recall what we learned about promises in Chapter 5, Asynchronous Control Flow 
Patterns with Promises and Async/Await, there are two properties that can be exploited 
to our advantage in this circumstance:

• Multiple then() listeners can be attached to the same promise.
• The then() listener is guaranteed to be invoked (only once), and it works 

even if it's attached after the promise is already resolved. Moreover, then() is 
guaranteed to always be invoked asynchronously.

In short, the first property is exactly what we need for batching requests, while the 
second means that a promise is already a cache for the resolved value and offers a 
natural mechanism for returning a cached value in a consistent, asynchronous way. 
In other words, this means that batching and caching become extremely simple and 
concise with promises.
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Batching requests in the total sales web server
Let's now add a batching layer on top of our totalSales API. The pattern we are 
going to use is very simple: if there is another identical request pending when the 
API is invoked, we will wait for that request to complete instead of launching a 
new one. As we will see, this can easily be implemented with promises. In fact, all 
we have to do is save the promise in a map, associating it to the specified request 
parameters (the product type, in our case) every time we launch a new request. Then, 
at every subsequent request, we check if there is already a promise for the specified 
product and if there is one, we just return it; otherwise, we launch a new request.

Now, let's see how this translates into code. Let's create a new module 
named totalSalesBatch.js. Here, we're going to implement a batching layer on top 
of the original totalSales() API:

import { totalSales as totalSalesRaw } from './totalSales.js'

const runningRequests = new Map()

export function totalSales (product) {
  if (runningRequests.has(product)) {                      // (1)
    console.log('Batching')
    return runningRequests.get(product)
  }

  const resultPromise = totalSalesRaw(product)             // (2)
  runningRequests.set(product, resultPromise)
  resultPromise.finally(() => {
    runningRequests.delete(product)
  })

  return resultPromise
}

The totalSales() function of the totalSalesBatch module is a proxy for the 
original totalSales() API, and it works as follows:

1. If a promise for the given product already exists, we just return it. This is 
where we piggyback on an already running request.

2. If there is no request running for the given product, we execute the 
original totalSales() function and we save the resulting promise into the 
runningRequests map. Next, we make sure to remove the same promise from 
the runningRequests map as soon as the request completes.
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The behavior of the new totalSales() function is identical to that of the 
original totalSales() API, with the difference that, now, multiple calls to the 
API using the same input are batched, thus saving us time and resources.

Curious to know what the performance improvement compared to the 
raw, non-batched version of the totalSales() API is? Let's then replace 
the totalSales module used by the HTTP server with the one we just created 
(the app.js file):

// import { totalSales } from './totalSales.js'
import { totalSales } from './totalSalesBatch.js'

createServer(async (req, res) => {
  // ...

If we now try to start the server again and run the load test against it, the first thing 
we will see is that the requests are returned in batches. This is the effect of the recipe 
we just implemented, and it's a great practical demonstration of how it works.

Besides that, we should also observe a considerable reduction in the total time 
for executing the test. It should be at least four times faster than the original test 
performed against the plain totalSales() API!

This result substantiates the huge performance boost that we can obtain by just 
applying a simple batching layer, without all the complexity of managing a 
full-fledged cache and, more importantly, without worrying about invalidation 
strategies.

Let's now see how we can implement both batching and caching using a slight 
variation of the technique we've just explored.

Caching requests in the total sales web server
Adding a caching layer to our batching API is straightforward, thanks to promises. 
All we have to do is leave the promise in our request map, even after the request has 
completed.

The Request Batching pattern reaches its best potential in high-
load applications and with slow APIs. This is because it's exactly 
in these circumstances that we can batch together a high number 
of requests.
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Let's implement the totalSalesCache.js module straightaway:

import { totalSales as totalSalesRaw } from './totalSales.js'

const CACHE_TTL = 30 * 1000 // 30 seconds TTL
const cache = new Map()

export function totalSales (product) {
  if (cache.has(product)) {
    console.log('Cache hit')
    return cache.get(product)
  }

  const resultPromise = totalSalesRaw(product)
  cache.set(product, resultPromise)
  resultPromise.then(() => {
    setTimeout(() => {
      cache.delete(product)
    }, CACHE_TTL)
  }, err => {
    cache.delete(product)
    throw err
  })

  return resultPromise
}

The relevant code that enables caching is highlighted. All we have to do is remove 
the promise from the cache after a certain time (CACHE_TTL) after the request has 
completed, or immediately if the request has failed. This is a very basic cache 
invalidation technique, but it works perfectly for our demonstration.

Now, we are ready to try the totalSales() caching wrapper we just created. To do 
that, we only need to update the app.js module, as follows:

// import { totalSales } from './totalSales.js'
// import { totalSales } from './totalSalesBatch.js'
import { totalSales } from './totalSalesCache.js'

createServer(async (req, res) => {
  // ...



Chapter 11

[ 445 ]

Now, the server can be started again and profiled using the loadTest.js script, as 
we did in the previous examples. With the default test parameters, we should see a 
10% reduction in the execution time compared to simple batching. Of course, this is 
highly dependent on a lot of factors; for example, the number of requests received 
and the delay between one request and the other. The advantages of using caching 
over batching will be much more substantial when the number of requests is higher 
and spans a longer period of time.

Notes about implementing caching mechanisms
We must remember that in real-life applications, we may want to use more advanced 
cache invalidation techniques and storage mechanisms. This is necessary for the 
following reasons:

• A large amount of cached values can easily consume a lot of memory. In this 
case, a least recently used (LRU) or a first in first out (FIFO) policy can be 
applied to maintain constant memory utilization.

• When the application is distributed across multiple processes, keeping the 
cache in memory may produce different results across each server instance. 
If that's undesired for the particular application we are implementing, the 
solution is to use a shared store for the cache. This is also more performant 
than a simple in-memory solution as the cache is shared across multiple 
instances. Popular caching solutions include Redis (nodejsdp.link/redis) 
and Memcached (nodejsdp.link/memcached).

• A manual cache invalidation (for example, when the related non-cached 
value changes), as opposed to a timed expiry, can enable a longer-living 
cache and at the same time provide more up-to-date data, but, of course, it 
would be a lot more complex to manage. Let's not forget the famous quote 
by Phil Karlton (principal engineer at Netscape, Silicon Graphics, and more): 
"There are only two hard things in Computer Science: cache invalidation and 
naming things."

With this, we conclude this section on request batching and caching. Next, we are 
going to learn how to tackle a tricky business: canceling asynchronous operations.

Canceling asynchronous operations
Being able to stop a long-running operation is particularly useful if the operation 
has been canceled by the user or if it has become redundant. In multithreaded 
programming, we can just terminate the thread, but on a single-threaded platform 
such as Node.js, things can get a little bit more complicated.

http://nodejsdp.link/redis
http://nodejsdp.link/memcached
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A basic recipe for creating cancelable 
functions
Actually, in asynchronous programming, the basic principle for canceling the 
execution of a function is very simple: we check if the operation has been canceled 
after every asynchronous call, and if that's the case, we prematurely quit the 
operation. Consider, for example, the following code:

import { asyncRoutine } from './asyncRoutine.js'
import { CancelError } from './cancelError.js'

async function cancelable (cancelObj) {
  const resA = await asyncRoutine('A')
  console.log(resA)
  if (cancelObj.cancelRequested) {
    throw new CancelError()
  }

  const resB = await asyncRoutine('B')
  console.log(resB)
  if (cancelObj.cancelRequested) {
    throw new CancelError()
  }

  const resC = await asyncRoutine('C')
  console.log(resC)
}

In this section, we'll be talking about canceling asynchronous 
operations and not about canceling promises, which is a different 
matter altogether. By the way, the Promises/A+ standard doesn't 
include an API for canceling promises. However, you can use 
a third-party promise library such as bluebird if you need such 
a feature (more at nodejsdp.link/bluebird-cancelation). 
Note that canceling a promise doesn't mean that the operation 
the promise refers to will also be canceled; in fact, bluebird offers 
an onCancel callback in the promise constructor, in addition to 
resolve and reject, which can be used to cancel the underlying 
async operation when the promise is canceled. This is actually 
what this section is about.

http://nodejsdp.link/bluebird-cancelation
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The cancelable() function receives, as input, an object (cancelObj) containing 
a single property called cancelRequested. In the function, we check the 
cancelRequested property after every asynchronous call, and if that's true, we 
throw a special CancelError exception to interrupt the execution of the function.

The asyncRoutine() function is just a demo function that prints a string to the 
console and returns another string after 100 ms. You will find its full implementation, 
along with that of CancelError, in the code repository for this book.

It's important to note that any code external to the cancelable() function will be 
able to set the cancelRequested property only after the cancelable() function gives 
back control to the event loop, which is usually when an asynchronous operation is 
awaited. This is why it's worth checking the cancelRequested property only after the 
completion of an asynchronous operation and not more often.

The following code demonstrates how we can cancel the cancelable() function:

const cancelObj = { cancelRequested: false }
cancelable(cancelObj)
  .catch(err => {
    if (err instanceof CancelError) {
      console.log('Function canceled')
    } else {
      console.error(err)
    }
  })

setTimeout(() => {
  cancelObj.cancelRequested = true
}, 100)

As we can see, all we have to do to cancel the function is set the 
cancelObj.cancelRequested property to true. This will cause the function to stop 
and throw a CancelError.

Wrapping asynchronous invocations
Creating and using a basic asynchronous cancelable function is very easy, but there 
is a lot of boilerplate involved. In fact, it involves so much extra code that it becomes 
hard to identify the actual business logic of the function.

We can reduce the boilerplate by including the cancelation logic inside a wrapping 
function, which we can use to invoke asynchronous routines. 
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Such a wrapper would look as follows (the cancelWrapper.js file):

import { CancelError } from './cancelError.js'

export function createCancelWrapper () {
  let cancelRequested = false

  function cancel () {
    cancelRequested = true
  }

  function cancelWrapper (func, ...args) {
    if (cancelRequested) {
      return Promise.reject(new CancelError())
    }
    return func(...args)
  }

  return { cancelWrapper, cancel }
}

Our wrapper is created through a factory function called createCancelWrapper(). 
The factory returns two functions: the wrapper function (cancelWrapper) and a 
function to trigger the cancelation of the asynchronous operation (cancel). This 
allows us to create a wrapper function to wrap multiple asynchronous invocations 
and then use a single cancel() function to cancel all of them.

The cancelWrapper() function takes, as input, a function to invoke (func) and a 
set of parameters to pass to the function (args). The wrapper simply checks if a 
cancelation has been requested and if positive, it will return a promise rejected with 
a CancelError object as the rejection reason; otherwise, it will invoke func.

Let's now see how our wrapper factory can greatly improve the readability and 
modularity of our cancelable() function:

import { asyncRoutine } from './asyncRoutine.js'
import { createCancelWrapper } from './cancelWrapper.js'
import { CancelError } from './cancelError.js'

async function cancelable (cancelWrapper) {
  const resA = await cancelWrapper(asyncRoutine, 'A')
  console.log(resA)
  const resB = await cancelWrapper(asyncRoutine, 'B')
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  console.log(resB)
  const resC = await cancelWrapper(asyncRoutine, 'C')
  console.log(resC)
}

const { cancelWrapper, cancel } = createCancelWrapper()

cancelable(cancelWrapper)
  .catch(err => {
    if (err instanceof CancelError) {
      console.log('Function canceled')
    } else {
      console.error(err)
    }
  })

setTimeout(() => {
  cancel()
}, 100)

We can immediately see the benefits of using a wrapper function for implementing 
our cancelation logic. In fact, the cancelable() function is now much more concise 
and readable.

Cancelable async functions with generators
The cancelable wrapper function we just created is already a big step ahead 
compared to embedding the cancelation logic directly in our code. However, it's 
still not ideal for two reasons: it is error prone (what if we forget to wrap one 
function?) and it still affects the readability of our code, which makes it not ideal 
for implementing cancelable asynchronous operations that are already large and 
complex.

An even neater solution involves the use of generators. In Chapter 9, Behavioral Design 
Patterns, we introduced generators as a means to implement iterators. However, they 
are a very versatile tool and can be used to implement all sorts of algorithms. In this 
case, we will be using generators to build a supervisor to control the asynchronous 
flow of a function. The result will be an asynchronous function that is transparently 
cancelable, whose behavior resembles an async function in which the await 
instruction is replaced by yield.
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Let's see how we can implement this cancelable function using generators (the 
createAsyncCancelable.js file):

import { CancelError } from './cancelError.js'

export function createAsyncCancelable (generatorFunction) {   // (1)
  return function asyncCancelable (...args) {
    const generatorObject = generatorFunction(...args)        // (3)
    let cancelRequested = false

    function cancel () {
      cancelRequested = true
    }

    const promise = new Promise((resolve, reject) => {
      async function nextStep (prevResult) {                  // (4)
        if (cancelRequested) {
          return reject(new CancelError())
        }

        if (prevResult.done) {
          return resolve(prevResult.value)
        }

        try {                                                 // (5)
          nextStep(generatorObject.next(await prevResult.value))
        } catch (err) {
          try {                                               // (6)
            nextStep(generatorObject.throw(err))
          } catch (err2) {
            reject(err2)
          }
        }
      }

      nextStep({})
    })

    return { promise, cancel }                                // (2)
  }
}
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The createAsyncCancelable() function may seem complex, so let's analyze it in 
more detail:

1. First, we should note that the createAsyncCancelable() function takes, as 
input, a generator function (the supervised function) and returns another 
function (asyncCancelable()) that wraps the generator function with our 
supervising logic. The asyncCancelable() function is what we will use to 
invoke the asynchronous operation.

2. The asyncCancelable() function returns an object with two properties:
a. The promise property, which contains the promise representing 

the eventual resolution (or rejection) of the asynchronous operation.
b. The cancel property, which is a function that can be used to cancel 

the supervised asynchronous flow.
3. When invoked, the first task of asyncCancelable() is to invoke the generator 

function with the arguments received as input (args) and obtain a generator 
object, which we can use to control the execution flow of the running 
coroutine.

4. The entire logic of the supervisor is implemented within the nextStep() 
function, which is responsible for iterating over the values yielded by the 
supervised coroutine (prevResult). Those can be actual values or promises. 
If a cancelation is requested, we throw the usual CancelError; otherwise, 
if the coroutine has been terminated (for example, prevResult.done is true), 
we immediately resolve the outer promise and complete the return.

5. The core part of the nextStep() function is where we retrieve the next 
value yielded by the supervised coroutine (which, let's not forget, it's a 
generator). We await on that value so we can make sure we get the actual 
resolution value in case we are dealing with a promise. This also makes sure 
that if prevResult.value is a promise and it rejects, we end up in the catch 
statement. We can end up in the catch statement even if the supervised 
coroutine actually throws an exception.

6. In the catch statement, we throw the caught error inside the coroutine. This 
is redundant if that error was already thrown by the coroutine, but not if it's 
the result of a promise rejection. Even if not optimal, this trick can simplify 
our code a bit for the sake of this demonstration. We invoke nextStep() 
using whatever value is yielded next after throwing it inside the coroutine, 
but if the result is another exception (for example, the exception is not caught 
inside the coroutine or another one is thrown), we immediately reject the 
outer promise and complete the asynchronous operation.
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As we saw, there are a lot of moving parts in the createAsyncCancelable() function. 
But we should appreciate the fact that, in just a few lines of code, we were able to 
create a cancelable function that doesn't require any manual cancelation logic. As 
we will see now, the results are impressive.

Let's rewrite our sample asynchronous cancelable operation using the supervisor we 
implemented in the createAsyncCancelable() function:

import { asyncRoutine } from './asyncRoutine.js'
import { createAsyncCancelable } from './createAsyncCancelable.js'
import { CancelError } from './cancelError.js'

const cancelable = createAsyncCancelable(function * () {
  const resA = yield asyncRoutine('A')
  console.log(resA)
  const resB = yield asyncRoutine('B')
  console.log(resB)
  const resC = yield asyncRoutine('C')
  console.log(resC)
})

const { promise, cancel } = cancelable()
promise.catch(err => {
  if (err instanceof CancelError) {
    console.log('Function canceled')
  } else {
    console.error(err)
  }
})

setTimeout(() => {
  cancel()
}, 100)

We can immediately see that the generator wrapped by createAsyncCancelable() 
closely resembles an async function, but we are using yield instead of await. 
Also, there is no visible cancelation logic at all. The generator function maintains 
the excellent properties of async functions (for example, to make asynchronous 
code look like synchronous code), but unlike the async function and thanks to the 
supervisor introduced by createAsyncCancelable(), it's also possible to cancel the 
operation.
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The second interesting aspect is that createAsyncCancelable() creates a function 
(called cancelable) that can be invoked like any other function but at the same time 
returns a promise representing the result of the operation and a function to cancel 
the operation.

This technique of using generators represents the best option we have to implement 
cancelable asynchronous operations.

Running CPU-bound tasks
The totalSales() API that we implemented in the Asynchronous request batching 
and caching section was (intentionally) expensive in terms of resources and took a 
few hundred milliseconds to run. Nonetheless, invoking the totalSales() function 
did not affect the ability of the application to process concurrent incoming requests. 
What we learned about the event loop in Chapter 1, The Node.js Platform, should 
explain this behavior: invoking an asynchronous operation always causes the stack 
to unwind back to the event loop, leaving it free to handle other requests.

But what happens when we run a synchronous task that takes a long time to 
complete and that never gives back the control to the event loop until it has finished? 
This kind of task is also known as CPU-bound, because its main characteristic is that 
it is heavy on CPU utilization rather than being heavy on I/O operations.

Let's work immediately on an example to see how these types of task behave in 
Node.js.

Solving the subset sum problem
Let's now choose a computationally expensive problem to use as a base for our 
experiment. A good candidate is the subset sum problem, which decides whether 
a set (or multiset) of integers contains a non-empty subset that has a sum equal to 
zero. For example, if we had as input the set [1, 2, –4, 5, –3], the subsets satisfying the 
problem are [1, 2, –3] and [2, –4, 5, –3].

For use in production, most of the time, we can rely on a widely 
used package from the Node.js ecosystem such as caf (the 
acronym means Cancelable Async Flows), which you can find at 
nodejsdp.link/caf.

http://nodejsdp.link/caf
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The simplest algorithm is the one that checks every possible combination of subsets 
of any size and has a computational cost of O(2n), or in other words, it grows 
exponentially with the size of the input. This means that a set of 20 integers would 
require up to 1,048,576 combinations to be checked, which is not bad for testing our 
assumptions. For our example, we are going to consider the following variation of 
the subset sum problem: given a set of integers, we want to calculate all the possible 
combinations whose sum is equal to a given arbitrary integer, not just zero.

Now, let's work to implement such an algorithm. First, let's create a new module 
called subsetSum.js. We will start by creating a class called SubsetSum:

export class SubsetSum extends EventEmitter {
  constructor (sum, set) {
    super()
    this.sum = sum
    this.set = set
    this.totalSubsets = 0
  }
//...

The SubsetSum class is extending EventEmitter. This allows us to produce an event 
every time we find a new subset matching the sum received as input. As we will see, 
this will give us a lot of flexibility.

Next, let's see how we can generate all the possible combinations of subsets:

_combine (set, subset) {
  for (let i = 0; i < set.length; i++) {
    const newSubset = subset.concat(set[i])
    this._combine(set.slice(i + 1), newSubset)
    this._processSubset(newSubset)
  }
}

We will not go into too much detail about the algorithm, but there are two important 
things to notice:

• The _combine() method is completely synchronous. It recursively generates 
every possible subset without ever giving back control to the event loop.

• Every time a new combination is generated, we provide it to 
the _processSubset() method for further processing.
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The _processSubset() method is responsible for verifying that the sum of 
the elements of the given subset is equal to the number we are looking for:

_processSubset (subset) {
  console.log('Subset', ++this.totalSubsets, subset)
  const res = subset.reduce((prev, item) => (prev + item), 0)
  if (res === this.sum) {
    this.emit('match', subset)
  }
}

Trivially, the _processSubset() method applies a reduce operation to the 
subset in order to calculate the sum of its elements. Then, it emits an event of 
the type match when the resulting sum is equal to the one we are interested in 
finding (this.sum).

Finally, the start() method puts all the preceding pieces together:

start () {
  this._combine(this.set, [])
  this.emit('end')
}

The start() method triggers the generation of all the combinations by invoking 
_combine(), and lastly, emits an end event, signaling that all the combinations 
were checked and any possible match has already been emitted. This is possible 
because _combine() is synchronous; therefore, the end event is emitted as soon as 
the function returns, which means that all the combinations have been calculated.

Next, we have to expose the algorithm we just created over the network. As always, 
we can use a simple HTTP server for this task. In particular, we want to create an 
endpoint that accepts requests in the format /subsetSum?data=<Array>&sum=<Integ
er> that invokes the SubsetSum algorithm with the given array of integers and sum 
to match.

Let's implement this simple server in a module named index.js:

import { createServer } from 'http'
import { SubsetSum } from './subsetSum.js'

createServer((req, res) => {
  const url = new URL(req.url, 'http://localhost')
  if (url.pathname !== '/subsetSum') {
    res.writeHead(200)
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    return res.end('I\'m alive!\n')
  }

  const data = JSON.parse(url.searchParams.get('data'))
  const sum = JSON.parse(url.searchParams.get('sum'))
  res.writeHead(200)
  const subsetSum = new SubsetSum(sum, data)
  subsetSum.on('match', match => {
    res.write(`Match: ${JSON.stringify(match)}\n`)
  })
  subsetSum.on('end', () => res.end())
  subsetSum.start()
}).listen(8000, () => console.log('Server started'))

Thanks to the fact that the SubsetSum object returns its results using events, we can 
stream the matching subsets as soon as they are generated by the algorithm, in 
real time. Another detail to mention is that our server responds with the text I'm 
alive! every time we hit a URL different than /subsetSum. We will use this for 
checking the responsiveness of our server, as we will see in a moment.

We are now ready to try our subset sum algorithm. Curious to know how our server 
will handle it? Let's fire it up, then:

node index.js

As soon as the server starts, we are ready to send our first request. Let's try it with 
a multiset of 17 random numbers, which will result in the generation of 131,071 
combinations, a nice amount to keep our server busy for a while:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[16, 
19,1,1,-16,9,1,-5,-2,17,-15,-97,19,-16,-4,-5,15]" --data-urlencode 
"sum=0"

After a few seconds, we should see the results coming from the server. But if we try 
the following command in another terminal while the first request is still running, 
we will spot a huge problem:

curl -G http://localhost:8000

We will immediately see that this last request hangs until the subset sum algorithm 
of the first request has finished: the server is unresponsive! This was actually 
expected. The Node.js event loop runs in a single thread, and if this thread is blocked 
by a long synchronous computation, it will be unable to execute even a single cycle 
in order to respond with a simple I'm alive!
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We quickly understand that this behavior does not work for any kind of application 
meant to process multiple concurrent requests. But don't despair. In Node.js, we can 
tackle this type of situation in several ways. So, let's analyze the three most popular 
methods, which are "interleaving with setImmediate," "using external processes," and 
"using worker threads."

Interleaving with setImmediate
Usually, a CPU-bound algorithm is built upon a set of steps. This can be a set 
of recursive invocations, a loop, or any variation/combination of these. So, a simple 
solution to our problem would be to give back the control to the event loop after 
each of these steps completes (or after a certain number of them). This way, any 
pending I/O can still be processed by the event loop in those intervals in which the 
long-running algorithm yields the CPU. A simple way to achieve this is to schedule 
the next step of the algorithm to run after any pending I/O requests. This sounds like 
the perfect use case for the setImmediate() function (we already introduced this API 
in Chapter 3, Callbacks and Events).

Interleaving the steps of the subset sum algorithm
Let's now see how this technique applies to our subset sum algorithm. All we 
have to do is slightly modify the subsetSum.js module. For convenience, we are 
going to create a new module called subsetSumDefer.js, taking the code of the 
original subsetSum class as a starting point.

The first change we are going to make is to add a new method called 
_combineInterleaved(), which is the core of the technique we are implementing:

_combineInterleaved (set, subset) {
  this.runningCombine++
  setImmediate(() => {
    this._combine(set, subset)
    if (--this.runningCombine === 0) {
      this.emit('end')
    }
  })
}

As we can see, all we had to do is defer the invocation of the original (synchronous) 
_combine() method with setImmediate(). However, now, it becomes more difficult 
to know when the function has finished generating all the combinations, because the 
algorithm is not synchronous anymore. 
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To fix this, we have to keep track of all the running instances of the _combine() 
method using a pattern very similar to the asynchronous parallel execution flow 
that we saw in Chapter 4, Asynchronous Control Flow Patterns with Callbacks. When 
all the instances of the _combine() method have finished running, we can emit 
the end event, notifying any listener that the process has completed.

To finish refactoring the subset sum algorithm, we need to make a couple more 
tweaks. First, we need to replace the recursive step in the _combine() method with 
its deferred counterpart:

_combine (set, subset) {
  for (let i = 0; i < set.length; i++) {
    const newSubset = subset.concat(set[i])
    this._combineInterleaved(set.slice(i + 1), newSubset)
    this._processSubset(newSubset)
  }
}

With the preceding change, we make sure that each step of the algorithm will be 
queued in the event loop using setImmediate() and, therefore, executed after any 
pending I/O request instead of being run synchronously.

The other small tweak is in the start() method:

start () {
  this.runningCombine = 0
  this._combineInterleaved(this.set, [])
}

In the preceding code, we initialized the number of running instances of the 
_combine() method to 0. We also replaced the call to _combine() with a call to 
_combineInterleaved() and removed the emission of the end event because this is 
now handled asynchronously in _combineInterleaved().

With this last change, our subset sum algorithm should now be able to run its CPU-
bound code in steps interleaved by intervals, where the event loop can run and 
process any other pending request.

The last missing bit is updating the index.js module so that it can use the new 
version of the SubsetSum API. This is actually a trivial change:

import { createServer } from 'http'
// import { SubsetSum } from './subsetSum.js'
import { SubsetSum } from './subsetSumDefer.js'
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createServer((req, res) => {
  // ...

We are now ready to try this new version of the subset sum server. Start the server 
again and then try to send a request to calculate all the subsets matching a given 
sum:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[16, 
19,1,1,-16,9,1,-5,-2,17,-15,-97,19,-16,-4,-5,15]" --data-urlencode 
"sum=0"

While the request is running, check again whether the server is responsive:

curl -G http://localhost:8000

Cool! The second request should return almost immediately, even while 
the SubsetSum task is still running, confirming that our technique is working well.

Considerations on the interleaving approach
As we saw, running a CPU-bound task while preserving the responsiveness of 
an application is not that complicated; it just requires the use of setImmediate() to 
schedule the next step of an algorithm to run after any pending I/O. However, this 
is not the best recipe in terms of efficiency. In fact, deferring a task introduces a small 
overhead that, multiplied by all the steps that an algorithm has to run, can have a 
significant impact on the overall running time. This is usually the last thing we want 
when running a CPU-bound task. A possible solution to mitigate this problem would 
be using setImmediate() only after a certain number of steps—instead of using it at 
every single step—but still, this would not solve the root of the problem.

Also, this technique doesn't work very well if each step takes a long time to run. 
In this case, in fact, the event loop would lose responsiveness, and the whole 
application would start lagging, which is undesirable in a production environment.

Bear in mind that this does not mean that the technique we have just seen should be 
avoided at all costs. In certain situations in which the synchronous task is executed 
sporadically and doesn't take too long to run, using setImmediate() to interleave its 
execution is sometimes the simplest and most effective way to avoid blocking the 
event loop.
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Using external processes
Deferring the steps of an algorithm is not the only option we have for running 
CPU-bound tasks. Another pattern for preventing the event loop from blocking is 
using child processes. We already know that Node.js gives its best when running 
I/O-intensive applications such as web servers, which allows us to optimize resource 
utilization thanks to its asynchronous architecture. So, the best way we have to 
maintain the responsiveness of an application is to not run expensive CPU-bound 
tasks in the context of the main application and, instead, use separate processes. This 
has three main advantages:

• The synchronous task can run at full speed, without the need to interleave 
the steps of its execution.

• Working with processes in Node.js is simple, probably easier than modifying 
an algorithm to use setImmediate(), and allows us to easily use multiple 
processors without the need to scale the main application itself.

• If we really need maximum performance, the external process could be 
created in lower-level languages, such as good old C or more modern 
compiled languages like Go or Rust. Always use the best tool for the job!

Node.js has an ample toolbelt of APIs for interacting with external processes. We 
can find all we need in the child_process module. Moreover, when the external 
process is just another Node.js program, connecting it to the main application is 
extremely easy and allows seamless communication with the local application. 
This magic happens thanks to the child_process.fork() function, which creates 
a new child Node.js process and also automatically creates a communication 
channel with it, allowing us to exchange information using an interface very 
similar to the EventEmitter. Let's see how this works by refactoring our subset 
sum server again.

Note that process.nextTick() cannot be used to interleave 
a long-running task. As we saw in Chapter 3, Callbacks 
and Events, nextTick() schedules a task to run before 
any pending I/O, and this will cause I/O starvation in 
case of repeated calls. You can verify this yourself by 
replacing setImmediate() with process.nextTick() in the 
previous example.
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Delegating the subset sum task to an external 
process
The goal of refactoring the SubsetSum task is to create a separate child process 
responsible for handling the synchronous processing, leaving the event loop of the 
main server free to handle requests coming from the network. This is the recipe we 
are going to follow to make this possible:

1. We will create a new module named processPool.js that will allow us to 
create a pool of running processes. Starting a new process is expensive and 
requires time, so keeping them constantly running and ready to handle 
requests allows us to save time and CPU cycles. Also, the pool will help us 
limit the number of processes running at the same time to prevent exposing 
the application to denial-of-service (DoS) attacks.

2. Next, we will create a module called subsetSumFork.js responsible for 
abstracting a SubsetSum task running in a child process. Its role will be 
communicating with the child process and forwarding the results of the 
task as if they were coming from the current application.

3. Finally, we need a worker (our child process), a new Node.js program with 
the only goal of running the subset sum algorithm and forwarding its results 
to the parent process.

