

Full Stack
Development with

MongoDB

Covers Backend, Frontend, APIs, and
Mobile App Development Using PHP, NodeJS,

ExpressJS, Python and React Native

Manu Sharma

www.bpbonline.com

http://www.bpbonline.com

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-55510-143

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this book.
All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
All Family and Friends

My Grandmother:
Smt. Pushpa Devi Sharma

My Parents:
Sh. Vijay Sharma and Smt. Neelam Sharma

My Wife: Anu Sharma
My Sister: Neha Sharma

&
Especially to My Angel Daughter: Siya Sharma

About the Author

Manu Sharma (MPhil) has more than 17 years of industry experience in
software development at the architect level, web administration, project
management and execution, product development, and team management. He
has worked for various multinational companies, small to mid-sized
organizations, universities as well as one of the biggest conglomerates of
India. He is also the founder, architect, and developer of two open-source
projects. In his free time, he loves to spend his time with his family and his
daughter. His other interests are singing and arts. During some weekends you
can find him singing and recording music in the studios, playing the flute, or
painting with brushes in his hands.

About the Reviewers
Dheeraj Chhabra is a Strategic-level professional working as Program
Director in Happiest Minds Technologies Limited. He holds Masters in
Computer Applications (MCA) from Indira Gandhi National Open University
(IGNOU). Dheeraj has more than 18 years of work experience in IT and has
worked in different established organizations at various levels from Software
Developer to Program Management. He has worked on various technologies
including Java Swings, Servlets, JSP, EJB, Asp, VB.Net, C#.Net, ASP.Net,
SQL Server, Oracle, and more. He has played various important roles
including, but not limited to, Software Engineer, Team Lead, Project Lead,
Project Manager, Enterprise Solution Architect, Product Manager, and
Program Manager. Dheeraj is a firm believer as well as a strong follower of
Servant Leadership, Empowerment, and Continuous Integrated Development.
Dheeraj has earned various certifications such as PSM, TOGAF, PMP, PMI-
ACP, SAFe 4 & 5, EXIN ASM, and is currently following his passion of
continuous learning and development focused on a couple of more technical
and leadership skills-oriented certifications. He is detail-oriented with a key
focus on end-to-end project/program planning, execution, and delivery. He
keeps a close eye to Run, Protect and Change the business.

Rohit Agarwal is an IT professional with rich experience in Data
Technologies. His expertise circle around Data Engineering, Architecture,
and Analytics providing end-to-end solutions to business units by creating
data pipelines and building business intelligence systems to help
organizations take critical business decisions based on data. He earned his
Master’s degree in Information Systems from Northeastern University,
Boston in the year 2017. He has a keen interest in Entrepreneurship and
Innovation and has also learned the same from Harvard Extension School,
Boston.

Mamoon Mushtaque is a technically accomplished IT professional with 9+
years of experience in service-based as well as product-based organizations
with insightful experience in various aspects of UI development using
multiple technologies. He is currently working as Lead Software Engineer at

Spiralyze LLC.

Harish Kumar Buttolia has an M.Sc. (IT) from the Punjab Technical
University. He worked for various Government and Private organizations. He
possesses 18 years of experience in IT with a good knowledge of software
and application development using open source technologies. He is having
articles/publications published in renowned India/International Journals. He
is always keen to learn new technologies. He is also interested in writing,
reading, music, and travel.

Acknowledgement
First of all, I am thankful to almighty God for providing me with the
opportunity to write a book. I am very thankful to Mr. Nrip Jain (Head,
Business Development Group, BPB Publications) for believing in me and
offering me to write this book.
I am also thankful to all my Gurus and Teachers in life for their teachings and
blessings.
My special thanks to my daughter “Siya” for supporting me during the book
journey.
I feel great to have some friends; most of them are still in touch with me
including my college buddies, from ET&T as well as a few other friends –
Chandrashekhar Kalia, Kapil Bharadwaj, Ankur Sood, Anugrag Sharma,
Suresh Kumar, Umang Mathur, Nisha Jayna, Deepak Kumar Taank,
Dhirendra Kumar, Joseph Vamsavardhan Gurja - Thank You All
I am very thankful to my uncle and neighbor – Prof. Jyoti Kumar Sharma for
his guidance while I was about to start writing my first book and for
encouraging me always.
I would like to thank few of my colleagues from my present organization
(Spiralyze LLC) for their support, admiration, and appreciation:
Gajan Retnasaba, Yaseen Shaik, Sophie D’Souza, Dheeraj Sareen, Mitko
Cabevski, Hassan Ahmad, Mamoon Mushtaque, Nikunjkumar Balar, Yuriy
Kycha-Kolot, Bhavesh Vavadiya, Dhaval Balar, Sohil Hunani, Riyaz Lohiya,
Jaya Prakash, Mohammad Subhani, Vaibhav Anchal, Kushal Borda,
Abhishek Mohata, Himujjal Upadhyaya, Sonu Rana, Sergy Babich, Donatas
Jasiunas, Cris Balano, Bash Simplicio, Rachelle Olvida, Sonali Rasane,
Angelica Marbella, Quirino Lacambra IV – You people are awesome!
I would like to also thank a few people from my previous organizations:
Rajesh Goyal, Santosh Kumar (@ Infopro) Amit Kumar Sen, Shahid Reza,
Paarul Madaan, Sachin Chandra, Santosh Negi, Sandeep Kumar, Sunil
Patnaik, Nishant Singh, Aniruddha Ratnaparkhi, Manish Singh, Sandeep
Sugra (@ Shri Ram New Horizons) Anupam Srivastava, Rohit Agarwal,
Daljeet Singh, Ashok Kumar, Abhishek Kumar, Ajay Kumar, Puneet Sehgal,

Vikrant Singh, Abhishek Verma, Aarfi Siddique, Deepak Gautam, Naveen
Jeengar, Randhir Sharma, Sushil Kumar Prajapati, Priyanshu Singh, Jyoti
Deep (@ Miracle Corporate Solutions Pvt. Ltd.) Shiw Kumar Prasad,
Vidushi Sasan, Yashdeep Gupta, Gaurav Mukhija (JBi Digital) Amit Puri,
Dhananjay Kumar Yadav, Dheeraj Yadav, Rahul Singh Yadav, Amitesh
Maurya, Saurabh Sharma (@TSI India)
My gratitude also goes to the entire team at BPB Publications for being
always supportive during the entire Book Journey and whenever I need their
help they were always available to help me.
Last but not least I am very thankful to all the technical reviewers of this
book, I really appreciate their hard work during technical review and am
thankful to them whenever they have corrected me in some places which
required changes.

Preface
This book is intended for the people who want to learn MongoDB at an
Advanced Level and then want to scale their knowledge to the Full Stack
Software Application Development both for Web and Mobile using
MongoDB.
The readers should possess some basic understanding of the Database
Concepts such as MongoDB and some intermediate understanding of
Programming Concepts, Programming Languages like PHP, JavaScript,
Node.js, React Native, and Python.
While we cover all in very practical and step by step Full Stack Application
Development using MongoDB with Chapters Features Step by Step use of
MongoDB with Programming Languages like PHP, JavaScript, Node.js,
React Native and Python So even if the reader have a basic programming
knowledge then also reader would be able to understand these Chapters
easily. Every Concept has been explained in a manner that once you start the
practical development while reading this book at the end you will be more
experienced in Software Development both in Web and Mobile
Technologies.
This Book Covers the Step by Step Practical Development along with
Screenshots for almost every Step, You will learn to develop the following 4
Software Applications using 4 Different Languages –
One Database – 4 Apps

Backend Catalog of a Publication House – CRUD Functionality with
PHP and MongoDB
REST API Development – Creating a RESTful Web Services of a
Publication House – API Development using Node.js and MongoDB
Mobile App Development – Creating a Mobile App of a Publication
House – Data-Driven Dynamic Mobile App Development using React
Native and MongoDB using API Calls
Frontend Development – Creating a Website of a Publication House –
Frontend Development using Python’s Django Framework and

MongoDB

The main programming languages used in this book:

PHP
Node.js
JavaScript
React Native (For Mobile Application Development)
Python

Other languages/components used in this book:

HTML
CSS
React Native Stylesheet Component

Software/modules/libraries/terms used in this book:

Full-Stack Software Development
Backend Software Development
Frontend Software Development
WAMP Stack / WAMP Server
MERN Stack
API Development
MongoDB Compass
NPM Modules
Express.js
CORS
Postman
PIP
PyPI
Django Framework
PyMongo
and Many More ….

Chapter 1 covers the concepts related to the client-side and server-side. You
will learn the difference between the client and server and how the
interactions happen between client and server. In the later part of this chapter,
we would be also learning the client and server-side concepts in which a
database like MongoDB is also involved. We would be exploring how the
dynamic sites which are using databases like MongoDB work, how the server
processes these requests and sends them back to the client. In the last section
of this chapter we would be covering the MongoDB drivers and why they are
used, what are the programming languages that are currently supported by
MongoDB, and the MongoDB community availability of drivers.
Chapter 2 covers the data entry part using MongoDB Compass after creating
the database and collection using MongoDB Compass so that we can have
some real data to work with our next chapters.
Chapter 3 covers the introduction to PHP programming with MongoDB and
how we can use PHP with MongoDB. In order to run PHP with MongoDB
server, we should be having the right environment in place. So this chapter
covers how we can set up the right environment to run PHP codes. In this
chapter, we will learn what WAMP server is and how to install WAMP
server. Later in this chapter, we will cover how we can set up MongoDB with
PHP and WAMP server. In the last section of this book, we would be doing
some coding and running some practical examples to connect and work with
MongoDB server using PHP.
Chapter 4 covers the introduction to JavaScript programming language. We
will learn Node.js programming with MongoDB and how we can use Node.js
with MongoDB. In order to run Node.js with MongoDB server, we should be
having the right environment in place. So this chapter covers how we can set
up the right environment to run Node.js codes. In this chapter, we will learn
what Node.js is and how to install Node.js. Later in this chapter, we will
cover how we can set up MongoDB with Node.js. In the last section of this
book, we would be doing some coding and running some practical examples
to connect and work with MongoDB server using Node.js.
Chapter 5 covers the introduction to React Native Mobile Framework and
then we will learn how we can build Mobile-based Apps using React Native
with MongoDB programming with MongoDB and how we can use Node.js
with MongoDB. In order to run React Native and build Mobile Apps with
MongoDB we should be having the right environment in place. So this

chapter covers how we can set up the right environment to run React Native
codes. In this chapter, we will learn what React Native is and how to install
React Native. In the last section of this book, we would be doing some
coding and running some practical examples to connect and work with
MongoDB Server using React Native.
Chapter 6 covers the introduction to Python programming language and
Python programming with MongoDB and how we can use Python with
MongoDB. In order to run Python with MongoDB server, we should be
having the right environment in place. So this chapter covers how we can set
up the right environment to run Python codes. In this chapter, we will learn
what Python is and how to install Python. Later in this chapter, we will cover
how we can set up MongoDB with Python. In the last section of this book,
we would be doing some coding and running some practical examples to
connect and work with MongoDB server using Python.
Chapter 7 covers the topics related to real application development as we are
now going to start with the step by step web and mobile application
development part involving various languages and frameworks like PHP,
JavaScript (Node.js), Python, and React Native along with MongoDB. In this
chapter, we would be learning about the application and software
development terms like frontend, backend, and full stack development and
try to understand the various technologies, frameworks, and stacks that are
used in these various types of applications. In the later part of this chapter, we
will cover the applications that we are going to develop in our next chapters
and at last, we will cover an overview of various technologies and tools that
we would be using to develop our web and mobile apps in our next chapters.
So this chapter would be interesting for an overall overview of the next
chapters which are related with the step by step full stack web and mobile
application development of this book.
Chapter 8 covers the practical step by step development of CRUD based
backend application using PHP and MongoDB along with frontend languages
like HTML, CSS, and JavaScript. In this chapter, we will learn how to create
a backend catalog of a Publication House. This chapter starts with the
Overview of our web application development using PHP and MongoDB,
basic requirements, and some pre-development steps which are required to be
performed before we start developing our application. Later in this chapter,
we will learn how we can create a dashboard for our application and various

other related functionalities required for the overall development of the
catalog management system for a Publication House. In this chapter, all the
sections have been explained in step by step practical manner so that by the
end of this chapter you feel more confident in PHP and MongoDB
application development.
Chapter 9 covers the practical step by step development of REST Based
APIs using Node.js, Express.js, and MongoDB along with Node.js extensions
like Body Parser. In this chapter, we will learn how to create APIs for a
Publication House. This chapter starts with the overview of our API
development using Node.js, Express.js, and MongoDB, basic requirements,
and some pre-development steps which are required to be performed before
we start developing our web services. Later in this chapter, we will learn how
we can use various REST-based methods and various other related
functionalities required for the overall development of APIs for a Publication
House. In this chapter, all the sections have been explained in step by step
practical manner so that by the end of this chapter you feel more confident in
Node.js, Express.js, and MongoDB web services and API development.
Chapter 10 covers the practical step-by-step development of a mobile app
developed using React Native and MongoDB. We will learn how to create a
mobile app for a publication house and will start with the overview of our
mobile app development using React Native, Expo, Expo CLI, Node.js,
Express.js, and MongoDB. We will learn how to add the “Thumbs Up” and
“Thumbs Down” functionality and how to store their counts in the MongoDB
database using the API calls. In this chapter, all the sections have been
covered step by step and detailed manner.
Chapter 11 covers the practical step by step development of frontend
application developed using Python and MongoDB. In this chapter, we will
learn how to create a website for a Publication House. This chapter starts with
the overview of our frontend development using Python, Django, PyMongo,
and MongoDB. We will start this chapter with basic requirements. Later in
this chapter, we will learn how we can build the various functionalities of the
frontend application like displaying the book catalogue list and displaying the
book cover images, total number of “Thumbs Up” and “Thumbs Down” for
that particular book using the Python and its Django framework with the help
of Python’s official MongoDB driver. In this chapter, all the sections have
been explained in Step by Step Practical Manner so that by the end of this

Chapter you feel more confident in Dynamic Python Application
Development with MongoDB.