Implementing a process pool
Let's start by building the processPool.js module piece by piece:

import { fork } from 'child_process'

export class ProcessPool {
  constructor (file, poolMax) {
    this.file = file
    this.poolMax = poolMax
    this.pool = []
    this.active = []
    this.waiting = []
  }
//...

The purpose of a DoS attack is to make a machine unavailable to its 
users. This is usually achieved by exhausting the capacity of such a 
machine by exploiting a vulnerability or massively overloading it 
with requests (DDoS – distributed DoS).
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In the first part of the module, we import the fork() function from the 
child_process module, which we will use to create new processes. Then, we define 
the ProcessPool constructor, which accepts a file parameter representing the 
Node.js program to run, and the maximum number of running instances in the pool 
(poolMax). We then define three instance variables:

• pool is the set of running processes ready to be used.
• active contains the list of the processes currently being used.
• waiting contains a queue of callbacks for all those requests that could not be 

fulfilled immediately because of the lack of an available process.

The next piece of the ProcessPool class is the acquire() method, which is responsible 
for eventually returning a process ready to be used, when one becomes available:

acquire () {
  return new Promise((resolve, reject) => {
    let worker
    if (this.pool.length > 0) {                            // (1)
      worker = this.pool.pop()
      this.active.push(worker)
      return resolve(worker)
    }

    if (this.active.length >= this.poolMax) {              // (2)
      return this.waiting.push({ resolve, reject })
    }

    worker = fork(this.file)                               // (3)
    worker.once('message', message => {
      if (message === 'ready') {
        this.active.push(worker)
        return resolve(worker)
      }
      worker.kill()
      reject(new Error('Improper process start'))
    })
    worker.once('exit', code => {
      console.log(`Worker exited with code ${code}`)
      this.active = this.active.filter(w => worker !== w)
      this.pool = this.pool.filter(w => worker !== w)
    })
  })
}
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The logic of acquire() is very simple and is explained as follows:

1. If we have a process in the pool ready to be used, we simply move it to 
the active list and then use it to fulfill the outer promise with resolve().

2. If there are no available processes in the pool and we have already reached 
the maximum number of running processes, we have to wait for one to be 
available. We achieve this by queuing the resolve() and reject() callbacks 
of the outer promise, for later use.

3. If we haven't reached the maximum number of running processes yet, we 
create a new one using child_process.fork(). Then, we wait for the ready 
message coming from the newly launched process, which indicates that the 
process has started and is ready to accept new jobs. This message-based 
channel is automatically provided with all processes started with child_
process.fork().

The last method of the ProcessPool class is release(), whose purpose is to put a 
process back into the pool once we are done with it:

release (worker) {
  if (this.waiting.length > 0) {                           // (1)
    const { resolve } = this.waiting.shift()
    return resolve(worker)
  }
  this.active = this.active.filter(w => worker !== w)      // (2)
  this.pool.push(worker)
}

This is how the release() method works:

1. If there is a request in the waiting list, we simply reassign the worker we 
are releasing by passing it to the resolve() callback at the head of 
the waiting queue.

2. Otherwise, we remove the worker that we are releasing from the active list 
and put it back into the pool.

As we can see, the processes are never stopped but just reassigned, allowing us to 
save time by not restarting them at each request. However, it's important to observe 
that this might not always be the best choice, and this greatly depends on the 
requirements of your application.
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Other possible tweaks for reducing long-term memory usage and adding resilience 
to our process pool are:

• Terminate idle processes to free memory after a certain time of inactivity.
• Add a mechanism to kill non-responsive processes or restart those that have 

crashed.

In this example, we will keep the implementation of our process pool simple as the 
details we could add are really endless.

Communicating with a child process
Now that our ProcessPool class is ready, we can use it to implement the 
SubsetSumFork class, whose role is to communicate with the worker and forward 
the results it produces. As we already mentioned, starting a process with 
child_process.fork() also gives us a simple message-based communication 
channel, so let's see how this works by implementing the subsetSumFork.js module:

import { EventEmitter } from 'events'
import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { ProcessPool } from './processPool.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const workerFile = join(__dirname,
  'workers', 'subsetSumProcessWorker.js')
const workers = new ProcessPool(workerFile, 2)

export class SubsetSum extends EventEmitter {
  constructor (sum, set) {
    super()
    this.sum = sum
    this.set = set
  }

  async start () {
    const worker = await workers.acquire()                 // (1)
    worker.send({ sum: this.sum, set: this.set })

    const onMessage = msg => {
      if (msg.event === 'end') {                           // (3)
        worker.removeListener('message', onMessage)
        workers.release(worker)
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      }

      this.emit(msg.event, msg.data)                       // (4)
    }

    worker.on('message', onMessage)                        // (2)
  }
}

The first thing to note is that we created a new ProcessPool object using the 
file ./workers/subsetSumProcessWorker.js as the child worker. We also set the 
maximum capacity of the pool to 2.

Another point worth mentioning is that we tried to maintain the same public API 
of the original SubsetSum class. In fact, SubsetSumFork is an EventEmitter whose 
constructor accepts sum and set, while the start() method triggers the execution of 
the algorithm, which, this time, runs on a separate process. This is what happens 
when the start() method is invoked:

1. We try to acquire a new child process from the pool. When the operation 
completes, we immediately use the worker handle to send a message to the 
child process with the data of the job to run. The send() API is provided 
automatically by Node.js to all processes started with child_process.fork(). 
This is essentially the communication channel that we were talking about.

2. We then start listening for any message sent by the worker process 
using the on() method to attach a new listener (this is also a part of 
the communication channel provided by all processes started with 
child_process.fork()).

3. In the onMessage listener, we first check if we received an end event, which 
means that the SubsetSum task has finished, in which case we remove 
the onMessage listener and release the worker, putting it back into the pool.

4. The worker produces messages in the format {event, data}, allowing us to 
seamlessly forward (re-emit) any event produced by the child process.

That's it for the SubsetSumFork wrapper. Let's now implement the worker (our child 
process).
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Implementing the worker
Let's now create the workers/subsetSumProcessWorker.js module, our worker 
process:

import { SubsetSum } from '../subsetSum.js'

process.on('message', msg => {                             // (1)
  const subsetSum = new SubsetSum(msg.sum, msg.set)

  subsetSum.on('match', data => {                          // (2)
    process.send({ event: 'match', data: data })
  })

  subsetSum.on('end', data => {
    process.send({ event: 'end', data: data })
  })

  subsetSum.start()
})

process.send('ready')

We can immediately see that we are reusing the original (and synchronous) 
SubsetSum as it is. Now that we are in a separate process, we don't have to worry 
about blocking the event loop anymore; all the HTTP requests will continue to be 
handled by the event loop of the main application without disruptions.

When the worker is started as a child process, this is what happens:

1. It immediately starts listening for messages coming from the parent 
process. This can be easily done with the process.on() function (a 
part of the communication API provided when the process is started 
with child_process.fork()). 

It is good to know that the send() method available on a 
child process instance can also be used to propagate a socket 
handle from the main application to a child process (look at the 
documentation at nodejsdp.link/childprocess-send). This is 
actually the technique used by the cluster module to distribute 
the load of an HTTP server across multiple processes. We will see 
this in more detail in the next chapter.

http://nodejsdp.link/childprocess-send
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The only message we expect from the parent process is the one providing 
the input to a new SubsetSum task. As soon as such a message is received, 
we create a new instance of the SubsetSum class and register the listeners 
for the match and end events. Lastly, we start the computation with 
subsetSum.start().

2. Every time an event is received from the running algorithm, we wrap it in 
an object having the format {event, data} and send it to the parent process. 
These messages are then handled in the subsetSumFork.js module, as we 
have seen in the previous section.

As we can see, we just had to wrap the algorithm we already built, without 
modifying its internals. This clearly shows that any portion of an application can be 
easily put in an external process by simply using the technique we have just seen.

Considerations for the multi-process approach
As always, to try this new version of the subset sum algorithm, we simply have to 
replace the module used by the HTTP server (the index.js file):

import { createServer } from 'http'
// import { SubsetSum } from './subsetSum.js'
// import { SubsetSum } from './subsetSumDefer.js'
import { SubsetSum } from './subsetSumFork.js'

createServer((req, res) => {
//...

We can now start the server again and try to send a sample request:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[16, 
19,1,1,-16,9,1,-5,-2,17,-15,-97,19,-16,-4,-5,15]" --data-urlencode 
"sum=0"

When the child process is not a Node.js program, the simple 
communication channel we just described (on(), send()) is not 
available. In these situations, we can still establish an interface with 
the child process by implementing our own protocol on top of the 
standard input and standard output streams, which are exposed 
to the parent process. To find out more about all the capabilities 
of the child_process API, you can refer to the official Node.js 
documentation at nodejsdp.link/child_process.

http://nodejsdp.link/child_process
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As for the interleaving approach that we saw previously, with this new version of 
the SubsetSum module, the event loop is not blocked while running the CPU-bound 
task. This can be confirmed by sending another concurrent request, as follows:

curl -G http://localhost:8000

The preceding command should immediately return the text I'm alive!

More interestingly, we can also try to start two SubsetSum tasks concurrently and 
we will be able to see that they will use the full power of two different processors in 
order to run (if your system has more than one processor, of course). Instead, if we 
try to run three SubsetSum tasks concurrently, the result should be that the last one 
to start will hang. This is not because the event loop of the main process is blocked, 
but because we set a concurrency limit of two processes for the SubsetSum task, 
which means that the third request will be handled as soon as at least one of the two 
processes in the pool becomes available again.

As we saw, the multi-process approach has many advantages compared to the 
interleaving approach. First, it doesn't introduce any computational penalty when 
running the algorithm. Second, it can take full advantage of a multi-processor 
machine.

Now, let's see an alternative approach that uses threads instead of processes.

Using worker threads
Since Node 10.5.0, we have a new mechanism for running CPU-intensive algorithms 
outside of the main event loop called worker threads. Worker threads can be seen 
as a lightweight alternative to child_process.fork() with some extra goodies. 
Compared to processes, worker threads have a smaller memory footprint and 
a faster startup time since they run within the main process but inside different 
threads.

Even though worker threads are based on real threads, they don't allow the deep 
synchronization and sharing capabilities supported by other languages such as Java 
or Python. This is because JavaScript is a single-threaded language and it doesn't 
have any built-in mechanism to synchronize access to variables from multiple 
threads. JavaScript with threads simply wouldn't be JavaScript. The solution to bring 
all the advantages of threads within Node.js without actually changing the language 
is worker threads.
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Worker threads are essentially threads that, by default, don't share anything with the 
main application thread; they run within their own V8 instance, with an independent 
Node.js runtime and event loop. Communication with the main thread is possible 
thanks to message-based communication channels, the transfer of ArrayBuffer 
objects, and the use of SharedArrayBuffer objects whose synchronization is managed 
by the user (usually with the help of Atomics).

This extensive level of isolation of worker threads from the main thread preserves 
the integrity of the language. At the same time, the basic communication facilities 
and data-sharing capabilities are more than enough for 99% of use cases.

Now, let's use worker threads in our SubsetSum example.

Running the subset sum task in a worker thread
The worker threads API has a lot in common with that of ChildProcess, so the 
changes to our code will be minimal.

First, we need to create a new class called ThreadPool, which is our ProcessPool 
adapted to operate with worker threads instead of processes. The following code 
shows the differences between the new ThreadPool class and the ProcessPool class. 
There are only a few differences in the acquire() method, which are highlighted; the 
rest of the code is identical:

import { Worker } from 'worker_threads'

export class ThreadPool {
  // ...

  acquire () {
    return new Promise((resolve, reject) => {
      let worker
      if (this.pool.length > 0) {
        worker = this.pool.pop()
        this.active.push(worker)
        return resolve(worker)
      }

You can read more about SharedArrayBuffer and Atomics in the 
following article: nodejsdp.link/shared-array-buffer. Even 
though the article focuses on Web Workers, a lot of concepts are 
similar to Node.js's worker threads.

http://nodejsdp.link/shared-array-buffer
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      if (this.active.length >= this.poolMax) {
        return this.waiting.push({ resolve, reject })
      }

      worker = new Worker(this.file)
      worker.once('online', () => {
        this.active.push(worker)
        resolve(worker)
      })
      worker.once('exit', code => {
        console.log(`Worker exited with code ${code}`)
        this.active = this.active.filter(w => worker !== w)
        this.pool = this.pool.filter(w => worker !== w)
      })
    })
  }

  //...
}

Next, we need to adapt the worker and place it in a new file called 
subsetSumThreadWorker.js. The main difference from our old worker is 
that instead of using process.send() and process.on(), we'll have to use 
parentPort.postMessage() and parentPort.on():

import { parentPort } from 'worker_threads'
import { SubsetSum } from '../subsetSum.js'

parentPort.on('message', msg => {
  const subsetSum = new SubsetSum(msg.sum, msg.set)

  subsetSum.on('match', data => {
    parentPort.postMessage({ event: 'match', data: data })
  })

  subsetSum.on('end', data => {
    parentPort.postMessage({ event: 'end', data: data })
  })

  subsetSum.start()
})
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Similarly, the module subsetSumThreads.js is essentially the same as the 
subsetSumFork.js module except for a couple of lines of code, which are highlighted 
in the following code fragment:

import { EventEmitter } from 'events'
import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { ThreadPool } from './threadPool.js'

const __dirname = dirname(fileURLToPath(import.meta.url))
const workerFile = join(__dirname,
  'workers', 'subsetSumThreadWorker.js')
const workers = new ThreadPool(workerFile, 2)

export class SubsetSum extends EventEmitter {
  constructor (sum, set) {
    super()
    this.sum = sum
    this.set = set
  }

  async start () {
    const worker = await workers.acquire()
    worker.postMessage({ sum: this.sum, set: this.set })

    const onMessage = msg => {
      if (msg.event === 'end') {
        worker.removeListener('message', onMessage)
        workers.release(worker)
      }

      this.emit(msg.event, msg.data)
    }

    worker.on('message', onMessage)
  }
}

As we've seen, adapting an existing application to use worker threads instead of 
forked processes is a trivial operation. This is because the API of the two components 
are very similar, but also because a worker thread has a lot in common with a full-
fledged Node.js process.
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Finally, we need to update the index.js module so that it can use the new 
subsetSumThreads.js module, as we've seen for the other implementations 
of the algorithm:

import { createServer } from 'http'
// import { SubsetSum } from './subsetSum.js'
// import { SubsetSum } from './subsetSumDefer.js'
// import { SubsetSum } from './subsetSumFork.js'
import { SubsetSum } from './subsetSumThreads.js'

createServer((req, res) => {
  // ...

Now, you can try the new version of the subset sum server using worker threads. As 
for the previous two implementations, the event loop of the main application is not 
blocked by the subset sum algorithm as it runs in a separate thread.

Running CPU-bound tasks in production
The examples we've seen so far should give you an idea of the tools at our disposal 
for running CPU-intensive operations in Node.js. However, components such as 
process pools and thread pools are complex pieces of machinery that require proper 
mechanisms to deal with timeouts, errors, and other types of failures, which, for 
brevity, we left out from our implementation. Therefore, unless you have special 
requirements, it's better to rely on more battle-tested libraries for production use. 
Two of those libraries are workerpool (nodejsdp.link/workerpool) and piscina 
(nodejsdp.link/piscina), which are based on the same concepts we've seen in this 
section. They allow us to coordinate the execution of CPU-intensive tasks using 
external processes or worker threads.

One last observation is that we must consider that if we have particularly complex 
algorithms to run or if the number of CPU-bound tasks exceeds the capacity of a 
single node, we may have to think about scaling out the computation across multiple 
nodes. This is a completely different problem and we'll learn more about this in the 
next two chapters.

The example we've seen uses only a small subset of all the 
capabilities offered by worker threads. For more advanced topics 
such as transferring ArrayBuffer objects or SharedArrayBuffer 
objects, you can read the official API documentation at 
nodejsdp.link/worker-threads.

http://nodejsdp.link/workerpool
http://nodejsdp.link/piscina
http://nodejsdp.link/worker-threads
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Summary
This chapter added some great new weapons to our toolbelt, and as you can see, our 
journey is getting more focused on advanced problems. Due to this, we have started 
to delve deeply into more complex solutions. This chapter gave us not only a set of 
recipes to reuse and customize for our needs, but also some great demonstrations of 
how mastering a few principles and patterns can help us tackle the most complex 
problems in Node.js development.

The next two chapters represent the peak of our journey. After studying the various 
tactics of Node.js development, we are now ready to move on to the strategies 
and explore the architectural patterns for scaling and distributing our Node.js 
applications.

Exercises
• 11.1 Proxy with pre-initialization queues: Using a JavaScript Proxy, create a 

wrapper for adding pre-initialization queues to any object. You should allow 
the consumer of the wrapper to decide which methods to augment and the 
name of the property/event that indicates if the component is initialized.

• 11.2 Batching and caching with callbacks: Implement batching and caching 
for the totalSales API examples using only callbacks, streams, and events 
(without using promises or async/await). Hint: Pay attention to Zalgo when 
returning cached values!

• 11.3 Deep async cancelable: Extend the createAsyncCancelable() function 
so that it's possible to invoke other cancelable functions from within the main 
cancelable function. Canceling the main operation should also cancel all 
nested operations. Hint: Allow to yield the result of an asyncCancelable() 
from within the generator function.

• 11.4 Compute farm: Create an HTTP server with a POST endpoint that 
receives, as input, the code of a function (as a string) and an array of 
arguments, executes the function with the given arguments in a worker 
thread or in a separate process, and returns the result back to the client. 
Hint: You can use eval(), vm.runInContext(), or neither of the two. Note: 
Whatever code you produce for this exercise, please be aware that allowing 
users to run arbitrary code in a production setting can pose serious security 
risks, and you should never do it unless you know exactly what the 
implications are.
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12
Scalability and 

Architectural Patterns
In its early days, Node.js was just a non-blocking web server written in C++ 
and JavaScript and was called web.js. Its creator, Ryan Dahl, soon realized the 
potential of the platform and started extending it with tools to enable the creation of 
different types of server-side applications on top of JavaScript and the non-blocking 
paradigm.

The characteristics of Node.js are perfect for the implementation of distributed 
systems, ranging from a few nodes to thousands of nodes communicating through 
the network: Node.js was born to be distributed.

Unlike in other web platforms, scalability is a topic that gets explored rather quickly 
in Node.js while developing an application. This is often because of the single-
threaded nature of Node.js, which is incapable of exploiting all the resources of 
a multi-core machine. But this is just one side of the coin. In reality, there are more 
profound reasons for talking about scalability with Node.js.

As we will see in this chapter, scaling an application does not only mean increasing 
its capacity, enabling it to handle more requests faster: it's also a crucial path to 
achieving high availability and tolerance to errors.

Sometimes, we even refer to scalability when we talk about ways to split the 
complexity of an application into more manageable pieces. Scalability is a concept 
with multiple faces, six to be precise, as many as there are faces on a cube—the scale 
cube.
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In this chapter, you will learn the following topics:

• Why you should care about scalability
• What the scale cube is and why it is useful to understand scalability
• How to scale by running multiple instances of the same application
• How to leverage a load balancer when scaling an application
• What a service registry is and how it can be used
• Running and scaling Node.js applications using container orchestration 

platforms like Kubernetes
• How to design a microservice architecture out of a monolithic application
• How to integrate a large number of services through the use of some simple 

architectural patterns

An introduction to application scaling
Scalability can be described as the capability of a system to grow and adapt to ever-
changing conditions. Scalability is not limited to pure technical growth; it is also 
dependent on the growth of a business and the organization behind it.

If you are building the next "unicorn startup" and you expect your product to rapidly 
reach millions of users worldwide, you will face serious scalability challenges. How 
is your application going to sustain ever-increasing demand? Is the system going 
to get slower over time or crash often? How can you store high volumes of data 
and keep I/O under control? As you hire more people, how can you organize the 
different teams effectively and make them able to work autonomously, without 
contention across the different parts of the codebase?

Even if you are not working on a high-scale project, that doesn't mean that you 
will be free from scalability concerns. You will just face different types of scalability 
challenges. Being unprepared for these challenges might seriously hinder the 
success of the project and ultimately damage the company behind it. It's important 
to approach scalability in the context of the specific project and understand the 
expectations for current and future business needs.

Since scalability is such a broad topic, in this chapter, we will focus our attention on 
discussing the role of Node.js in the context of scalability. We will discuss several 
useful patterns and architectures used to scale Node.js applications.

With these in your toolbelt and a solid understanding of your business context, you 
will be able to design and implement Node.js applications that can adapt and satisfy 
your business needs and keep your customers happy.
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Scaling Node.js applications
We already know that most of the workload of a typical Node.js application runs 
in the context of a single thread. In Chapter 1, The Node.js Platform, we learned that 
this is not necessarily a limitation but rather an advantage, because it allows the 
application to optimize the usage of the resources necessary to handle concurrent 
requests, thanks to the non-blocking I/O paradigm. This model works wonderfully 
for applications handling a moderate number of requests per second (usually a few 
hundred per second), especially if the application is mostly performing I/O-bound 
tasks (for example, reading and writing from the filesystem and the network) rather 
than CPU-bound ones (for example, number crunching and data processing).

In any case, assuming we are using commodity hardware, the capacity that a single 
thread can support is limited. This is regardless of how powerful a server can be, so 
if we want to use Node.js for high-load applications, the only way is to scale it across 
multiple processes and machines.

However, workload is not the only reason to scale a Node.js application. In fact, 
with the same techniques that allow us to scale workloads, we can obtain other 
desirable properties such as high availability and tolerance to failures. Scalability 
is also a concept applicable to the size and complexity of an application. In fact, 
building architectures that can grow as much as needed over time is another 
important factor when designing software.

JavaScript is a tool to be used with caution. The lack of type checking and its 
many gotchas can be an obstacle to the growth of an application, but with discipline 
and accurate design, we can turn some of its downsides into precious advantages. 
With JavaScript, we are often pushed to keep the application simple and to split 
its components it into small, manageable pieces. This mindset can make it easier to 
build applications that are distributed and scalable, but also easy to evolve over time.

The three dimensions of scalability
When talking about scalability, the first fundamental principle to understand 
is load distribution, which is the science of splitting the load of an application 
across several processes and machines. There are many ways to achieve this, and 
the book The Art of Scalability by Martin L. Abbott and Michael T. Fisher proposes 
an ingenious model to represent them, called the scale cube. This model describes 
scalability in terms of the following three dimensions:

• X-axis — Cloning
• Y-axis — Decomposing by service/functionality
• Z-axis — Splitting by data partition
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These three dimensions can be represented as a cube, as shown in Figure 12.1:

Figure 12.1: The scale cube

The bottom-left corner of the cube (that is, the intersection between the X-axis and 
the Y-axis) represents the application having all the functionality in a single code 
base and running on a single instance. This is what we generally call a monolithic 
application. This is a common situation for applications handling small workloads 
or at the early stages of their development. Given a monolithic application, there are 
three different strategies for scaling it. By looking at the scale cube, these strategies 
are represented as growth along the different axes of the cube: X, Y, and Z:

• X-axis — Cloning: The most intuitive evolution of a monolithic, unscaled 
application is moving right along the X-axis, which is simple, most of the 
time inexpensive (in terms of development cost), and highly effective. The 
principle behind this technique is elementary, that is, cloning the same 
application n times and letting each instance handle 1/nth of the workload.

• Y-axis — Decomposing by service/functionality: Scaling along the Y-axis 
means decomposing the application based on its functionalities, services, or 
use cases. In this instance, decomposing means creating different, standalone 
applications, each with its own codebase, possibly with its own dedicated 
database, and even with a separate UI.
For example, a common situation is separating the part of an application 
responsible for the administration from the public-facing product. Another 
example is extracting the services responsible for user authentication, thereby 
creating a dedicated authentication server.
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The criteria to split an application by its functionalities depend mostly on 
its business requirements, the use cases, the data, and many other factors, 
as we will see later in this chapter. Interestingly, this is the scaling dimension 
with the biggest repercussions, not only on the architecture of an application 
but also on the way it is managed from a development and an operational 
perspective. As we will see, microservice is a term that is most commonly 
associated with a fine-grained Y-axis scaling.

• Z-axis — Splitting by data partition: The last scaling dimension is the Z-axis, 
where the application is split in such a way that each instance is responsible 
for only a portion of the whole data. This is a technique often used in 
databases, also known as horizontal/vertical partitioning. In this setup, 
there are multiple instances of the same application, each of them operating 
on a partition of the data, which is determined using different criteria.
For example, we could partition the users of an application based on their 
country (list partitioning), or based on the starting letter of their surname 
(range partitioning), or by letting a hash function decide the partition each 
user belongs to (hash partitioning).
Each partition can then be assigned to a particular instance of the application. 
The use of data partitions requires each operation to be preceded by 
a lookup step to determine which instance of the application is responsible 
for a given datum. As we said, data partitioning is usually applied and 
handled at the data storage level because its main purpose is overcoming the 
problems related to handling large monolithic datasets (limited disk space, 
memory, and network capacity). Applying it at the application level is worth 
considering only for complex, distributed architectures or for very particular 
use cases such as, for example, when building applications relying on custom 
solutions for data persistence, when using databases that don't support 
partitioning, or when building applications at Google scale. Considering 
its complexity, scaling an application along the Z-axis should be taken into 
consideration only after the X and Y axes of the scale cube have been fully 
exploited.

In the following sections, we will focus on the two most common and effective 
techniques used to scale Node.js applications, namely, cloning and decomposing 
by functionality/service.

Cloning and load balancing
Traditional, multithreaded web servers are usually only scaled horizontally when 
the resources assigned to a machine cannot be upgraded any more, or when doing so 
would involve a higher cost than simply launching another machine. 
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By using multiple threads, traditional web servers can take advantage of all the 
processing power of a server, using all the available processors and memory. 
Conversely, Node.js applications, being single-threaded, are usually scaled much 
sooner compared to traditional web servers. Even in the context of a single machine, 
we need to find ways to "scale" an application in order to take advantage of all the 
available resources.

Don't be fooled into thinking about this as a disadvantage. On the contrary, being 
almost forced to scale has beneficial effects on other attributes of an application, in 
particular, availability and fault-tolerance. In fact, scaling a Node.js application by 
cloning is relatively simple and it's often implemented even if there is no need to 
harvest more resources, just for the purpose of having a redundant, fail-tolerant 
setup.

This also pushes the developer to take into account scalability from the early 
stages of an application, making sure the application does not rely on any resource 
that cannot be shared across multiple processes or machines. In fact, an absolute 
prerequisite to scaling an application is that each instance does not have to store 
common information on resources that cannot be shared, such as memory or disk. 
For example, in a web server, storing the session data in memory or on disk is a 
practice that does not work well with scaling. Instead, using a shared database will 
ensure that each instance will have access to the same session information, wherever 
it is deployed.

Let's now introduce the most basic mechanism for scaling Node.js applications: 
the cluster module.

The cluster module
In Node.js, the simplest pattern to distribute the load of an application across 
different instances running on a single machine is by using the cluster module, 
which is part of the core libraries. The cluster module simplifies the forking of new 
instances of the same application and automatically distributes incoming connections 
across them, as shown in Figure 12.2:

In Node.js, vertical scaling (adding more resources to a single 
machine) and horizontal scaling (adding more machines to the 
infrastructure) are almost equivalent concepts: both, in fact, involve 
similar techniques to leverage all the available processing power.



Chapter 12

[ 481 ]

Figure 12.2: Cluster module schematic

The master process is responsible for spawning a number of processes (workers), 
each representing an instance of the application we want to scale. Each incoming 
connection is then distributed across the cloned workers, spreading the load 
across them.

Since every worker is an independent process, you can use this approach to spawn 
as many workers as the number of CPUs available in the system. With this approach, 
you can easily allow a Node.js application to take advantage of all the computing 
power available in the system.

Notes on the behavior of the cluster module
In most systems, the cluster module uses an explicit round-robin load balancing 
algorithm. This algorithm is used inside the master process, which makes sure the 
requests are evenly distributed across all the workers. Round-robin scheduling is 
enabled by default on all platforms except Windows, and it can be globally modified 
by setting the variable cluster.schedulingPolicy and using the constants cluster.
SCHED_RR (round robin) or cluster.SCHED_NONE (handled by the operating system).
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When we use the cluster module, every invocation to server.listen() in a worker 
process is delegated to the master process. This allows the master process to receive 
all the incoming messages and distribute them to the pool of workers. The cluster 
module makes this delegation process very simple for most use cases, but there are 
several edge cases in which calling server.listen() in a worker module might not 
do what you expect:

• server.listen({fd}): If a worker listens using a specific file descriptor, 
for instance, by invoking server.listen({fd: 17}), this operation might 
produce unexpected results. File descriptors are mapped at the process level, 
so if a worker process maps a file descriptor, this won't match the same file in 
the master process. One way to overcome this limitation is to create the file 
descriptor in the master process and then pass it to the worker process. This 
way, the worker process can invoke server.listen() using a descriptor that 
is known to the master.

• server.listen(handle): Listening using handle objects (FileHandle) 
explicitly in a worker process will cause the worker to use the supplied 
handle directly, rather than delegating the operation to the master process.

• server.listen(0): Calling server.listen(0) will generally cause servers to 
listen on a random port. However, in a cluster, each worker will receive the 
same "random" port each time they call server.listen(0). In other words, 
the port is random only the first time; it will be fixed from the second call on. 
If you want every worker to listen on a different random port, you have to 
generate the port numbers by yourself.

Building a simple HTTP server
Let's now start working on an example. Let's build a small HTTP server, cloned and 
load balanced using the cluster module. First of all, we need an application to scale, 
and for this example, we don't need too much, just a very basic HTTP server.