The four applications covered in this
book

A Sneak Preview
This book covers the step-by-step practical development along with
screenshots for almost every step. You will learn to develop the following 4
software applications using 4 different languages.

One Database – 4 Apps
Backend Catalogue of a Publication House – CRUD Functionality with PHP
and MongoDB

Figure 0.1: Application Dashboard Page

Figure 0.2: Add new book page

REST API Development – Creating a RESTful Web Services of a
Publication House – API Development using Node.js and MongoDB

Figure 0.3: API Calls using Postman

Figure 0.4: MongoDB Compass—verifying the documents updated by our API calls

Figure 0.5: Adding dummy book with our API

Mobile App Development – Creating a Mobile App of a Publication House
– Data Driven Dynamic Mobile App Development using React Native and
MongoDB using API Calls

Figure 0.6: Thumbs Up and Thumbs Down Functionality

Figure 0.7: Expo dev tools > run on android device/emulator

Figure 0.8: Mobile App Running successfully on Android device/emulator

Frontend Development – Creating a Website of a Publication House –
Frontend Development using Python’s Django Framework and MongoDB

Figure 0.9: Django Frontend Application home page

Figure 0.10: Frontend - More Details Page – Thumbs Up and Thumbs Down

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/pi581cf
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Full-Stack-Development-with-
MongoDB. In case there's an update to the code, it will be updated on the
existing GitHub repository.
We have code bundles from our rich catalogue of books and videos available
at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the

https://rebrand.ly/pi581cf
https://github.com/bpbpublications/Full-Stack-Development-with-MongoDB
https://github.com/bpbpublications
mailto:errata@bpbonline.com

eBook version at www.bpbonline.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us
at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank
you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Client and Server-Side Concepts and Introduction to MongoDB

Drivers
Structure
Objectives
Client and server-side concepts
Client and server-side DB concepts
Introduction to MongoDB drivers
MongoDB drivers for programming languages (PHP, JavaScript, and

Python)
Conclusion
Questions

2. Data Addition Using MongoDB Compass
Structure
Objectives
About MongoDB Compass
Launching MongoDB Compass and connecting to MongoDB server

using MongoDB Compass
Creating a MongoDB database and collection using MongoDB Compass
Data addition using MongoDB Compass (creating some documents in

our MongoDB collection)
Conclusion
Questions

3. Starting Up Programming with MongoDB and PHP
Structure
Objectives
Using PHP with MongoDB

Installing WAMP server on Windows operating system
Installation steps

Programming with PHP and MongoDB
Starting MongoDB server from Windows service manager

Example 1—connecting to MongoDB Server using PHP
Code 1
Example 2—fetching MongoDB Documents using PHP
Code 1

Conclusion
Questions

4. Starting Up Programming with MongoDB and JavaScript (Node.js)
Structure
Objectives
Using JavaScript (Node.js) with MongoDB

Installing Node.js on Windows operating system
Installation steps
Step 2—install Node.js on your Windows machine.
Step 3—post-installation steps and verifying Node.js on your

Windows machine
Step 4—installing the MongoDB driver for Node.js using NPM

Connecting and working with Node.js and MongoDB
Example 1—connecting to MongoDB server using Node.js
Code 1
Example 2—fetching MongoDB documents using Node.js
Code 2

Conclusion
Questions

5. Starting Up Programming with MongoDB and React Native
Structure
Objectives
Introduction to React Native
Pre-development steps

Step 1—check Node.js and NPM on your system
Step 2—creating a project folder in your system
Step 3—installing Android Studio
Step 4—installing Android SDK
Step 5—setting up the environment variables
Step 6—installing Expo CLI using NPM
Step 7—creating our mobile App using Expo and Expo CLI

Step 8—running our mobile App using Expo and Expo CLI
Step 9—opening and viewing an app in mobile device using Expo

app
Step 10—opening and viewing app in Android Emulator

Programming with React Native
Example 1—changing the text in our mobile App
Code 1
Code 2
Example 2—adding logo image in our mobile App
Code 1

A brief introduction to programming with React Native and MongoDB
Conclusion
Questions

6. Starting Up Programming with MongoDB and Python
Structure
Objectives
Using Python with MongoDB

Installing Python on Windows operating system
Installation steps

Step 1—download Python
Step 2—install Python on your Windows Machine
Step 3—post-installation steps and verifying Python on your

Windows Machine
Step 4—installing MongoDB driver for Python using Python

Package Index (PyPI)
Programming with Python and MongoDB

Example 1—connecting to MongoDB server using Python
Code 1
Example 2—fetching MongoDB documents using Python
Code 1

Conclusion
Questions

7. Full-Stack Development Using MongoDB
Structure
Objectives

Introduction to full-stack development
Frontend
Frontend technologies and stack

Native mobile apps
Hybrid mobile apps

Backend
Back-end technologies and stack
Full-stack
Full-stack development and technologies
Full-stack developer

Conclusion
Questions

8. MongoDB Step by Step Practical Application Development Using PHP
Structure
Objectives
Overview of our Web application developed using PHP and MongoDB
Requirements
Final application
Pre-development steps
Developing our application

Code 1
Code 1—our basic HTML structure
Code 2—our header.php file
Code 3—our footer.php file
Code 1—our header.php file (updated)
Code 1—our index.php file

Code 1—our styles.css file
Code 2—our scripts.js file

Backend catalog dashboard
Code 1—our index.php file
Code 2—our styles.css file

Adding new book functionality
Code 1—our add-new-book.php file
Code 2—our add-new-book.php file (updated)
Code 1—our styles.css file (appended code)
Code 2—our scripts.js file (updated code)

Code 1—our add-new-book.php file (updated code)
Code 2—our styles.css file (appended code)
Code 3—our scripts.js file (updated code)
Code 1—our add-new-book.php file (updated PHP code)
Code 2—our add-new-book.php file (updated HTML code)
Code 2—our styles.css file (appended CSS code)

Listing of catalog functionality
Code 1—finding all the documents from MongoDB collection

(updated index.php file)
Code 2—displaying the list of all the documents from MongoDB

collection by using PHP foreach() construct (updated
index.php file—HTML part)

Code 3—our updated styles.css file (appended code)
Deleting functionality

Code 1—delete code (index.php—no change)
Code 1—delete book functionality (delete-book.php)
Code 2—delete book functionality (index.php—small update for

displaying an alert after the book is deleted successfully)
Edit and update functionality
Conclusion
Questions

9. MongoDB Step by Step Practical Application Development Using
JavaScript (Node.js with Express.js)
Structure
Objectives
RESTful Web services using Node.js and MongoDB—an overview
Requirements
Introduction to API
RESTful APIs
Pre-development steps

Code 1—our index.js file
Code 1—update package.json file

Developing our APIs
Code 1
Code 1 (index.js updated)
Code 1 (index.js updated)

Code 1 (index.js updated)
Code 2 (JSON body params to be used in Postman)
Code 1 (index.js updated)
Code 1 (index.js updated)

Adding REST API endpoint to delete MongoDB document based on
MongoDB document ID (REST DELETE method)

Conclusion
Questions

10. MongoDB Step by Step Practical Mobile App Development Using
React Native
Structure
Objectives
An overview of our mobile app developed using React Native and

MongoDB
Requirements

Example 1—connecting to MongoDB via API
Code 1
Code 2
Code 3—API fetch part—networking
Code 3—style sheets
Code 4—header section
Code 5—book list section
Code 6—return part of the app

CORS
Resolving the issue
Change 1 in index.js—adding CORS module using require
Change 2 in index.js—enabling CORS in “getAllBPBBooks”

route
Example 2—adding book pictures in the book list section of our

mobile app
Code 1 (updated App.js file) —CSS section (added some more

CSS and changed the class names to “camelCase”)
Code 2 (updated App.js File) —update in book list section and use

of react native “FlatList” component instead of “.map”
method

Example 3—adding “Thumbs Up” and “Thumbs Down” in the

book list section of our mobile app
Code 1 (updated App.js file)—import FontAwesome from Vector

Icons
Code 2 (updated App.js File)—CSS section (added some more

CSS for “Thumbs Up” and “Thumbs Down”)
Code 3 (updated App.js file)—added “Thumbs Up” and “Thumbs

Down” button components and functions
Code 4 (updated App.js file)—book list section (added “Thumbs

Up” and “Thumbs Down” button components)
Example 4—adding database functionality to “Thumbs Up” and

“Thumbs Down” of our mobile app
Change 1 in index.js—enabling CORS in

“thumbsUPForBPBBook” route
Change 2 in index.js—enabling CORS in

“thumbsDOWNForBPBBook” route
Code 3 (updated App.js file)—updated “Thumbs Up” and

“Thumbs Down” button components, functions, and book list
section

Conclusion
Questions

11. MongoDB Step by Step Practical Frontend Development Using
Python
Structure
Objectives
An overview of our frontend application developed using Python and

MongoDB
Requirements

Installing Python’s Django framework on Windows operating
system

Installation steps
HTML
CSS
HTML—for file “bpbAppBookDetailsIndex.html”
CSS—for file “style.css”
Conclusion
Questions

Index

I

CHAPTER 1
Client and Server- Side Concepts and

Introduction to MongoDB Drivers
n the real-world scenario, when we request any information over the
network or internet, then the client and server interact with each other to

pass the requested information. In this chapter, you will be learning the
concepts related to client-side and server-side and how the interactions
happen between them. In the later sections of this chapter, we will be
covering these concepts in relation to the databases like MongoDB, and we
will learn how the dynamic sites which use the databases like MongoDB
work.

Structure
In this chapter, we will discuss the following topics:

Client and server-side concepts
Client and server-side DB concepts
Introduction to MongoDB drivers

Objectives
After studying this chapter, the reader will be able to understand the client-
side and server-side concepts and learn the difference between the client and
server. The reader will also learn the client- and server-side concepts in
which a database like MongoDB is involved. This chapter will also cover the
MongoDB drivers and their uses, the programming languages that are
currently supported by MongoDB, and the MongoDB community availability
of drivers.

Client and server-side concepts

Before we move on to the programming part of this chapter and the book, let
us define a few concepts related to the client and server.
Clients are those who send the requests to the server to perform specific
tasks. The server receives the commands sent by the clients and performs the
tasks. Once the tasks are executed and completed, the server sends the results
back to the client.
There are many different types of clients as well as servers. Each of them
performs specific tasks. For example, there are Web servers and Web clients.
A simple example of a Web server is Apache HTTP Web server, Microsoft
IIS Web server, or NGINX Web server.
Similarly, we have Web clients, which we use every day on our PCs, laptops,
mobiles, tablets, and so on. So, we might be able to realize that they are Web
browsers such as Google Chrome, Microsoft Edge, Mozilla Firefox, Mac
Safari, Opera, and many more.
So what happens here? You will type some URL of a website that you would
like to visit, like “https://bpbonline.com”, which is one of the best places to
buy online IT and technology books. When you type the URL in the browser,
the browser acts as a client and sends this request to the Web server on which
the website of BPB Publication is running. The Web server accepts this
request from the client and executes it at its end, and after that, it passes the
request back as an HTML page that the browser understands easily, as shown
in figure 1.1.

Figure 1.1: Client–server architecture

https://bpbonline.com

Now, let us understand this example in a more interesting manner.
So, you visit the BPB Publication Online website by typing the URL
“https://bpbonline.com” on your browser. Now, you want to purchase a
book, and you go to the shopping cart of the website, pay the amount, and
you are done. During all these steps, your client (who is your browser) and
the server (on which the BPB Publication Online website is hosted) have
been communicating with each other. This is the one side of the coin.
Now, let us understand what could be happening on the server-side. As you
know, e-commerce websites and portals like “BPB Publication Online” run
with some sophisticated technologies, and those websites are dynamic. Here,
dynamic means that the content and the features on these websites keep
changing as new book titles arrive every week or every day. These websites
update their content instantly. You are lucky sometimes when you reach
these websites during a discount period or promotional offer.
A few questions here are how do these dynamic things happen? Is something
happening at only the Web server end?
The answer is No! The Web server cannot alone do such dynamic things
without the help of other technologies. The internet consists of different types
of technology. Each website is unique in terms of its technology stack.
To run these dynamic portals and websites, server-side programming
languages such as PHP, Node JS (a server-side JavaScript environment), and
Python are used. There are many other server-side programming languages
available such as Java, C#, ASP.NET (.NET framework), and Ruby on Rails
(RoR), but for this chapter and the upcoming chapters, we will be using
examples from programming languages such as PHP, JavaScript (Node JS),
and Python only.
Where was MongoDB until now? Few of us are now thinking about where
MongoDB or any other database fits in the client-server picture.
Let us now understand the client and server concept in terms of database.

Client and server-side DB concepts
In the previous section, we have understood what client and server are in
general terms. Now, let us move one step ahead and understand the concept
of client and server where the database like MongoDB acts like a server.

https://bpbonline.com

MongoDB is a database server, as you all know. It also executes the requests
that it receives from the clients. As a browser, it acts as a Web client for a
Web server. We have MongoDB clients like MongoDB Compass, which is
the official client for MongoDB, and a few others like Robo 3T that are
helpful in connecting to the MongoDB server.
Whenever you install MongoDB on any OS, you need some client to connect
and talk to the MongoDB Server. So, MongoDB client is a program that
helps us to connect and perform various operations like the execution of the
MongoDB queries and DB operations.
If you remember, we have used MongoDB Shell many times in the previous
chapters, and also, we have learned about MongoDB Compass in the last
chapter of that book. These are MongoDB clients who are used to connect
and communicate with the MongoDB server. Here, the MongoDB client
requests the MongoDB server to execute some query or command, and this is
somewhat a similar manner in which a Web client requests a Web server to
deliver some Web page or URL, as shown in figure 1.2.