The round-robin algorithm distributes the load evenly across 
the available servers on a rotational basis. The first request is 
forwarded to the first server, the second to the next server in the 
list, and so on. When the end of the list is reached, the iteration 
starts again from the beginning. In the cluster module, the round-
robin logic is a little bit smarter than the traditional implementation. 
In fact, it is enriched with some extra behaviors that aim to avoid 
overloading a given worker process.
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So, let's create a file called app.js containing the following code:

import { createServer } from 'http'

const { pid } = process
const server = createServer((req, res) => {
  // simulates CPU intensive work
  let i = 1e7; while (i > 0) { i-- }

  console.log(`Handling request from ${pid}`)
  res.end(`Hello from ${pid}\n`)
})

server.listen(8080, () => console.log(`Started at ${pid}`))

The HTTP server we just built responds to any request by sending back a message 
containing its process identifier (PID); this is useful for identifying which instance 
of the application is handling the request. In this version of the application, we have 
only one process, so the PID that you see in the responses and the logs will always be 
the same.

Also, to simulate some actual CPU work, we perform an empty loop 10 million 
times: without this, the server load would be almost insignificant and it will be quite 
hard to draw conclusions from the benchmarks we are going to run.

You can now check if all works as expected by running the application as usual and 
sending a request to http://localhost:8080 using either a browser or curl.

You can also try to measure the requests per second that the server is able to handle 
on one process. For this purpose, you can use a network benchmarking tool such as 
autocannon (nodejsdp.link/autocannon):

npx autocannon -c 200 -d 10 http://localhost:8080

The preceding command will load the server with 200 concurrent connections for 10 
seconds. As a reference, the result we got on our machine (a 2.5 GHz quad-core Intel 
Core i7 using Node.js v14) is in the order of 300 transactions per second.

The app module we create here is just a simple abstraction for 
a generic web server. We are not using a web framework like 
Express or Fastify for simplicity, but feel free to rewrite these 
examples using your web framework of choice.

http://nodejsdp.link/autocannon
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Now that we have a simple test web application and some reference benchmarks, 
we are ready to try some techniques to improve the performance of the application.

Scaling with the cluster module
Let's now update app.js to scale our application using the cluster module:

import { createServer } from 'http'
import { cpus } from 'os'
import cluster from 'cluster'

if (cluster.isMaster) {                                    // (1)
  const availableCpus = cpus()
  console.log(`Clustering to ${availableCpus.length} processes`)
  availableCpus.forEach(() => cluster.fork())
} else {                                                   // (2)
  const { pid } = process
  const server = createServer((req, res) => {
    let i = 1e7; while (i > 0) { i-- }
    console.log(`Handling request from ${pid}`)
    res.end(`Hello from ${pid}\n`)
  })

  server.listen(8080, () => console.log(`Started at ${pid}`))
}

Please remember that the load tests we will perform in this chapter 
are intentionally simple and minimal and are provided only for 
reference and learning purposes. Their results cannot provide 
a 100% accurate evaluation of the performance of the various 
techniques we are analyzing. When you are trying to optimize 
a real production application, make sure to always run your own 
benchmarks after every change. You might find out that, among 
the different techniques we are going to illustrate here, some can 
be more effective than others for your specific application.
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As we can see, using the cluster module requires very little effort. Let's analyze 
what is happening:

1. When we launch app.js from the command line, we are actually executing 
the master process. In this case, the cluster.isMaster variable is set 
to true and the only work we are required to do is forking the current 
process using cluster.fork(). In the preceding example, we are starting as 
many workers as there are logical CPU cores in the system to take advantage 
of all the available processing power.

2. When cluster.fork() is executed from the master process, the current 
module (app.js) is run again, but this time in worker mode (cluster.
isWorker is set to true, while cluster.isMaster is false). When the 
application runs as a worker, it can start doing some actual work. In this case, 
it starts a new HTTP server.

It's interesting to note that the usage of the cluster module is based on a recurring 
pattern, which makes it very easy to run multiple instances of an application:

if (cluster.isMaster) {
  // fork()
} else {
  // do work
}

It's important to remember that each worker is a different 
Node.js process with its own event loop, memory space, 
and loaded modules.

Under the hood, the cluster.fork() function uses the child_
process.fork() API, therefore, we also have a communication 
channel available between the master and the workers. The worker 
processes can be accessed from the variable cluster.workers, so 
broadcasting a message to all of them would be as easy as running 
the following line of code:

Object.values(cluster.workers).forEach(worker => 
worker.send('Hello from the master'))
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Now, let's try to run our HTTP server in cluster mode. If our machine has more than 
one core, we should see a number of workers being started by the master process, 
one after the other. For example, in a system with four logical cores, the terminal 
should look like this:

Started 14107
Started 14099
Started 14102
Started 14101

If we now try to hit our server again using the URL http://localhost:8080, we 
should notice that each request will return a message with a different PID, which 
means that these requests have been handled by different workers, confirming that 
the load is being distributed among them.

Now, we can try to load test our server again:

npx autocannon -c 200 -d 10 http://localhost:8080

This way, we should be able to discover the performance increase obtained by 
scaling our application across multiple processes. As a reference, in our machine, 
we saw a performance increase of about 3.3x (1,000 trans/sec versus 300 trans/sec).

Resiliency and availability with the cluster module
Because workers are all separate processes, they can be killed or respawned 
depending on a program's needs, without affecting other workers. As long as there 
are some workers still alive, the server will continue to accept connections. If no 
workers are alive, existing connections will be dropped, and new connections will be 
refused. Node.js does not automatically manage the number of workers; however, it 
is the application's responsibility to manage the worker pool based on its own needs.

As we already mentioned, scaling an application also brings other advantages, in 
particular, the ability to maintain a certain level of service, even in the presence of 
malfunctions or crashes. This property is also known as resiliency and it contributes 
to the availability of a system.

By starting multiple instances of the same application, we are creating 
a redundant system, which means that if one instance goes down for whatever 
reason, we still have other instances ready to serve requests. This pattern is pretty 
straightforward to implement using the cluster module. Let's see how it works!
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Let's take the code from the previous section as a starting point. In particular, let's 
modify the app.js module so that it crashes after a random interval of time:

// ...
} else {
  // Inside our worker block
  setTimeout(
    () => { throw new Error('Ooops') },
    Math.ceil(Math.random() * 3) * 1000
  )
  // ...

With this change in place, our server exits with an error after a random number of 
seconds between 1 and 3. In a real-life situation, this would eventually cause our 
application to stop serving requests, unless we use some external tool to monitor 
its status and restart it automatically. However, if we only have one instance, there 
may be a non-negligible delay between restarts caused by the startup time of the 
application. This means that during those restarts, the application is not available. 
Having multiple instances instead will make sure we always have a backup process 
to serve an incoming request, even when one of the workers fails.

With the cluster module, all we have to do is spawn a new worker as soon as we 
detect that one is terminated with an error code. Let's modify app.js to take this into 
account:

// ...
if (cluster.isMaster) {
  // ...
  cluster.on('exit', (worker, code) => {
    if (code !== 0 && !worker.exitedAfterDisconnect) {
      console.log(
        `Worker ${worker.process.pid} crashed. ` +
        'Starting a new worker'
      )
      cluster.fork()
    }
  })
} else {
  // ...
}
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In the preceding code, as soon as the master process receives an 'exit' event, we 
check whether the process is terminated intentionally or as the result of an error. 
We do this by checking the status code and the flag worker.exitedAfterDisconnect, 
which indicates whether the worker was terminated explicitly by the master. If we 
confirm that the process was terminated because of an error, we start a new worker. 
It's interesting to note that while the crashed worker gets replaced, the other workers 
can still serve requests, thus not affecting the availability of the application.

To test this assumption, we can try to stress our server again using autocannon. 
When the stress test completes, we will notice that among the various metrics in 
the output, there is also an indication of the number of failures. In our case, it is 
something like this:

[...]
8k requests in 10.07s, 964 kB read
674 errors (7 timeouts)

This should amount to about 92% availability. Bear in mind that this result can vary 
a lot as it greatly depends on the number of running instances and how many times 
they crash during the test, but it should give us a good indicator of how our solution 
works. The preceding numbers tell us that despite the fact that our application is 
constantly crashing, we only had 674 failed requests over 8,000 hits.

In the example scenario that we just built, most of the failing requests will be caused 
by the interruption of already established connections during a crash. Unfortunately, 
there is very little we can do to prevent these types of failures, especially when the 
application terminates because of a crash. Nonetheless, our solution proves to be 
working and its availability is not bad at all for an application that crashes so often!

Zero-downtime restart
A Node.js application might also need to be restarted when we want to release a new 
version to our production servers. So, also in this scenario, having multiple instances 
can help maintain the availability of our application.

When we have to intentionally restart an application to update it, there is a small 
window in which the application restarts and is unable to serve requests. This can 
be acceptable if we are updating our personal blog, but it's not even an option for a 
professional application with a service-level agreement (SLA) or one that is updated 
very often as part of a continuous delivery process. The solution is to implement 
a zero-downtime restart, where the code of an application is updated without 
affecting its availability.
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With the cluster module, this is, again, a pretty easy task: the pattern involves 
restarting the workers one at a time. This way, the remaining workers can continue 
to operate and maintain the services of the application available.

Let's add this new feature to our clustered server. All we have to do is add some new 
code to be executed by the master process:

import { once } from 'events'
// ...
if (cluster.isMaster) {
  // ...
  process.on('SIGUSR2', async () => {                        // (1)
    const workers = Object.values(cluster.workers)
    for (const worker of workers) {                          // (2)
      console.log(`Stopping worker: ${worker.process.pid}`)
      worker.disconnect()                                    // (2)
      await once(worker, 'exit')
      if (!worker.exitedAfterDisconnect) continue
      const newWorker = cluster.fork()                       // (4)
      await once(newWorker, 'listening')                     // (5)
    }
  })
} else {
  // ...
}

This is how the preceding code block works:

1. The restarting of the workers is triggered on receiving the SIGUSR2 signal. 
Note that we are using an async function to implement the event handler as 
we will need to perform some asynchronous tasks here.

2. When a SIGUSR2 signal is received, we iterate over all the values of 
the cluster.workers object. Every element is a worker object that we can use 
to interact with a given worker currently active in the pool of workers.

3. The first thing we do for the current worker is invoke worker.disconnect(), 
which stops the worker gracefully. This means that if the worker is currently 
handling a request, this won't be interrupted abruptly; instead, it will be 
completed. The worker exits only after the completion of all inflight requests.

4. When the terminated process exits, we can spawn a new worker.
5. We wait for the new worker to be ready and listening for new connections 

before we proceed with restarting the next worker.
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Now, we can test our zero-downtime restart by running the application and then 
sending a SIGUSR2 signal. However, we first need to obtain the PID of the master 
process. The following command can be useful to identify it from the list of all the 
running processes:

ps -af

The master process should be the parent of a set of node processes. Once we have the 
PID we are looking for, we can send the signal to it:

kill -SIGUSR2 <PID>

Now, the output of the application should display something like this:

Restarting workers
Stopping worker: 19389
Started 19407
Stopping worker: 19390
Started 19409

We can try to use autocannon again to verify that we don't have any considerable 
impact on the availability of our application during the restart of the workers.

Dealing with stateful communications
The cluster module does not work well with stateful communications where 
the application state is not shared between the various instances. This is because 
different requests belonging to the same stateful session may potentially be handled 
by a different instance of the application. This is not a problem limited only to 
the cluster module, but, in general, it applies to any kind of stateless, load balancing 
algorithm. Consider, for example, the situation described by Figure 12.3:

Since our program makes use of Unix signals, it will not work 
properly on Windows systems (unless you are using the Windows 
Subsystem for Linux). Signals are the simplest mechanism to 
implement our solution. However, this isn't the only one. In fact, 
other approaches include listening for a command coming from a 
socket, a pipe, or the standard input.

pm2 (nodejsdp.link/pm2) is a small utility, based on cluster, 
which offers load balancing, process monitoring, zero-downtime 
restarts, and other goodies.

http://nodejsdp.link/pm2
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Figure 12.3: An example issue with a stateful application behind a load balancer

The user John initially sends a request to our application to authenticate himself, 
but the result of the operation is registered locally (for example, in memory), so only 
the instance of the application that receives the authentication request (Instance 
A) knows that John is successfully authenticated. When John sends a new request, 
the load balancer might forward it to a different instance of the application, which 
actually doesn't possess the authentication details of John, hence refusing to perform 
the operation. The application we just described cannot be scaled as it is, but luckily, 
there are two easy solutions we can apply to solve this problem.

Sharing the state across multiple instances
The first option we have to scale an application using stateful communications 
is sharing the state across all the instances.

This can be easily achieved with a shared datastore, such as, for example, a database 
like PostgreSQL (nodejsdp.link/postgresql), MongoDB (nodejsdp.link/mongodb), 
or CouchDB (nodejsdp.link/couchdb), or, even better, we can use an in-memory 
store such as Redis (nodejsdp.link/redis) or Memcached (nodejsdp.link/
memcached).

http://nodejsdp.link/postgresql
http://nodejsdp.link/mongodb
http://nodejsdp.link/couchdb
http://nodejsdp.link/redis
http://nodejsdp.link/memcached
http://nodejsdp.link/memcached
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Figure 12.4 outlines this simple and effective solution:

Figure 12.4: Application behind a load balancer using a shared data store

The only drawback of using a shared store for the communication state is that 
applying this pattern might require a significant amount of refactoring of the 
code base. For example, we might be using an existing library that keeps the 
communication state in memory, so we have to figure out how to configure, replace, 
or reimplement this library to use a shared store.

In cases where refactoring might not be feasible, for instance, because of too many 
changes required or stringent time constraints in making the application more 
scalable, we can rely on a less invasive solution: sticky load balancing (or sticky 
sessions).

Sticky load balancing
The other alternative we have to support stateful communications is having the 
load balancer always routing all of the requests associated with a session to the 
same instance of the application. This technique is also called sticky load balancing.
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Figure 12.5 illustrates a simplified scenario involving this technique:

Figure 12.5: An example illustrating how sticky load balancing works

As we can see from Figure 12.5, when the load balancer receives a request associated 
with a new session, it creates a mapping with one particular instance selected by the 
load balancing algorithm. The next time the load balancer receives a request from 
that same session, it bypasses the load balancing algorithm, selecting the application 
instance that was previously associated with the session. The particular technique 
we just described involves inspecting the session ID associated with the requests 
(usually included in a cookie by the application or the load balancer itself).

A simpler alternative to associate a stateful connection to a single server is by using 
the IP address of the client performing the request. Usually, the IP is provided to a 
hash function that generates an ID representing the application instance designated 
to receive the request. This technique has the advantage of not requiring the 
association to be remembered by the load balancer. However, it doesn't work well 
with devices that frequently change IP, for example, when roaming on different 
networks.
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One big problem with sticky load balancing is the fact that it nullifies most of the 
advantages of having a redundant system, where all the instances of the application 
are the same, and where an instance can eventually replace another one that stopped 
working. For these reasons, it is recommended to always try to avoid sticky load 
balancing and building applications that maintain session state in a shared store. 
Alternatively, where feasible, you can try to build applications that don't require 
stateful communications at all; for example, by including the state in the request 
itself.

Scaling with a reverse proxy
The cluster module, although very convenient and simple to use, is not 
the only option we have to scale a Node.js web application. Traditional techniques 
are often preferred because they offer more control and power in highly-available 
production environments.

The alternative to using cluster is to start multiple standalone instances of the 
same application running on different ports or machines, and then use a reverse 
proxy (or gateway) to provide access to those instances, distributing the traffic across 
them. In this configuration, we don't have a master process distributing requests to 
a set of workers, but a set of distinct processes running on the same machine (using 
different ports) or scattered across different machines inside a network. To provide a 
single access point to our application, we can use a reverse proxy, a special device or 
service placed between the clients and the instances of our application, which takes 
any request and forwards it to a destination server, returning the result to the client 
as if it was itself the origin. In this scenario, the reverse proxy is also used as a load 
balancer, distributing the requests among the instances of the application.

Sticky load balancing is not supported by default by 
the cluster module, but it can be added with an npm library 
called sticky-session (nodejsdp.link/sticky-session).

For a real example of a library requiring sticky load balancing, 
we can mention Socket.IO (nodejsdp.link/socket-io).

http://nodejsdp.link/sticky-session
http://nodejsdp.link/socket-io
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Figure 12.6 shows a typical multi-process, multi-machine configuration with a reverse 
proxy acting as a load balancer on the front:

Figure 12.6: A typical multi-process, multi-machine configuration with a reverse proxy acting as a load balancer

For a Node.js application, there are many reasons to choose this approach in place of 
the cluster module:

• A reverse proxy can distribute the load across several machines, not just 
several processes.

• The most popular reverse proxies on the market support sticky load 
balancing out of the box.

• A reverse proxy can route a request to any available server, regardless of its 
programming language or platform.

For a clear explanation of the differences between a reverse proxy 
and a forward proxy, you can refer to the Apache HTTP server 
documentation at nodejsdp.link/forward-reverse.

http://nodejsdp.link/forward-reverse
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• We can choose more powerful load balancing algorithms.
• Many reverse proxies offer additional powerful features such as URL 

rewrites, caching, SSL termination point, security features (for example, 
denial-of-service protection), or even the functionality of fully-fledged web 
servers that can be used to, for example, serve static files.

That said, the cluster module could also be easily combined with a reverse proxy if 
necessary, for example, by using cluster to scale vertically inside a single machine 
and then using the reverse proxy to scale horizontally across different nodes.

We have many options to implement a load balancer using a reverse proxy. The 
following is a list of the most popular solutions:

• Nginx (nodejsdp.link/nginx): This is a web server, reverse proxy, and load 
balancer, built upon the non-blocking I/O model.

• HAProxy (nodejsdp.link/haproxy): This is a fast load balancer for TCP/
HTTP traffic.

• Node.js-based proxies: There are many solutions for the implementation 
of reverse proxies and load balancers directly in Node.js. This might have 
advantages and disadvantages, as we will see later.

• Cloud-based proxies: In the era of cloud computing, it's not rare to utilize a 
load balancer as a service. This can be convenient because it requires minimal 
maintenance, it's usually highly scalable, and sometimes it can support 
dynamic configurations to enable on-demand scalability.

In the next few sections of this chapter, we will analyze a sample configuration using 
Nginx. Later on, we will work on building our very own load balancer using nothing 
but Node.js!

Load balancing with Nginx
To give you an idea of how reverse proxies work, we will now build a scalable 
architecture based on Nginx, but first, we need to install it. We can do that 
by following the instructions at nodejsdp.link/nginx-install.

Pattern

Use a reverse proxy to balance the load of an application across 
multiple instances running on different ports or machines.

http://nodejsdp.link/nginx
http://nodejsdp.link/haproxy
http://nodejsdp.link/nginx-install
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Since we are not going to use cluster to start multiple instances of our server, 
we need to slightly modify the code of our application so that we can specify 
the listening port using a command-line argument. This will allow us to launch 
multiple instances on different ports. Let's consider the main module of our example 
application (app.js):

import { createServer } from 'http'

const { pid } = process
const server = createServer((req, res) => {
  let i = 1e7; while (i > 0) { i-- }
  console.log(`Handling request from ${pid}`)
  res.end(`Hello from ${pid}\n`)
})

const port = Number.parseInt(
  process.env.PORT || process.argv[2]
) || 8080
server.listen(port, () => console.log(`Started at ${pid}`))

The only difference between this version and the first version of our web server 
is that here, we are making the port number configurable through the PORT 
environment variable or a command-line argument. This is needed because we 
want to be able to start multiple instances of the server and allow them to listen on 
different ports.

Another important feature that we won't have available without cluster is 
the automatic restart in case of a crash. Luckily, this is easy to fix by using a 
dedicated supervisor, that is, an external process that monitors our application and 
restarts it if necessary. The following are some possible choices:

• Node.js-based supervisors such as forever (nodejsdp.link/forever) 
or pm2 (nodejsdp.link/pm2)

• OS-based monitors such as systemd (nodejsdp.link/
systemd) or runit (nodejsdp.link/runit)

On the latest Ubuntu system, you can quickly install Nginx with 
the command sudo apt-get install nginx. On macOS, you 
can use brew (nodejsdp.link/brew): brew install nginx. Note 
that for the following examples, we will be using the latest version 
of Nginx available at the time of writing (1.17.10).

http://nodejsdp.link/forever
http://nodejsdp.link/pm2
http://nodejsdp.link/systemd
http://nodejsdp.link/systemd
http://nodejsdp.link/runit
http://nodejsdp.link/brew
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• More advanced monitoring solutions such as monit (nodejsdp.link/monit) 
or supervisord (nodejsdp.link/supervisord)

• Container-based runtimes such as Kubernetes (nodejsdp.link/kubernetes), 
Nomad (nodejsdp.link/nomad), or Docker Swarm (nodejsdp.link/swarm).

For this example, we are going to use forever, which is the simplest and most 
immediate for us to use. We can install it globally by running the following 
command:

npm install forever -g

The next step is to start the four instances of our application, all on different ports 
and supervised by forever:

forever start app.js 8081
forever start app.js 8082
forever start app.js 8083
forever start app.js 8084

We can check the list of the started processes using the command:

forever list

Now, it's time to configure the Nginx server as a load balancer.

First, we need to create a minimal configuration file in our working directory that we 
will call nginx.conf.

You can use forever stopall to stop all the Node.js processes 
previously started with forever. Alternatively, you can use 
forever stop <id> to stop a specific process from the ones 
shown with forever list.

Note that, because Nginx allows you to run multiple applications 
behind the same server instance, it is more common to use a global 
configuration file, which, in Unix systems, is generally located 
under /usr/local/nginx/conf, /etc/nginx or /usr/local/
etc/nginx. Here, by having a configuration file in our working 
folder, we are taking a simpler approach. This is ok for the sake of 
this demo as we want to run just one application locally, but we 
advise you follow the recommended best practices for production 
deployments.

http://nodejsdp.link/monit
http://nodejsdp.link/supervisord
http://nodejsdp.link/kubernetes
http://nodejsdp.link/nomad
http://nodejsdp.link/swarm
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Next, let's write the nginx.conf file and apply the following configuration, which is 
the very minimum required to get a working load balancer for our Node.js processes:

daemon off;                                                ## (1)
error_log /dev/stderr info;                                ## (2)

events {                                                   ## (3)
  worker_connections 2048;
}

http {                                                     ## (4)
  access_log /dev/stdout;

  upstream my-load-balanced-app {
    server 127.0.0.1:8081;
    server 127.0.0.1:8082;
    server 127.0.0.1:8083;
    server 127.0.0.1:8084;
  }

  server {
    listen 8080;

    location / {
      proxy_pass http://my-load-balanced-app;
    }
  }
}

Let's discuss this configuration together:

1. The declaration daemon off allows us to run Nginx as a standalone process 
using the current unprivileged user and by keeping the process running 
in the foreground of the current terminal (which allows us to shut it down 
using Ctrl + C).

2. We use error_log (and later in the http block, access_log) to stream errors 
and access logs respectively to the standard output and standard error, so we 
can read the logs in real time straight from our terminal.

3. The events block allows us to configure how network connections 
are managed by Nginx. Here, we are setting the maximum number of 
simultaneous connections that can be opened by an Nginx worker process 
to 2048.
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4. The http block allows us to define the configuration for a given application. 
In the upstream my-load-balanced-app section, we are defining the list of 
backend servers used to handle the network requests. In the server section, 
we use listen 8080 to instruct the server to listen on port 8080 and finally, 
we specify the proxy_pass directive, which essentially tells Nginx to forward 
any request to the server group we defined before (my-load-balanced-app).

That's it! Now, we only need to start Nginx using our configuration file with the 
following command:

nginx -c ${PWD}/nginx.conf

Our system should now be up and running, ready to accept requests and balance 
the traffic across the four instances of our Node.js application. Simply point your 
browser to the address http://localhost:8080 to see how the traffic is balanced 
by our Nginx server. You can also try again to load test this application using 
autocannon. Since we are still running all the processes in one local machine, your 
results should not diverge much from what you got when benchmarking the version 
using the cluster module approach.

This example demonstrated how to use Nginx to load balance traffic. For simplicity, 
we kept everything locally on our machine, but nonetheless, this was a great exercise 
to get us ready to deploy an application on multiple remote servers. If you want to 
try to do that, you will essentially have to follow this recipe:

1. Provision n backend servers running the Node.js application (running 
multiple instances with a service monitor like forever or by using the 
cluster module).

2. Provision a load balancer machine that has Nginx installed and all the 
necessary configuration to route the traffic to the n backend servers. Every 
process in every server should be listed in the upstream block of your Nginx 
configuration file using the correct address of the various machines in the 
network.

3. Make your load balancer publicly available on the internet by using a public 
IP and possibly a public domain name.

4. Try to send some traffic to the load balancer's public address by using a 
browser or a benchmarking tool like autocannon.
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In this example, we used a predefined number of backend servers. In the next 
section, we will explore a technique that allows us to load balance traffic to a 
dynamic set of backend servers.

Dynamic horizontal scaling
One important advantage of modern cloud-based infrastructure is the ability to 
dynamically adjust the capacity of an application based on the current or predicted 
traffic. This is also known as dynamic scaling. If implemented properly, this practice 
can reduce the cost of the IT infrastructure enormously while still keeping the 
application highly available and responsive.

The idea is simple: if our application is experiencing a performance degradation 
caused by a peak in traffic, the system automatically spawns new servers to 
cope with the increased load. Similarly, if we see that the allocated resources are 
underutilized, we can shut some servers down to reduce the cost of the running 
infrastructure. We could also decide to perform scaling operations based on a 
schedule; for instance, we could shut down some servers during certain hours of the 
day when we know that the traffic will be lighter, and restart them again just before 
the peak hours. These mechanisms require the load balancer to always be up-to-date 
with the current network topology, knowing at any time which server is up.

Using a service registry
A common pattern to solve this problem is to use a central repository called a service 
registry, which keeps track of the running servers and the services they provide. 

For simplicity, you can perform all these steps manually by 
spinning servers through your cloud provider admin interface 
and by using SSH to log in to those. Alternatively, you could 
choose tools that allow you to automate these tasks by writing 
infrastructure as code such as Terraform (nodejsdp.link/
terraform), Ansible (nodejsdp.link/ansible), and Packer 
(nodejsdp.link/packer).

http://nodejsdp.link/terraform
http://nodejsdp.link/terraform
http://nodejsdp.link/ansible
http://nodejsdp.link/packer
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Figure 12.7 shows a multiservice architecture with a load balancer on the front, 
dynamically configured using a service registry:

Figure 12.7: A multiservice architecture with a load balancer on the front, dynamically configured using a 
service registry

The architecture in Figure 12.7 assumes the presence of two services, API and 
WebApp. There can be one or many instances of each service, spread across multiple 
servers.

When a request to example.com is received, the load balancer checks the prefix of the 
request path. If the prefix is /api, the request is load balanced between the available 
instances of the API service. In Figure 12.7, we have two instances running on the 
server api1.example.com and one instance running on api2.example.com. For all the 
other path prefixes, the request is load balanced between the available instances of 
the WebApp service. In the diagram, we have only one WebApp instance, which is 
running on the server web1.example.com. The load balancer obtains the list of servers 
and service instances running on every server using the service registry.
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For this to work in complete automation, each application instance has to register 
itself to the service registry the moment it comes up online and unregister itself 
when it stops. This way, the load balancer can always have an up-to-date view 
of the servers and the services available on the network.

While this pattern is useful to load balance traffic, it has the added benefit of being 
able to decouple service instances from the servers on which they are running. We 
can look at the Service Registry pattern as an implementation of the Service Locator 
Design pattern applied to network services.

Implementing a dynamic load balancer with  
http-proxy and Consul
To support a dynamic network infrastructure, we can use a reverse proxy such 
as Nginx or HAProxy: all we need to do is update their configuration using 
an automated service and then force the load balancer to pick the changes. For 
Nginx, this can be done using the following command line:

nginx -s reload

The same result can be achieved with a cloud-based solution, but we have a third 
and more familiar alternative that makes use of our favorite platform.

We all know that Node.js is a great tool for building any sort of network application 
and, as we said throughout this book, this is exactly one of its main design goals. So, 
why not build a load balancer using nothing but Node.js? This would give us much 
more freedom and power and would allow us to implement any sort of pattern or 
algorithm straight into our custom-built load balancer, including the one we are 
now going to explore: dynamic load balancing using a service registry. Furthermore, 
working on this exercise will definitely help us to understand even better how 
production-grade products such as Nginx and HAProxy actually work.

Pattern (service registry)

Use a central repository to store an always up-to-date view of the 
servers and the services available in a system.
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In this example, we are going to use Consul (nodejsdp.link/consul) as the service 
registry to replicate the multiservice architecture we saw in Figure 12.7. To do that, 
we are going to mainly use three npm packages:

• http-proxy (nodejsdp.link/http-proxy): To simplify the creation of a reverse 
proxy/load balancer in Node.js

• portfinder (nodejsdp.link/portfinder): To find a free port in the system
• consul (nodejsdp.link/consul-lib): To interact with Consul

Let's start by implementing our services. These are simple HTTP servers like the ones 
we have used so far to test cluster and Nginx, but this time, we want each server to 
register itself into the service registry the moment it starts.

Let's see how this looks (file app.js):

import { createServer } from 'http'
import consul from 'consul'
import portfinder from 'portfinder'
import { nanoid } from 'nanoid'

const serviceType = process.argv[2]
const { pid } = process

async function main () {
  const consulClient = consul()

  const port = await portfinder.getPortPromise()            // (1)
  const address = process.env.ADDRESS || 'localhost'
  const serviceId = nanoid()

  function registerService () {                             // (2)
    consulClient.agent.service.register({
      id: serviceId,
      name: serviceType,
      address,
      port,
      tags: [serviceType]
    }, () => {
      console.log(`${serviceType} registered successfully`)
    })
  }

http://nodejsdp.link/consul
http://nodejsdp.link/http-proxy
http://nodejsdp.link/portfinder
http://nodejsdp.link/consul-lib
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  function unregisterService (err) {                        // (3)
    err && console.error(err)
    console.log(`deregistering ${serviceId}`)
    consulClient.agent.service.deregister(serviceId, () => {
      process.exit(err ? 1 : 0)
    })
  }

  process.on('exit', unregisterService)                     // (4)
  process.on('uncaughtException', unregisterService)
  process.on('SIGINT', unregisterService)

  const server = createServer((req, res) => {               // (5)
    let i = 1e7; while (i > 0) { i-- }
    console.log(`Handling request from ${pid}`)
    res.end(`${serviceType} response from ${pid}\n`)
  })

  server.listen(port, address, () => {
    registerService()
    console.log(`Started ${serviceType} at ${pid} on port ${port}`)
  })
}

main().catch((err) => {
  console.error(err)
  process.exit(1)
})

In the preceding code, there are some parts that deserve our attention:

1. First, we use portfinder.getPortPromise() to discover a free port in the 
system (by default, portfinder starts to search from port 8000). We also allow 
the user to configure the address based on the environment variable ADDRESS. 
Finally, we generate a random ID to identify this service using nanoid 
(nodejsdp.link/nanoid).