Figure 1.2: Client–server DB architecture

But many of you may still be thinking about how the dynamic websites and
portals work with databases like MongoDB to present the dynamic data on
the Web as we are not using these clients on the websites. Actually, this
happens with the help of server-side programming languages such as PHP,

Node JS, or Python. These programming languages have built-in drives
which interact with MongoDB on the server-side.
In the next section, we will be learning about the MongoDB drivers, and later
we will cover the MongoDB drivers for programming languages.

Introduction to MongoDB drivers
Database drivers are client-side libraries that are used to connect and
communicate with databases. In our scenario, the MongoDB drivers work as
if they are software libraries that run from the client-side and communicate
with the MongoDB server. The purpose of the drivers is to provide the
interface between the client-side environment and MongoDB server.
The client-side environment varies according to the programming languages
they use. Any MongoDB client which interacts with the MongoDB server
does this with the help of drivers. Even MongoDB Shell, which uses
JavaScript language for querying the database, uses drivers to connect to the
MongoDB server.
So, whether it is any desktop-based application such as MongoDB Compass,
Command, shell-based application like Mongo Shell, website which is
developed using MongoDB as a database server, or any mobile application
which uses REST APIs to communicate with MongoDB database via some
backend process, all of these use drivers, which act as an interpreter between
them and MongoDB server, as shown in figure 1.3.

Figure 1.3: Client-server DB architecture—programming languages and database drivers—
communication and interactions

Any application or website that interacts with MongoDB can do this using
some programming language such as PHP, Node JS, or Python, and these
programming languages then interact with MongoDB using their own
drivers.
Every programming language has its own MongoDB drivers to connect and
communicate with the MongoDB server. MongoDB supports all major
programming languages, and the list is huge. You can visit the MongoDB
drivers page to view the list of all the drivers’ libraries for programming
languages that are supported officially by MongoDB Inc., as shown in figure
1.4.
For more details, visit: https://docs.mongodb.com/drivers/

https://docs.mongodb.com/drivers/

Figure 1.4: MongoDB drivers—list of officially supported drivers libraries

MongoDB also supports more programming languages which are supported
by the MongoDB community. If you are developing any application that is
not listed on the official driver’s page. In that case, you can look at the
community page to check if your language is listed on the community page or
not at: https://docs.mongodb.com/drivers/community-supported-drivers,
as shown in figure 1.5.

https://docs.mongodb.com/drivers/community-supported-drivers

Figure 1.5: MongoDB drivers – list of community-supported drivers libraries

MongoDB drivers for programming languages
(PHP, JavaScript, and Python)
Before we start with the programming part, please note that in order to use
MongoDB with these programming languages, you must have a workable
environment ready so that you can easily run the examples provided in the
further chapters, which are related to programming and application
development.
We will be covering the step-by-step method for each programming
language, PHP, Node JS, and Python, in the upcoming chapters, by first
creating the right environment on our machines to run the practical examples
of the programming.

Conclusion
In this chapter, we have learned about the concepts related to client-side and
server-side and how the interactions happen between them. We have also

learned these concepts in relation to the databases like MongoDB and how
the dynamic sites that use the databases like MongoDB work. In the last
section of this chapter, we have covered the MongoDB drivers and the
programming languages that are currently supported by MongoDB and also
the MongoDB community drivers. In the upcoming chapter of this book, we
will use MongoDB Compass to create a database and collection, and insert
some dummy data using MongoDB Compass, which will help us to work
with different programming languages, such as PHP, Node.js, React Native,
and Python, used along with MongoDB in this book.

Questions
1. What do you understand by client-side and server-side? Give some

examples.
2. Is the browser a client-side or server-side application?
3. What do you think the websites which are dynamic in nature use to

present the dynamic content?
4. How does MongoDB fit in terms of client and server concepts, and how

does the communication happen?
5. What are database drivers?
6. List some programming languages which have official MongoDB driver

support.

B

CHAPTER 2
Data Addition Using MongoDB

Compass
efore we start with the real programming and software-related part
using MongoDB and programming languages, we need some data to

start with. In this chapter, we will be doing some data entry using MongoDB
Compass after creating the database and collection using MongoDB Compass
so that we can have some real data to work with, in our upcoming chapters.

Structure
In this chapter, we will discuss the following topics:

MongoDB Compass
Launching MongoDB Compass and connecting to MongoDB server
using MongoDB Compass
Creating a MongoDB database and collection using MongoDB
Compass
Data addition using MongoDB Compass (creating some documents in
our MongoDB collection)

Objectives
After studying this chapter, the reader will be able to enter some data in the
MongoDB database, which we will require before we start with our
upcoming chapters related to programming and software development. In this
chapter, we will be using the MongoDB Official GUI, which is MongoDB
Compass, to add some real data (adding some documents) in the MongoDB
Collection.

About MongoDB Compass

MongoDB Compass is the Graphical User Interface (GUI) tool that helps
us to connect with the MongoDB server very easily and do a lot of things
using GUI that takes a lot of time if we do them via commands or queries.
MongoDB Compass also provides many features that are helpful in
visualizing the data, as well as manipulating the data in the collections.
MongoDB Compass is more than a visual GUI client or data manipulation
tool.
MongoDB Compass has been explained in a step-by-step manner starting
from how to install it and how to use it in the BPB Publications book titled
—“MongoDB Complete Guide” written by Manu Sharma. In case you want
to understand MongoDB basics and MongoDB Compass basics, you can
refer to the book mentioned.

Note

1. This current book assumes that the reader has a basic knowledge of
MongoDB and MongoDB Compass.

2. It also assumes that MongoDB and MongoDB Compass has been
already installed on the reader’s machine.

3. As this is an advanced book, covering the basics is out of the scope of
this book.

Launching MongoDB Compass and connecting to
MongoDB server using MongoDB Compass
Let us now try to connect to MongoDB using MongoDB Compass from your
Windows machine. To connect to MongoDB from your Windows machine,
you can follow these steps:

1. Click Search Area of your Task Bar and type “Compass”. You will see
that the Compass app will appear along with the details. Click Open, or
you can open it using the Run as Administrator. This will open
MongoDB Compass with administrative privileges, as shown in figure
2.1.

Figure 2.1: MongoDB Compass—open MongoDB Compass

2. For a new connection, click the link in the MongoDB Compass GUI
Interface under the New Connection link, which says Fill in

connection fields individually, as shown in figure 2.2.

Figure 2.2: MongoDB Compass GUI—New Connection—fill in connection fields individually

3. Now, enter Hostname as “localhost”, Port as “27017” (Default
Settings), and click the Connect button to connect to the MongoDB

server, as shown in figure 2.3.

Figure 2.3: MongoDB Compass GUI—connect to MongoDB Server using default settings

Creating a MongoDB database and collection using
MongoDB Compass
Let us now try to create a MongoDB database and collection using
MongoDB Compass so that we can add our data to the MongoDB collection
(adding new documents). To create a MongoDB database and collection
using MongoDB Compass, you can follow these steps:

1. Once you are connected to the MongoDB server, you can see the button
on the top section of the MongoDB Compass GUI, which says “CREATE
DATABASE”. Click this button as shown in figure 2.4.

Figure 2.4: MongoDB Compass GUI—create database

2. Once you click the “CREATE DATABASE” button, it will open a new
popup window to add the details. In the “Database Name” field, type
“BPBOnlineBooksDB”, and in the “Collection Name” field, type
“BPBOnlineBooksCollection”, and then click “Create Database”, as
shown in figure 2.5.

Figure 2.5: MongoDB Compass GUI—create database popup window

3. Once you click the “Create Database” button with the required details
as mentioned in the previous step, you will see that your MongoDB
database, as well as collection, has been successfully created by
MongoDB Compass, as shown in figure 2.6.

Figure 2.6: MongoDB Compass GUI—MongoDB database and collection is created successfully

Data addition using MongoDB Compass (creating
some documents in our MongoDB collection)
Let us now try to add our data to the MongoDB Collection (adding new
documents). To add new data to the database, we need to create documents in
our collection. Let us take an example of some books published by BPB
Publications and add their details to the MongoDB database using the
following table, which contains the list of books and their details:

Book Title Book Author Book ISBN Book
Pages

Book Brief Description

MongoDB
Complete Guide

Manu Sharma 9789389898866 470 Master MongoDB—the
widely used modern
database in a step-by-
step, practical, and easy-
to-understand approach
covering all major topics.

Redis® Deep
Dive

Suyog Dilip Kale,
Chinmay Kulkarni

9788194837763 228 This book begins with
teaching you to set up
your own Redis
environment, followed
by Redis data structures,
their architecture, and use
cases.

ITIL® 2011 The
Story Continues

Dr. Pratul Sharma 9789388176736 82 This book describes the
ITIL service lifecycle
and standards for service
design and development.
An explanation is given
in untraditional layman’s
language, with easy-to-
follow examples and
Explores issues of
creating and maintaining
value for clients through
monitoring.

Decoding
JavaScript

Rushabh Mulraj
Shah

9789390684816 370 Mastering advanced
JavaScript to build
modern next-generation
Web applications.

Python In-Depth Ahidjo Ayeva,
Kamon Ayeva,
Aiman Saed

9789389328424 364 “Python In-Depth” gives
you a detailed
presentation of the
possibilities for solving
everyday problems, even
complex ones using
Python.

Designing User
Interfaces

Dario Calonaci 9789389898743 230 Think about UIs using
design thinking
principles from an
award-winning graphic
designer.

Advanced Web
Development
with React

Mehul Mohan 9789389423594 204 The book starts by
introducing the reader to
react, what it is, and why
you need a library like
react to work with
medium to large scale
applications.

Table 2.1: Sample data to be added into MongoDB database (data for creating the MongoDB
documents in MongoDB collection)

Now, let us do some data entry using MongoDB Compass. MongoDB
Compass gives us various ways to insert the data using JSON, CSV, or
manual data entry.

1. Click the link, and this shows the Collection Name to add the
documents into this Collections as shown in figure 2.7.

Figure 2.7: MongoDB Compass GUI—collection link

2. Once you are into the collection, you will see the option to add new
data. Click the drop-down button which says “Add Data”, and then
select the “Insert Document” to add data manually in this step. We will
check the JSON method too in our next steps, as shown in figure 2.8.

Figure 2.8: MongoDB Compass GUI—Collection—Add data

3. Once you click the drop-down button that says “Add Data” and then
select the “Insert Document” to add data, it will open a popup window
to add the data manually. We will select List View instead of Code
View to add the Data and will keep Document ID Value “_id” as it is,
which is generated by default by MongoDB. Just hover over the “_id”
field and click the plus symbol “+” to add a new record, as shown in
figure 2.9.

Figure 2.9: MongoDB Compass GUI—Collection—Add Data

4. We will be keeping the following structure of the document fields (key
and values), and we will take the values from table 2.1 to add these
values. Let us first define the keys of our document. Refer to the
following table (Table 2.2).

Key using the Heading from Table 2.1
(Row 1 Example)

Value from the respective data using Table 2.1
(Row 1 Example)

Book-title MongoDB Complete Guide

Book-author Manu Sharma

Book-ISBN 9789389898866

Book-pages 470

Book-brief-description Master MongoDB—the widely used modern
database in a step-by-step, practical, and easy-to-
understand approach covering all major topics

Table 2.2: Add sample data referring to Table 2.1 using MongoDB Compass

5. Now, in this step, we will be referring to the key-value pairs from table
2.2 and will use the Plus symbol to add all the data. After you are done
with all the fields (key-value pairs), you can click the “Insert” button
to add the data to the MongoDB Collection. This will result in creating
the new MongoDB document under the collection (as shown in figure
2.10).

Figure 2.10: MongoDB Compass GUI—adding data and creating a document in a MongoDB
collection

6. After the data is entered as described in the previous step, we can see
the whole document in the MongoDB collection. You can insert all
seven documents in table 2.1 like we added the first record. But, in case
you would like to try the JSON method, you can delete this document
and use the JSON method explained in the next steps, as shown in
figure 2.11.

Figure 2.11: MongoDB Compass GUI—adding data and creating a document in a MongoDB
collection

7. You can use the below JSON to add all seven documents at once. Copy
the following JSON code. From the collection area of MongoDB
Compass, select Add Data. Now, instead of list view, we will use the
code view to copy and paste the following data into the database:
[{

"_id": {

"$oid": "60fd3fcaaf407a0d6383cfe3"

},

"book-title": "MongoDB Complete Guide",

"book-author": "Manu Sharma",

"book-ISBN": "9789389898866",

"book-pages": "470",

"book-brief-description": "Master MongoDB - The widely

used modern database in a step-by-step, practical, and

easy-to-understand approach covering all major topics"

},{

"_id": {

"$oid": "60fd485daf407a0d6383cfe4"

},

"book-title": "Redis® Deep Dive",

"book-author": "Suyog Dilip Kale, Chinmay Kulkarni»,
"book-ISBN": "9788194837763",

"book-pages": "228",

"book-brief-description": "This book begins with teaching

you to set up your own Redis environment, followed by

Redis data structures, their architecture, and use cases"

},{

"_id": {

"$oid": "60fd4975af407a0d6383cfe6"

},

"book-title": "ITIL® 2011 The Story Continues",

"book-author": "Dr. Pratul Sharma»,

"book-ISBN": "9789388176736",

"book-pages": "82",

"book-brief-description": "Describes the ITIL service

lifecycle and standards for service design and development

An explanation is given in untraditional Layman’s

language, with easy to follow examples Explores issues of

creating and maintaining value for clients through

monitoring"

},{

"_id": {

"$oid": "60fd49cdaf407a0d6383cfe7"

},

"book-title": "Decoding JavaScript",

"book-author": "Rushabh Mulraj Shah»,

"book-ISBN": "9789390684816",

"book-pages": "370",

"book-brief-description": "Mastering advanced JavaScript

to build modern next-generation web applications."