2. Next, we declare the registerService() function, which uses the consul 
library to register a new service in the registry. The service definition needs 
several attributes: id (a unique identifier for the service), name (a generic 
name that identifies the service), address and port (to identify how to access 
the service), and tags (an optional array of tags that can be used to filter and 
group services). We are using serviceType (which we get from the command-
line arguments) to specify the service name and to add a tag. This will allow 
us to identify all the services of the same type available in the cluster.

http://nodejsdp.link/nanoid
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3. At this point, we define a function called unregisterService(), which allows 
us to remove the service we just registered in Consul.

4. We use unregisterService() as a cleanup function so that when the program 
is closed (either intentionally or by accident), the service is unregistered from 
Consul.

5. Finally, we start the HTTP server for our service on the port discovered 
by portfinder and the address configured for the current service. Note that 
when the server is started, we make sure to invoke the registerService() 
function to make sure that the service is registered for discovery.

With this script, we will be able to start and register different types of applications.

Now, it's time to implement the load balancer. Let's do that by creating a new 
module called loadBalancer.js:

import { createServer } from 'http'
import httpProxy from 'http-proxy'
import consul from 'consul'

const routing = [                                            // (1)
  {
    path: '/api',
    service: 'api-service',
    index: 0
  },
  {
    path: '/',
    service: 'webapp-service',
    index: 0
  }
]

const consulClient = consul()                                // (2)
const proxy = httpProxy.createProxyServer()

const server = createServer((req, res) => {
  const route = routing.find((route) =>                      // (3)
    req.url.startsWith(route.path))
  consulClient.agent.service.list((err, services) => {       // (4)
    const servers = !err && Object.values(services)
      .filter(service => service.Tags.includes(route.service))



Chapter 12

[ 507 ]

    if (err || !servers.length) {
      res.writeHead(502)
      return res.end('Bad gateway')
    }

    route.index = (route.index + 1) % servers.length         // (5)
    const server = servers[route.index]
    const target = `http://${server.Address}:${server.Port}`
    proxy.web(req, res, { target })
  })
})

server.listen(8080, () => {
  console.log('Load balancer started on port 8080')
})

This is how we implemented our Node.js-based load balancer:

1. First, we define our load balancer routes. Each item in the routing array 
contains the service used to handle the requests arriving on the 
mapped path. The index property will be used to round-robin the requests 
of a given service.

2. We need to instantiate a consul client so that we can have access to the 
registry. Next, we instantiate an http-proxy server.

3. In the request handler of the server, the first thing we do is match the 
URL against our routing table. The result will be a descriptor containing 
the service name.

4. We obtain from consul the list of servers implementing the required service. 
If this list is empty or there was an error retrieving it, then we return an error 
to the client. We use the Tags attribute to filter all the available services and 
find the address of the servers that implement the current service type.

5. At last, we can route the request to its destination. We update route.index to 
point to the next server in the list, following a round-robin approach. We 
then use the index to select a server from the list, passing it to proxy.web(), 
along with the request (req) and the response (res) objects. This will simply 
forward the request to the server we chose.

It is now clear how simple it is to implement a load balancer using only Node.js and 
a service registry, as well as how much flexibility we can have by doing so.
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Now, we should be ready to give our system a try, but first, let's install 
the Consul server by following the official documentation at nodejsdp.link/consul-
install.

This allows us to start the Consul service registry on our development machine with 
this simple command line:

consul agent -dev

Now, we are ready to start the load balancer (using forever to make sure the 
application is restarted in case of a crash):

forever start loadBalancer.js

Now, if we try to access some of the services exposed by the load balancer, we will 
notice that it returns an HTTP 502 error, because we didn't start any servers yet. Try it 
yourself:

curl localhost:8080/api

The preceding command should return the following output:

Bad Gateway

The situation will change if we spawn some instances of our services, for example, 
two api-service and one webapp-service:

forever start --killSignal=SIGINT app.js api-service
forever start --killSignal=SIGINT app.js api-service
forever start --killSignal=SIGINT app.js webapp-service

Note that in order to keep the implementation simple, we 
intentionally left out some interesting optimization opportunities. 
For instance, in this implementation, we are interrogating consul 
to get the list of registered services for every single request. This 
is something that can add a significant overhead, especially if our 
load balancer receives requests with a high frequency. It would be 
more efficient to cache the list of services and refresh it on a regular 
basis (for instance, every 10 seconds). Another optimization could 
be to use the cluster module to run multiple instances of our load 
balancer and distribute the load across all the available cores in the 
machine.

http://nodejsdp.link/consul-install
http://nodejsdp.link/consul-install
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Now, the load balancer should automatically see the new servers and start 
distributing requests across them. Let's try again with the following command:

curl localhost:8080/api

The preceding command should now return this:

api-service response from 6972

By running this again, we should now receive a message from another server, 
confirming that the requests are being distributed evenly among the different 
servers:

api-service response from 6979

The advantages of this pattern are immediate. We can now scale our infrastructure 
dynamically, on demand, or based on a schedule, and our load balancer will 
automatically adjust with the new configuration without any extra effort!

Now that we know how to perform dynamic load balancing using a load balancer 
and a service registry, we are ready to explore some interesting alternative 
approaches, like peer-to-peer load balancing.

If you want to see the instances managed by forever and stop 
some of them you can use the commands forever list and 
forever stop. To stop all running instances you can use forever 
stopall. Why don't you try to stop one of the running instances of 
the api-service to see what happens to the whole application?

Consul offers a convenient web UI available at localhost:8500 
by default. Check it out while playing with this example to see 
how services appear and disappear as they get registered or 
unregistered.

Consul also offers a health check feature to monitor registered 
services. This feature could be integrated within our example to 
make our infrastructure even more resilient to failures. In fact, if 
a service does not respond to a health check, it gets automatically 
removed from the registry and therefore, it won't receive traffic 
anymore. If you are curious to see how you can implement this 
feature, you can check out the official documentation for Checks 
at nodejsdp.link/consul-checks.

http://nodejsdp.link/consul-checks
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Peer-to-peer load balancing
Using a reverse proxy is almost a necessity when we want to expose a complex 
internal network architecture to a public network such as the Internet. It helps hide 
the complexity, providing a single access point that external applications can easily 
use and rely on. However, if we need to scale a service that is for internal use only, 
we can have much more flexibility and control.

Let's imagine having a service, Service A, that relies on Service B to implement its 
functionality. Service B is scaled across multiple machines and it's available only 
in the internal network. What we have learned so far is that Service A will connect 
to Service B using a load balancer, which will distribute the traffic to all the servers 
implementing Service B.

However, there is an alternative. We can remove the load balancer from the picture 
and distribute the requests directly from the client (Service A), which now becomes 
directly responsible for load balancing its requests across the various instances 
of Service B. This is possible only if Server A knows the details about the servers 
exposing Service B, and in an internal network, this is usually known information. 
With this approach, we are essentially implementing peer-to-peer load balancing.

Figure 12.8 compares the two alternatives we just described:

Figure 12.8: Centralized load balancing versus peer-to-peer load balancing
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This is an extremely simple and effective pattern that enables truly distributed 
communications without bottlenecks or single points of failure. Besides that, it also 
has the following properties:

• Reduces the infrastructure complexity by removing a network node
• Allows faster communications because messages will travel through one 

fewer node
• Scales better because performances are not limited by what the load balancer 

can handle

On the other hand, by removing the load balancer, we are actually exposing the 
complexity of its underlying infrastructure. Also, each client has to be smarter by 
implementing a load balancing algorithm and, possibly, also a way to keep its 
knowledge of the infrastructure up to date.

In the next section, we will showcase an example implementing peer-to-peer load 
balancing in an HTTP client.

Implementing an HTTP client that can balance 
requests across multiple servers
We already know how to implement a load balancer using only Node.js and 
distribute incoming requests across the available servers, so implementing the same 
mechanism on the client side should not be that different. All we have to do, in fact, 
is wrap the client API and augment it with a load balancing mechanism. Take a look 
at the following module (balancedRequest.js):

import { request } from 'http'
import getStream from 'get-stream'

const servers = [
  { host: 'localhost', port: 8081 },
  { host: 'localhost', port: 8082 }
]
let i = 0

export function balancedRequest (options) {

Peer-to-peer load balancing is a pattern used extensively in 
the ZeroMQ (nodejsdp.link/zeromq) library, which we will use 
in the next chapter.

http://nodejsdp.link/zeromq
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  return new Promise((resolve) => {
    i = (i + 1) % servers.length
    options.hostname = servers[i].host
    options.port = servers[i].port

    request(options, (response) => {
      resolve(getStream(response))
    }).end()
  })
}

The preceding code is very simple and needs little explanation. We wrapped the 
original http.request API so that it overrides the hostname and port of the request 
with those selected from the list of available servers using a round-robin algorithm. 
Note that, for simplicity, we used the module get-stream (nodejsdp.link/get-
stream) to "accumulate" the response stream into a buffer that will contain the 
full response body.

The new wrapped API can then be used seamlessly (client.js):

import { balancedRequest } from './balancedRequest.js'

async function main () {
  for (let i = 0; i < 10; i++) {
    const body = await balancedRequest({
      method: 'GET',
      path: '/'
    })
    console.log(`Request ${i} completed:`, body)
  }
}

main().catch((err) => {
  console.error(err)
  process.exit(1)
})

To run the preceding code, we have to start two instances of the sample server 
provided:

node app.js 8081
node app.js 8082

http://nodejsdp.link/get-stream
http://nodejsdp.link/get-stream
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This is followed by the client application we just built:

node client.js

We should note that each request is sent to a different server, confirming that we are 
now able to balance the load without a dedicated load balancer!

In the next section, we will explore the field of containers and container orchestration 
and see how, in this specific context, the runtime takes ownership of many scalability 
concerns.

Scaling applications using containers
In this section, we will demonstrate how using containers and container 
orchestration platforms, such as Kubernetes, can help us to write simpler Node.js 
applications that can delegate most of the scaling concerns like load balancing, 
elastic scaling, and high availability to the underlying container platform.

Containers and container orchestration platforms constitute a quite broad topic, 
largely outside the scope of this book. For this reason, here, we aim to provide 
only some basic examples to get you started with this technology using Node.js. 
Ultimately, our goal is to encourage you to explore new modern patterns in order 
to run and scale Node.js applications.

What is a container?
A container, specifically a Linux container, as standardized by the Open Container 
Initiative (OCI) (nodejsdp.link/opencontainers), is defined as "a standard unit 
of software that packages up code and all its dependencies so the application runs 
quickly and reliably from one computing environment to another."

In other words, by using containers, you can seamlessly package and run 
applications on different machines, from a local development laptop on your desk to 
a production server in the cloud.

Other than being extremely portable, applications running as containers have the 
advantage of having very little overhead when executed. In fact, containers run 
almost as fast as running the native application directly on the operating system.

An obvious improvement to the wrapper we created previously 
would be to integrate a service registry directly into the client and 
obtain the server list dynamically.

http://nodejsdp.link/opencontainers
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In simple terms, you can see a container as a standard unit of software that allows 
you to define and run an isolated process directly on a Linux operating system.

For their portability and performance, containers are considered a huge step forward 
when compared to virtual machines.

There are different ways and tools to create and run an OCI compliant container 
for an application. The most popular of them is Docker (nodejsdp.link/docker).

You can install Docker in your system by following the instructions for your 
operating system on the official documentation: nodejsdp.link/docker-docs.

Creating and running a container with Docker
Let's rewrite our simple web server application with some minor changes (app.js):

import { createServer } from 'http'
import { hostname } from 'os'

const version = 1
const server = createServer((req, res) => {
  let i = 1e7; while (i > 0) { i-- }
  res.end(`Hello from ${hostname()} (v${version})`)
})
server.listen(8080)

Compared to the previous versions of this web server, here, we send the machine 
hostname and the application version back to the user. If you run this server and 
make a request, you should get back something like this:

Hello from my-amazing-laptop.local (v1)

Let's see how we can run this application as a container. The first thing we need to 
do is create a package.json file for the project:

{
  "name": "my-simple-app",
  "version": "1.0.0",
  "main": "app.js",
  "type": "module",
  "scripts": {
    "start": "node app.js"
  }
}

http://nodejsdp.link/docker
http://nodejsdp.link/docker-docs
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In order to dockerize our application, we need to follow a two-step process:

• Build a container image
• Run a container instance from the image

To create the container image for our application, we have to define a Dockerfile. 
A container image (or Docker image) is the actual package and conforms to the 
OCI standard. It contains all the source code and the necessary dependencies and 
describes how the application must be executed. A Dockerfile is a file (actually 
named Dockerfile) that defines the build script used to build a container image for 
an application. So, without further ado, let's write the Dockerfile for our application:

FROM node:14-alpine
EXPOSE 8080
COPY app.js package.json /app/
WORKDIR /app
CMD ["npm", "start"]

Our Dockerfile is quite short, but there are a lot of interesting things here, so let's 
discuss them one by one:

• FROM node:14-alpine indicates the base image that we want to use. A base 
image allows us to build "on top" of an existing image. In this specific case, 
we are starting from an image that already contains version 14 of Node.js. 
This means we don't have to be worried about describing how Node.js needs 
to be packaged into the container image.

• EXPOSE 8080 informs Docker that the application will be listening for TCP 
connections on the port 8080.

• COPY app.js package.json /app/ copies the files app.js and package.json 
into the /app folder of the container filesystem. Containers are isolated, so, 
by default, they can't share files with the host operating system; therefore, 
we need to copy the project files into the container to be able to access and 
execute them.

• WORKDIR /app sets the working directory for the container to /app.
• CMD ["npm", "start"] specifies the command that is executed to start the 

application when we run a container from an image. Here, we are just 
running npm start, which, in turn, will run node app.js, as specified in our 
package.json. Remember that we are able to run both node and npm in the 
container only because those two executables are made available through the 
base image.
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Now, we can use the Dockerfile to build the container image with the following 
command:

docker build .

This command will look for a Dockerfile in the current working directory and 
execute it to build our image.

The output of this command should be something like this:

Sending build context to Docker daemon  7.168kB
Step 1/5 : FROM node:14-alpine
 ---> ea308280893e
Step 2/5 : EXPOSE 8080
 ---> Running in 61c34f4064ab
Removing intermediate container 61c34f4064ab
 ---> 6abfcdf0e750
Step 3/5 : COPY app.js package.json /app/
 ---> 9d498d7dbf8b
Step 4/5 : WORKDIR /app
 ---> Running in 70ea26158cbe
Removing intermediate container 70ea26158cbe
 ---> fc075a421b91
Step 5/5 : CMD ["npm", "start"]
 ---> Running in 3642a01224e8
Removing intermediate container 3642a01224e8
 ---> bb3bd34bac55
Successfully built bb3bd34bac55

The final hash is the ID of our container image. We can use it to run an instance of 
the container with the following command:

docker run -it -p 8080:8080 bb3bd34bac55

Note that if you have never used the node:14-alpine image 
before (or if you have recently wiped your Docker cache), you will 
also see some additional output, indicating the download of this 
container image.
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This command is essentially telling Docker to run the application from image 
bb3bd34bac55 in "interactive mode" (which means that it will not go in the 
background) and that port 8080 of the container will be mapped to port 8080 of the 
host machine (our operating system).

Now, we can access the application at localhost:8080. So, if we use curl to send a 
request to the web server, we should get a response similar to the following:

Hello from f2ffa85c8ff8 (v1)

Note that the hostname is now different. This is because every container is running 
in a sandboxed environment that, by default, doesn't have access to most of the 
resources in the underlying operating system.

At this point, you can stop the container by just pressing Ctrl + C in the terminal 
window where the container is running.

What is Kubernetes?
We just ran a Node.js application using containers, hooray! Even though this seems 
like a particularly exciting achievement, we have just scratched the surface here. The 
real power of containers comes out when building more complicated applications. 
For instance, when building applications composed by multiple independent 
services that needs to be deployed and coordinated across multiple cloud servers. 
In this situation, Docker alone is not sufficient anymore. We need a more complex 
system that allows us to orchestrate all the running container instances over the 
available machines in our cloud cluster: we need a container orchestration tool.

When building an image, we can use the -t flag to tag the resulting 
image. A tag can be used as a more predictable alternative to a 
generated hash to identify and run container images. For instance, 
if we want to call our container image hello-web:v1, we can use 
the following commands:

docker build -t hello-web:v1 .
docker run -it -p 8080:8080 hello-web:v1

When using tags, you might want to follow the conventional 
format of image-name:version.
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A container orchestration tool has a number of responsibilities:

• It allows us to join multiple cloud servers (nodes) into one logical cluster, 
where nodes can be added and removed dynamically without affecting the 
availability of the services running in every node.

• It makes sure that there is no downtime. If a container instance stops or 
becomes unresponsive to health checks, it will be automatically restarted. 
Also, if a node in the cluster fails, the workload running in that node will be 
automatically migrated to another node.

• Provides functionalities to implement service discovery and load balancing.
• Provides orchestrated access to durable storage so that data can be persisted 

as needed.
• Automatic rollouts and rollbacks of applications with zero downtime.
• Secret storage for sensitive data and configuration management systems.

One of the most popular container orchestration systems is Kubernetes (nodejsdp.
link/kubernetes), originally open sourced by Google in 2014. The name Kubernetes 
originates from the Greek "κυβερνήτης", meaning "helmsman" or "pilot", but also 
"governor" or more generically, "the one in command". Kubernetes incorporates 
years of experience from Google engineers running workloads in the cloud at scale.

One of its peculiarities is the declarative configuration system that allows you 
to define an "end state" and let the orchestrator figure out the sequence of steps 
necessary to reach the desired state, without disrupting the stability of the services 
running on the cluster.

The whole idea of Kubernetes configuration revolves around the concept of "objects". 
An object is an element in your cloud deployment, which can be added, removed, 
and have its configuration changed over time. Some good examples of Kubernetes 
objects are:

• Containerized applications
• Resources for the containers (CPU and memory allocations, persistent 

storage, access to devices such as network interfaces or GPU, and so on)
• Policies for the application behavior (restart policies, upgrades, fault-

tolerance)

A Kubernetes object is a sort of "record of intent", which means that once you create 
one in a cluster, Kubernetes will constantly monitor (and change, if needed) the state 
of the object to make sure it stays compliant with the defined expectation.

http://nodejsdp.link/kubernetes
http://nodejsdp.link/kubernetes
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A Kubernetes cluster is generally managed through a command-line tool called 
kubectl (nodejsdp.link/kubectl-install).

There are several ways to create a Kubernetes cluster for development, testing, 
and production purposes. The easiest way to start experimenting with Kubernetes 
is through a local single-node cluster, which can be easily created by a tool called 
minikube (nodejsdp.link/minikube-install).

Make sure to install both kubectl and minikube on your system, as we will be 
deploying our sample containerized app on a local Kubernetes cluster in the next 
section!

Deploying and scaling an application on 
Kubernetes
In this section, we will be running our simple web server application on a local 
minikube cluster. So, make sure you have kubectl and minikube correctly installed 
and started.

The first thing that we want to do is build our Docker image and give it a meaningful 
name:

docker build -t hello-web:v1 .

If you have configured your environment correctly, the hello-web image will be 
available to be used in your local Kubernetes cluster.

Another great way to learn about Kubernetes is by using the 
official interactive tutorials (nodejsdp.link/kubernetes-
tutorials).

On macOS and Linux environments, make sure to run minikube 
start and eval $(minikube docker-env) to initialize the 
working environment. The second command makes sure that 
when you use docker and kubectl in your current terminal you 
will interact with the local Minikube cluster. If you open multiple 
terminals you should run eval $(minikube docker-env) on 
every terminal. You can also run minikube dashboard to run 
a convenient web dashboard that allows you to visualize and 
interact with all the objects in your cluster.

http://nodejsdp.link/kubectl-install
http://nodejsdp.link/minikube-install
http://nodejsdp.link/kubernetes-tutorials
http://nodejsdp.link/kubernetes-tutorials
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Creating a Kubernetes deployment
Now, in order to run an instance of this container in the Minikube cluster, we have to 
create a deployment (which is a Kubernetes object) using the following command:

kubectl create deployment hello-web --image=hello-web:v1

This should produce the following output:

deployment.apps/hello-web created

This command is basically telling Kubernetes to run an instance of the hello-web:v1 
container as an application called hello-web.

You can verify that the deployment is running with the following command:

kubectl get deployments

This should print something like this:

NAME        READY   UP-TO-DATE   AVAILABLE   AGE
hello-web   1/1     1            1           7s

This table is basically saying that our hello-web deployment is alive and that there 
is one pod allocated for it. A pod is a basic unit in Kubernetes and represents a set of 
containers that have to run together in the same Kubernetes node. Containers in the 
same pod have shared resources like storage and network. Generally, a pod contains 
only one container, but it's not uncommon to see more than one container in a pod 
when these containers are running tightly coupled applications.

You can list all the pods running in the cluster with:

kubectl get pods

Using local images is sufficient for local development. When 
you are ready to go to production, the best option is to publish 
your images to a Docker container registry such as Docker Hub 
(nodejsdp.link/docker-hub), Docker Registry (nodejsdp.
link/docker-registry), Google Cloud Container Registry 
(nodejsdp.link/gc-container-registry), or Amazon Elastic 
Container Registry (nodejsdp.link/ecr). Once you have your 
images published to a container registry, you can easily deploy 
your application to different hosts without having to rebuild the 
corresponding images each time.

http://nodejsdp.link/docker-hub
http://nodejsdp.link/docker-registry
http://nodejsdp.link/docker-registry
http://nodejsdp.link/gc-container-registry
http://nodejsdp.link/ecr
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This should print something like:

NAME                         READY   STATUS    RESTARTS   AGE
hello-web-65f47d9997-df7nr   1/1     Running   0          2m19s

Now, in order to be able to access the web server from our local machine, we need to 
expose the deployment:

kubectl expose deployment hello-web --type=LoadBalancer --port=8080
minikube service hello-web

The first command tells Kubernetes to create a LoadBalancer object that exposes the 
instances of the hello-web app, connecting to port 8080 of every container.

The second command is a minikube helper command that allows us to get the local 
address to access the load balancer. This command will also open a browser window 
for you, so now you should see the container response in the browser, which should 
look like this:

Hello from hello-web-65f47d9997-df7nr (v1)

Scaling a Kubernetes deployment
Now that our application is running and is accessible, let's actually start to 
experiment with some of the capabilities of Kubernetes. For instance, why not try to 
scale our application by running five instances instead of just one? This is as easy as 
running:

kubectl scale --replicas=5 deployment hello-web

Now, kubectl get deployments should show us the following status:

NAME        READY   UP-TO-DATE   AVAILABLE   AGE
hello-web   5/5     5            5           9m18s

And kubectl get pods should produce something like this:

NAME                         READY   STATUS    RESTARTS   AGE
hello-web-65f47d9997-df7nr   1/1     Running   0          9m24s
hello-web-65f47d9997-g98jb   1/1     Running   0          14s
hello-web-65f47d9997-hbdkx   1/1     Running   0          14s
hello-web-65f47d9997-jnfd7   1/1     Running   0          14s
hello-web-65f47d9997-s54g6   1/1     Running   0          14s
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If you try to hit the load balancer now, chances are you will see different hostnames 
as the traffic gets distributed across the available instances. This should be even more 
apparent if you try to hit the load balancer while putting the application under stress, 
for instance, by running an autocannon load test against the load balancer URL.

Kubernetes rollouts
Now, let's try out another feature of Kubernetes: rollouts. What if we want to release 
a new version of our app?

We can set const version = 2 in our app.js file and create a new image:

docker build -t hello-web:v2 .

At this point, in order to upgrade all the running pods to this new version, we have 
to run the following command:

kubectl set image deployment/hello-web hello-web=hello-web:v2 --record

The output of this command should be as follows:

deployment.apps/hello-web image updated

If everything worked as expected, you should now be able to refresh your browser 
page and see something like the following:

Hello from hello-web-567b986bfb-qjvfw (v2)

Note the v2 flag there.

What just happened behind the scenes is that Kubernetes started to roll out the new 
version of our image by replacing the containers one by one. When a container is 
replaced, the running instance is stopped gracefully. This way requests that are 
currently in progress can be completed before the container is shut down.

This completes our mini Kubernetes tutorial. The lesson here is that, when using 
a container orchestrator platform like Kubernetes, we can keep our application 
code quite simple, as we won't have to include concerns such as scaling to multiple 
instances or deal with soft rollouts and application restarts. This is the major 
advantage of this approach.
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Of course, this simplicity does not come for free. It is paid by having to learn 
and manage the orchestration platform. If you are running small applications in 
production, it is probably not worth to incur the complexity and the cost of having 
to install and manage a container orchestrator platform like Kubernetes. However, 
if you are serving millions of users every day, there is definitely a lot of value in 
building and maintaining such a powerful infrastructure.

Another interesting observation is that, when running containers in Kubernetes, 
containers are often considered "disposable," which basically means that they could 
be killed and restarted at any time. While this might seem like a non-relevant detail, 
you should actually take this behavior into account and try to keep your applications 
as stateless as possible. In fact, containers, by default, won't retain any change in the 
local filesystem, so every time you have to store some persistent information, you 
will have to rely on external storage mechanisms such as databases or persistent 
volumes.

In the next and last part of this chapter, we will explore some interesting patterns 
to decompose a monolithic application into a set of decoupled microservices, 
something that is critically important if you have built a monolithic application and 
are now suffering from scalability issues.

Decomposing complex applications
So far in this chapter, we have mainly focused our analysis on the X-axis of the scale 
cube. We saw how it represents the easiest and most immediate way to distribute the 
load and scale an application, also improving its availability. In the following section, 
we are going to focus on the Y-axis of the scale cube, where applications are scaled 
by decomposing them by functionality and service. As we will learn, this technique 
allows us to scale not only the capacity of an application, but also, and most 
importantly, its complexity.

If you want to clean up your system from the containers you just 
ran in the preceding examples and stop minikube, you can do so 
with the following commands:

kubectl scale --replicas=0 deployment hello-web
kubectl delete -n default service hello-web
minikube stop
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Monolithic architecture
The term monolithic might make us think of a system without modularity, where 
all the services of an application are interconnected and almost indistinguishable. 
However, this is not always the case. Often, monolithic systems have a highly 
modular architecture and a good level of decoupling between their internal 
components.

A perfect example is the Linux OS kernel, which is part of a category 
called monolithic kernels (in perfect opposition with its ecosystem and the Unix 
philosophy). Linux has thousands of services and modules that we can load and 
unload dynamically, even while the system is running. However, they all run 
in kernel mode, which means that a failure in any of them could bring the entire 
OS down (have you ever seen a kernel panic?). This approach is opposite to the 
microkernel architecture, where only the core services of the operating system run in 
kernel mode, while the rest run in user mode, usually each one with its own process. 
The main advantage of this approach is that a problem in any of these services would 
more likely cause it to crash in isolation, instead of affecting the stability of the 
entire system.

It's remarkable how these design principles, which are more than 30 years old, can 
still be applied today and in totally different environments. Modern monolithic 
applications are comparable to monolithic kernels: if any of their components fail, 
the entire system is affected, which, translated into Node.js terms, means that all the 
services are part of the same code base and run in a single process (when not cloned).

The Torvalds-Tanenbaum debate on kernel design is probably one 
of the most famous flame wars in the history of computer science, 
where one of the main points of dispute was exactly monolithic 
versus microkernel design. You can find a web version of the 
discussion (it originally appeared on Usenet) at nodejsdp.link/
torvalds-tanenbaum.

http://nodejsdp.link/torvalds-tanenbaum
http://nodejsdp.link/torvalds-tanenbaum
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Figure 12.9 shows an example monolithic architecture:

Figure 12.9: Example of a monolithic architecture

Figure 12.9 shows the architecture of a typical e-commerce application. Its structure 
is modular: we have two different frontends, one for the main store and another for 
the administration interface. Internally, we have a clear separation of the services 
implemented by the application. Each service is responsible for a specific portion of 
the application business logic: Products, Cart, Checkout, Search, and Authentication 
and Users. However, the preceding architecture is monolithic since every module is 
part of the same codebase and runs as part of a single application. A failure in any of 
its components can potentially tear down the entire online store.

Another problem with this type of architecture is the interconnection between 
its modules; the fact that they all live inside the same application makes it very 
easy for a developer to build interactions and coupling between modules. For 
example, consider the use case of when a product is being purchased: the Checkout 
module has to update the availability of a Product object, and if those two modules 
are in the same application, it's too easy for a developer to just obtain a reference 
to a Product object and update its availability directly. Maintaining a low coupling 
between internal modules is very hard in a monolithic application, partly because the 
boundaries between them are not always clear or properly enforced.
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A high coupling is often one of the main obstacles to the growth of an application 
and prevents its scalability in terms of complexity. In fact, an intricate dependency 
graph means that every part of the system is a liability, it has to be maintained for 
the entire life of the product, and any change should be carefully evaluated because 
every component is like a wooden block in a Jenga tower: moving or removing 
one of them can cause the entire tower to collapse. This often results in building 
conventions and development processes to cope with the increasing complexity 
of the project.