},{

"_id": {

"$oid": "60fd4a12af407a0d6383cfe8"

},

"book-title": "Python In - Depth",

"book-author": "Ahidjo Ayeva, Kamon Ayeva, Aiman Saed",

"book-ISBN": "9789389328424",

"book-pages": "364",

"book-brief-description": "“Python In-Depth” gives you a

detailed presentation of the possibilities for solving

everyday problems, even complex ones using Python."

},{

"_id": {

"$oid": "60fd4a59af407a0d6383cfe9"

},

"book-title": "Designing User Interfaces",

"book-author": "Dario Calonaci",

"book-ISBN": "9789389898743",

"book-pages": "230",

"book-brief-description": "Think about UIs using design

thinking principles from an award-winning graphic

designer"

},{

"_id": {

"$oid": "60fd4ab8af407a0d6383cfea"

},

"book-title": "Advanced Web Development with React",

"book-author": "Mehul Mohan",

"book-ISBN": "9789389423594",

"book-pages": "204",

"book-brief-description": "The Book Starts By Introducing

The Reader To React, What It Is And Why You Need A Library

Like React To Work With Medium To Large Scale

Applications."

}]

8. Click the “Insert” button as shown in figure 2.12.

Figure 2.12: MongoDB Compass GUI—adding data and creating multiple documents in a
MongoDB collection using JSON method.

9. After you click the “Insert” button in the previous step, you will see all
the seven documents inserted in the collection using the JSON method,
as shown in figure 2.13.

Figure 2.13: MongoDB Compass GUI—collection—add data using JSON method—added
multiple documents

Conclusion
In this chapter, we have entered some real data in the MongoDB database.
We have used MongoDB Compass to add some data (adding some
documents) in the MongoDB Collection using Manual and with JSON
method. In the upcoming chapter, we will start with the basic programming
with PHP and MongoDB, where we will be learning how we set up the
necessary environment to use PHP with MongoDB and how we can use PHP
programming language to connect with MongoDB.

Questions
1. What is MongoDB Compass?
2. Give an example to connect to MongoDB server using MongoDB

Compass.
3. Write the steps to create MongoDB collection.
4. How can you create a MongoDB document in the collection using

MongoDB Compass?
5. Is it possible to add multiple documents using MongoDB Compass?

P

CHAPTER 3
Starting Up Programming with

MongoDB and PHP
HP is one of the widely used programming languages, many of the open
sources are built with PHP, and it is one of the most popular languages

used for Web development, so in this chapter, we will cover the introduction
to PHP Programming with MongoDB. We are going to learn how we can use
PHP with MongoDB. We will also learn how to set up MongoDB with PHP
and WAMP server. As we move on to the last section of this chapter, we will
be doing some coding and running practical examples to connect and work
with MongoDB Server using PHP.

Structure
In this chapter, we will discuss the following topics:

Using PHP with MongoDB
Installing WAMP server and setting up the environment for PHP
Setting Up Mongo DB with PHP and WAMP server
Connecting and working with MongoDB Server using PHP

Objectives
After studying this chapter, the reader will be able to understand how to use
PHP with MongoDB. This chapter will cover the installation of the WAMP
server and set up the environment ready for PHP programming with
MongoDB. Later in this chapter reader will also learn about how to connect
and work with MongoDB Server using PHP programmatically.

Using PHP with MongoDB

PHP is a widely used and one of the most popular server-side programming
languages, and it has been around 25 years now since its first version came.
A lot of open-source software and projects are developed in PHP, which
includes WordPress, Drupal, Joomla, Magento, and many more.
There are many different ways to run PHP with MongoDB on various
operating systems such as Windows, Linux, and Mac OS. To cover them all
is out of the scope of this chapter and book. But we are going to use some
easiest methods by which we can have our environment ready to work with
PHP and MongoDB. Let us start with some steps so that we are able to run
our codes with PHP and MongoDB.

Installing WAMP server on Windows operating system
WAMP server is a software stack available for Windows operating system. It
is one of the widely used software which is useful in installing PHP, Apache
Web Server, and MySQL database. We are not using the MySQL database in
this book, but we will be adding the MongoDB extension with the WAMP
server and using it instead of MySQL. The only reason that we are using
WAMP is that it is simple to install and use, and we do not have to install
PHP and Apache Web servers separately as the WAMP server installs them
both. Also, it is easier to manage this software using the WAMP server.
We will be using the default installation method to install the WAMP server
on the machines that will run Windows operating system. For this chapter,
we are using Windows operating system. If you want to use other operating
systems such as Linux or Mac OS; in that case, you can set up your
environment with the help of other stack software such as XAMPP (for Linux
operating system) and MAMP (for Mac operating system).
The following are the links for various stacks available for different operating
systems:

For Windows OS: WAMP Stack: https://www.wampserver.com/
For Linux OS: XAMPP Stack: https://www.apachefriends.org/
For Mac OS: MAMP Stack: https://www.mamp.info/

We will show you how to install WAMP on Windows operating system.

Installation steps

https://www.wampserver.com/
https://www.apachefriends.org/
https://www.mamp.info/

Let us start with the installation of the WAMP stack on our machine. The
following are the steps that are required to be performed to install the WAMP
stack or WAMP server:

Step 1—Download WAMP server

1. Open the WAMP server official website
—https://www.wampserver.com/ in your favorite browser, click the
download link. This will take you to the download screen where you
have two options available, one is for 64 Bit operating system, and
another one is for 32 Bit operating system. Click the one based on your
machine architecture, as shown in figure 3.1.

Figure 3.1: WAMP server official website home page

2. Once the download starts, you can easily see the download process with
the download icon and progress on your browser, as shown in figure
3.2. This progress shows differently in every browser. The screenshot is
from Google:

https://www.wampserver.com/

Figure 3.2: WAMP server download screen—download progress

3. Once the download is 100% completed, you can follow the next steps.
(As shown in figure 3.3.)
In Step 1, we have covered how to download the WAMP server from
the official website, and the next steps are related to the Installation
Process, so we have covered this separately in step 2 of the WAMP
server Installation Process.

Step 2—install WAMP server on your Windows machine
Once the download is complete and the installer file is fully downloaded, it
will show a download complete icon as shown in figure 3.3, and you can
proceed further.

Figure 3.3: WAMP server download screen—download 100% complete—next steps

1. Now, open this installer file, and it will start the WAMP server setup
wizard, which will guide you to complete the installation of the WAMP
server in your machine, as shown in figure 3.4.

Figure 3.4: WAMP server download screen—download 100% complete—open installer file

2. Now, open this installer file, and it will start the WAMP server setup
wizard, which will guide you to complete the installation of the WAMP
server in your machine. We are not going to cover all steps here as it is
out of scope for this chapter. Please follow the setup process, and it will
install the WAMP server on your Windows machine, as shown in figure
3.5. Also, during the installation process, the setup will ask you to
accept the license agreement. It is recommended to read the license
agreement and other terms and conditions.

Figure 3.5: WAMP server setup wizard

3. The installer will ask you to select components that are different
versions of the software, such as PHP, MySQL, MariaDB, and so on. If
you wish, you can install any latest versions. But, it is recommended to
go with the default installation, as shown in figure 3.6.

Figure 3.6: WAMP server setup wizard—selecting components

4. Once the installation is 100% complete, click the “Finish” button to
exit the Setup Wizard, as shown in figure 3.7.

Figure 3.7: WAMP server setup wizard—installation complete

Step 3—starting and using the WAMP server on your Windows machine
Once the installation is done, you should start the WAMP server by typing
“wamp” on the search area of the taskbar and opening the WAMP server,
which will launch the WAMP server on your Windows machine, as shown in
figure 3.8.

Figure 3.8: Launching WAMP server

1. Once the WAMP server has been successfully started, you will see the
WAMP server icon (in green) in the Task Bar tray. When you run the
WAMP server, it usually takes a few seconds to start all the services
such as Apache, MySQL, and so on, and the icon changes from red to
orange and finally green. If the WAMP icon is green, it means that all
the services have been successfully started, and now you can use the
WAMP server, as shown in figure 3.9.

Figure 3.9: WAMP server—all services have been started successfully

2. You can click on the green icon, and it will open up a small menu that
has a lot of options from where you can do many things like
starting/stopping/restarting the WAMP server, changing the settings of
PHP, Apache Server, and so on. We are not going to cover all these in
this chapter as this is out of the scope of this chapter. If you wish, you
can explore these settings from your machine, as shown in figure 3.10.

Figure 3.10: WAMP server menu with a lot of options

Step 4—running localhost
Once the WAMP server has started on your machine, you can now start
working with the local server, which has Apache and PHP installed. So, as
we have the required environment ready, we can run localhost.

1. To run localhost, just open your favorite browser like Google Chrome
and type: http://localhost/ and press Enter. This will open up a new
page, and you will be shown the WAMP server page default page on
your localhost. Here, you will get all the information about the version
of the WAMP server, server configurations that have a list of various

software running in the background, along with their version details
such as Apache Web Server and PHP, as shown in figure 3.11.

Figure 3.11: WAMP server—localhost

If you are able to see this page, it means that most of the things which are
required to start the application development with PHP are ready except
MongoDB, which we will cover in our next step.

Step 5—setting up MongoDB extension with PHP
In this step, we are going to set up the MongoDB extension with PHP. There
are different ways to do it. Some methods prefer doing this with “Composer”,
which is the Dependency Manager for PHP, but we will do it the other way.
Please follow the following steps to set up the MongoDB extension with
PHP.

1. Open PHP Extension Community Library (PECL) home page for
MongoDB in your favorite browser by entering the URL:
https://pecl.php.net/package/mongodb in your browser address bar.
This will open up the PECL MongoDB home page. Browse the latest
available stable version of the extension and click the DLL link just
after the Windows icon, as shown in figure 3.12.

https://pecl.php.net/package/mongodb

Figure 3.12: PECL MongoDB home page

2. This will open a new page that will have the DLL lists available for
various PHP versions. As we are running PHP 7.3 with WAMP, we will
be downloading that. The other option we should be checking here is
the “Thread Safe” and “Machine Architecture”. Machine Architecture
can be 32 Bit or 64 Bit which depends on your computer hardware. If
you want to check if Thread Safety is enabled in your PHP version, you
can open the command prompt and then navigate to your PHP folder,
which is similar to “D:\wamp64\bin\php\php7.3.21\” and run the
following command as shown in figure 3.13.
php -i|findstr "Thread"

You may also check the same from the phpinfo() under the Tools
section of your WAMP localhost home page, where you will get all the
details related to PHP installed on your system.

Figure 3.13: Checking thread safe

3. After you click the right DLL file, the download will start, and after the
download gets finished, you should open this ZIP file and extract the
DLL from the ZIP file. After that, you should copy this DLL file in the
extension directory of your PHP version (in our case, as we are running
PHP version 7.3 on WAMP and WAMP is installed on D: drive), the
location of the PHP extensions directory would be somewhat similar to:
D:\wamp64\bin\php\php7.3.21\ext. You can see a lot of other DLL
files present in this folder, as shown in figure 3.14.

Figure 3.14: Copying PHP MongoDB extension DLL to PHP extensions directory on WAMP

4. Once you are done with this step, go to the WAMP server manager by
clicking the WAMP server green icon in your Windows taskbar tray and

then navigate to the PHP menu and click php.ini. This will open the
php.ini file in which we are going to add the following line under the
PHP extensions section, as shown in figure 3.15.
extension=php_mongodb

Figure 3.15: Opening php.ini file

5. The previous step will open the php.ini file. Navigate to the PHP
extension section of this file and add the line mentioned in the previous
step. After that, save this file. You may enter this line towards the end
or anywhere in the extension section of this file. In our example, we
have just added this after the MySQL extension, as shown in figure
3.16.

Figure 3.16: Adding MongoDB extension to php.ini file

6. After you added the MongoDB extension code in the php.ini file and
saved it, close this file and go to the WAMP server manager by clicking
the green icon on the Windows taskbar tray and restart all the services.
It will take a few seconds for WAMP to restart all the services, as
shown in figure 3.17.

Figure 3.17: WAMP—restarting all services

7. After WAMP has finished restarting all the services, open the WAMP
home page from your browser and scroll to the tools section which is at
the end of the page. Click phpinfo(). This will open up a new page
with the details of PHP. Scroll to the middle of the page, where you will
see the details of the PHP extensions. You will see now that the
MongoDB extension has been installed and set up for PHP, as shown in
figure 3.18.

Figure 3.18: phpinfo()—MongoDB extension

As we are done with the setup of our environment with MongoDB and PHP,
we will now start the programming part.

Programming with PHP and MongoDB
In the previous section of this chapter, we have set up our environment to run
PHP with MongoDB. Now, let us start our programming part. Before we start
with the programming and coding part, let us do one more thing as you have
been doing progress from the previous chapter. We always started MongoDB
with the command prompt. Now, as you have understood the basic concepts,
you can now automate a few things, including the MongoDB server starting.
In Windows operating systems, whenever you install MongoDB, the installer
creates MongoDB service automatically, and you can start or stop the
MongoDB server using Windows service manager.
Let us start MongoDB using Windows service manager.

Starting MongoDB server from Windows service manager
To start MongoDB using Windows service manager, follow these steps:

1. In the search section of your Task Bar, type “services” and open it, as
shown in figure 3.19.

Figure 3.19: Open services manager

2. This will open Windows services manager. You will see all the services
that are installed on your Windows machine. Navigate to MongoDB
Server (MongoDB). Click this service and start it (in case it is not yet
started), or you may leave this step if it is already started, as shown in
figure 3.20.

Figure 3.20: Starting MongoDB service from Windows service manager

Now comes the programming part. Let us now try to write a code in PHP that
does the small task of connecting to the database. Here, we would be writing
a small piece of code in PHP with the help of the PHP MongoDB extension,
which we have installed and set up in our previous step.
Note that as we are using PHP and writing PHP code, it is recommended to
use some code editor or Integrated Development Environment (IDE) like
Microsoft Visual Studio Code. You can download and install Microsoft
Visual Studio Code from this link: https://code.visualstudio.com.
Microsoft Visual Studio Code is open-source and free software and is
available for almost all operating systems.
It is also recommended that you should create some folders under your
WAMP www folder for this purpose and save your files under that folder.
The path could be somewhat like this: D:\wamp64\www\mongodb-examples, as
shown in figure 3.21.

Figure 3.21: Creating a folder under the WAMP www folder

https://code.visualstudio.com

Example 1—connecting to MongoDB Server using PHP
In our example, we have used the “$mongoDBClientConnection” variable,
which is assigned as an object for the “MongoClient()” class. We have saved
this file as “mongodb-connection.php” under the path:
D:\wamp64\www\mongodb-examples. The following figure 3.22 shows the
code for the same.

Code 1
<?php

$mongoDBClientConnection = new

MongoDB\Driver\Manager("mongodb://localhost:27017");

echo "We have Successfully Connected to MongoDB Server using

PHP";

?>

The following is the screenshot for the same in Visual Studio Code:

Figure 3.22: Working with PHP files using Microsoft Visual Studio Code

Now, let us run this example. Open your browser and type
http://localhost/mongodb-examples/mongodb-connection.php. You will
see we have connected successfully to the MongoDB server using PHP, as
shown in figure 3.23.

Figure 3.23: Localhost—connecting to MongoDB Server using PHP

Example 2—fetching MongoDB Documents using PHP

http://localhost/mongodb-examples/mongodb-connection.php

In our example, we have used the “$mongoDBClientConnection” variable,
which is assigned as an object for the “MongoClient()” class, and then we
have used the “$query” object, which is an instance of the MongoDB Query
class. Then, we pass this object in the “executeQuery” method as a second
parameter. The first parameter of this method is the <Database-Name>.
<Collection-Name>. We have saved this file as “fetching-documents.php”
under the path: D:\wamp64\www\mongodb-examples. The following is the
code for the same:

Code 1
<?php

$mongoDBClientConnection = new

MongoDB\Driver\Manager("mongodb://localhost:27017");

echo 'We have Sucessfully Connected to MongoDB Server using

PHP';

echo '<hr />›;

$query = new MongoDB\Driver\Query([]);

$rows = $mongoDBClientConnection-

>executeQuery("BPBOnlineBooksDB.BPBOnlineBooksCollection",

$query);

foreach ($rows as $row) {

echo $row->_id .' => '. $row->{'book-title'} . ' [By : ‹ .

$row->{'book-author'} . ']';

echo '
›;

}

?>

Now, let us run this example. Open your browser and type:
http://localhost/mongodb-examples/fetching-documents.php. You will see
that we have connected successfully to the MongoDB server using PHP, and
we have also got the documents from the collection, as shown in figure 3.24.

http://localhost/mongodb-examples/fetching-documents.php

Figure 3.24: Localhost—connecting to MongoDB Server and fetching the documents from collection
using PHP

Conclusion
In this chapter, we have covered the introduction to PHP programming with
MongoDB. We have also learned that in order to run PHP with MongoDB
server, we should have the right environment in place. We have learned how
we can set up the right environment to run PHP codes. Later in this chapter,
we have also learned what a WAMP server is and how to install a WAMP
server. In the last section of this chapter, we have done some coding and run
some practical examples to connect and work with the MongoDB server
using PHP. In the upcoming chapter of this book, we will learn about Node.js
and how we can use Node.js with the MongoDB database.

Questions
1. What is PHP?
2. List two most popular open-source software which runs on PHP.
3. What is WAMP?
4. How can we install PHP MongoDB Extension? Explain the process.
5. Give an example to connect to MongoDB server with PHP.

N

CHAPTER 4
Starting Up Programming with

MongoDB and JavaScript (Node.js)
ode.js, which is based on JavaScript engine-based programming
language, is the most happening programming language these days;

many of the modern applications are running using Node.js. In this chapter,
we will cover the introduction to JavaScript programming language, and
then, we will learn Node.js programming with MongoDB and how we can
use Node.js with MongoDB. This chapter covers how we can set up the right
environment to run Node.js codes. Later in this chapter, we will be doing
some coding and running some practical examples to connect and work with
MongoDB Server using Node.js.

Structure
In this chapter, we will discuss the following topics:

Using JavaScript (Node.js) with MongoDB
Installing Node.js and setting up the environment for server-side
JavaScript
Installing and setting up the NPM MongoDB library
Connecting and working with MongoDB server using Node.js

Objectives
After studying this chapter, the reader will be able to understand how to use
Node.js with MongoDB. This chapter will also cover how to install Node.js
and MongoDB driver for Node.js to set up the environment ready for
development. Later in this chapter, we will be doing some coding and
learning how to connect MongoDB using the Node.js official MongoDB
Driver.

Using JavaScript (Node.js) with MongoDB
JavaScript is one of the most popular and widely used server-side as well as
client-side programming languages, and its client-side variant has been
around from the start of the internet. The server-side JavaScript has gained
popularity among developers as well as software companies after the launch
of Node.js in the year 2009. A lot of open-source software and projects are
developed in Node.js, and it is the base framework or environment for many
other frameworks like Express JS and as well as Full Stack frameworks like
Meteor JS.
There are many different ways to run Node.js with MongoDB on various
operating systems such as Windows, Linux, and Mac OS. To cover them all
is out of the scope of this chapter and the book, but we are going to use some
of the easiest and official methods by which we can have our environment
ready to work with Node.js and MongoDB. Let us start with some steps so
that we are able to run our codes with Node.js and MongoDB.

Installing Node.js on Windows operating system
Let us install Node.js on Windows operating system by following the step-
by-step installation method.

Installation steps
Let us start with the installation of Node.js on our machine. Following are the
steps that are required to be performed to install WAMP Stack or Node.js:

Step 1—download Node.js
1. Open the Node.js official website—https://nodejs.org in your favorite

browser, browse to the middle section of the home page and click the
download link, where you have two options available, one is
recommended version, and another one is the latest version. For this
chapter and book, we will download and install the recommended
version, as shown in figure 4.1:

https://nodejs.org

Figure 4.1: Node.js official website Home Page

2. Once the download starts, you can easily see the download process with
the download icon and progress on your browser (this progress shows
differently in every browser, the screenshot is of Google Chrome
browser, every browser shows this in a different manner). You should
wait till it is 100% complete, as shown in figure 4.2:

Figure 4.2: Node.js download screen—download progress

3. Once the download is 100% completed, you can follow the next steps
(as shown in figure 4.3).
In Step 1, we have covered how to download Node.js from the official
website. The next steps are related to the installation process, so we
have covered this separately in Step 2 of the Node.js installation
process.

Step 2—install Node.js on your Windows machine.
Once the download is complete and the installer file is fully downloaded, it
will show a download complete Icon (as shown in figure 4.3), and you can
proceed further.

Figure 4.3: Node.js download screen—download 100% Complete—next steps

1. Now open this installer file, and it will start the Node.js setup wizard,
with will guide you to complete the installation of Node.js in your
machine, as shown in figure 4.4:

Figure 4.4: Node.js download screen—download 100% Complete—open installer file

2. Now open this installer file, and it will start the Node.js setup wizard,
with will guide you to complete the installation of Node.js in your
machine. We are not going to cover all steps here as it is out of the
scope of this chapter. Please follow the setup process, and it will install
Node.js on your Windows machine (as shown in figure 4.5). Also,
during the installation process, the setup will ask you to accept the
License Agreement. It is recommended to read the License Agreement
and other Terms and Conditions.

Figure 4.5: Node.js setup wizard

3. The installer will ask you to select the installation location to install this
software on your Windows machine and also give the list of other
software like NPM package manager. If you want, you can change the
installation location you can change it or else go with the default
installation. But it is recommended to select all the other features by
default. Also, it is recommended to install the tools for a native module
that setup may ask you to install during the setup process, as shown in
figure 4.6:

Figure 4.6: Node.js setup wizard—selecting all the features

4. You can optionally install the tools for a native module that setup may
ask you to install during the setup process. You may install these tools
later too by following the installation instructions from the URL:
https://github.com/nodejs/node-gyp, as shown in figure 4.7:

https://github.com/nodejs/node-gyp

Figure 4.7: Node.js setup wizard—tools for native modules

5. Once the installation is 100% complete, click the “Finish” button to
exit the Setup Wizard, as shown in figure 4.8:

Figure 4.8: Node.js setup wizard—installation complete

Step 3—post-installation steps and verifying Node.js on
your Windows machine
Once the installation is done, you should first verify Node.js and NPM
(Node package manager or package manager for JavaScript
programming language). In order to verify this two software on your
Windows machine, open Command Prompt by typing “cmd” from the
Search Bar located in the Taskbar, as shown in figure 4.9:

Figure 4.9: Post-installation verification steps for Node.js and NPM

6. Type the following two commands one by one to verify Node.js and
NPM installation in the command prompt, as shown in figure 4.10:
node --version

npm --version

Figure 4.10: Command prompt—verifying Node.js and NPM version on Windows

As you can see, both Node.js and NPM have been correctly installed on your
Windows machine. Now, we can start with the development part of this
chapter and start to use MongoDB with Node.js. In the next section, we will
cover how to use MongoDB with Node.js applications. But before that, there
is one last step we have to follow before we code. It is covered in Step 4.

Step 4—installing the MongoDB driver for Node.js using NPM
Once Node.js and NPM have been correctly installed on your Windows
machine; now, we can install the MongoDB Driver using Node Package
Manager (NPM).

1. To install the official driver for MongoDB just open your favorite
browser like Google Chrome and type:
https://www.npmjs.com/package/mongodb and then press Enter. This
will open up the official page for MongoDB on the NPM website, and
you will be shown a lot of information about this driver, including how
to install it using NPM and how to use it, as shown in figure 4.11:

Figure 4.11: NPM MongoDB official home page

2. Now, as we know what is the right command to install the official
MongoDB driver for Node.js, choose any location on your machine and
create a new folder or directory named “mongodb-nodejs”, as shown in
figure 4.12:

https://www.npmjs.com/package/mongodb

Figure 4.12: Create a new directory named “mongodb-nodejs” on your Windows machine

3. Now open up your command prompt and navigate to this directory
“mongodb-nodejs”, as shown in figure 4.13:

Figure 4.13: Navigating to “mongodb-nodejs” directory

4. Now run any of the following commands that have been mentioned on
the MongoDB Driver home page of the NPM website. This will install
MongoDB Driver for Node.js to our directory, where we are now going
to create our Node.js application along with MongoDB, as shown in
figure 4.14:
npm i mongodb

OR
npm install mongodb

Figure 4.14: Installing MongoDB driver for Node.js

If you open your “mongodb-nodejs” folder (or directory), you will find that a
folder named “node_modules” has been created automatically by this process,
along with a file named “package-lock.json”. Basically, whenever you
install any node module in Node.js it will create a folder named
“node_modules” where it will download and copy all the node modules
which are required by a specific module (like here we are installing
MongoDB Driver for Node.js), or we can say those Node.js modules on
which this MongoDB Driver is dependent plus its own files, as shown in
figure 4.15:

Figure 4.15: “node_modules” Folder and “package-lock.json” File is automatically created by the
MongoDB driver for Node.js installation process

You may also open the “node_modules” folder and could see the other
modules which are downloaded by the installation process, as shown in
figure 4.16:

Figure 4.16: MongoDB driver has been installed along with the other dependencies

The “package-lock.json” is a file where the module and its dependencies
are displayed in JSON tree format. For more information about “package-
lock.json”, you can visit this URL: https://docs.npmjs.com/configuring-

https://docs.npmjs.com/configuring-npm/package-lock-json.html

npm/package-lock-json.html
We would also be covering another JSON file, “package.json”, which is
used in Node.js application in our upcoming chapters, where we would cover
advanced application development using Node.js.
As we have completed the setup of our environment with MongoDB and
Node.js, now we can start with the programming part.

Connecting and working with Node.js and
MongoDB
In the previous section of this chapter, we have set up our environment to run
Node.js with MongoDB. Now let us start our programming part.
Let us now try to write a code in Node.js that does the small task of
connecting to the database. Here we would be writing a small piece of code
in Node.js with the help of the Node.js MongoDB driver, which we have
installed and set up in our previous step.
Note that as we are using Node.js and writing Node.js code, it is
recommended to use some Code Editor or Integrated Development
Environment (IDE) like Microsoft Visual Studio Code or any Code Editor
of your choice. You can download and install Microsoft Visual Studio Code
from this link: https://code.visualstudio.com. Microsoft Visual Studio Code
is an Open Source and free software and is available for almost all operating
systems.

Example 1—connecting to MongoDB server using Node.js
In our example, we have used the “MongoDBClient” constant that is assigned
as an object for the “MongoClient” class. Then we have called the connect
method using this object. We have saved this file as “mongodb-
connection.js” under this path: D:\mongodb-nodejs and the following is
the code for the same (as shown in figure 4.17).