The microservice architecture
Now, we are going to reveal the most important pattern in Node.js for writing big 
applications: avoid writing big applications. This seems like a trivial statement, but 
it's an incredibly effective strategy to scale both the complexity and the capacity 
of a software system. So, what's the alternative to writing big applications? The 
answer is in the Y-axis of the scale cube: decomposition and splitting by service and 
functionality. The idea is to break down an application into its essential components, 
creating separate, independent applications. It is practically the opposite of a 
monolithic architecture. This fits perfectly with the Unix philosophy and the Node.js 
principles we discussed at the beginning of the book; in particular, the motto "make 
each program do one thing well."

Microservice architecture is, today, the main reference pattern for this type of 
approach, where a set of self-sufficient services replace big monolithic applications. 
The prefix "micro" means that the services should be as small as possible, but always 
within reasonable limits. Don't be misled by thinking that creating an architecture 
with a hundred different applications exposing only one web service is necessarily 
a good choice. In reality, there is no strict rule on how small or big a service should 
be. It's not the size that matters in the design of a microservice architecture; instead, 
it's a combination of different factors, mainly loose coupling, high cohesion, 
and integration complexity.

An example of a microservice architecture
Let's now see what the monolithic e-commerce application would look like using 
a microservice architecture:
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Figure 12.10: An example implementation of an e-commerce system using the Microservice pattern

As we can see from Figure 12.10, each fundamental component of the e-commerce 
application is now a self-sustaining and independent entity, living in its own context, 
with its own database. In practice, they are all independent applications exposing a 
set of related services.

The data ownership of a service is an important characteristic of the microservice 
architecture. This is why the database also has to be split to maintain the proper level 
of isolation and independence. If a unique shared database is used, it would become 
much easier for the services to work together; however, this would also introduce a 
coupling between the services (based on data), nullifying some of the advantages of 
having different applications.
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The dashed lines connecting all the nodes tells us that, in some way, they have to 
communicate and exchange information for the entire system to be fully functional. 
As the services do not share the same database, there is more communication 
involved to maintain the consistency of the whole system. For example, 
the Checkout service needs to know some information about Products, such as the 
price and restrictions on shipping, and at the same time, it needs to update the data 
stored in the Products service such as the product's availability when the checkout 
is complete. In Figure 12.10, we tried to represent the way the nodes communicate 
generic. Surely, the most popular strategy is using web services, but as we will see 
later, this is not the only option.

Microservices – advantages and disadvantages
In this section, we are going to highlight some of the advantages and 
disadvantages of implementing a microservice architecture. As we will see, this 
approach promises to bring a radical change in the way we develop our applications, 
revolutionizing the way we see scalability and complexity, but on the other hand, it 
introduces new nontrivial challenges.

Every service is expendable
The main technical advantage of having each service living in its own application 
context is that crashes do not propagate to the entire system. The goal is to build 
truly independent services that are smaller, easier to change, or can even be rebuilt 
from scratch. If, for example, the Checkout service of our e-commerce application 
suddenly crashes because of a serious bug, the rest of the system would continue 
to work as normal. Some functionality may be affected; for example, the ability to 
purchase a product, but the rest of the system would continue to work.

Pattern (microservice architecture)

Split a complex application by creating several small, self-
contained services.

Martin Fowler wrote a great article about microservices that you 
can find at nodejsdp.link/microservices.

http://nodejsdp.link/microservices
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Also, imagine if we suddenly realized that the database or the programming 
language we used to implement a component was not a good design decision. In 
a monolithic application, there would be very little we could do to change things 
without affecting the entire system. Instead, in a microservice architecture, we could 
more easily reimplement the entire service from scratch, using a different database 
or platform, and the rest of the system would not even notice it, as long as the new 
implementation maintains the same interface to the rest of the system.

Reusability across platforms and languages
Splitting a big monolithic application into many small services allows us to create 
independent units that can be reused much more easily. Elasticsearch (nodejsdp.
link/elasticsearch) is a great example of a reusable search service. ORY (nodejsdp.
link/ory) is another example of a reusable open source technology that provides a 
complete authentication and authorization service that can be easily integrated into a 
microservice architecture.

The main advantage of the microservice approach is that the level of information 
hiding is usually much higher compared to monolithic applications. This is possible 
because the interactions usually happen through a remote interface such as a web 
API or a message broker, which makes it much easier to hide implementation 
details and shield the client from changes in the way the service is implemented or 
deployed. For example, if all we have to do is invoke a web service, we are shielded 
from the way the infrastructure behind is scaled, from what programming language 
it uses, from what database it uses to store its data, and so on. All these decisions can 
be revisited and adjusted as needed, with potentially no impact on the rest of the 
system.

A way to scale the application
Going back to the scale cube, it's clear that microservices are equivalent to scaling 
an application along the Y-axis, so it's already a solution for distributing the 
load across multiple machines. Also, we should not forget that we can combine 
microservices with the other two dimensions of the cube to scale the application 
even further. For example, each service could be cloned to handle more traffic, 
and the interesting aspect is that they can be scaled independently, allowing better 
resource management.

At this point, it would look like microservices are the solution to all our problems. 
However, this is far from being true. Let's see the challenges we face using 
microservices.

http://nodejsdp.link/elasticsearch
http://nodejsdp.link/elasticsearch
http://nodejsdp.link/ory
http://nodejsdp.link/ory
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The challenges of microservices
Having more nodes to manage introduces a higher complexity in terms of 
integration, deployment, and code sharing: it fixes some of the pains of traditional 
architectures, but it also opens up many new questions. How do we make the 
services interact? How can we keep sanity with deploying, scaling, and monitoring 
such a high number of applications? How can we share and reuse code between 
services?

Fortunately, cloud services and modern DevOps methodologies can provide some 
answers to those questions, and also, using Node.js can help a lot. Its module system 
is a perfect companion to share code between different projects. Node.js was made to 
be a node in a distributed system such as those of a microservice architecture.

In the following sections, we will introduce some integration patterns that can help 
with managing and integrating services in a microservice architecture.

Integration patterns in a microservice 
architecture
One of the toughest challenges of microservices is connecting all the nodes 
to make them collaborate. For example, the Cart service of our e-commerce 
application would make little sense without some Products to add, and 
the Checkout service would be useless without a list of products to buy (a cart). 
As we already mentioned, there are also other factors that necessitate an interaction 
between the various services. For example, the Search service has to know 
which Products are available and must also ensure it keeps its information up to 
date. The same can be said about the Checkout service, which has to update the 
information about Product availability when a purchase is completed.

When designing an integration strategy, it's also important to consider 
the coupling that it's going to introduce between the services in the system. We 
should not forget that designing a distributed architecture involves the same 
practices and principles we use locally when designing a module or subsystem. 
Therefore, we also need to take into consideration properties such as the reusability 
and extensibility of the service.
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The API proxy
The first pattern we are going to show makes use of an API proxy (also commonly 
identified as an API gateway), a server that proxies the communications between a 
client and a set of remote APIs. In a microservice architecture, its main purpose is to 
provide a single access point for multiple API endpoints, but it can also offer load 
balancing, caching, authentication, and traffic limiting, all of which are features that 
prove to be very useful to implement a solid API solution.

This pattern should not be new to us since we already saw it in action in this chapter 
when we built the custom load balancer with http-proxy and consul. For that 
example, our load balancer was exposing only two services, and then, thanks to 
a service registry, it was able to map a URL path to a service and hence to a list of 
servers. An API proxy works in the same way; it is essentially a reverse proxy and 
often also a load balancer, specifically configured to handle API requests. Figure 12.11 
shows how we can apply such a solution to our e-commerce application:

Figure 12.11: Using the API Proxy pattern in an e-commerce application

From the preceding diagram, it should be clear how an API proxy can hide the 
complexity of its underlying infrastructure. This is really handy in a microservice 
infrastructure, as the number of nodes may be high, especially if each service is 
scaled across multiple machines. The integration achieved by an API proxy is 
therefore only structural since there is no semantic mechanism. It simply provides 
a familiar monolithic view of a complex microservice infrastructure.
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Since the API Proxy pattern essentially abstracts the complexity of connecting to all 
the different APIs in the system, it might also allow for some freedom to restructure 
the various services. Maybe, as your requirements change, you will need to split 
an existing microservice into two or more decoupled microservices or, conversely, 
you might realize that, in your business context, it's better to join two or more 
services together. In both cases, the API Proxy pattern will allow you to make all the 
necessary changes with potentially no impact on the upstream systems accessing the 
data through the proxy.

API orchestration
The pattern we are going to describe next is probably the most natural and explicit 
way to integrate and compose a set of services, and it's called API orchestration. 
Daniel Jacobson, VP of Engineering for the Netflix API, in one of his blog posts 
(nodejsdp.link/orchestration-layer), defines API orchestration as follows:

"An API Orchestration Layer (OL) is an abstraction layer that takes generically-
modeled data elements and/or features and prepares them in a more specific way for 
a targeted developer or application."

The "generically modeled elements and/or features" fit the description of a service in 
a microservice architecture perfectly. The idea is to create an abstraction to connect 
those bits and pieces to implement new services specific to a particular application.

The ability to enable incremental change in an architecture over 
time is a very important characteristic in modern distributed 
systems. If you are interested in studying this broad subject in 
greater depth, we recommend the book Building Evolutionary 
Architectures: nodejsdp.link/evolutionary-architectures.

http://nodejsdp.link/orchestration-layer
http://nodejsdp.link/evolutionary-architectures
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Let's see an example using the e-commerce application. Refer to Figure 12.12:

Figure 12.12: An example usage of an orchestration layer to interact with multiple microservices

Figure 12.12 shows how the Store frontend application uses an orchestration layer 
to build more complex and specific features by composing and orchestrating 
existing services. The described scenario takes, as an example, a hypothetical 
completeCheckout() service that is invoked the moment a customer clicks 
the Pay button at the end of the checkout. 
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The figure shows how completeCheckout() is a composite operation made of three 
different steps:

1. First, we complete the transaction by invoking checkoutService/pay.
2. Then, when the payment is successfully processed, we need to tell the Cart 

service that the items were purchased and that they can be removed from the 
cart. We do that by invoking cartService/delete.

3. Also, when the payment is complete, we need to update the 
availability of the products that were just purchased. This is done 
through productsService/update.

As we can see, we took three operations from three different services and we built 
a new API that coordinates the services to maintain the entire system in a consistent 
state.

Another common operation performed by the API Orchestration Layer is data 
aggregation, or in other words, combining data from different services into a 
single response. Imagine we wanted to list all the products contained in a cart. 
In this case, the orchestration would need to retrieve the list of product IDs from 
the Cart service, and then retrieve the complete information about the products from 
the Products service. The ways in which we can combine and coordinate services is 
infinite, but the important pattern to remember is the role of the orchestration layer, 
which acts as an abstraction between a number of services and a specific application.

The orchestration layer is a great candidate for a further functional splitting. It is, in 
fact, very common to have it implemented as a dedicated, independent service, in 
which case it takes the name of API Orchestrator. This practice is perfectly in line 
with the microservice philosophy.
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Figure 12.13 shows this further improvement of our architecture:

Figure 12.13: An application of the API Orchestrator pattern for our e-commerce example
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Creating a standalone orchestrator, as shown in the previous figure, can help 
in decoupling the client application (in our case, the Store frontend) from the 
complexity of the microservice infrastructure. This is similar to the API proxy, 
but there is a crucial difference: an orchestrator performs a semantic integration of 
the various services, it's not just a naïve proxy, and it often exposes an API that is 
different from the one exposed by the underlying services.

Integration with a message broker
The Orchestrator pattern gave us a mechanism to integrate the various services in an 
explicit way. This has both advantages and disadvantages. It is easy to design, easy 
to debug, and easy to scale, but unfortunately, it has to have a complete knowledge 
of the underlying architecture and how each service works. If we were talking 
about objects instead of architectural nodes, the orchestrator would be an anti-
pattern called God object, which defines an object that knows and does too much, 
which usually results in high coupling, low cohesion, but most importantly, high 
complexity.

The pattern we are now going to show tries to distribute, across the services, the 
responsibility of synchronizing the information of the entire system. However, the 
last thing we want to do is create direct relationships between services, which would 
result in high coupling and a further increase in the complexity of the system, due to 
the increasing number of interconnections between nodes. The goal is to keep every 
service decoupled: every service should be able to work, even without the rest of the 
services in the system or in combination with new services and nodes.

The solution is to use a message broker, a system capable of decoupling the sender 
from the receiver of a message, allowing us to implement a Centralized Publish/
Subscribe pattern. This is, in practice, an implementation of the Observer pattern 
for distributed systems. We will talk more about this pattern later in Chapter 13, 
Messaging and Integration Patterns. Figure 12.14 shows an example of how this applies 
to the e-commerce application:
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Figure 12.14: Using a message broker to distribute events in our e-commerce application

As we can see from Figure 12.14, the client of the Checkout service, which is the 
frontend application, does not need to carry out any explicit integration with the 
other services. 
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All it has to do is invoke checkoutService/pay to complete the checkout process 
and take the money from the customer; all the integration work happens in the 
background:

1. The Store frontend invokes the checkoutService/pay operation on 
the Checkout service.

2. When the operation completes, the Checkout service generates an event, 
attaching the details of the operation, that is, the cartId and the list 
of products that were just purchased. The event is published into the 
message broker. At this point, the Checkout service does not know who is 
going to receive the message.

3. The Cart service is subscribed to the broker, so it's going to receive 
the purchased event that was just published by the Checkout service. 
The Cart service reacts by removing the cart identified with the ID contained 
in the message from its database.

4. The Products service was subscribed to the message broker as well, so it 
receives the same purchased event. It then updates its database based on this 
new information, adjusting the availability of the products included in the 
message.

This whole process happens without any explicit intervention from external entities 
such as an orchestrator. The responsibility of spreading the knowledge and keeping 
information in sync is distributed across the services themselves. There is no 
god service that has to know how to move the gears of the entire system, since each 
service is in charge of its own part of the integration.

The message broker is a fundamental element used to decouple the services and 
reduce the complexity of their interaction. It might also offer other interesting 
features, such as persistent message queues and guaranteed ordering of the 
messages. We will talk more about this in the next chapter.

Summary
In this chapter, we learned how to design Node.js architectures that scale both in 
capacity and complexity. We saw how scaling an application is not only about 
handling more traffic or reducing the response time, but it's also a practice to apply 
whenever we want better availability and tolerance to failures. We saw how these 
properties often are on the same wavelength, and we understood that scaling early 
is not a bad practice, especially in Node.js, which allows us to do it easily and with 
few resources.
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The scale cube taught us that applications can be scaled across three dimensions. 
Throughout this chapter, we focused on the two most important dimensions, 
the X-and Y-axes, allowing us to discover two essential architectural patterns, 
namely, load balancing and microservices. You should now know how to start 
multiple instances of the same Node.js application, how to distribute traffic across 
them, and how to exploit this setup for other purposes, such as fail tolerance and 
zero-downtime restarts. We also analyzed how to handle the problem of dynamic 
and auto-scaled infrastructures. With this, we saw that a service registry can really 
come in useful for those situations. We learned how to achieve these goals by using 
plain Node.js, external load balancers like Nginx, and service discovery systems like 
Consul. We also learned the basics of Kubernetes.

At this point, we should have got to grips with some very practical approaches to be 
able to face scalability much more fearlessly then before.

However, cloning and load balancing cover only one dimension of the scale cube, 
so we moved our analysis to another dimension, studying in more detail what it 
means to split an application by its constituent services by building a microservice 
architecture. We saw how microservices enable a complete revolution in how a 
project is developed and managed, providing a natural way to distribute the load 
of an application and split its complexity. However, we learned that this also means 
shifting the complexity from how to build a big monolithic application to how to integrate 
a set of services. This last aspect is where we focused the last part of our analysis, 
showing some of the architectural solutions to integrate a set of independent 
services.

In the next and last chapter of this book, we will have the chance to complete our 
Node.js Design Patterns journey by analyzing the messaging patterns we discussed 
in this chapter, in addition to more advanced integration techniques that are useful 
when implementing complex distributed architectures.

Exercises
• 12.1 A scalable book library: Revisit the book library application we built 

in Chapter 10, Universal JavaScript for Web Applications, reconsidering it after 
what we learned in this chapter. Can you make our original implementation 
more scalable? Some ideas might be to use the cluster module to run 
multiple instances of the server, making sure you handle failures by 
restarting workers that might accidentally die. Alternatively, why not try to 
run the entire application on Kubernetes?
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• 12.2 Exploring the Z-axis: Throughout this chapter, we did not show you any 
examples about how to shard data across multiple instances, but we explored 
all the necessary patterns to build an application that achieves scalability 
along the Z-axis of the scale cube. In this exercise, you are challenged to 
build a REST API that allows you to get a list of (randomly generated) people 
whose first name starts with a given letter. You could use a library like faker 
(nodejsdp.link/faker) to generate a sample of random people, and then 
you could store this data in different JSON files (or different databases), 
splitting the data into three different groups. For instance, you might have 
three groups called A-D, E-P, and Q-Z. Ada will go in the first group, Peter 
in the second, and Ugo in the third. Now, you can run one or more instances 
of a web server for every group, but you should expose only one public API 
endpoint to be able to retrieve all the people whose names starts with a given 
letter (for instance, /api/people/byFirstName/{letter}). Hint: You could use 
just a load balancer and map all the possible letters to the respective backend 
of the instances that are responsible for the associated group. Alternatively, 
you could create an API orchestration layer that encodes the mapping logic 
and redirects the traffic accordingly. Can you also throw a service discovery 
tool into the mix and apply dynamic load balancing, so that groups receiving 
more traffic can scale as needed?

• 12.3 Music addiction: Imagine you have to design the architecture of a 
service like Spotify or Apple Music. Can you try to design this service as a 
collection of microservices by applying some of the principles discussed in 
this chapter? Bonus points if you can actually implement a minimal version 
of this idea with Node.js! If this turns out to be the next big startup idea and 
makes you a millionaire, well… don't forget to thank the authors of this 
book. :)

http://nodejsdp.link/faker
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13
Messaging and 

Integration Patterns
If scalability is about distributing systems, integration is about connecting them. In 
the previous chapter, we learned how to distribute an application, fragmenting it 
across several processes and machines. For this to work properly, all those pieces 
have to communicate in some way and, hence, they have to be integrated.

There are two main techniques to integrate a distributed application: one is to use 
shared storage as a central coordinator and keeper of all the information, the other 
one is to use messages to disseminate data, events, and commands across the nodes 
of the system. This last option is what really makes the difference when scaling 
distributed systems, and it's also what makes this topic so fascinating and sometimes 
complex.

Messages are used in every layer of a software system. We exchange messages to 
communicate on the Internet; we can use messages to send information to other 
processes using pipes; we can use messages within an application as an alternative 
to direct function invocation (the Command pattern), and also device drivers use 
messages to communicate with the hardware. Any discrete and structured data 
that is used as a way to exchange information between components and systems 
can be seen as a message. However, when dealing with distributed architectures, 
the term messaging system is used to describe a specific class of solutions, patterns, 
and architectures that are meant to facilitate the exchange of information over 
the network.
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As we will see, several traits characterize these types of systems. We might choose to 
use a broker versus a peer-to-peer structure, we might use a request/reply message 
exchange or one-way type of communication, or we might use queues to deliver our 
messages more reliably; the scope of the topic is really broad. The book Enterprise 
Integration Patterns by Gregor Hohpe and Bobby Woolf gives us an idea about 
the vastness of the topic. Historically, it is considered the Bible of messaging and 
integration patterns and has more than 700 pages describing 65 different integration 
patterns. In this final chapter, we will explore the most important of those well-
known patterns—plus some more modern alternatives—considering them from 
the perspective of Node.js and its ecosystem.

To sum up, in this chapter, we will learn about the following topics:

• The fundamentals of a messaging system
• The Publish/Subscribe pattern
• Task distribution patterns and pipelines
• Request/reply patterns

Let's begin with the fundamentals.

Fundamentals of a messaging system
When talking about messages and messaging systems, there are four fundamental 
elements to take into consideration:

• The direction of the communication, which can be one-way only 
or a request/reply exchange

• The purpose of the message, which also determines its content
• The timing of the message, which can be sent and received in-context 

(synchronously) or out-of-context (asynchronously)
• The delivery of the message, which can happen directly or via a broker

In the sections that follow, we are going to formalize these aspects to provide 
a base for our later discussions.

One way versus request/reply patterns
The most fundamental aspect in a messaging system is the direction of the 
communication, which often also determines its semantics.



Chapter 13

[ 543 ]

The simplest communication pattern is when the message is pushed one way from 
a source to a destination; this is a trivial situation, and it doesn't need much 
explanation:

Figure 13.1: One-way communication

A typical example of one-way communication is an email or a web server that sends 
a message to a connected browser using WebSockets, or a system that distributes 
tasks to a set of workers.

On the other side, we have the Request/Reply exchange pattern, where the message 
in one direction is always matched (excluding error conditions) by a message in the 
opposite direction. A typical example of this exchange pattern is the invocation of 
a web service or sending a query to a database. The following diagram shows this 
simple and well-known scenario:

Figure 13.2: Request/Reply message exchange pattern

The Request/Reply pattern might seem a trivial pattern to implement, however, as 
we will see later, it becomes more complicated when the communication channel is 
asynchronous or involves multiple nodes. Take a look at the example represented in 
the next diagram:

Figure 13.3: Multi-node request/reply communication
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With the setup shown in Figure 13.3, we can better appreciate the complexity of 
some request/reply patterns. If we consider the direction of the communication 
between any two nodes, we can surely say that it is one way. However, from a 
global point of view, the initiator sends a request and in turn receives an associated 
response, even if from a different node. In these situations, what really differentiates 
a Request/Reply pattern from a bare one-way loop is the relationship between the 
request and the reply, which is kept in the initiator. The reply is usually handled in 
the same context as the request.

Message types
A message is essentially a means to connect different software components and 
there are different reasons for doing so: it might be because we want to obtain some 
information held by another system or component, to execute operations remotely, 
or to notify some peers that something has just happened.

The message content will also vary depending on the reason for the communication. 
In general, we can identify three types of messages, depending on their purpose:

• Command Messages
• Event Messages
• Document Messages

Command Messages
You should already be familiar with the Command Message as it's essentially 
a serialized Command object (we learned about this in the Command section in 
Chapter 9, Behavioral Design Patterns)

The purpose of this type of message is to trigger the execution of an action 
or a task on the receiver. For this to be possible, the Command Message has to 
contain the essential information to run the task, which usually includes the name 
of the operation and a list of arguments. The Command Message can be used to 
implement remote procedure call (RPC) systems, distributed computations, or 
can be more simply used to request some data. RESTful HTTP calls are simple 
examples of commands; each HTTP verb has a specific meaning and is associated 
with a precise operation: GET, to retrieve the resource; POST, to create a new one; PUT/
PATCH, to update it; and DELETE, to destroy it.
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Event Messages
An Event Message is used to notify another component that something has occurred. 
It usually contains the type of the event and sometimes also some details such as the 
context, the subject, or the actor involved.

In web development, we are using an Event Message when, for example, 
we leverage WebSockets to send notifications from the server to the client 
to communicate changes to some data or mutations in the state of the system.

Events are a very important integration mechanism in distributed applications, 
as they enable us to keep all the nodes of the system on the same page.

Document Messages
The Document Message is primarily meant to transfer data between components 
and machines. A typical example is a message used to transfer the results of 
a database query.

The main characteristic that differentiates a Document Message from a Command 
Message (which might also contain data) is that the message does not contain any 
information that tells the receiver what to do with the data. On the other hand, the 
main difference between a Document Message and an Event Message is the absence 
of an association with a particular occurrence with something that happened. Often, 
the replies to Command Messages are Document Messages, as they usually contain 
only the data that was requested or the result of an operation.

Now that we know how to categorize the semantics of a message, let's learn about 
the semantic of the communication channel used to move our messages around.

Asynchronous messaging, queues, 
and streams
At this point in the book, you should already be familiar with the characteristics of 
an asynchronous operation. Well, it turns out that the same principles can be applied 
to messaging and communications.

We can compare synchronous communications to a phone call: the two peers 
must be connected to the same channel at the same time and they should exchange 
messages in real time. Normally, if we want to call someone else, we either need 
another phone or terminate the ongoing communication to start a new one.



Messaging and Integration Patterns

[ 546 ]

Asynchronous communication is similar to an SMS: it doesn't require the recipient 
to be connected to the network the moment we send it; we might receive a response 
immediately or after an unknown delay, or we might not receive a response at all. 
We might send multiple SMSes to multiple recipients one after the other and receive 
their responses (if any) in any order. In short, we have better parallelism with the use 
of fewer resources.

Another important characteristic of asynchronous communications is that the 
messages can be stored and then delivered as soon as possible or at a later time. 
This can be useful when the receiver is too busy to handle new messages or when 
we want to guarantee delivery. In messaging systems, this is made possible using 
a message queue, a component that mediates the communication between the 
producer of the messages and the consumer, storing any message before it gets 
delivered to its destination, as shown in the following diagram:

Figure 13.4: A message queue

If for any reason the consumer crashes, disconnects from the network, or experiences 
a slowdown, the messages are accumulated in the queue and dispatched as soon as 
the consumer comes back online. The queue can be located in the producer, or be 
split between the producer and the consumer (in peer-to-peer architectures), or live 
in a dedicated external system acting as middleware for the communication (broker).

Another data structure that has a similar (but not the same!) goal as a message queue 
is the log. A log is an append-only data structure, which is durable and whose 
messages can be read as they arrive or by accessing its history. In the context of 
messaging and integration systems, this is also known as a data stream.

Compared to a queue, in a stream, messages are not removed when they are 
retrieved or processed. This way, consumers can retrieve the messages as they 
arrive or can query the stream at any time to retrieve past messages. This means 
that a stream provides more freedom when it comes to accessing the messages, 
while queues usually expose only one message at a time to their consumers. Most 
importantly, a stream can be shared by more than one consumer, which can access 
the messages (even the same messages) using different approaches. 
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Figure 13.5 gives you an idea of the structure of a stream compared to that of a 
message queue:

Figure 13.5: A stream

You will be able to better appreciate the difference between a queue and a stream 
later in the chapter when we implement a sample application using both approaches.

The final fundamental element to consider in a messaging system is the way the 
nodes of the system are connected together, which can be directly or through an 
intermediary.

Peer-to-peer or broker-based messaging
Messages can be delivered directly to the receiver in a peer-to-peer fashion, or 
through a centralized intermediary system called a message broker. The main role of 
the broker is to decouple the receiver of the message from the sender. The following 
diagram shows the architectural difference between the two approaches:

Figure 13.6: Peer-to-peer communication versus message brokering
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In a peer-to-peer architecture, every node is directly responsible for the delivery 
of the message to the receiver. This implies that the nodes have to know the address 
and port of the receiver and they have to agree on a protocol and message format. 
The broker eliminates these complexities from the equation: each node can be totally 
independent and can communicate with an unspecified number of peers without 
directly knowing their details.

A broker can also act as a bridge between different communication 
protocols. For example, the popular RabbitMQ broker (nodejsdp.link/
rabbitmq) supports Advanced Message Queuing Protocol (AMQP), Message 
Queue Telemetry Transport (MQTT), and Simple/Streaming Text Orientated 
Messaging Protocol (STOMP), enabling multiple applications supporting different 
messaging protocols to interact.

Besides the advantages in terms of decoupling and interoperability, a broker can 
offer additional features such as persistent queues, routing, message transformations, 
and monitoring, without mentioning the broad range of messaging patterns that 
many brokers support out of the box.

Of course, nothing prevents us from implementing all these features using a 
peer-to-peer architecture, but unfortunately, there is much more effort involved. 
Nonetheless, there might be different reasons for choosing a peer-to-peer approach 
instead of a broker:

• By removing the broker, we are removing a single point of failure from the 
system

• A broker has to be scaled, while in a peer-to-peer architecture we only need 
to scale the single nodes of the application

• Exchanging messages without intermediaries can greatly reduce the latency 
of the communication

By using a peer-to-peer messaging system we can have much more flexibility 
and power because we are not bound to any particular technology, protocol, 
or architecture.

MQTT (nodejsdp.link/mqtt) is a lightweight 
messaging protocol, specifically designed for machine-
to-machine communications (such as the Internet of 
things). AMQP (nodejsdp.link/amqp) is a more complex 
messaging protocol, designed to be an open source alternative to 
proprietary messaging middleware. STOMP (nodejsdp.link/
stomp) is a lightweight text-based protocol, which comes from "the 
HTTP school of design". All three are application layer protocols 
and are based on TCP/IP.

http://nodejsdp.link/rabbitmq
http://nodejsdp.link/rabbitmq
http://nodejsdp.link/mqtt
http://nodejsdp.link/amqp
http://nodejsdp.link/stomp
http://nodejsdp.link/stomp
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Now that we know the basics of a messaging system, let's explore some of the most 
important messaging patterns. Let's start with the Publish/Subscribe pattern.

Publish/Subscribe pattern
Publish/Subscribe (often abbreviated to Pub/Sub) is probably the best-known 
one-way messaging pattern. We should already be familiar with it, as it's nothing 
more than a distributed Observer pattern. As in the case of Observer, we have a set 
of subscribers registering their interest in receiving a specific category of messages. 
On the other side, the publisher produces messages that are distributed across all 
the relevant subscribers. Figure 13.7 shows the two main variants of the Pub/Sub 
pattern; the first is based on a peer-to-peer architecture, and the second uses a broker 
to mediate the communication:

Figure 13.7: Publish/Subscribe messaging pattern

What makes Pub/Sub so special is the fact that the publisher doesn't know in 
advance who the recipients of the messages are. As we said, it's the subscriber that 
has to register its interest to receive a particular message, allowing the publisher to 
work with an unspecified number of receivers. In other words, the two sides of the 
Pub/Sub pattern are loosely coupled, which makes this an ideal pattern to integrate 
the nodes of an evolving distributed system.

The presence of a broker further improves the decoupling between the nodes of the 
system because the subscribers interact only with the broker, not knowing which 
node is the publisher of a message. As we will see later, a broker can also provide 
a message queuing system, allowing reliable delivery even in the presence of 
connectivity problems between the nodes.
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Now, let's work on an example to demonstrate this pattern.