Code 1
const MongoDBClient = require('mongodb').MongoClient;
// Connection URL String

const url = 'mongodb://localhost:27017';

https://code.visualstudio.com

// Connecting to MongoDB Server using connect Method

MongoDBClient.connect(url, { useUnifiedTopology: true },
function(err, client) {
if(err){
console.log("Some Error While Connecting to MongoDB Server" +

err);
}else{

console.log("Connected Sucessfully to MongoDB Server using

Node.js Driver for MongoDB");
}

// Close the Server Connection

client.close();
});

Following is the screenshot of Microsoft Visual Studio Code:

Figure 4.17: Working with Node.js files using Microsoft Visual Studio Code

Now, let us run this example. Open the command prompt and navigate to the
“mongodb-nodejs” folder where you have saved this file and type the
following command to run this code:
node mongodb-connection.js

You will see that we have connected successfully to MongoDB Server using
Node.js, as shown in figure 4.18:

Figure 4.18: Command prompt—connecting to MongoDB server using Node.js

Example 2—fetching MongoDB documents using Node.js
In our example, we have used the “MongoDBClient” constant that is assigned
as an object for the “MongoClient” class. Then we have called the connect
method using this object. After that, we have selected a DB
“BPBOnlineBooksDB”, and then we have selected the collection as
“BPBOnlineBooksCollection”, and at last, we have used the
“collection.find().toArray()” method to get all the documents from the
collection and then printed them on console and closed the server connection.
We have saved this file as “mongodb-list-documents.js” under this path:
D:\mongodb-nodejs and the following is the code for the same:

Code 2
const MongoDBClient = require('mongodb').MongoClient;
// Connection URL String

const url = 'mongodb://localhost:27017';
// Connecting to MongoDB Server using connect Method

MongoDBClient.connect(url, { useUnifiedTopology: true },

function(err, client) {
if(err){
console.log("Some Error While Connecting to MongoDB Server" +

err);
}else{

console.log("Connected Sucessfully to MongoDB Server using

Node.js Driver for MongoDB");
}

// Select DB

const dbname = "BPBOnlineBooksDB";
const db = client.db(dbname);

// Get the "BPBOnlineBooksCollection" Collection

const collection = db.collection('BPBOnlineBooksCollection');
// Find All Documents in "BPBOnlineBooksCollection"

Collection

collection.find().toArray(function(err, docs) {
if(err){
console.log("Some Error While Executing the Script" + err);
}else{

console.log("Our Node.js Script Found All these records:");
console.log(docs);

}

// Close the Server Connection

client.close();
});

});

Now let us run this example. Open the command prompt and navigate to the
“mongodb-nodejs” folder where you have saved this file and type the
following command to run this code:
node mongodb-list-documents.js

You will see that we have connected successfully to the MongoDB server
using Node.js, and then this script has also displayed all the documents in the
MongoDB collection, as shown in figure 4.19:

Figure 4.19: Command prompt—connecting to MongoDB Server and fetching the documents from the

collection using Node.js

Conclusion
In this chapter, we have covered the introduction to JavaScript and Node.js
programming and how we can use Node.js with MongoDB. We have also
learned how to set up the right environment to run Node.js codes. In the last
section of this chapter, we have done some coding and run some practical
examples to connect and work with MongoDB Server using Node.js. In the
upcoming chapter of this book, we will learn about React Native
programming and setting up the right environment before starting with the
real data-driven mobile app development using React Native and MongoDB
using APIs developed using Node.js and Express.js in the later advanced
chapter of this book.

Questions
1. Can we use JavaScript for both server side as well as client-side?
2. What is Node.js?
3. Can you name any modern frameworks which use Node.js to build

applications?
4. What does NPM stand for?
5. What is the command to install the official MongoDB driver for

Node.js?
6. Give an example to connect to MongoDB server with Node.js.

M

CHAPTER 5
Starting Up Programming with

MongoDB and React Native
obile users are growing all over the world, and so that mobile app
development, in this dynamic world, we are using many mobile apps

on our mobile phones, and mobile app development is one of the interesting
topics among developers. React Native is one of the most popular mobile app
development frameworks today, and this chapter covers the introduction to
React Native mobile framework. We should have the right environment in
place. So, this chapter covers how we can set up the right environment to run
React Native codes. We will also cover how we can view our App on various
platforms such as mobile, Emulator, and browser. In the last section of this
chapter, we will do some coding and running some practical examples to
show how we can actually start with mobile app development.

Structure
In this chapter, we will discuss the following topics:

Introduction to React Native
Pre-development steps

Check Node.js and NPM on your system
Installing Android Studio
Installing Android SDK
Setting up the environment variables
Installing Expo CLI using NPM
About Expo and Expo CLI
Creating our mobile App using Expo and Expo CLI
Running our mobile App using Expo and Expo CLI

Opening and viewing App in mobile device using Expo app
Opening and viewing app in Android Emulator

Programming with React Native

Practical examples

A brief introduction to programming with React Native and MongoDB

Objectives
After studying this chapter, the reader will be able to understand what React
Native is. This chapter covers the introduction to various tools used during
the development of the mobile App. Here, the reader will learn how to install
Android Studio and Android SDK by setting up the environment ready for
development and understanding what Expo and Expo CLI are. The reader
will also learn how to set up Expo and Expo CLI. In the last section of this
chapter, the reader will learn how to develop React Native mobile App with
step by step practical examples, and the reader will also get a brief idea on
how to use MongoDB with React Native and how we are going to develop
our dynamic mobile App using MongoDB in the later advanced chapter of
this book.

Introduction to React Native
React Native is a widely used and one of the most popular frameworks based
on React.js used to create mobile applications for all the major platforms such
as Android, iOS, Universal Windows Platform (UWP,) and even can be
used for building Web apps.
Both React Native and its base Library React are created by Facebook Inc.,
and both are getting very popular these days due to their features, which
include the rendering of the right components when the application data
changes. React uses the component-based approach where the components
manage their own state.
The main difference between React.js and React Native is that React.js uses
the Virtual Document Object Model (DOM) to render the browser code but
React Native uses the Native APIs to render components on mobile.
React Native allows us to build Cross-Platform native mobile apps, which

gives these apps a native feel.
There are some differences in React Native related to the use of HTML and
CSS. Unlike Web applications, React Native uses some different ways to use
HTML and CSS that we will look at later in this chapter.

Pre-development steps
There are many different ways to create mobile apps with React Native and
MongoDB. To cover them all is out of the scope of this chapter and book, but
we are going to use some of the easiest and official methods by which we can
have our environment ready to work with React Native and MongoDB. Let
us start with some steps so that we are able to run our codes with React
Native and MongoDB.
In our previous chapter, where we have given the introduction about getting
started with MongoDB and JavaScript (Node.js), we have already covered
how to install the Node.js and Node Package Manager (NPM). Follow the
following steps before we start to code:

Step 1—check Node.js and NPM on your system
You should first verify that Node.js and NPM. In order to verify these two
software on your Windows machine, open the command prompt by typing
“cod” from the Search Bar located in the Taskbar, as shown in figure 5.1:

Figure 5.1: Open command prompt

1. Type the following two commands one by one to verify Node.js and
NPM installation in the command prompt, as shown in figure 5.2:
node --version

npm --version

Figure 5.2: Command prompt—verifying Node.js and NPM version on Windows

As you can see, both Node.js and NPM have been correctly installed on your

Windows machine.

Step 2—creating a project folder in your system
Choose any location on your machine and create a new folder or directory
named “bpb-catalog-mobile-app” the location could be similar to D:\ bpb-
catalog-mobile-app, as shown in figure 5.3:

Figure 5.3: Create a new directory named “bpb-catalog-mobile-app” on your Windows Machine

Step 3—installing Android Studio
1. We need to have Android Emulator to run our React Native mobile app

scripts on Windows. For this purpose, we need to download and install.
Visit: https://developer.android.com/studio in your favorite browsers
such as Google Chrome and click the Download button, as shown in
figure 5.4:

https://developer.android.com/studio

Figure 5.4: Android Studio Home Page

2. After you click “Download Android Studio”, it will open a popup
having “Terms and Conditions”, It is recommended to read terms and
conditions before downloading the Android Studio. Click the
“Download Android Studio For Windows” button; after you click this
button, the download will start in your browser, and you can see the
download progress, as shown in figure 5.5:

Figure 5.5: Android Studio download screen

3. After the download is 100% complete, you can open the installer file,
and it will launch the Setup Wizard for Android Studio. Click the Next
button to start the setup process, as shown in figure 5.6:

Figure 5.6: Android Studio setup Wizard

4. During the setup process, it will show you the screen in which you have
the option to select “Android Virtual Device”. Please note that you
need to select this option so that we are able to use “Android Virtual
Device” or Android Emulator, as shown in figure 5.7:

Figure 5.7: Android Studio Setup Wizard—choose components screen

5. During the setup process, you can change the location of the software
where you need this software to get installed on your machine, as shown
in figure 5.8:

Figure 5.8: Android Studio Setup Wizard—installation location

6. You can see the setup installation progress, and once it is done, you can
press the “Next” button, as shown in figure 5.9:

Figure 5.9: Android Studio setup Wizard—installation progress

7. After the setup is complete, you will see the last screen of the wizard, as
we do not need to launch the Android Studio. We can uncheck the
“Start Android Studio” checkbox and then click the “Finish” button
to exit the setup wizard, as shown in figure 5.10:

Figure 5.10: Android studio setup Wizard – installation complete

Step 4—installing Android SDK
1. If you open your Android Studio first time (as we skipped to launch

Android Studio in Step 3 purposely, to cover the “Installing Android
SDK (Software Development Kit)”), in the Search Bar under the taskbar
of Windows, type “android” and you will see the Android Studio will
appear as we have installed it in our previous step, as shown in figure
5.11:

Figure 5.11: Opening Android Studio

2. This will launch the Android Studio as we have not Installed Android
SDK yet. The message will appear once the Android Studio is launched
the first time, which says something like this: “Your Android SDK is
missing, out of date, or corrupted”, You need to click on the button that
says: “Open SDK Manager”. You might leave this step if the Android
SDK is already installed on your machine, as shown in figure 5.12:

Figure 5.12: Android Studio—SDK problem Alert Box

3. After you click the “Open SDK Manager” button, it will launch the SDK
Manager window, and you will see that “Android SDK location” is
empty. In order to resolve this, we need to install the Android SDK,
which will be downloaded from the Internet. You might skip this step if
the Android SDK is already installed on your machine, as shown in
figure 5.13:

Figure 5.13: Android Studio—SDK Manager

4. To install the Android SDK, click the edit link under the Android SDK
location. This will launch another window from where we can install
the latest version of Android SDK. You might leave this step if the
Android SDK is already installed on your machine, as shown in figure
5.14:

Figure 5.14: Android Studio—SDK location—Click Edit Link

Step 5—setting up the environment variables
We need to set up the environment variables paths on our Windows Machine
for Java Software Development Kit (SDK) and Android SDK. Both of these
environment variables and their paths are required so that our application and
Android Emulator will run properly on Windows. To set up these
environment variables paths, follow the following points:

1. In your Windows search menu under taskbar, type “environment
variables” and when it shows the option “Edit the system

environment variables”. Open it, as shown in figure 5.15:

Figure 5.15: Opening Windows environment variables

2. This will open the system properties window, and under this, you will
see the “Environment Variables” button. Click this button, and it will
open a new window where you can add new environment variables, as
shown in figure 5.16:

Figure 5.16: System properties screen

3. This will open the System Properties window, and under this, you
will see the “Environment Variables” button. Click this button, and it
will open a new window where you can add new environment variables.
You need to create “User Variables”. Click the “New” button under the
User Variables section. This will open a new window where you can
find new user environment variables, as shown in figure 5.17:

Figure 5.17: Adding new user environment variable

4. Once you click the “New” button, it will open another window where
you need to add “Variable name” and “Variable value”. Please enter
the following value for “JAVA_HOME”. Note that this path may vary
according to the “Android Studio” installation path in your machine. In
order to enter the correct details, you can use the “Browse Directory”
option (as shown in figure 5.18).

Variable Name: JAVA_HOME
Variable Path: D:\Program Files\Android\Android

Studio\jre\jre (this path varies according to your machine where
you have installed your Android Studio).

Figure 5.18: Adding new user environment variable—JAVA_HOME

5. Repeat the last step to enter one more variable for “ANDROID_HOME”.
Note that this path may vary according to the “Android SDK”
installation path in your machine. So, in order to enter the correct
details, you can use the “Browse Directory” option after you enter
these details (as shown in figure 5.19).

Variable Name: ANDROID_HOME
Variable path: C:\Users\manus\AppData\Local\Android\Sdk

(this path varies according to your machine, where you have
installed your Android SDK).

Figure 5.19: Adding new user environment variable—ANDROID_HOME

Step 6—installing Expo CLI using NPM
Expo is a framework to build React Native applications. It has inbuilt tools
and libraries which are very helpful while we build our applications using
React Native.
Expo CLI is the Expo’s Command Line Interface, which is used to create
React Native Projects using Expo.

1. Open up your command prompt and navigate to your project directory
that is: “D:\bpb-catalog-mobile-app” in our case (as shown in figure
5.20):

Figure 5.20: Navigating to “bpb-catalog-mobile-app” directory

2. Open your favorite browser like Google Chrome, and in the address bar,
type: https://expo.dev/ and press Enter. This will open the “Expo”
home page. Here, you will see all the details about Expo and Expo CLI,
including the command to install them in your project. Click the “Get
Started” link on the top navigation bar of the home page. This will
open up the “Quick Starter Guide” page, as shown in figure 5.21:

Figure 5.21: Expo Home Page

3. As we have already installed Node.js in our previous chapters, we can
skip steps to install Node.js and simply move to Step 3 and install Expo
CLI in our project, as shown in figure 5.22:

https://expo.dev/

Figure 5.22: Expo get started page

4. Now run the following command that has been mentioned on the Expo
“Quick Starter Guide” page. This will install Expo CLI using Node
Package Manager (NPM) to our project directory, where we are now
going to create our React Native application along with MongoDB, as
shown in figure 5.23:
npm install --global expo-cli

Here “--global” means that Expo CLI will be installed globally in your
computer so that you can use it anywhere when you might be working
with Expo CLI again.