Building a minimalist real-time chat 
application
To show a real-life example of how the Pub/Sub pattern can help us integrate 
a distributed architecture, we are now going to build a very basic real-time 
chat application using pure WebSockets. Then, we will scale it by running multiple 
instances, and finally, using a messaging system, we will build a communication 
channel between all the server instances.

Implementing the server side
Now, let's take one step at a time. Let's first build a basic chat application, then we'll 
scale it to multiple instances.

To implement the real-time capabilities of a typical chat application, we will rely on 
the ws package (nodejsdp.link/ws), which is a pure WebSocket implementation for 
Node.js. Implementing real-time applications in Node.js is pretty simple, and the 
code we are going to write will confirm this assumption. So, let's create the server 
side of our chat application in a file called index.js:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'

// serve static files
const server = createServer((req, res) => {                // (1)
  return staticHandler(req, res, { public: 'www' })
})

const wss = new ws.Server({ server })                      // (2)
wss.on('connection', client => {
  console.log('Client connected')
  client.on('message', msg => {                            // (3)
    console.log(`Message: ${msg}`)
    broadcast(msg)
  })
})

function broadcast (msg) {                                 // (4)
  for (const client of wss.clients) {

http://nodejsdp.link/ws
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    if (client.readyState === ws.OPEN) {
      client.send(msg)
    }
  }
}

server.listen(process.argv[2] || 8080)

That's it! That's all we need to implement the server-side component of our chat 
application. This is how it works:

1. We first create an HTTP server and forward every request to a special 
handler (nodejsdp.link/serve-handler), which will take care to serve all 
the static files from the www directory. This is needed to access the client-side 
resources of our application (for example, HTML, JavaScript, and CSS files).

2. We then create a new instance of the WebSocket server, and we attach it to 
our existing HTTP server. Next, we start listening for incoming WebSocket 
client connections by attaching an event listener for the connection event.

3. Each time a new client connects to our server, we start listening for incoming 
messages. When a new message arrives, we broadcast it to all the connected 
clients.

4. The broadcast() function is a simple iteration over all the known clients, 
where the send() function is invoked on each connected client.

This is the magic of Node.js! Of course, the server that we just implemented is very 
minimal and basic, but as we will see, it does its job.

Implementing the client side
Next, it's time to implement the client side of our chat application. This can be done 
with another compact and simple fragment of code, essentially a minimal HTML 
page with some basic JavaScript code. Let's create this page in a file named www/
index.html as follows:

<!DOCTYPE html>
<html>
  <body>
    Messages:
    <div id="messages"></div>
    <form id="msgForm">
      <input type="text" placeholder="Send a message" id="msgBox"/>
      <input type="submit" value="Send"/>

http://nodejsdp.link/serve-handler
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    </form>
    <script>
      const ws = new WebSocket(
        `ws://${window.document.location.host}`
      )
      ws.onmessage = function (message) {
        const msgDiv = document.createElement('div')
        msgDiv.innerHTML = message.data
        document.getElementById('messages').appendChild(msgDiv)
      }
      const form = document.getElementById('msgForm')
      form.addEventListener('submit', (event) => {
        event.preventDefault()
        const message = document.getElementById('msgBox').value
        ws.send(message)
        document.getElementById('msgBox').value = ''
      })
    </script>
  </body>
</html>

The HTML page we just created doesn't really need many comments, it's just a 
piece of straightforward web development. We use the native WebSocket object to 
initialize a connection to our Node.js server, and then start listening for messages 
from the server, displaying them in new div elements as they arrive. For sending 
messages, instead, we use a simple textbox and a button within a form.

Please note that when stopping or restarting the chat server, the 
WebSocket connection is closed and the client will not try to 
reconnect automatically (as we might expect from a production-
grade application). This means that it is necessary to refresh the 
browser after a server restart to reestablish the connection (or 
implement a reconnection mechanism, which we will not cover 
here for brevity). Also, in this initial version of our app, the clients 
will not receive any message sent while they were not connected to 
the server.
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Running and scaling the chat application
We can try to run our application immediately. Just launch the server with the 
following command:

node index.js 8080

Then, open a couple of browser tabs or even two different browsers, point them 
at http://localhost:8080, and start chatting:

Figure 13.8: Our new chat application in action

Now, we want to see what happens when we try to scale our application by 
launching multiple instances. Let's try to do that. Let's start another server on 
another port:

node index.js 8081

The desired outcome should be that two different clients, connected to two different 
servers, should be able to exchange chat messages. Unfortunately, this is not what 
happens with our current implementation. We can test this by opening another 
browser tab to http://localhost:8081.

In a real-world application, we would use a load balancer to 
distribute the load across our instances, but for this demo we 
will not use one. This allows us to access each server instance 
in a deterministic way to verify how it interacts with the other 
instances.
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When sending a chat message on one instance, we only broadcast the message 
locally, distributing it only to the clients connected to that particular server. In 
practice, the two servers are not talking to each other. We need to integrate them, 
and that's exactly what we are going to see next.

Using Redis as a simple message broker
We start our analysis of the most common Pub/Sub implementations by 
introducing Redis (nodejsdp.link/redis), which is a very fast and flexible 
in-memory data structure store. Redis is often used as a database or a cache 
server, however, among its many features there is a pair of commands 
specifically designed to implement a centralized Pub/Sub message exchange pattern.

Redis' message brokering capabilities are (intentionally) very simple and basic, 
especially if we compare them to those of more advanced message-oriented 
middleware. However, this is one of the main reasons for its popularity. Often, Redis 
is already available in an existing infrastructure, for example, used as a cache server 
or as a session data store. Its speed and flexibility make it a very popular choice for 
sharing data in a distributed system. So, as soon as the need for a publish/subscribe 
broker arises in a project, the most simple and immediate choice is to reuse Redis 
itself, avoiding the need to install and maintain a dedicated message broker.

Let's now work on an example to demonstrate the simplicity and power of using 
Redis as a message broker.

Our plan of action is to integrate our chat servers using Redis as a message broker. 
Each instance publishes any message received from its clients to the broker, and at 
the same time, it subscribes for any message coming from other server instances. As 
we can see, each server in our architecture is both a subscriber and a publisher. The 
following diagram shows a representation of the architecture that we want to obtain:

This example requires a working installation of Redis, listening 
on its default port. You can find more details at nodejsdp.link/
redis-quickstart.

http://nodejsdp.link/redis
http://nodejsdp.link/redis-quickstart
http://nodejsdp.link/redis-quickstart
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Figure 13.9: Using Redis as a message broker for our chat application

Based on the architecture described in Figure 13.9, we can sum up the journey of a 
message as follows:

1. The message is typed into the textbox of the web page and sent to the 
connected instance of our chat server.

2. The message is then published to the broker.
3. The broker dispatches the message to all the subscribers, which in 

our architecture are all the instances of the chat server.
4. In each instance, the message is distributed to all the connected clients.

Let's see in practice how this works. Let's modify the server code by adding the 
publish/subscribe logic:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import Redis from 'ioredis'                                // (1)

const redisSub = new Redis()
const redisPub = new Redis()
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// serve static files
const server = createServer((req, res) => {
  return staticHandler(req, res, { public: 'www' })
})

const wss = new ws.Server({ server })
wss.on('connection', client => {
  console.log('Client connected')
  client.on('message', msg => {
    console.log(`Message: ${msg}`)
    redisPub.publish('chat_messages', msg)                 // (2)
  })
})

redisSub.subscribe('chat_messages')                        // (3)
redisSub.on('message', (channel, msg) => {
  for (const client of wss.clients) {
    if (client.readyState === ws.OPEN) {
      client.send(msg)
    }
  }
})

server.listen(process.argv[2] || 8080)

The changes that we made to our original chat server are highlighted in the 
preceding code. This how the new implementation works:

1. To connect our Node.js application to the Redis server, we use the ioredis 
package (nodejsdp.link/ioredis), which is a complete Node.js client 
supporting all the available Redis commands. Next, we instantiate two 
different connections, one used to subscribe to a channel, the other to publish 
messages. This is necessary in Redis, because once a connection is put in 
subscriber mode, only commands related to the subscription can be used. 
This means that we need a second connection for publishing messages.

2. When a new message is received from a connected client, we publish the 
message in the chat_messages channel. We don't directly broadcast the 
message to our clients because our server is subscribed to the same channel 
(as we will see in a moment), so it will come back to us through Redis. For 
the scope of this example, this is a simple and effective mechanism. However, 
depending on the requirements of your application, you may instead want 
to broadcast the message immediately and ignore any message arriving from 
Redis and originating from the current server instance. We leave this to you 
as an exercise.

http://nodejsdp.link/ioredis
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3. As we said, our server also has to subscribe to the chat_messages channel, so 
we register a listener to receive all the messages published into that channel 
(either by the current server instance or any other chat server instance). When 
a message is received, we simply broadcast it to all the clients connected to 
the current WebSocket server.

These few changes are enough to integrate all the chat server instances that we might 
decide to start. To prove this, you can try starting multiple instances of our application:

node index.js 8080
node index.js 8081
node index.js 8082

You can then connect multiple browser tabs to each instance and verify that the 
messages you send to one instance are successfully received by all the other clients 
connected to the other instances.

Congratulations! We just integrated multiple nodes of a distributed real-time 
application using the Publish/Subscribe pattern.

Peer-to-peer Publish/Subscribe with ZeroMQ
The presence of a broker can considerably simplify the architecture of a messaging 
system. However, in some circumstances, this may not be the best solution. This 
includes all the situations where a low latency is critically important, or when scaling 
complex distributed systems, or when the presence of a single point of failure is not 
an option. The alternative to using a broker is, of course, implementing a peer-to-
peer messaging system.

Introducing ZeroMQ
If our project is a good candidate for a peer-to-peer architecture, one of the best 
solutions to evaluate is certainly ZeroMQ (nodejsdp.link/zeromq, also known 
as zmq or ØMQ). ZeroMQ is a networking library that provides the basic tools 
to build a large variety of messaging patterns. It is low-level, extremely fast, and 
has a minimalistic API, but it offers all the basic building blocks to create a solid 
messaging system, such as atomic messages, load balancing, queues, and many 
more. It supports many types of transport, such as in-process channels (inproc://), 
inter-process communication (ipc://), multicast using the PGM protocol 
(pgm:// or epgm://), and, of course, the classic TCP (tcp://).

Redis allows us to publish and subscribe to channels identified by a 
string, for example, chat.nodejs. But it also allows us to use glob-
style patterns to define subscriptions that can potentially match 
multiple channels, for example, chat.*.

http://nodejsdp.link/zeromq
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Among the features of ZeroMQ, we can also find tools to implement a Publish/
Subscribe pattern, which is exactly what we need for our example. So, what we 
are going to do now is remove the broker (Redis) from the architecture of our 
chat application and let the various nodes communicate in a peer-to-peer fashion, 
leveraging the publish/subscribe sockets of ZeroMQ.

Designing a peer-to-peer architecture for the chat 
server
When we remove the broker from our architecture, each instance of the chat server 
has to directly connect to the other available instances in order to receive the messages 
they publish. In ZeroMQ, we have two types of sockets specifically designed for this 
purpose: PUB and SUB. The typical pattern is to bind a PUB socket to a local port where 
it will start listening for incoming subscription requests from sockets of type SUB.

A subscription can have a filter that specifies what messages are delivered to the 
connected SUB sockets. The filter is a simple binary buffer (so it can also be a string), 
which will be matched against the beginning of the message (which is also a binary 
buffer). When a message is sent through the PUB socket it is broadcast to all the 
connected SUB sockets, but only after their subscription filters are applied. The filters 
will be applied to the publisher side only if a connected protocol is used, such as, for 
example, TCP.

The following diagram shows the pattern applied to our distributed chat server 
architecture (with only two instances, for simplicity):

Figure 13.10: Chat server messaging architecture using ZeroMQ PUB/SUB sockets

A ZeroMQ socket can be considered as a network socket on 
steroids, which provides additional abstractions to help implement 
the most common messaging patterns. For example, we can find 
sockets designed to implement publish/subscribe, request/reply, 
or one-way push communications.



Chapter 13

[ 559 ]

Figure 13.10 shows us the flow of information when we have two instances of 
the chat application, but the same concept can be applied to N instances. This 
architecture tells us that each node must be aware of the other nodes in the system 
to be able to establish all the necessary connections. It also shows us how the 
subscriptions go from a SUB socket to a PUB socket, while messages travel in the 
opposite direction.

Using the ZeroMQ PUB/SUB sockets
Let's see how the ZeroMQ PUB/SUB sockets work in practice by modifying our chat 
server:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import yargs from 'yargs'                                    // (1)
import zmq from 'zeromq'

// serve static files
const server = createServer((req, res) => {
  return staticHandler(req, res, { public: 'www' })
})

let pubSocket
async function initializeSockets () {
  pubSocket = new zmq.Publisher()                            // (2)
  await pubSocket.bind(`tcp://127.0.0.1:${yargs.argv.pub}`)

  const subSocket = new zmq.Subscriber()                     // (3)
  const subPorts = [].concat(yargs.argv.sub)
  for (const port of subPorts) {
    console.log(`Subscribing to ${port}`)
    subSocket.connect(`tcp://127.0.0.1:${port}`)
  }
  subSocket.subscribe('chat')

  for await (const [msg] of subSocket) {                     // (4)
    console.log(`Message from another server: ${msg}`)
    broadcast(msg.toString().split(' ')[1])
  }
}
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initializeSockets()

const wss = new ws.Server({ server })
wss.on('connection', client => {
  console.log('Client connected')
  client.on('message', msg => {
    console.log(`Message: ${msg}`)
    broadcast(msg)
    pubSocket.send(`chat ${msg}`)                            // (5)
  })
})

function broadcast (msg) {
  for (const client of wss.clients) {
    if (client.readyState === ws.OPEN) {
      client.send(msg)
    }
  }
}

server.listen(yargs.argv.http || 8080)

The preceding code clearly shows that the logic of our application became slightly 
more complicated, however, it's still straightforward considering that we are 
implementing a peer-to-peer Publish/Subscribe pattern. Let's see how all the pieces 
come together:

1. We import two new packages. First, we import yargs (nodejsdp.link/yargs), 
which is a command-line argument parser; we need this to easily accept 
named arguments. Secondly, we import the zeromq package (nodejsdp.link/
zeromq), which is a Node.js client for ZeroMQ.

2. In the initializeSockets() function, we immediately create our Publisher 
socket and bind it to the port provided in the --pub command-line argument.

3. We create the Subscriber socket and we connect it to the Publisher sockets 
of the other instances of our application. The ports of the target Publisher 
sockets are provided in the --sub command-line arguments (there might be 
more than one). We then create the actual subscription, by providing chat as 
a filter, which means that we will receive only the messages beginning 
with chat.

http://nodejsdp.link/yargs
http://nodejsdp.link/zeromq
http://nodejsdp.link/zeromq
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4. We start listening for messages arriving at our Subscriber socket using a for 
await...of loop, since subSocket is an async iterable. With each message 
we receive, we do some simple parsing to remove the chat prefix, and then 
we broadcast() the actual payload to all the clients connected to the current 
WebSocket server.

5. When a new message is received by the WebSocket server of the current 
instance, we broadcast it to all the connected clients but we also publish it 
through our Publisher socket. We use chat as a prefix followed by a space, 
so that the message will be published to all the subscriptions using chat as 
a filter.

We have now built a simple distributed system, integrated using a peer-to-peer 
Publish/Subscribe pattern!

Let's fire it up, let's start three instances of our application by making sure to connect 
their Publisher and Subscriber sockets properly:

node index.js --http 8080 --pub 5000 --sub 5001 --sub 5002
node index.js --http 8081 --pub 5001 --sub 5000 --sub 5002
node index.js --http 8082 --pub 5002 --sub 5000 --sub 5001

The first command will start an instance with an HTTP server listening on port 8080, 
while binding its Publisher socket on port 5000 and connecting the Subscriber 
socket to ports 5001 and 5002, which is where the Publisher sockets of the other two 
instances should be listening at. The other two commands work in a similar way.

Now, the first thing you will see is that ZeroMQ will not complain if a Subscriber 
socket can't establish a connection to a Publisher socket. For example, at the time of 
the first command, there are no Publisher sockets listening on ports 5001 and 5002, 
however, ZeroMQ is not throwing any error. This is because ZeroMQ is built to be 
resilient to faults and it implements a built-in connection retry mechanism. This 
feature also comes in particularly handy if any node goes down or is restarted. The 
same forgiving logic applies to the Publisher socket: if there are no subscriptions, it 
will simply drop all the messages, but it will continue working.

At this point, we can try to navigate with a browser to any of the server instances 
that we started and verify that the messages are properly propagated to all the chat 
servers.
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Reliable message delivery with queues
An important abstraction in a messaging system is the message queue (MQ). With 
a message queue, the sender and the receiver(s) of the message don't necessarily 
need to be active and connected at the same time to establish a communication, 
because the queuing system takes care of storing the messages until the destination 
is able to receive them. This behavior is opposed to the fire-and-forget paradigm, 
where a subscriber can receive messages only during the time it is connected to 
the messaging system.

A subscriber that is able to always reliably receive all the messages, even those sent 
when it's not listening for them, is called a durable subscriber.

We can summarize the delivery semantic of a messaging system in three categories:

• At most once: Also known as fire-and-forget, the message is not persisted, and 
the delivery is not acknowledged. This means that the message can be lost in 
cases of crashes or disconnections of the receiver.

• At least once: The message is guaranteed to be received at least once, but 
duplicates might occur if, for example, the receiver crashes before notifying 
the sender of the reception. This implies that the message has to be persisted 
in the eventuality it has to be sent again.

• Exactly once: This is the most reliable delivery semantic. It guarantees that 
the message is received once and only once. This comes at the expense of a 
slower and more data-intensive mechanism for acknowledging the delivery 
of messages.

We have a durable subscriber when our messaging system can achieve an "at least 
once" or an "exactly once" delivery semantic and to do that, the system has to use 
a message queue to accumulate the messages while the subscriber is disconnected. 
The queue can be stored in memory or persisted on disk to allow the recovery of its 
messages even if the queuing system restarts or crashes.

In the previous example, we assumed a static architecture where 
the number of instances and their addresses are known in advance. 
We can introduce a service registry, as explained in Chapter 12, 
Scalability and Architectural Patterns, to connect our instances 
dynamically. It is also important to point out that ZeroMQ can 
be used to implement a broker using the same primitives we 
demonstrated here.
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The following diagram shows a graphical representation of a durable subscriber 
backed by a message queue:

Figure 13.11: Example behavior of a messaging system backed by a queue

Figure 13.11 shows us how a message queue can help us implement the Durable 
Subscriber pattern. As we can see, during normal operations (1) messages travel from 
the publisher to the subscriber through the message queue. When the subscriber 
goes offline (2) because of a crash, a malfunction, or simply a planned maintenance 
period, any message sent by the publisher is stored and accumulated safely in the 
message queue. Afterward, when the subscriber comes back online (3), all messaged 
accumulated in the queue are sent to the subscriber, so no message is lost.

The durable subscriber is probably the most important pattern enabled by a message 
queue, but it's certainly not the only one, as we will see later in the chapter.

Next, we are going to learn about AMQP, which is the protocol we are going to use 
throughout the rest of the chapter to implement our message queue examples.
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Introducing AMQP
A message queue is normally used in situations where messages must not be lost, 
which includes mission-critical applications such as banking systems, air traffic 
management and control systems, medical applications, and so on. This usually 
means that the typical enterprise-grade message queue is a very complex piece of 
software, which utilizes bulletproof protocols and persistent storage to guarantee 
the delivery of the message even in the presence of malfunctions. For this reason, 
enterprise messaging middleware has been, for many years, a prerogative of tech 
giants such as Oracle and IBM, each one of them usually implementing their own 
proprietary protocol, resulting in a strong customer lock-in. Fortunately, it's been 
a few years now since messaging systems entered the mainstream, thanks to the 
growth of open protocols such as AMQP, STOMP, and MQTT. Throughout the rest 
of the chapter we are going to use AMQP as the messaging protocol for our queuing 
system, so let's give it a proper introduction.

AMQP is an open standard protocol supported by many message-queuing systems. 
Besides defining a common communication protocol, it also provides a model to 
describe routing, filtering, queuing, reliability, and security.

The following diagram shows us all the AMQP components at a glance:

Figure 13.12: Example of an AMQP-based messaging system

As shown in Figure 13.12, in AMQP there are three essential components:

• Queue: The data structure responsible for storing the messages consumed 
by the clients. The messages from a queue are pushed (or pulled) to one or 
more consumers. If multiple consumers are attached to the same queue, 
the messages are load balanced across them. A queue can be any of the 
following:



Chapter 13

[ 565 ]

• Durable: This means that the queue is automatically recreated if the 
broker restarts. A durable queue does not imply that its contents 
are preserved as well; in fact, only messages that are marked as 
persistent are saved to the disk and restored in case of a restart.

• Exclusive: This means that the queue is bound to only one particular 
subscriber connection. When the connection is closed, the queue is 
destroyed.

• Auto-delete: This will cause the queue to be deleted when the last 
subscriber disconnects.

• Exchange: This is where a message is published. An exchange routes the 
messages to one or more queues depending on the algorithm it implements:

• Direct exchange: It routes the messages by matching an entire 
routing key (for example, chat.msg)

• Topic exchange: It distributes the messages using a glob-like pattern 
matched against the routing key (for example, chat.# matches all the 
routing keys starting with chat.)

• Fanout exchange: It broadcasts a message to all the connected 
queues, ignoring any routing key provided

• Binding: This is the link between exchanges and queues. It also defines the 
routing key or the pattern used to filter the messages that arrive from the 
exchange.

These components are managed by a broker, which exposes an API for creating and 
manipulating them. When connecting to a broker, a client creates a channel—an 
abstraction of a connection—which is responsible for maintaining the state of the 
communication with the broker.

The AMQP model is way more complex than the messaging systems we have 
used so far (Redis and ZeroMQ). However, it offers a set of features and a level of 
reliability that would be very hard to obtain using only primitive publish/subscribe 
mechanisms.

In AMQP, we can obtain the Durable Subscriber pattern by 
creating any type of queue that is not exclusive or auto-delete.

You can find a detailed introduction to the AMQP model on the 
RabbitMQ website at nodejsdp.link/amqp-components.

http://nodejsdp.link/amqp-components
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Durable subscribers with AMQP and RabbitMQ
Let's now practice what we learned about durable subscribers and AMQP and 
work on a small example. A typical scenario where it's important to not lose 
any message is when we want to keep the different services of a microservice 
architecture in sync (we already described this integration pattern in the previous 
chapter). If we want to use a broker to keep all our services on the same page, it's 
important that we don't lose any information, otherwise we might end up in an 
inconsistent state.

Designing a history service for the chat application
Let's now extend our small chat application using a microservice approach. Let's 
add a history service that persists our chat messages inside a database, so that when 
a client connects, we can query the service and retrieve the entire chat history. We 
are going to integrate the history service with the chat server using the RabbitMQ 
broker (nodejsdp.link/rabbitmq) and AMQP.

The following diagram shows our planned architecture:

Figure 13.13: Architecture of our chat application with AMQP and history service

As shown in Figure 13.13, we are going to use a single fanout exchange; we don't 
need any complicated routing logic, so our scenario does not require any exchange 
more complex than that. Next, we will create one queue for each instance of the chat 
server. 

http://nodejsdp.link/rabbitmq
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These queues are exclusive since we are not interested in receiving any messages 
missed while a chat server is offline; that's the job of our history service, which can 
eventually also implement more complicated queries against the stored messages. 
In practice, this means that our chat servers are not durable subscribers and their 
queues will be destroyed as soon as the connection is closed. The history service 
instead cannot afford to lose any messages, otherwise it would not fulfill its very 
purpose. Therefore, the queue we are going to create for it has to be durable, so that 
any message that is published while the history service is disconnected will be kept 
in the queue and delivered when it comes back online.

We are going to use the familiar LevelUP as the storage engine for the history 
service, while we will use the amqplib package (nodejsdp.link/amqplib) to connect 
to RabbitMQ using the AMQP protocol.

Implementing a history service using AMQP
Let's now implement our history service! We are going to create a standalone 
application (a typical microservice), which is implemented in the historySvc.js 
module. The module is made up of two parts: an HTTP server to expose the chat 
history to clients, and an AMQP consumer responsible for capturing the chat 
messages and storing them in a local database.

Let's see what this looks like in the code that follows:

import { createServer } from 'http'
import level from 'level'
import timestamp from 'monotonic-timestamp'
import JSONStream from 'JSONStream'
import amqp from 'amqplib'

async function main () {
  const db = level('./msgHistory')

  const connection = await amqp.connect('amqp://localhost')  // (1)
  const channel = await connection.createChannel()
  await channel.assertExchange('chat', 'fanout')             // (2)
  const { queue } = channel.assertQueue('chat_history')      // (3)
  await channel.bindQueue(queue, 'chat')                     // (4)

The example that follows requires a working RabbitMQ server, 
listening on its default port. For more information, please refer 
to its official installation guide at nodejsdp.link/rabbitmq-
getstarted.

http://nodejsdp.link/amqplib
http://nodejsdp.link/rabbitmq-getstarted
http://nodejsdp.link/rabbitmq-getstarted
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  channel.consume(queue, async msg => {                      // (5)
    const content = msg.content.toString()
    console.log(`Saving message: ${content}`)
    await db.put(timestamp(), content)
    channel.ack(msg)
  })

  createServer((req, res) => {
    res.writeHead(200)
    db.createValueStream()
      .pipe(JSONStream.stringify())
      .pipe(res)
  }).listen(8090)
}

main().catch(err => console.error(err))

We can immediately see that AMQP requires a little bit of setting up, which is 
necessary to create and connect all the components of the model. Let's see in detail 
how it works:

1. We first establish a connection with the AMQP broker, which in our case is 
RabbitMQ. Then, we create a channel, which is similar to a session that will 
maintain the state of our communications.

2. Next, we set up an exchange, named chat. As we already mentioned, it is 
a fanout exchange. The assertExchange() command will make sure that the 
exchange exists on the broker, otherwise it will create it.

3. We also create a queue called chat_history. By default, the queue is durable 
(not exclusive and not auto-delete), so we don't need to pass any extra 
options to support durable subscribers.

4. Next, we bind the queue to the exchange we previously created. Here, 
we don't need any other particular option (such as a routing key or pattern), 
as the exchange is of the type fanout, so it doesn't perform any filtering.

5. Finally, we can begin to listen for messages coming from the queue we 
just created. We save every message that we receive in a LevelDB database 
using a monotonic timestamp as the key (see nodejsdp.link/monotonic-
timestamp) to keep the messages sorted by date. It's also interesting to see 
that we are acknowledging every message using channel.ack(msg), but 
only after the message is successfully saved into the database. If the ACK 
(acknowledgment) is not received by the broker, the message is kept in the 
queue to be processed again.

http://nodejsdp.link/monotonic-timestamp
http://nodejsdp.link/monotonic-timestamp
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Integrating the chat application with AMQP
To integrate the chat servers using AMQP, we have to use a setup very similar to the 
one we implemented in the history service, but with some small variations. So, let's 
see how the new index.js module looks with the introduction of AMQP:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import amqp from 'amqplib'
import JSONStream from 'JSONStream'
import superagent from 'superagent'

const httpPort = process.argv[2] || 8080

async function main () {
  const connection = await amqp.connect('amqp://localhost')
  const channel = await connection.createChannel()
  await channel.assertExchange('chat', 'fanout')
  const { queue } = await channel.assertQueue(               // (1)
    `chat_srv_${httpPort}`,
    { exclusive: true }
  )
  await channel.bindQueue(queue, 'chat')
  channel.consume(queue, msg => {                            // (2)
    msg = msg.content.toString()
    console.log(`From queue: ${msg}`)
    broadcast(msg)
  }, { noAck: true })

  // serve static files
  const server = createServer((req, res) => {
    return staticHandler(req, res, { public: 'www' })
  })

  const wss = new ws.Server({ server })
  wss.on('connection', client => {
    console.log('Client connected')

If we are not interested in sending explicit acknowledgments, 
we can pass the { noAck: true } option  to 
the channel.consume() API.
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    client.on('message', msg => {
      console.log(`Message: ${msg}`)
      channel.publish('chat', '', Buffer.from(msg))          // (3)
    })

    // query the history service
    superagent                                               // (4)
      .get('http://localhost:8090')
      .on('error', err => console.error(err))
      .pipe(JSONStream.parse('*'))
      .on('data', msg => client.send(msg))
  })

  function broadcast (msg) {
    for (const client of wss.clients) {
      if (client.readyState === ws.OPEN) {
        client.send(msg)
      }
    }
  }

  server.listen(httpPort)
}

main().catch(err => console.error(err))

As we can see, AMQP made the code a little bit more verbose on this occasion too, 
but at this point we should already be familiar with most of it. There are just a few 
aspects to be aware of:

1. As we mentioned, our chat server doesn't need to be a durable subscriber: a 
fire-and-forget paradigm is enough. So when we create our queue, we pass 
the { exclusive: true } option, indicating that the queue is scoped to the 
current connection and therefore it will be destroyed as soon as the chat 
server shuts down.

2. For the same reason as in the previous point, we don't need to send back any 
acknowledgement when we read a message from the queue. So, to make 
things easier, we pass the { noAck: true } option when starting to consume 
the messages from the queue.

3. Publishing a new message is also very easy. We simply have to specify the 
target exchange (chat) and a routing key, which in our case is empty ('') 
because we are using a fanout exchange, so there is no routing to perform.
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4. The other peculiarity of this version of our chat server is that we can 
now present to the user the full history of the chat, thanks to our history 
microservice. We do that by querying the history microservice and sending 
every past message to the client as soon as a new connection is established.

We can now run our new improved chat application. To do that, first make sure to 
have RabbitMQ running locally on your machine, then let's start two chat servers 
and the history service in three different terminals:

node index.js 8080
node index.js 8081
node historySvc.js

We should now focus our attention on how our system, and in particular the history 
service, behaves in case of downtime. If we stop the history server and continue to 
send messages using the web UI of the chat application, we will see that when the 
history server is restarted, it will immediately receive all the messages it missed. This 
is a perfect demonstration of how the Durable Subscriber pattern works!