Figure 5.23: Installing Expo CLI

As we have installed Expo using the “--global” parameter, it has been

installed globally under the following locations:
C:\Users\manus\AppData\Roaming\npm\expo ->

C:\Users\manus\AppData\Roaming\npm\node_modules\expo-

cli\bin\expo.js

C:\Users\manus\AppData\Roaming\npm\expo-cli ->

C:\Users\manus\AppData\Roaming\npm\node_modules\expo-

cli\bin\expo.js

5. We can verify this by navigating to the “npm” folder under “AppData”,
as shown in figure 5.24:

Figure 5.24: AppData global NPM installation

Step 7—creating our mobile App using Expo and Expo CLI
1. Open the command prompt and navigate to your project directory,

which is: “D:\bpb-catalog-mobile-app” in our case and type the
following command, as shown in figure 5.25:
expo init bpb-mobile-app --npm

We have given --npm parameter here to open our App using NPM
instead of Yarn (which is a default option).

Figure 5.25: Creating our mobile App using Expo CLI—Expo “init” method

2. After we run the command as mentioned previously. Expo CLI will
prompt us to “Choose a Template”. For our example, we will choose
the “blank” template and press Enter again. After you press Enter key,
the Expo CLI will start creating our mobile application using NPM, as
shown in figure 5.26:

Figure 5.26: Creating our mobile App using Expo CLI—app structure created for development

3. We can browse our project folder and can see a new folder with an app
name that we have given during our EXPO CLI initialization Command
in Point 1. The same folder has been created under our project folder
with the Expo files and other Node Modules, as shown in figure 5.27:

Figure 5.27: App folder and files created by Expo CLI

Step 8—running our mobile App using Expo and Expo CLI
1. Open the command prompt and navigate to your project directory and

then to our application directory, which is: “D:\bpb-catalog-mobile-
app\bpb-mobile-app” in our case, and type the following command, as
shown in figure 5.28:
npm start

When we run the above command, Expo CLI will start our application,
and we can see that it will start after some time. Please remember that
you should not close this command prompt window as doing this will
stop our App. You should keep it running.

Figure 5.28: Starting our mobile App with Expo Start Command—“expo start”

2. Once the App gets ready, Expo will try to automatically launch this App
in the default browser. If it does not happen, then you can now open
your favorite browsers such as Google Chrome and type:
http://localhost:19002/ in the URL bar and press Enter. This will
Open Expo Developer tools in the browser where we can have work on
app settings and options in the browser with the help of Node Metro
Bundler, which is a JavaScript Bundler for React Native. We can also
see many ways to view and run our App in browsers, emulators, or real
devices (as shown in figure 5.29). For more details about React Native
Bundler, you can visit:

https://www.npmjs.com/package/metro-bundler
https://github.com/facebook/metro

Figure 5.29: Expo developer tools

3. There are many other ways to open and view our application using the
following methods:

https://www.npmjs.com/package/metro-bundler
https://github.com/facebook/metro

Using Web Browser
Using the QR Code with the Expo app (Android)
Using the QR Code with the Camera app (iOS)
Using Android Emulator

Let us explore some of these methods. If we want to run our application
in the browser, then we need to simply click the “Run in web

browser”. Once you do this, it will try to create our App ready for the
browser, and you can see the process in the background in the command
prompt where your App was started using Expo CLI (as shown in figure
5.30).

Figure 5.30: Expo logs in command prompt

4. The previous step will automatically launch our App in the new tab of
the browser. If it does not happen automatically, then you can now open
a new tab in the browser and type: http://localhost:19006/ in the
URL bar and press Enter. This will open our App where we can also see
the changes as we develop our mobile App in the next steps, as shown
in figure 5.31:

Figure 5.31: Our App Home Screen in Browser

Step 9—opening and viewing an app in mobile device using
Expo app

1. Open Google Play Store on your Android Mobile and search for Expo
App for React Native. Once you get the search results, click on the right
App and install the Expo app on your mobile phone, as shown in figure
5.32:

Figure 5.32: Installing Expo App in your mobile (Android Device)

2. After you have installed this App open this App on your mobile phone.
This App requires some permissions to “take pictures and record
videos” because we need to scan the QR code on our mobile using this
App. Allow this App to take pictures, as shown in figure 5.33:

Figure 5.33: Allow permissions for Expo App in your device

3. Now click the scan QR Code and point your mobile camera to the QR
Code that you either see in your command prompt where you have
started your App with Expo CLI or your Web browser under Node
Metro Builder, as shown in figure 5.34:

Figure 5.34: Scan the bar code shown in your browser or command prompt using the Expo App

4. Once your QR code has been correctly scanned by your mobile, you
will see that after some time, your App will be displayed under the
Projects, and you can open this App from your mobile phone, as
shown in figure 5.35:

Figure 5.35: Expo launches our App in mobile device

5. Once you click over your App in the Expo projects, it will open this
App on your mobile, and we can see the default screen of our App in
Android mobile, which is a real device, as shown in figure 5.36:

Figure 5.36: Our App Home screen in real device

6. You may also see the logs messages that will be shown both under your
command prompt where you have started your App using Expo CLI as
well as in your browser where Expo Dev Tools and Node Metro Builder
is opened, as shown in figure 5.37:

Figure 5.37: Expo Developer tools—logs

Step 10—opening and viewing app in Android Emulator
If you try to open your App using “Run on Android device/emulator” you
might get an error message if your Android Emulator is not set up correctly
in your Windows machine. To solve this issue, we need to first set up the
Android Emulator with the help of Android Studio, as shown in figure 5.38:

Figure 5.38: Error message—could not launch Emulator

1. Open Android Studio and click ”More Actions”. It will show many
options after clicking it, as shown in figure 5.39:

Figure 5.39: Android Studio—Configure

2. Now click Android Virtual Device (AVD) Manager to open the AVD
Manager window, as shown in figure 5.40:

Figure 5.40: Selecting AVD Manager from Android Studio Configure

3. In your AVD Manager screen, click the “Create Virtual Device”
button, as shown in figure 5.41:

Figure 5.41: Android Studio—create virtual device

4. In the Hardware screen, select any phone device (in our example, we
have selected Pixel 2 mobile device with Play Store and click Next, as
shown in figure 5.42:

Figure 5.42: Creating virtual device—select hardware

5. In the Select a system image section, choose any recommended
image and download it (in our example, we have chosen 30 API
version). You might need to accept the Terms and Conditions while
downloading the new image and related software. It is recommended to
read the Terms and Conditions before downloading, as shown in figure
5.43:

Figure 5.43: Android virtual device configuration—selecting the image

6. After we are done with all the above points, we can then choose the
name of our Android Virtual Device and click the “Finish” button, as
shown in figure 5.44:

Figure 5.44: Android virtual device configuration—verify configuration

7. This AVD will be shown in the virtual devices in the Android Studio.
Click the “Play” button to launch this AVD, as shown in figure 5.45:

Figure 5.45: Launching AVD in the Emulator

8. Now click the “Run on Android device emulator”, and it will open
our App in Android Emulator, as shown in figure 5.46:

Figure 5.46: Expo Dev tools—launching our App in Android Emulator

Programming with React Native
In the previous section of this chapter, we have set up our environment to run
React Native with MongoDB. Now, let us start our programming part.
Let us now try to write a code in React Native that does a small task of
connecting to the database. Here, we would be writing a small piece of code
in React Native, which will communicate with MongoDB with the help of
API that we have created in our previous chapter, where we have learned to
create APIs using Node.js and Express.js.
Note that as we are using React Native and writing React Native Code, it is
recommended to use some code editor or Integrated Development
Environment (IDE) like Microsoft Visual Studio Code or any code editor of
your choice. You can download and install Microsoft Visual Studio Code
from this link: https://code.visualstudio.com. Microsoft Visual Studio Code
is open-source and free software and is available for almost all operating
systems.

https://code.visualstudio.com

Example 1—changing the text in our mobile App
Following is the default “App.js” code, which is created by Expo CLI. This
code includes some files from Expo, React, and React Native, and the
components (or objects) such as “StatusBar”, “React”, “StyleSheet”,
“Text”, and “Views” have been created. In React Native, we use CSS in a
different manner using the “StyleSheet” component to create our styles, and
here, we generally use Flexbox CSS properties for styling but it applies to
<View> component only. <Text> component in React Native does not use
Flex to organize its content. We can use “numberOfLines” prop, etc.
<View> component can have any number of child elements, and it can contain
nested <Views>, <Text>, and <Image> components, and so on.
In our default code, there is a default function App(), which returns some
“Text” and shows it to the screen, as shown in figure 5.47:

Code 1
import { StatusBar } from 'expo-status-bar';
import React from 'react';
import { StyleSheet, Text, View } from 'react-native';
export default function App() {
return (

<View style={styles.container}>

<Text>Open up App.js to start working on your app!</Text>

<StatusBar style="auto" />

</View>

);

}

const styles = StyleSheet.create({
container: {

flex: 1,
backgroundColor: '#fff',
alignItems: 'center',
justifyContent: 'center',

},

});

Figure 5.47: Working with React Native files using Microsoft Visual Studio Code

Now let us change the text message of our App, and the code of the same is
as follows:

Code 2
import { StatusBar } from 'expo-status-bar';
import React from 'react';
import { StyleSheet, Text, View } from 'react-native';
export default function App() {
return (

<View style={styles.container}>

<Text>Welcome to BPB Online Mobile App</Text>
<StatusBar style="auto" />

</View>

);

}

const styles = StyleSheet.create({
container: {

flex: 1,
backgroundColor: '#fff',
alignItems: 'center',
justifyContent: 'center',

},

});

After the code change, run this App again. In case you have closed your App
you can again run this App by using the following command after navigating
to the correct location which is: “D:\bpb-catalog-mobile-app\bpb-mobile-
app” in our case, as shown in figure 5.48:
npm start

Figure 5.48: Starting our App using Expo CLI

This will now start a “Metro Bundler” and open “Expo Developer Tools”
in your browser. In case it is not launched automatically, open your browser
and type: http://localhost:19002. You now need to click the option under

“Expo Developer Tools”, which says “Run in Web Browser”, as shown in
figure 5.49:

Figure 5.49: Expo Dev tools—launching our App in browser

Once you click the option under “Expo Developer Tools”, which says “Run
in Web Browser”, it will start the process of launching your App in a
browser, and after some time, it will open the App in the browser. If this does
not happen automatically, then first check the logs under “Metro Bundler”,
and then you may try opening this URL: “http://localhost:19006/” in a
new browser tab, as shown in figure 5.50:

Figure 5.50: Our App Home Screen shown in the browser

We have seen how we can easily change the text of our mobile app. Now let
us add some Logo images to our app in our next example.

Example 2—adding logo image in our mobile App
In our example, we have created a separate header section and included it in
the default App() function. We have also imported the <Image> component
from “React Native” and then we have used this <Image> component to
display the logo image in our App. If you remember that in our previous
example we have learned that <View> components can include <Image>
components as well as <Text> components. We have done the same thing
here; we just created a separate code for the header section of our App, and
the following is the code for the same.

Code 1
import { StatusBar } from 'expo-status-bar';
import React from 'react';
import { StyleSheet, Text, View, Image } from 'react-native'; //

Imported the Image Component

export default function App() {
return (

<View style={styles.container}>

{appHeaderSection}

</View>

);

}

//Style Sheet

const styles = StyleSheet.create({
container: {

flex: 1,
backgroundColor: '#fff',
alignItems: 'center',
justifyContent: 'flex-start', /* Flex Start */

marginTop: 10
},

});

// Header Section

const appHeaderSection = (

<View style={styles.container}>

<Image source={require('./images/bpb-logo.png')} style=

{{height: 100, width: 150}} />
<Text>Welcome to BPB Online Mobile App</Text>
<StatusBar style="auto" />

</View>

);

Also, note that once you do changes in your App, the Expo will automatically
refresh your code and you can see the instant changes whatsoever you are
doing in your code, as shown in figure 5.51:

Figure 5.51: Our App with changed text and logo shown in the browser

We have seen how we can easily add the logo image to our mobile App. Now
let us open the same in The Android Emulator. For this, you need to open the

Android Studio and follow the points as explained in the previous section of
this chapter which is Step 10 under the pre development part of this chapter.
Open AVD Manager and start the virtual device and wait for it to start and
after that from the Expo Developer Tool click “Run on Android device
/emulator”. This will open our App in the Android Emulator (Virtual
Device), as shown in figure 5.52:

Figure 5.52: Command prompt—connecting to MongoDB server using Node.js

A brief introduction to programming with React
Native and MongoDB
In this chapter, we have learned how we can create the right environment for
mobile application development and have created a simple mobile app. Now,
we need to create a dynamic app that uses MongoDB collection data for
reading and updating. For all these operations we need some way so that our
mobile App can communicate with the MongoDB database. For this purpose,
we need Application Programming Interfaces (APIs), which would be
helpful in the further development of our mobile application.
We will be covering more about API and API development in the next
chapters of this book and will learn to create APIs using Node.js and
Express.js (which is a framework for Node.js and it has a lot of features to

create APIs along with MongoDB). A whole chapter is dedicated to this
purpose, where you will learn how to create API and perform CRUD
operations using API calls.
After we learn how to create APIs using Node.js and Express.js along with
MongoDB, we will further resume our mobile application development in the
advanced chapter, which is dedicated to creating the mobile application
development for a publishing house where we will learn the following:

How to connect MongoDB Server with the help of API using React
Native
How to show the list of books that we will add using the backend,
which we will create in our upcoming chapter using PHP and
MongoDB
How to give a “Thumbs Up” and “Thumbs Down” rating to a book from
a mobile application using API

Also, in this book, there will be a bonus chapter about “MongoDB Realm”,
which will give step by step introduction to MongoDB Realm and how we
can work with MongoDB Realm along with React Native for developing
mobile apps.
The upcoming chapters would be very helpful in making you learn many new
things, and they will add good learning toward the full-stack development,
which we will cover step by step in the next chapters.