Reliable messaging with streams
At the beginning of this chapter, we mentioned that a possible alternative to message 
queues are streams. The two paradigms are similar in scope, but fundamentally 
different in their approach to messaging. In this section, we are going to unveil the 
power of streams by leveraging Redis Streams to implement our chat application.

Characteristics of a streaming platform
In the context of system integration, a stream (or log) is an ordered, append-only, 
durable data structure. Messages—which in the context of streams would be more 
appropriately called records—are always added at the end of the stream and, unlike 
queues, they are not automatically deleted when they are consumed. Essentially, this 
characteristic makes a stream more similar to a data store than to a message broker. 
And like a data store, a stream can be queried to retrieve a batch of past records or 
replayed starting from a specific record.

It is interesting to see how the microservice approach allows our 
system to survive even without one of its components—the history 
service. There would be a temporary reduction of functionality (no 
chat history available) but people would still be able to exchange 
chat messages in real time. Awesome!
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Another important characteristic of streams is that records are pulled by the 
consumer from the stream. This intrinsically allows the consumer to process the 
records at its own pace without risking being overwhelmed.

Based on these features, a stream allows us to implement reliable message delivery 
out of the box, since no data is ever lost from the stream (even though data can still 
be removed explicitly or can be deleted after an optional retention period). In fact, as 
Figure 13.14 shows, if a consumer crashes, all it has to do is start reading the stream 
from where it left off:

Figure 13.14: Reliable message delivery with streams

As Figure 13.14 shows, during normal operations (1) the consumer processes 
the records in the stream as soon as they are added by the producer. When the 
consumer becomes unavailable (2) because of a problem or a scheduled maintenance, 
the producer simply continues to add records to the stream as normal. When the 
consumer comes back online (3), it starts processing the records from the point where 
it left. The main aspect of this mechanism is that it's very simple and barebone, but 
it's quite effective at making sure that no message is lost even when the consumer is 
not available.
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Streams versus message queues
As we have seen so far, there are a lot of differences, but also a lot of similarities 
between a message queue and a stream. So, when should you use one in place of the 
other?

Well, the obvious use case for streams is when we have to process sequential data 
(streaming data) that may also require the consumer to process messages in batch or 
to look for correlations in past messages. Also, modern streaming platforms allow 
the ingestion of gigabytes of data per second and the distribution of both the data 
and the processing of the data across multiple nodes.

Both message queues and streams are well suited to implement simple Publish/
Subscribe patterns, even with reliable message delivery. However, message queues 
are better suited for complex system integration tasks, since they provide advanced 
routing of messages and allow us to have different priorities for different messages 
(in streams, the order of the records is always preserved).

As we will see later, both can also be used to implement task distribution patterns, 
even though, in a standard architecture, message queues could be more suitable 
thanks to message priorities and more advanced routing mechanisms.

Implementing the chat application using Redis 
Streams
At the moment of writing, the most popular streaming platforms out there are 
Apache Kafka (nodejsdp.link/kafka) and Amazon Kinesis (nodejsdp.link/kinesis). 
However, for simpler tasks, we can rely again on Redis, which implements a log data 
structure called Redis Streams.

In the next code sample, we are going to see Redis Streams in action by adapting 
our chat application. The immediate advantage of using a stream over a message 
queue is that we don't need to rely on a dedicated component to store and retrieve 
the history of the messages exchanged in a chat room, but we can simply query the 
stream every time we need to access older messages. As we will see, this simplifies 
a lot the architecture of our application and certainly makes streams a better choice 
than message queues, at least for our very simple use case.

http://nodejsdp.link/kafka
http://nodejsdp.link/kinesis
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So, let's dive into some code. Let's update the index.js of our chat application to use 
Redis Streams:

import { createServer } from 'http'
import staticHandler from 'serve-handler'
import ws from 'ws'
import Redis from 'ioredis'

const redisClient = new Redis()
const redisClientXRead = new Redis()

// serve static files
const server = createServer((req, res) => {
  return staticHandler(req, res, { public: 'www' })
})

const wss = new ws.Server({ server })
wss.on('connection', async client => {
  console.log('Client connected')

  client.on('message', msg => {
    console.log(`Message: ${msg}`)
    redisClient.xadd('chat_stream', '*', 'message', msg)     // (1)
  })

  // Load message history
  const logs = await redisClient.xrange(                     // (2)
    'chat_stream', '-', '+')
  for (const [, [, message]] of logs) {
    client.send(message)
  }
})

function broadcast (msg) {
  for (const client of wss.clients) {
    if (client.readyState === ws.OPEN) {
      client.send(msg)
    }
  }
}

let lastRecordId = '$'
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async function processStreamMessages () {                    // (3)
  while (true) {
    const [[, records]] = await redisClientXRead.xread(
      'BLOCK', '0', 'STREAMS', 'chat_stream', lastRecordId)
    for (const [recordId, [, message]] of records) {
      console.log(`Message from stream: ${message}`)
      broadcast(message)
      lastRecordId = recordId
    }
  }
}

processStreamMessages().catch(err => console.error(err))

server.listen(process.argv[2] || 8080)

As always, the overall structure of the application has remained the same; what 
changed is the API we used to exchange messages with the other instances of the 
application.

Let's take a look at those APIs more closely:

1. The first command we want to analyze is xadd. This command appends 
a new record to a stream, and we are using it to add a new chat message as 
it arrives from a connected client. We pass to xadd the following arguments:

a. The name of the stream, which in our case is chat_stream.
b. The ID of the record. In our case, we provide an asterisk (*), which 

is a special ID that asks Redis to generate an ID for us. This is 
usually what we want, as IDs have to be monotonic to preserve the 
lexicographic order of the records and Redis takes care of that for us.

c. It follows a list of key-value pairs. In our case, we specify only a 
'message' key of the value msg (which is the message we receive from 
the client).

2. This is one of the most interesting aspects of using streams: we query the 
past records of the stream to retrieve the chat history. We do this every time 
a client connects. We use the xrange command for that, which, as the name 
implies, allows us to retrieve all the records in the stream within the two 
specified IDs. In our case we are using the special IDs '-' (minus) and '+' 
(plus) which indicate the lowest possible ID and the highest possible ID. This 
essentially means that we want to retrieve all the records currently in the 
stream.
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3. The last interesting part of our new chat application is where we wait for 
new records to be added to the stream. This allows each application instance 
to read new chat messages as they are added into the queue, and it's an 
essential part for the integration to work. We use an infinite loop and the 
xread command for the task, providing the following arguments:

a. BLOCK means that we want the call to block until new messages arrive.
b. Next, we specify the timeout after which the command will simply 

return with a null result. In our case, 0 means that we want to wait 
forever.

c. STREAMS is a keyword that tells Redis that we are now going to specify 
the details of the streams we want to read.

d. chat_stream is the name of the stream we want to read.
e. Finally, we supply the record ID (lastRecordId) after which we want 

to start reading the new messages. Initially, this is set to $ (dollar 
sign), which is a special ID indicating the highest ID currently in the 
stream, which should essentially start to read the stream after the 
last record currently in the stream. After we read the first record, we 
update the lastRecordId variable with the ID of the last record read.

Within the previous example, we also made use of some clever destructuring 
instructions. Consider for example the following code:

for (const [, [, message]] of logs) {...}

This instruction could be expanded to something like the following:

for (const [recordId, [propertyId, message]] of logs) {...}

But since we are not interested in getting the recordId and the propertyId, we 
are simply keeping them out of the destructuring instruction. This particular 
destructuring, in combination with the for...of loop, is necessary to parse the data 
returned from the xrange command, which in our case is in the following form:

[
  ["1588590110918-0", ["message", "This is a message"]],
  ["1588590130852-0", ["message", "This is another message"]]
]
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We applied a similar principle to parse the return value of xread. Please refer to the 
API documentation of those instructions for a detailed explanation of their return 
value.

Now, you can start a couple of server instances again and test the application to see 
how the new implementation works.

It's interesting to highlight again the fact that we didn't need to rely on a dedicated 
component to manage our chat history, but instead, all we needed to do was to 
retrieve the past records from the stream with xrange. This aspect of streams makes 
them intrinsically reliable as no message is lost unless explicitly deleted.

This concludes our exploration of the Publish/Subscribe pattern. Now, it's time to 
discover another important category of messaging patterns: task distribution patterns.

Task distribution patterns
In Chapter 11, Advanced Recipes, you learned how to delegate costly tasks to multiple 
local processes. Even though this was an effective approach, it cannot be scaled 
beyond the boundaries of a single machine, so in this section, we are going to see 
how it's possible to use a similar pattern in a distributed architecture, using remote 
workers located anywhere in a network.

The idea is to have a messaging pattern that allows us to spread tasks across multiple 
machines. These tasks might be individual chunks of work or pieces of a bigger task 
split using a divide and conquer approach.

You can read more about the xadd command and the 
format of record IDs in the official Redis documentation at 
nodejsdp.link/xadd.

The xread command has also a fairly complicated arguments 
list and return value that you can read more about at 
nodejsdp.link/xread.

Also, check out the documentation for xrange at 
nodejsdp.link/xrange.

Records can be removed from the stream with the 
xdel (nodejsdp.link/xdel) or xtrim commands 
(nodejsdp.link/xtrim) or with the MAXLEN option of xadd 
(nodejsdp.link/xadd-maxlen).

http://nodejsdp.link/xadd
http://nodejsdp.link/xread
http://nodejsdp.link/xrange
http://nodejsdp.link/xdel
http://nodejsdp.link/xtrim
http://nodejsdp.link/xadd-maxlen
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If we look at the logical architecture represented in the following diagram, we should 
be able to recognize a familiar pattern:

Figure 13.15: Distributing tasks to a set of consumers

As we can see from the diagram of Figure 13.15, the Publish/Subscribe pattern is not 
suitable for this type of application, as we absolutely don't want a task to be received 
by multiple workers. What we need instead, is a message distribution pattern similar 
to a load balancer that dispatches each message to a different consumer (also called 
a worker, in this case). In messaging systems terminology, this pattern is also known 
as competing consumers, fanout distribution, or ventilator.

One important difference to the HTTP load balancers that we saw in the previous 
chapter is that, here, the consumers have a more active role. In fact, as we will see 
later, most of the time it's not the producer that connects to the consumers, but the 
consumers themselves that connect to the task producer or to the task queue in order 
to receive new jobs. This is a great advantage in a scalable system as it allows us 
to seamlessly increase the number of workers without modifying the producer or 
adopting a service registry.

Also, in a generic messaging system, we don't necessarily have request/reply 
communication between the producer and the workers. Instead, most of the time, the 
preferred approach is to use one-way asynchronous communication, which enables 
better parallelism and scalability. In such an architecture, messages can potentially 
always travel in one direction, creating pipelines, as shown in the following 
diagram:
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Figure 13.16: A messaging pipeline

Pipelines allow us to build very complex processing architectures without the 
overhead of a synchronous request/reply communication, often resulting in lower 
latency and higher throughput. In Figure 13.16, we can see how messages can be 
distributed across a set of workers (fanout), forwarded to other processing units, 
and then aggregated into a single node (fanin), usually called the sink.

In this section, we are going to focus on the building blocks of these kinds of 
architectures, by analyzing the two most important variations: peer-to-peer and 
broker-based.

The ZeroMQ Fanout/Fanin pattern
We have already discovered some of the capabilities of ZeroMQ for building 
peer-to-peer distributed architectures. In the previous section, in fact, we 
used PUB and SUB sockets to disseminate a single message to multiple consumers, 
and now, we are going to see how it's possible to build parallel pipelines using 
another pair of sockets called PUSH and PULL.

The combination of a pipeline with a task distribution pattern is 
also called a parallel pipeline.
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PUSH/PULL sockets
Intuitively, we can say that the PUSH sockets are made for sending messages, 
while the PULL sockets are meant for receiving. It might seem a trivial combination, 
however, they have some extra features that make them perfect for building one-way 
communication systems:

• Both can work in connect mode or bind mode. In other words, we can 
create a PUSH socket and bind it to a local port listening for the incoming 
connections from a PULL socket, or vice versa, a PULL socket might listen for 
connections from a PUSH socket. The messages always travel in the same 
direction, from PUSH to PULL, it's only the initiator of the connection that can 
be different. The bind mode is the best solution for durable nodes, such as, for 
example, the task producer and the sink, while the connect mode is perfect 
for transient nodes, such as the task workers. This allows the number of 
transient nodes to vary arbitrarily without affecting the more stable, durable 
nodes.

• If there are multiple PULL sockets connected to a single PUSH socket, the 
messages are evenly distributed across all the PULL sockets. In practice, they 
are load balanced (peer-to-peer load balancing!). On the other hand, a PULL 
socket that receives messages from multiple PUSH sockets will process the 
messages using a fair queuing system, which means that they are consumed 
evenly from all the sources—a round-robin applied to inbound messages.

• The messages sent over a PUSH socket that doesn't have any connected PULL 
sockets do not get lost. They are instead queued until a node comes online 
and starts pulling the messages.

We are now starting to understand how ZeroMQ is different from traditional web 
services and why it's a perfect tool for building a distributed messaging system.

Building a distributed hashsum cracker with 
ZeroMQ
Now it's time to build a sample application to see the properties of the PUSH/
PULL sockets we just described in action.

A simple and fascinating application to work with would be a hashsum cracker: 
A system that uses a brute-force approach to try to match a given hashsum (such as 
MD5 or SHA1) to the hashsum of every possible variation of characters of a given 
alphabet, thus discovering the original string the given hashsum was created from. 
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This is an embarrassingly parallel workload (nodejsdp.link/embarrassingly-
parallel), which is perfect for building an example demonstrating the power 
of parallel pipelines.

For our application, we want to implement a typical parallel pipeline where we have 
the following:

• A node to create and distribute tasks across multiple workers
• Multiple worker nodes (where the actual computation happens)
• A node to collect all the results

The system we just described can be implemented in ZeroMQ using the following 
architecture:

Figure 13.17: The architecture of a typical pipeline with ZeroMQ

In our architecture, we have a ventilator generating intervals of variations of 
characters in the given alphabet (for example, the interval 'aa' to 'bb' includes the 
variations 'aa', 'ab', 'ba', 'bb') and distributing those intervals to the workers as tasks. 
Each worker, then, calculates the hashsum of every variation in the given interval, 
trying to match each resulting hashsum against the control hashsum given as input. 
If a match is found, the result is sent to a results collector node (sink).

Never use plain hashsums to encrypt passwords as they are very 
easy to crack. Use instead a purpose-built algorithm such as bcrypt 
(nodejsdp.link/bcrypt), scrypt (nodejsdp.link/scrypt), 
PBKDF2 (nodejsdp.link/pbkdf2), or Argon2 (nodejsdp.link/
argon2).

http://nodejsdp.link/embarrassingly-parallel
http://nodejsdp.link/embarrassingly-parallel
http://nodejsdp.link/bcrypt
http://nodejsdp.link/scrypt
http://nodejsdp.link/pbkdf2
http://nodejsdp.link/argon2
http://nodejsdp.link/argon2
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The durable nodes of our architecture are the ventilator and the sink, while 
the transient nodes are the workers. This means that each worker connects 
its PULL socket to the ventilator and its PUSH socket to the sink, this way we can 
start and stop as many workers as we want without changing any parameter in 
the ventilator or the sink.

Implementing the producer
To represent intervals of variations, we are going to use indexed n-ary trees. If we 
imagine having a tree in which each node has exactly n children, where each child is 
one of the n elements of the given alphabet and we assign an index to each node in 
breadth-first order, then, given the alphabet [a, b] we should obtain a tree such as 
the following:

Figure 13.18: Indexed n-ary tree for alphabet [a, b]

It's then possible to obtain the variation corresponding to an index by traversing 
the tree from the root to the given index, appending the element of the nodes found 
along the way to the variation being calculated. For example, given the tree in Figure 
13.18, the variation corresponding to the index 13 will be 'bba'.

We'll leverage the indexed-string-variation package (nodejsdp.link/indexed-
string-variation) to aid us in calculating the corresponding variation given its 
index in the n-ary tree. This operation is done in the workers, so all we have to do in 
the ventilator is to produce intervals of indexes to give to the workers, which in turn 
will calculate all the variations of characters represented by those intervals.

http://nodejsdp.link/indexed-string-variation
http://nodejsdp.link/indexed-string-variation
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Now, after the necessary theory, let's start to build our system by implementing the 
component responsible to generate the tasks to distribute (generateTasks.js):

export function * generateTasks (searchHash, alphabet,
  maxWordLength, batchSize) {
  let nVariations = 0
  for (let n = 1; n <= maxWordLength; n++) {
    nVariations += Math.pow(alphabet.length, n)
  }
  console.log('Finding the hashsum source string over ' +
    `${nVariations} possible variations`)

  let batchStart = 1
  while (batchStart <= nVariations) {
    const batchEnd = Math.min(
      batchStart + batchSize - 1, nVariations)
    yield {
      searchHash,
      alphabet: alphabet,
      batchStart,
      batchEnd
    }

    batchStart = batchEnd + 1
  }
}

The generateTasks() generator creates intervals of integers of batchSize size, 
starting from 1 (we exclude 0, which is the root of the tree, corresponding to the 
empty variation) and ending at the largest possible index (nVariations) for the given 
alphabet and the maximum word length provided (maxLength). Then, we pack all the 
data about the task into an object and yield it to the caller.

Please consider that to generate longer strings it may be 
necessary to switch to BigInt (nodejsdp.link/bigint) 
to represent their indexes, since the maximum safe integer 
manageable by JavaScript is currently 253 – 1, which is the value 
of Number.MAX_SAFE_INTEGER. Note that using very large integers 
may have a negative impact on the performances of the variations 
generator.

http://nodejsdp.link/bigint
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Now, we need to implement the logic of our producer, which is responsible for 
distributing the tasks across all workers (in the producer.js file):

import zmq from 'zeromq'
import delay from 'delay'
import { generateTasks } from './generateTasks.js'

const ALPHABET = 'abcdefghijklmnopqrstuvwxyz'
const BATCH_SIZE = 10000

const [, , maxLength, searchHash] = process.argv

async function main () {
  const ventilator = new zmq.Push()                          // (1)
  await ventilator.bind('tcp://*:5016')
  await delay(1000) // wait for all the workers to connect

  const generatorObj = generateTasks(searchHash, ALPHABET,
    maxLength, BATCH_SIZE)
  for (const task of generatorObj) {
    await ventilator.send(JSON.stringify(task))              // (2)
  }
}

main().catch(err => console.error(err))

To avoid generating too many variations, our generator uses only the lowercase 
letters of the English alphabet and sets a limit on the size of the words generated. 
This limit is provided as an input in the command-line arguments (maxLength) 
together with the hashsum to match (searchHash).

But the part that we are most interested in analyzing is how we distribute the tasks 
across the workers:

1. We first create a PUSH socket and we bind it to the local port 5016, which 
is where the PULL socket of the workers will connect to receive their tasks. 
We then wait 1 second for all the workers to connect: we do this because 
if the producer starts while the workers are already running, the workers 
may connect at different times (because of their timer-based reconnection 
algorithm) and that may cause the first connecting worker to receive most of 
the tasks.

2. For each generated task, we stringify it and send it to a worker using 
the send() function of the ventilator socket. Each connected worker 
will receive a different task following a round-robin approach.
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Implementing the worker
Now it's time to implement the worker, but first, let's create a component to process 
the incoming tasks (in the processTask.js file):

import isv from 'indexed-string-variation'
import { createHash } from 'crypto'

export function processTask (task) {
  const variationGen = isv.generator(task.alphabet)
  console.log('Processing from ' +
    `${variationGen(task.batchStart)} (${task.batchStart}) ` +
    `to ${variationGen(task.batchEnd)} (${task.batchEnd})`)

  for (let idx = task.batchStart; idx <= task.batchEnd; idx++) {
    const word = variationGen(idx)
    const shasum = createHash('sha1')
    shasum.update(word)
    const digest = shasum.digest('hex')

    if (digest === task.searchHash) {
      return word
    }
  }
}

The logic of the processTask() function is quite simple: it iterates over the indexes 
within the given interval, then for each index it generates the corresponding 
variation of characters (word). Next, it calculates the SHA1 checksum for the word and 
it tries to match it against the searchHash passed within the task object. If the two 
digests match, then it returns the source word to the caller.

Now we are ready to implement the main logic of our worker (worker.js):

import zmq from 'zeromq'
import { processTask } from './processTask.js'

async function main () {
  const fromVentilator = new zmq.Pull()
  const toSink = new zmq.Push()

  fromVentilator.connect('tcp://localhost:5016')
  toSink.connect('tcp://localhost:5017')
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  for await (const rawMessage of fromVentilator) {
    const found = processTask(JSON.parse(rawMessage.toString()))
    if (found) {
      console.log(`Found! => ${found}`)
      await toSink.send(`Found: ${found}`)
    }
  }
}

main().catch(err => console.error(err))

As we said, our worker represents a transient node in our architecture, therefore, 
its sockets should connect to a remote node instead of listening for the incoming 
connections. That's exactly what we do in our worker, we create two sockets:

• A PULL socket that connects to the ventilator, for receiving the tasks
• A PUSH socket that connects to the sink, for propagating the results

Besides this, the job done by our worker is very simple: it processes every task 
received, and if a match is found, we send a message to the results collector through 
the toSink socket.

Implementing the results collector
For our example, the results collector (sink) is a very basic program that simply 
prints the messages received by the workers to the console. The contents of the 
collector.js file are as follows:

import zmq from 'zeromq'

async function main () {
  const sink = new zmq.Pull()
  await sink.bind('tcp://*:5017')

  for await (const rawMessage of sink) {
    console.log('Message from worker: ', rawMessage.toString())
  }
}

main().catch(err => console.error(err))
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It's interesting to see that the results collector (as the producer) is also a durable node 
of our architecture and therefore we bind its PULL socket instead of connecting it 
explicitly to the PUSH socket of the workers.

Running the application
We are now ready to launch our application; let's start a couple of workers and the 
results collector (each one in a different terminal):

node worker.js
node worker.js
node collector.js

Then it's time to start the producer, specifying the maximum length of the words to 
generate and the SHA1 checksum that we want to match. The following is a sample 
command line:

node producer.js 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

When the preceding command is run, the producer will start generating tasks and 
distributing them to the set of workers we started. We are telling the producer 
to generate all possible words with 4 lowercase letters (because our alphabet 
comprises only lowercase letters) and we also provide a sample SHA1 checksum that 
corresponds to a secret 4-letter word.

The results of the computation, if any, will appear in the terminal of the results 
collector application.

Pipelines and competing consumers in AMQP
In the previous section, we saw how a parallel pipeline can be implemented 
in a peer-to-peer context. Now, we are going to explore this pattern when applied 
in a broker-based architecture using RabbitMQ.

Please note that given the low-level nature of PUSH/PULL sockets in 
ZeroMQ and in particular the lack of message acknowledgments, if 
a node crashes, then all the tasks it was processing will be lost. It's 
possible to implement a custom acknowledgment mechanism on 
top of ZeroMQ but we'll leave that as an exercise for the reader.

Another known limitation of this implementation is the fact that 
the workers won't stop processing tasks if a match is found. This 
feature was intentionally left out to make the examples as focused 
as possible on the pattern being discussed. You can try adding this 
"stopping" mechanism as an exercise.
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Point-to-point communications and competing 
consumers
In a peer-to-peer configuration, a pipeline is a very straightforward concept to 
imagine. With a message broker in the middle, though, the relationships between 
the various nodes of the system are a little bit harder to understand: the broker 
itself acts as an intermediary for our communications and, often, we don't really 
know who is on the other side listening for messages. For example, when we send 
a message using AMQP, we don't deliver it directly to its destination, but instead to 
an exchange and then to a queue. Finally, it will be for the broker to decide where to 
route the message, based on the rules defined in the exchange, the bindings, and the 
destination queues.

If we want to implement a pipeline and a task distribution pattern using a system 
like AMQP, we have to make sure that each message is received by only one 
consumer, but this is impossible to guarantee if an exchange can potentially be 
bound to more than one queue. The solution, then, is to send a message directly to 
the destination queue, bypassing the exchange altogether. This way, we can make 
sure that only one queue will ever receive the message. This communication pattern 
is called point-to-point.

Once we are able to send a set of messages directly to a single queue, we are already 
half-way to implementing our task distribution pattern. In fact, the next step comes 
naturally: when multiple consumers are listening on the same queue, the messages 
will be distributed evenly across them, following a fanout distribution pattern. As 
we already mentioned, in the context of message brokers this is better known as 
the Competing Consumers pattern.

Next, we are going to reimplement our simple hashsum cracker using AMQP, so we 
can appreciate the differences to the peer-to-peer approach we have discussed in the 
previous section.

Implementing the hashsum cracker using AMQP
We just learned that exchanges are the point in a broker where a message is multicast 
to a set of consumers, while queues are the place where messages are load balanced. 
With this knowledge in mind, let's now implement our brute-force hashsum cracker 
on top of an AMQP broker (which in our case is RabbitMQ). The following figure 
gives you an overview of the system we want to implement:
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Figure 13.19: Task distribution architecture using a message queue broker

As we discussed, to distribute a set of tasks across multiple workers, we need to use 
a single queue. In Figure 13.19, we called this the tasks queue. On the other side of the 
tasks queue, we have a set of workers, which are competing consumers: in other words, 
each one will receive a different message from the queue. The effect is that multiple 
tasks will execute in parallel on different workers.

The results generated by the workers are published into another queue, which we 
called the results queue, and then consumed by the results collector, which is actually 
equivalent to a sink. In the entire architecture, we don't make use of any exchange, 
we only send messages directly to their destination queue, implementing a point-to-
point type of communication.

Implementing the producer
Let's see how to implement such a system, starting from the producer 
(in the producer.js file):

import amqp from 'amqplib'
import { generateTasks } from './generateTasks.js'

const ALPHABET = 'abcdefghijklmnopqrstuvwxyz'
const BATCH_SIZE = 10000

const [, , maxLength, searchHash] = process.argv

async function main () {
  const connection = await amqp.connect('amqp://localhost')
  const channel = await connection.createConfirmChannel()    // (1)
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  await channel.assertQueue('tasks_queue')

  const generatorObj = generateTasks(searchHash, ALPHABET,
    maxLength, BATCH_SIZE)
  for (const task of generatorObj) {
    channel.sendToQueue('tasks_queue',                       // (2)
      Buffer.from(JSON.stringify(task)))
  }

  await channel.waitForConfirms()
  channel.close()
  connection.close()
}

main().catch(err => console.error(err))

As we can see, the absence of any exchange or binding makes the setup of an AMQP-
based application much simpler. There are however a few details to note:

1. Instead of creating a standard channel, we are creating a confirmChannel. 
This is necessary as it creates a channel with some extra functionality, 
in particular, it provides the waitForConfirms() function that we use later in 
the code to wait until the broker confirms the reception of all the messages. 
This is necessary to prevent the application from closing the connection to 
the broker too soon, before all the messages have been dispatched from the 
local queue.

2. The core of the producer is the channel.sendToQueue() API, which is actually 
new to us. As its name says, that's the API responsible for delivering a 
message straight to a queue—the tasks_queue in our example—bypassing 
any exchange or routing.

Implementing the worker
On the other side of the tasks_queue, we have the workers listening for the incoming 
tasks. Let's update the code of our existing worker.js module to use AMQP:

import amqp from 'amqplib'
import { processTask } from './processTask.js'

async function main () {
  const connection = await amqp.connect('amqp://localhost')
  const channel = await connection.createChannel()
  const { queue } = await channel.assertQueue('tasks_queue')
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  channel.consume(queue, async (rawMessage) => {
    const found = processTask(
      JSON.parse(rawMessage.content.toString()))
    if (found) {
      console.log(`Found! => ${found}`)
      await channel.sendToQueue('results_queue',
        Buffer.from(`Found: ${found}`))
    }

    await channel.ack(rawMessage)
  })
}

main().catch(err => console.error(err))

Our new worker is also very similar to the one we implemented in the previous 
section using ZeroMQ, except for the parts related to the exchange of messages. 
In the preceding code, we can see how we first get a reference to the queue 
called tasks_queue and then we start listening for incoming tasks using channel.
consume(). Then, every time a match is found, we send the result to the collector 
via the results_queue, again using point-to-point communication. It's also important 
to note how we are acknowledging every message with channel.ack() after the 
message has been completely processed.

If multiple workers are started, they will all listen on the same queue, resulting in 
the messages being load balanced between them (they become competing consumers).

Implementing the result collector
The results collector is again a trivial module, simply printing any message received 
to the console. This is implemented in the collector.js file, as follows:

import amqp from 'amqplib'

async function main () {
  const connection = await amqp.connect('amqp://localhost')
  const channel = await connection.createChannel()
  const { queue } = await channel.assertQueue('results_queue')
  channel.consume(queue, msg => {
    console.log(`Message from worker: ${msg.content.toString()}`)
  })
}

main().catch(err => console.error(err))
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Running the application
Now everything is ready to give our new system a try. First, make sure that the 
RabbitMQ server is running, then you can launch a couple of workers (in two 
separate terminals), which will both connect to the same queue (tasks_queue) so that 
every message will be load balanced between them:

node worker.js
node worker.js

Then, you can run the collector module and then the producer (by providing the 
maximum word length and the hash to crack):

node collector.js
node producer.js 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

With this, we implemented a message pipeline and the Competing Consumers 
pattern using AMQP.

Now, let's consider another broker-based approach for implementing task 
distribution patterns, this time built on top of Redis Streams.

Distributing tasks with Redis Streams
After seeing how the Task Distribution pattern can be implemented using ZeroMQ 
and AMQP, we are now going to see how we can implement this pattern leveraging 
Redis Streams.

It's interesting to note that our new version of the hashsum cracker 
based on AMQP takes slightly longer (compared to the ZeroMQ-
based version) to execute all the tasks and find a match. This is a 
practical demonstration of how a broker can actually introduce a 
negative performance impact, compared to a more low-level peer-
to-peer approach. However, let's not forget that with AMQP we 
are getting much more out of the box compared to our ZeroMQ 
implementation. For example, with the AMQP implementation, 
if a worker crashes, the messages it was processing won't be lost 
and will eventually be passed to another worker. So, remember 
to always look at the bigger picture when choosing the right 
approach to use for your application: a small delay may mean 
nothing compared to a massive increase in the overall complexity 
of the system or to a lack of some important features.
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Redis consumer groups
Before diving into some code, we need to learn about a critical feature of Redis that 
allows us to implement a Task Distribution pattern using Redis Streams. This feature 
is called consumer groups and is an implementation of the Competing Consumer 
pattern (with the addition of some useful accessories) on top of Redis Streams.

A consumer group is a stateful entity, identified by a name, which comprises a set 
of consumers identified by a name. When the consumers in the group try to read the 
stream, they will receive the records in a round-robin configuration.

Each record has to be explicitly acknowledged, otherwise, the record will be kept 
in a pending state. Each consumer can only access its own history of pending 
records unless it explicitly claims the records of another consumer. This is useful 
if a consumer crashes while processing a record. When the consumer comes back 
online, the first thing it should do is retrieve its list of pending records and process 
those before requesting new records from the stream. Figure 13.20 provides a visual 
representation of how consumer groups work in Redis.

Figure 13.20: A Redis Stream consumer group

We can note how the two consumers in the group receive two different records 
(B for Consumer 1 and C for Consumer 2) when they try to read from the stream. 
The consumer group also stores the ID of the last retrieved record (record C), so that 
at the successive read operation the consumer group knows what's the next record to 
read. We can also note how Consumer 1 has a pending record (A), which is a record 
that it's still processing or couldn't process. Consumer 1 can implement a retry 
algorithm to make sure to process all the pending records assigned to itself.
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Now let's put into practice what we just learned about Redis consumer groups to 
implement our hashsum cracker.

Implementing the hashsum cracker using Redis 
Streams
The architecture of our hashsum cracker with Redis Streams is going to resemble 
closely that of the previous AMQP example. In fact, we are going to have two 
different streams (in the AMQP examples they were queues): one stream to hold the 
tasks to be processed (tasks_stream) and another stream to hold the results coming 
from the workers (results_stream).

Then, we are going to use a consumer group to distribute the tasks from the tasks_
stream to the workers of our application (our workers are the consumers).

Implementing the producer
Let's start by implementing the producer (in the producer.js file):

import Redis from 'ioredis'
import { generateTasks } from './generateTasks.js'

const ALPHABET = 'abcdefghijklmnopqrstuvwxyz'
const BATCH_SIZE = 10000
const redisClient = new Redis()

const [, , maxLength, searchHash] = process.argv

async function main () {
  const generatorObj = generateTasks(searchHash, ALPHABET,
    maxLength, BATCH_SIZE)
  for (const task of generatorObj) {
    await redisClient.xadd('tasks_stream', '*',
      'task', JSON.stringify(task))
  }

  redisClient.disconnect()

A Redis Stream can have multiple consumer groups. This way it's 
possible to simultaneously apply different types of processing to 
the same data.
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}

main().catch(err => console.error(err))

As we can see, there is nothing new to us in the implementation of the new 
producer.js module. In fact, we already know very well how to add records to 
a stream; all we have to do is invoke xadd() as discussed in the Reliable messaging 
with streams section.

Implementing the worker
Next, we need to adapt our worker so it can interface with a Redis Stream using 
a consumer group. This is the core of all the architecture, as in here, in the worker, 
we leverage consumer groups and their features. So, let's implement the new 
worker.js module:

import Redis from 'ioredis'
import { processTask } from './processTask.js'

const redisClient = new Redis()
const [, , consumerName] = process.argv

async function main () {
  await redisClient.xgroup('CREATE', 'tasks_stream',         // (1)
    'workers_group', '$', 'MKSTREAM')
    .catch(() => console.log('Consumer group already exists'))

  const [[, records]] = await redisClient.xreadgroup(        // (2)
    'GROUP', 'workers_group', consumerName, 'STREAMS',
    'tasks_stream', '0')
  for (const [recordId, [, rawTask]] of records) {
    await processAndAck(recordId, rawTask)
  }

  while (true) {
    const [[, records]] = await redisClient.xreadgroup(      // (3)
      'GROUP', 'workers_group', consumerName, 'BLOCK', '0',
      'COUNT', '1', 'STREAMS', 'tasks_stream', '>')
    for (const [recordId, [, rawTask]] of records) {
      await processAndAck(recordId, rawTask)
    }
  }
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}

async function processAndAck (recordId, rawTask) {           // (4)
  const found = processTask(JSON.parse(rawTask))
  if (found) {
    console.log(`Found! => ${found}`)
    await redisClient.xadd('results_stream', '*', 'result',
      `Found: ${found}`)
  }

  await redisClient.xack('tasks_stream', 'workers_group', recordId)
}

main().catch(err => console.error(err))

OK, there are a lot of moving parts in the new worker code. So, let's analyze it one 
step at a time:

1. First, we need to make sure that the consumer group exists before we can 
use it. We can do that with the xgroup command, which we invoke with the 
following parameters:

a. 'CREATE' is the keyword to use when we want to create a consumer 
group. In fact, with the xgroup command, we can also destroy the 
consumer group, remove a consumer, or update the last read record 
ID, using different subcommands.

b. 'tasks_stream' is the name of the stream we want to read from.
c. 'workers_group' is the name of the consumer group.
d. The fourth argument represents the record ID from where the consumer 

group should start consuming records from the stream. Using '$' 
(dollar sign) means that the consumer group should start reading 
the stream from the ID of the last record currently in the stream.

e. 'MKSTREAM' is an extra parameter that instructs Redis to create the 
stream if it doesn't exist already.

2. Next, we read all the pending records belonging to the current consumer. 
Those are the leftover records from a previous run of the consumer that 
weren't processed because of an abrupt interruption of the application (such 
as a crash). If the same consumer (with the same name) terminated properly 
during the last run, without errors, then this list would most likely be empty. 
As we already mentioned, each consumer has access only to its own pending 
records. We retrieve this list with a xreadgroup command and the following 
arguments:
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a. 'GROUP', 'workers_group', consumerName is a mandatory trio where 
we specify the name of the consumer group ('workers_group') and 
the name of the consumer (consumerName) that we read from the 
command-line inputs.

b. Then we specify the stream we would like to read with 'STREAMS', 
'tasks_stream'.

c. Finally, we specify '0' as the last argument, which is the ID from 
which we should start reading. Essentially, we are saying that we 
want to read all pending messages belonging to the current consumer 
starting from the first message.

3. Then, we have another call to xreadgroup(), but this time it has a completely 
different semantic. In this case, in fact, we want to start reading new records 
from the stream (and not access the consumer's own history). This is possible 
with the following list of arguments:

a. As in the previous call of xreadgroup(), we specify the consumer 
group that we want to use for the read operation with the three 
arguments: 'GROUP', 'workers_group', consumerName.

b. Then we indicate that the call should block if there are no new 
records currently available instead of returning an empty list. We 
do that with the following two arguments: 'BLOCK', '0'. The last 
argument is the timeout after which the function returns anyway, 
even without results. '0' means that we want to wait indefinitely.

c. The next two arguments, 'COUNT' and '1', tell Redis that we are 
interested in getting one record per call.

d. Next, we specify the stream we want to read from with 'STREAMS', 
'tasks_stream'.

e. Finally, with the special ID '>'(greater than symbol), we indicate that 
we are interested in any record not yet retrieved by this consumer 
group.

4. Finally, in the processAndAck() function, we check if we have a match and 
if that's the case, we append a new record to the results_stream. At last, 
when all the processing for the record returned by xreadgroup() completes, 
we invoke the Redis xack command to acknowledge that the record has been 
successfully consumed, which results in the record being removed from the 
pending list for the current consumer.

Phew! There was a lot going on in the worker.js module. It's interesting to note that 
most of the complexity comes from the large amount of arguments required by the 
various Redis commands.
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Now, everything should be ready for us to try out this new version of the hashsum 
cracker. Let's start a couple of workers, but this time remember to assign them a 
name, which will be used to identify them in the consumer group:

node worker.js workerA
node worker.js workerB

Then, you can run the collector and the producer as we did in the previous examples:

node collector.js
node producer.js 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

This concludes our exploration of the task distribution patterns, so now, we'll take a 
closer look at the request/reply patterns.

Request/Reply patterns
One-way communications can give us great advantages in terms of parallelism and 
efficiency, but alone they are not able to solve all our integration and communication 
problems. Sometimes, a good old request/reply pattern might just be the perfect tool 
for the job. But, there are situations in which all we have is an asynchronous one-way 
channel. It's therefore important to know the various patterns and approaches required 
to build an abstraction that would allow us to exchange messages in a request/reply 
fashion on top of a one-way channel. That's exactly what we are going to learn next.

Correlation Identifier
The first Request/Reply pattern that we are going to learn is called the Correlation 
Identifier and it represents the basic block for building a request/reply abstraction 
on top of a one-way channel.

The pattern involves marking each request with an identifier, which is then attached 
to the response by the receiver: this way, the sender of the request can correlate the 
two messages and return the response to the right handler. This elegantly solves the 
problem in the context of a one-way asynchronous channel, where messages can travel 
in any direction at any time. Let's take a look at the example in the following diagram:

You may be surprised to know that this example just scratches 
the surface, as there is a lot more to know about Redis Streams, 
and in particular, consumer groups. Check out the official Redis 
introduction to Streams for more details at nodejsdp.link/
redis-streams.

http://nodejsdp.link/redis-streams
http://nodejsdp.link/redis-streams
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Figure 13.21: Request/reply message exchange using correlation identifiers

The scenario depicted in Figure 13.21 shows how using a correlation ID allows us to 
match each response with the right request, even if those are sent and then received 
in a different order. The way this works will be much clearer once we start working 
on our next example.

Implementing a request/reply abstraction using 
correlation identifiers
Let's now start working on an example by choosing the simplest type of one-way 
channel; one that is point-to-point (which directly connects two nodes of the system) 
and fully duplex (messages can travel in both directions).

In this simple channel category, we can find, for example, WebSockets: they establish 
a point-to-point connection between the server and browser, and the messages 
can travel in any direction. Another example is the communication channel that is 
created when a child process is spawned using child_process.fork() (we already 
met this API in Chapter 11, Advanced Recipes). This channel too is asynchronous, 
point-to-point, and duplex since it connects the parent only with the child process 
and it allows messages to travel in any direction. This is probably the most basic 
channel of this category, so that's what we are going to use in the next example.
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The plan for the next application is to build an abstraction in order to wrap the 
channel created between the parent process and the child process. This abstraction 
should provide a request/reply communication channel by automatically marking 
each request with a correlation identifier and then matching the ID of any incoming 
reply against the list of request handlers awaiting a response.

From Chapter 11, Advanced Recipes, we should remember that the parent process can 
send a message to a child with child.send(message), while receiving messages is 
possible with the child.on('message', callback) event handler.

In a similar way, the child process can send a message to the parent process using 
process.send(message) and receive messages with process.on('message', callback).

This means that the interface of the channel available in the parent process is 
identical to the one available in the child. This will allow us to build a common 
abstraction that can be used from both ends of the channel.

Abstracting the request
Let's start building this abstraction by considering the part responsible for sending 
new requests. Let's create a new file called createRequestChannel.js with the 
following content:

import { nanoid } from 'nanoid'

export function createRequestChannel (channel) {             // (1)
  const correlationMap = new Map()

  function sendRequest (data) {                              // (2)
    console.log('Sending request', data)
    return new Promise((resolve, reject) => {
      const correlationId = nanoid()

      const replyTimeout = setTimeout(() => {
        correlationMap.delete(correlationId)
        reject(new Error('Request timeout'))
      }, 10000)

      correlationMap.set(correlationId, (replyData) => {
        correlationMap.delete(correlationId)
        clearTimeout(replyTimeout)
        resolve(replyData)
      })
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      channel.send({
        type: 'request',
        data,
        id: correlationId
      })
    })
  }

  channel.on('message', message => {                         // (3)
    const callback = correlationMap.get(message.inReplyTo)
    if (callback) {
      callback(message.data)
    }
  })

  return sendRequest
}

This is how our request abstraction works:

1. The createRequestChannel() is a factory that wraps the input channel and 
returns a sendRequest() function used to send a request and receive a reply. 
The magic of the pattern lies in the correlationMap variable, which stores the 
association between the outgoing requests and their reply handlers.

2. The sendRequest() function is used to send new requests. Its job is to 
generate a correlation ID using the nanoid package (nodejsdp.link/nanoid) 
and then wrap the request data in an envelope that allows us to specify 
the correlation ID and the type of the message. The correlation ID and the 
handler responsible for returning the reply data to the caller (which uses 
resolve() under the hood) are then added to the correlationMap so that the 
handler can be retrieved later using the correlation ID. We also implemented 
a very simple request timeout logic.

3. When the factory is invoked, we also start listening for incoming messages. 
If the correlation ID of the message (contained in the inReplyTo property) 
matches any of the IDs contained in the correlationMap map, we know that 
we just received a reply, so we obtain the reference to the associated response 
handler and we invoke it with the data contained in the message.

That's it for the createRequestChannel.js module. Let's move on to the next part.

http://nodejsdp.link/nanoid
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Abstracting the reply
We are just a step away from implementing the full pattern, so let's see how the 
counterpart of the request channel, which is the reply channel, works. Let's create 
another file called createReplyChannel.js, which will contain the abstraction for 
wrapping the reply handler:

export function createReplyChannel (channel) {
  return function registerHandler (handler) {
    channel.on('message', async message => {
      if (message.type !== 'request') {
        return
      }

      const replyData = await handler(message.data)      // (1)
      channel.send({                                     // (2)
        type: 'response',
        data: replyData,
        inReplyTo: message.id
      })
    })
  }
}

Our createReplyChannel() function is again a factory that returns another function 
used to register new reply handlers. This is what happens when a new handler is 
registered:

1. When we receive a new request, we immediately invoke the handler by 
passing the data contained in the message.

2. Once the handler has done its work and returned its reply, we build 
an envelope around the data and include the type of the message and 
the correlation ID of the request (the inReplyTo property), then we put 
everything back into the channel.

The amazing thing about this pattern is that in Node.js it comes very easily: 
everything for us is already asynchronous, so an asynchronous request/reply 
communication built on top of a one-way channel is not very different from any 
other asynchronous operation, especially if we build an abstraction to hide its 
implementation details.
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Trying the full request/reply cycle
Now we are ready to try our new asynchronous request/reply abstraction. Let's 
create a sample replier in a file named replier.js:

import { createReplyChannel } from './createReplyChannel.js'

const registerReplyHandler = createReplyChannel(process)

registerReplyHandler(req => {
  return new Promise(resolve => {
    setTimeout(() => {
      resolve({ sum: req.a + req.b })
    }, req.delay)
  })
})

process.send('ready')

Our replier simply calculates the sum between the two numbers received in the 
request and returns the result after a certain delay (which is also specified in the 
request). This will allow us to verify that the order of the responses can be different 
from the order in which we sent the requests, to confirm that our pattern is working. 
With the last instruction of the module, we send a message back to the parent 
process to indicate that the child is ready to accept requests.

The final step to complete the example is to create the requestor in a file 
named requestor.js, which also has the task of starting the replier using child_
process.fork():

import { fork } from 'child_process'
import { dirname, join } from 'path'
import { fileURLToPath } from 'url'
import { once } from 'events'
import { createRequestChannel } from './createRequestChannel.js'

const __dirname = dirname(fileURLToPath(import.meta.url))

async function main () {
  const channel = fork(join(__dirname, 'replier.js'))          // (1)
  const request = createRequestChannel(channel)

  try {
    const [message] = await once(channel, 'message')       // (2)
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    console.log(`Child process initialized: ${message}`)
    const p1 = request({ a: 1, b: 2, delay: 500 })         // (3)
      .then(res => {
        console.log(`Reply: 1 + 2 = ${res.sum}`)
      })

    const p2 = request({ a: 6, b: 1, delay: 100 })         // (4)
      .then(res => {
        console.log(`Reply: 6 + 1 = ${res.sum}`)
      })

    await Promise.all([p1, p2])                            // (5)
  } finally {
    channel.disconnect()                                   // (6)
  }
}

main().catch(err => console.error(err))

The requestor starts the replier (1) and then passes its reference to 
our createRequestChannel() abstraction. We then wait for the child process to be 
available (2) and run a couple of sample requests (3, 4). Finally, we wait for both 
requests to complete (5) and we disconnect the channel (6) to allow the child process 
(and therefore the parent process) to exit gracefully.

To try out the sample, simply launch the requestor.js module. The output should 
be something similar to the following:

Child process initialized: ready
Sending request { a: 1, b: 2, delay: 500 }
Sending request { a: 6, b: 1, delay: 100 }
Reply: 6 + 1 = 7
Reply: 1 + 2 = 3

This confirms that our implementation of the Request/Reply messaging pattern 
works perfectly and that the replies are correctly associated with their respective 
requests, no matter in what order they are sent or received.

The technique we've discussed in this section works great when we have a single 
point-to-point channel. But what happens if we have a more complex architecture 
with multiple channels or queues? That's what we are going to see next.
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Return address
The Correlation Identifier is the fundamental pattern for creating a request/reply 
communication on top of a one-way channel. However, it's not enough when 
our messaging architecture has more than one channel or queue, or when there 
can be potentially more than one requestor. In these situations, in addition to a 
correlation ID, we also need to know the return address, a piece of information that 
allows the replier to send the response back to the original sender of the request.

Implementing the Return Address pattern in AMQP
In the context of an AMQP-based architecture, the return address is the queue where 
the requestor is listening for incoming replies. Because the response is meant to 
be received by only one requestor, it's important that the queue is private and not 
shared across different consumers. From these properties, we can infer that we are 
going to need a transient queue scoped to the connection of the requestor, and that 
the replier has to establish a point-to-point communication with the return queue to 
be able to deliver its responses.

The following diagram gives us an example of this scenario:

Figure 13.22: Request/reply messaging architecture using AMQP

Figure 13.22 shows us how each requestor has its own private queue, specifically 
intended to handle the replies to their requests. All requests are sent instead to 
a single queue, which is then consumed by the replier. The replier will route the 
replies to the correct response queue thanks to the return address information 
specified in the request.
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In fact, to create a Request/Reply pattern on top of AMQP, all we need to do is to 
specify the name of the response queue in the message properties, so that the replier 
knows where the response message has to be delivered.

The theory seems very straightforward, so let's see how to implement this in a real 
application.

Implementing the request abstraction
Let's now build a request/reply abstraction on top of AMQP. We will use RabbitMQ 
as a broker, but any compatible AMQP broker should do the job. Let's start with 
the request abstraction, implemented in the amqpRequest.js module. We will show 
the code here one piece at a time to make the explanation easier. Let's start from the 
constructor of the AMQPRequest class:

export class AMQPRequest {
  constructor () {
    this.correlationMap = new Map()
  }
  //...

As we can see from the preceding code, we will again be using the Correlation 
Identifier pattern, so we are going to need a map to hold the association between the 
message ID and the relative handler.

Then, we need a method to initialize the AMQP connection and its objects:

async initialize () {
  this.connection = await amqp.connect('amqp://localhost')
  this.channel = await this.connection.createChannel()
  const { queue } = await this.channel.assertQueue('',       // (1)
    { exclusive: true })
  this.replyQueue = queue

  this.channel.consume(this.replyQueue, msg => {             // (2)
    const correlationId = msg.properties.correlationId
    const handler = this.correlationMap.get(correlationId)
    if (handler) {
      handler(JSON.parse(msg.content.toString()))
    }
  }, { noAck: true })
}
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The interesting thing to observe here is how we create the queue to hold the replies 
(1). The peculiarity is that we don't specify any name, which means that a random 
one will be chosen for us. In addition to this, the queue is exclusive, which means that 
it's bound to the currently active AMQP connection and it will be destroyed when 
the connection closes. There is no need to bind the queue to an exchange as we don't 
need any routing or distribution to multiple queues, which means that the messages 
have to be delivered straight into our response queue. In the second part of the 
function (2), we start to consume the messages from the replyQueue. Here we match 
the ID of the incoming message with the one we have in our correlationMap and 
invoke the associated handler.

Next, let's see how it's possible to send new requests:

send (queue, message) {
  return new Promise((resolve, reject) => {
    const id = nanoid()                                    // (1)
    const replyTimeout = setTimeout(() => {
      this.correlationMap.delete(id)
      reject(new Error('Request timeout'))
    }, 10000)

    this.correlationMap.set(id, (replyData) => {           // (2)
      this.correlationMap.delete(id)
      clearTimeout(replyTimeout)
      resolve(replyData)
    })

    this.channel.sendToQueue(queue,                        // (3)
      Buffer.from(JSON.stringify(message)),
      { correlationId: id, replyTo: this.replyQueue }
    )
  })
}

The send() method accepts as input the name of the requests queue and 
the message to send. As we learned in the previous section, we need to generate 
a correlation ID (1) and associate it to a handler responsible for returning the reply 
to the caller (2). Finally, we send the message (3), specifying the correlationId and 
the replyTo property as metadata. In AMQP, in fact, we can specify a set of 
properties (or metadata) to be passed to the consumer, together with the main 
message. The metadata object is passed as the third argument of the sendToQueue() 
method.
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It's important to note that we are using the channel.sentToQueue() API instead 
of channel.publish() to send the message. This is because we are not interested in 
implementing a publish/subscribe distribution pattern using exchanges, but a more 
basic point-to-point delivery straight into the destination queue.

The last piece of our AMQPRequest class is where we implement the destroy() 
method, which is used to close the connection and the channel:

  destroy () {
    this.channel.close()
    this.connection.close()
  }
}

That's it for the amqpRequest.js module.

Implementing the reply abstraction
Now it's time to implement the reply abstraction in a new module named 
amqpReply.js:

import amqp from 'amqplib'

export class AMQPReply {
  constructor (requestsQueueName) {
    this.requestsQueueName = requestsQueueName
  }

  async initialize () {
    const connection = await amqp.connect('amqp://localhost')
    this.channel = await connection.createChannel()
    const { queue } = await this.channel.assertQueue(        // (1)
      this.requestsQueueName)
    this.queue = queue
  }

  handleRequests (handler) {                                 // (2)
    this.channel.consume(this.queue, async msg => {
      const content = JSON.parse(msg.content.toString())
      const replyData = await handler(content)
      this.channel.sendToQueue(                              // (3)
        msg.properties.replyTo,
        Buffer.from(JSON.stringify(replyData)),
        { correlationId: msg.properties.correlationId }
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      )
      this.channel.ack(msg)
    })
  }
}

In the initialize() method of the AMQPReply class, we create the queue that 
will receive the incoming requests (1): we can use a simple durable queue for 
this purpose. The handleRequests() method (2) is used to register new request 
handlers from where new replies can be sent. When sending back a reply (3), 
we use channel.sendToQueue() to publish the message straight into the queue 
specified in the replyTo property of the message (our return address). We also set 
the correlationId in the reply, so that the receiver can match the message with the 
list of pending requests.

Implementing the requestor and the replier
Everything is now ready to give our system a try, but first, let's build a pair sample 
requestor and replier to see how to use our new abstraction.

Let's start with the replier.js module:

import { AMQPReply } from './amqpReply.js'

async function main () {
  const reply = new AMQPReply('requests_queue')
  await reply.initialize()

  reply.handleRequests(req => {
    console.log('Request received', req)
    return { sum: req.a + req.b }
  })
}

main().catch(err => console.error(err))

It's nice to see how the abstraction we built allows us to hide all the mechanisms 
to handle the correlation ID and the return address. All we need to do is initialize 
a new reply object, specifying the name of the queue where we want to receive 
our requests ('requests_queue'). The rest of the code is just trivial; in practice, our 
sample replier simply calculates the sum of the two numbers received as the input 
and sends back the result in an object.



Messaging and Integration Patterns

[ 610 ]

On the other side, we have a sample requestor implemented in the requestor.js file:

import { AMQPRequest } from './amqpRequest.js'
import delay from 'delay'

async function main () {
  const request = new AMQPRequest()
  await request.initialize()

  async function sendRandomRequest () {
    const a = Math.round(Math.random() * 100)
    const b = Math.round(Math.random() * 100)
    const reply = await request.send('requests_queue', { a, b })
    console.log(`${a} + ${b} = ${reply.sum}`)
  }

  for (let i = 0; i < 20; i++) {
    await sendRandomRequest()
    await delay(1000)
  }

  request.destroy()
}

main().catch(err => console.error(err))

Our sample requestor sends 20 random requests at one-second intervals to 
the requests_queue queue. In this case, also, it's interesting to see that our abstraction 
is doing its job perfectly, hiding all the details behind the implementation of the 
asynchronous Request/Reply pattern.

Now, to try out the system, simply run the replier module followed by a couple 
of requestor instances:

node replier.js
node requestor.js
node requestor.js

You will see a set of operations published by the requestors and then received by the 
replier, which in turn will send back the responses to the right requestor.
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Now we can try other experiments. Once the replier is started for the first time, 
it creates a durable queue and this means that if we now stop it and then run the 
replier again, no request will be lost. All the messages will be stored in the queue 
until the replier is started again!

Another nice feature that we get for free by using AMQP is the fact that our replier 
is scalable out of the box. To test this assumption, we can try to start two or more 
instances of the replier, and watch the requests being load balanced between them. 
This works because, every time a requestor starts, it attaches itself as a listener to the 
same durable queue, and as a result, the broker will load balance the messages across 
all the consumers of the queue (remember the Competing Consumers pattern?). 
Sweet!

Summary
You have reached the end of this chapter. Here, you learned the most important 
messaging and integration patterns and the role they play in the design of 
distributed systems. You should now have mastered the three most important types 
of message exchange patterns: Publish/Subscribe, Task Distribution, and Request/
Reply, implemented either on top of a peer-to-peer architecture or using a broker. 
We analyzed the pros and cons of each pattern and architecture, and we saw that by 
using a broker (implementing either a message queue or data stream), it's possible 
to implement reliable and scalable applications with little effort, but at the cost of 
having one more system to maintain and scale.

Note that based on how we implemented the application, a request 
will time out after 10 seconds. So, in order for a reply to reach the 
requestor in time, the replier can afford to have only a limited 
downtime (certainly less than 10 seconds).

ZeroMQ has a pair of sockets specifically meant for implementing 
request/reply patterns, called REQ/REP, however, they are 
synchronous (only one request/response at a time). More 
complex request/reply patterns are possible with more 
sophisticated techniques. For more information, you can 
read the official guide at nodejsdp.link/zeromq-reqrep.

A Request/Reply pattern with a return address is also possible 
on top of Redis Streams and resembles very closely the system we 
implemented with AMQP. We'll leave this to you to implement as 
an exercise.

http://nodejsdp.link/zeromq-reqrep
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You have also learned how ZeroMQ allows you to build distributed systems where 
you can have total control over every aspect of the architecture, fine tuning its 
properties around your very own requirements.

Ultimately, both approaches will give you all the tools that you need to build any 
type of distributed systems, from basic chat applications to web-scale platforms used 
by millions of people.

This chapter also closes the book. By now, you should have a toolbelt full of patterns 
and techniques that you can go and apply in your projects. You should also have 
a deeper understanding of how Node.js development works and what its strengths 
and weaknesses are. Throughout the book, you also had the chance to work with 
a myriad of packages and solutions developed by many extraordinary developers. 
In the end, this is the most beautiful aspect of Node.js: its people, a community 
where everybody plays their part in giving something back.

We hope you enjoyed our small contribution and we look forward to seeing yours.

Sincerely, Mario Casciaro and Luciano Mammino.

Exercises
• 13.1 History service with streams: In our publish/subscribe example with 

Redis Stream, we didn't need a history service (as we did instead in the 
related AMQP example) because all the message history was saved in the 
stream anyway. Now, implement such a history service, storing all the 
incoming messages in a separate database and use this service to retrieve the 
chat history when a new client connects. Hint: the history service will need to 
remember the ID of the last message retrieved across restarts.

• 13.2 Multiroom chat: Update the chat application example we created in this 
chapter to be able to support multiple chat rooms. The application should 
also support displaying the message history when the client connects. You 
can choose the messaging system you prefer, and even mix different ones.

• 13.3 Tasks that stop: Update the hashsum cracker examples we implemented 
in this chapter and add the necessary logic to stop the computation on all 
nodes once a match has been found.
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• 13.4 Reliable task processing with ZeroMQ: Implement a mechanism to 
make our hashsum cracker example with ZeroMQ more reliable. As we 
already mentioned, with the implementation we saw in this chapter, if a 
worker crashes, all the tasks it was processing are lost. Implement a peer-
to-peer queuing system and an acknowledgment mechanism to make sure 
that the message is always processed at least once (excluding errors due to 
hypothetical unprocessable tasks).

• 13.5 Data aggregator: Create an abstraction that can be used to send a request 
to all the nodes connected to the system and then returns an aggregation of 
all the replies received by those nodes. Hint: you can use publish/reply to 
send the request, and any one-way channel to send back the replies. Use any 
combination of the technologies we have learned.

• 13.6 Worker status CLI: Use the data aggregator component defined in 
Exercise 13.5 to implement a command-line application that, when invoked, 
displays the current status of all the workers of the hashsum cracker 
application (for example, which chunk they are processing, whether they 
found a match, and so on).

• 13.7 Worker status UI: Implement a web application (from client to server) to 
expose the status of the workers of the hashsum cracker application through 
a web UI that can report in real time when a match is found.

• 13.8 Pre-initialization queues are back: In the AMQP request/reply 
example, we implemented a Delayed Startup pattern to deal with the fact 
that the initialize() method is asynchronous. Now, refactor that example 
by adding pre-initialization queues as we learned in Chapter 11, Advanced 
Recipes.

• 13.9 Request/reply with Redis Streams: Build a request/reply abstraction 
on top of Redis Streams.

• 13.10 Kafka: If you are brave enough, try to reimplement all relevant 
examples in this chapter using Apache Kafka (nodejsdp.link/kafka) 
instead of Redis Streams.

http://nodejsdp.link/kafka
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