Conclusion
In this chapter, we have covered the introduction to React Native mobile
framework. We have learned that in order to run React Native and create
mobile apps, we should have the right environment in place. We have seen
how we can view our App on various platforms like mobile, Emulator as well
as in a browser. In the last section of this chapter, we have done some coding
and run some practical examples, and learned how we can actually start with
the mobile app development. In the upcoming chapter, we will be learning
how we can use Python programming language with MongoDB and in the
later advanced chapters of this book, we will be also covering how to use
APIs built with Node.js and Express.js with React Native mobile app and
connect to MongoDB these topics are covered in a detailed manner in the

advanced chapters of this book in which we will finally learn how to create a
dynamic mobile app with React Native and MongoDB.

Questions
1. What is React Native?
2. What are the pre-development steps that you need in order to develop

an App in React Native?
3. What is Expo and Expo CLI?
4. How can you create mobile app using Expo CLI?
5. What is the command used to launch our application with Expo CLI?
6. Name two React Native components that you have learned in this

chapter?

I

CHAPTER 6
Starting Up Programming with

MongoDB and Python
f we think about Data Science, Machine Learning, and AI, then one
language that comes to our mind is Python. Python is one of the most

popular languages today, and it has been used for the development of various
software applications, including Web-based. This chapter covers the
introduction to Python programming language and Python programming with
MongoDB and how we can use Python with MongoDB. This chapter covers
how we can set up the right environment to run Python codes. In the last
section of this chapter, we will be doing some coding and running some
practical examples to connect and work with the MongoDB server using
Python.

Structure
In this chapter, we will discuss the following topics:

Using Python with MongoDB
Installing Python and setting up the environment for running Python
scripts
Installing and setting up MongoDB driver with PIP
Connecting and working with MongoDB server using Python

Objectives
After studying this chapter, the reader will be able to understand how to use
Python with MongoDB and how to install Python and set up the environment
ready for development. This chapter also covers the coding part, where the
reader will learn how to set up the right environment to use MongoDB along
with Python and also how to connect and work with the MongoDB database

using Python.

Using Python with MongoDB
Python is an interpreted, high-level, object-oriented programming language
and one of the widely used and most popular programming languages these
days due to its use in many areas and artificial intelligence. Python is a
general-purpose programming language. Besides Web development, it is
used in back-end development, software development, data sciences, and also
writing system scripts.
There are many ways to run Python with MongoDB on various operating
systems such as Windows, Linux, and Mac OS. To cover them all is out of
the scope of this chapter and book. But we are going to use some of the
easiest and official methods by which we can have our environment ready to
work with Python and MongoDB. Let us start with some steps so that we are
able to run our codes with Python and MongoDB.

Installing Python on Windows operating system
Let us install Python on Windows operating system by following the step-by-
step installation method.

Installation steps
Let us start with the installation of Python on our machine. Following are the
steps that are required to be performed to install Python.

Step 1—download Python
1. Open Python’s official website—https://www.python.org in your

favorite browser, point your mouse to the “Downloads” link on the top
section of the home page and click the download link in which you will
see the latest version of Python with its version number. Click this link,
as shown in figure 6.1:

https://www.python.org

Figure 6.1: Python official website Home Page

2. Once the download starts, you can easily see the download process with
the download icon and progress on your browser (this progress shows
differently in each browser. The screenshot is of Google Chrome
browser. Every browser shows this in a different manner), you should
wait till it is 100% complete, as shown in figure 6.2:

Figure 6.2: Python download screen—download progress

3. Once the download is 100% complete, you can follow the next steps (as
shown in figure 6.3).

In Step 1, we have covered how to download Python from the official
website. The next steps are related to the installation process, which we have
covered separately in Step 2 of the Python installation process.

Step 2—install Python on your Windows Machine
Once the download is complete and the installer file is fully downloaded, it
will show a download complete icon (as shown in figure 6.3), and you can
proceed further.

Figure 6.3: Python download screen—download 100% complete—next steps

1. Now open this installer file, and it will start the Python setup wizard
guiding you to complete the installation of Python in your machine, as
shown in figure 6.4:

Figure 6.4: Python download screen—download 100% complete—open Installer file

2. Now open this installer file, and it will start the Python setup wizard
guiding you to complete the installation of Python in your machine. It is
recommended to check the checkbox that says “Add Python to PATH”
so that it will add the path of the Python to the Windows environment
variables, and we can run Python-related commands from everywhere.
We are not going to cover all steps here as it is out of the scope of this
chapter. Please follow the setup process, and it will install Python on
your Windows machine (as shown in figure 6.5). Also, during the
installation process, the setup may ask you to accept the License
Agreement. It is recommended to read the License Agreement and other
Terms and Conditions. Click “Install Now” to start the installation
process.

Figure 6.5: Python setup wizard

3. The installer also allows you to customize the installation of this
software on your Windows machine. If you want, you can change the
installation location or else go with the default installation. But it is
recommended to select the default method. Once the installation gets
started, you will see the setup progress, as shown in figure 6.6:

Figure 6.6: Python setup wizard—setup progress

4. After the installation is 100% complete, you will see the last screen of
this wizard. Click on the “Close” button to finish the setup process, as
shown in figure 6.7:

Figure 6.7: Python setup wizard—installation complete

Step 3—post-installation steps and verifying Python on your
Windows Machine
Once the installation is done, you should first verify that Python and PIP
(Python Package Installer that is a standard package manager for Python and
is used to install and manage software packages written in Python
Programming Language) is correctly installed on your machine. In order to
verify these two software on your Windows machine, open the command
prompt by typing “cmd” from the search bar located in the taskbar, as shown
in figure 6.8)

Figure 6.8: Post-installation verification steps for Python and PIP

1. Type the following two commands one by one to verify Python and PIP
installation in the command prompt, as shown in figure 6.9:
python --version

pip --version

Figure 6.9: Command prompt—verifying Python and PIP version on Windows

As you can see, both Python and PIP have been correctly installed on your
Windows machine. Now we can start with the development part of this
chapter and start to use MongoDB with Python. In the next section, we will
cover how to use MongoDB with Python applications. But before that, there
is one last step we have to follow before we code. It is covered in Step 4.

Step 4—installing MongoDB driver for Python using Python
Package Index (PyPI)
Once Python and PIP have been correctly installed on your Windows
machine, we can install MongoDB driver using Python Package Index
(PyPI), which is the repository for software and modules written in Python
programming language).

1. To install the official driver for MongoDB just open your favorite
browser like Google Chrome and type:
https://pypi.org/project/pymongo/ and then press Enter. This will
open up the official page for MongoDB on the PIP website, and you
will be shown a lot of information about this driver, including how to
install it using PIP and how to use it. You can also see the latest release
details of this driver, as shown in figure 6.10:

Figure 6.10: PyPI MongoDB official Home Page

2. Now, as we know what is the right command to install the official

https://pypi.org/project/pymongo/

MongoDB driver for Python, choose any location on your machine and
create a new folder or directory named “mongodb-python”, as shown in
figure 6.11:

Figure 6.11: Create a new directory named “mongodb-python” on your Windows Machine

3. Now open up your command prompt and navigate to this directory
“mongodb-python”, as shown in figure 6.12:

Figure 6.12: Navigating to “mongodb-python” directory

4. Now run any one of the following commands, which are mentioned on
the MongoDB driver home page of the PyPI website. This will install
MongoDB driver for Python to our directory where we are now going to
create our Python application along with MongoDB, as shown in figure
6.13:
pip install pymongo

Figure 6.13: Installing MongoDB driver for Python

As we are finished with the setup of our environment with MongoDB and
Python; now, we can start with the programming part.

Programming with Python and MongoDB
In the previous section of this chapter, we have set up our environment to run
Python with MongoDB. Now let us start our programming part.
Let us now try to write a code in Python which do the small task of
connecting to the database. Here, we will be writing a small piece of code in
Python with the help of the Python MongoDB driver that we have installed
and set up in our previous step.
Note that, as we are using Python and writing Python code, it is
recommended to use some Code Editor or Integrated Development
Environment (IDE) like Microsoft Visual Studio Code or any Code Editor
of your choice. You can download and install Microsoft Visual Studio Code
from this link: https://code.visualstudio.com. Microsoft Visual Studio Code
is open-source and free software and is available for almost all operating
systems.

Example 1—connecting to MongoDB server using Python
In our example, we have imported the “pymongo” which is a Python
MongoDB driver module, used the “MongoDBClient” variable, which is

https://code.visualstudio.com

assigned as an object for the “MongoClient” class, and passed the MongoDB
connection string in the constructor. We have saved this file as “mongodb-
connection.py” under this path: D:\mongodb-python and the following is
the code for the same, as shown in figure 6.14:

Code 1
import pymongo

MongoDBClient =

pymongo.MongoClient("mongodb://localhost:27017/")
if MongoDBClient:
print("Connected Sucessfully to MongoDB Server using Python

Driver for MongoDB")
else:

print("Some Error While Connecting to MongoDB Server")
The following is the screenshot of the same in Microsoft Visual Studio code:

Figure 6.14: Working with Python files using Microsoft Visual Studio Code

Now let us run this example. Open up your command prompt and navigate to
the “mongodb-python” folder where you have saved this file and type the
following command to run this code:
python mongodb-connection.py

You will see that we have connected successfully to the MongoDB server
using Python, as shown in figure 6.15:

Figure 6.15: Command prompt—connecting to MongoDB server using Python

Example 2—fetching MongoDB documents using Python
In our example, we have imported the “pymongo”, which is a Python
MongoDB driver module, used the “MongoDBClient” variable, which is
assigned as an object for the “MongoClient” class, and passed the MongoDB
connection string in the constructor. Then we have created a variable DB,
which has assigned our database “BPBOnlineBooksDB”. After that, we have
used the “db.BPBOnlineBooksCollection.find()” method in a for loop and
printed all the documents in the “BPBOnlineBooksCollection” collection.
We have saved this file as “mongodb-list-documents.py” under this path:
D:\mongodb-python and the following is the code for the same:

Code 1
import pymongo
MongoDBClient =

pymongo.MongoClient("mongodb://localhost:27017/")
if MongoDBClient:

print("Connected Sucessfully to MongoDB Server using Python

Driver for MongoDB")
db = MongoDBClient.BPBOnlineBooksDB
if db:
print("Our Python Script Found All these records:")
for documents in db.BPBOnlineBooksCollection.find():
print(documents)

else:
print("Some Error While Connecting to Database")

else:
print("Some Error While Connecting to MongoDB Server")

Now let us run this example. Open up your command prompt and navigate to
the “mongodb-python” folder where you have saved this file and type the
following command to run this code:
python mongodb-list-documents.py

You will see that we have connected successfully to the MongoDB server
using Python, and then this script has also displayed all the documents in the
MongoDB collection, as shown in figure 6.16:

Figure 6.16: Command prompt—connecting to MongoDB server and fetching the documents from
collection using Python

Conclusion
In this chapter, we have covered the introduction to Python programming
with MongoDB and how we can use Python with MongoDB. We have also
learned that in order to run Python with MongoDB server, we should have
the right environment in place. We have also learned how we can set up
MongoDB with Python. In the last section of this chapter, we have done
some coding and run some practical examples to connect and work with the
MongoDB server using Python. Till now in this book, we have learned how
to set up the right environments and how to connect with MongoDB using
various programming languages such as PHP, Node.js, React Native, and
Python; from the upcoming chapters, we will start with the full-stack
development with a complete software ecosystem of various applications.
The upcoming chapters will be very interesting as we will learn how these
apps connect with each other in a software ecosystem.

Questions
1. What is Python?

2. What is PIP, and its purpose?
3. What is PyPI?
4. What is the command to install the official MongoDB driver for

Python?
5. Give an example to connect to MongoDB server with Python.
6. Give an example to connect to the MongoDB server and list the

documents with Python.

S

CHAPTER 7
Full-Stack Development Using

MongoDB
tarting with the step-by-step practical Web and mobile application
development using MongoDB, PHP, JavaScript (Node.js), React Native,

and Python.
What comes to your mind when you encounter the word “Full Stack”? Many
of us have been doing it or could be a part of this during our day-to-day jobs.
This chapter covers the instruction to various terms, which are used in
software development, including the full-stack. This chapter covers topics
related to application and software development and terms such as frontend,
backend and full-stack development and understanding various technologies,
frameworks, and stacks which are used in these various types of applications.
In the later part of this chapter, we will cover applications that we are going
to develop in our next chapters. We will also cover an overview of various
technologies and tools that we would be using to develop our Web and
mobile apps. This chapter is an interesting one to get an overall overview of
the upcoming chapters, which are related to the step-by-step full-stack Web
and mobile application development of this book.

Structure
In this chapter, we will discuss the following topics:

Introduction to full-stack development
Frontend technologies and stack
Backend technologies and stack
Full-stack development and technologies
Overview of applications that we will develop in our upcoming chapters
Overview of various technologies and tools that we will use to develop

our Web and mobile apps

Objectives
After studying this chapter reader will understand the full stack development
covering both frontend and backend technologies and various other stacks.
While going through this chapter reader will get a brief understanding of full-
stack development and technologies and the applications that we are further
going to develop in our next advanced chapters of this book.

Introduction to full-stack development
Many of you might be wondering what exactly this term “full-stack” means?
Let us understand this term and why full-stack development is a trending
topic these days, and why we have chosen this to be included for application
development for this book. Before we understand what exactly the term “full-
stack” means, let us understand a few other terms.

Frontend
The front end is usually the visible part of any application by which the user
interacts with the application. Generally, it is the interface that is responsible
for user interaction. These application interfaces are presented to the user so
that users can interact with the system. Every frontend interface could be
unique in terms of which technology they use. Some of the interfaces, like
desktop apps, have their frontend interfaces written in programming
languages, which are different than what we use in Web and mobile
development.
For websites and mobile applications, their frontend relies on a few software
like Web browsers or mobile OS in the case of native apps. For example, a
frontend for a website or web app renders with the help of Web browsers
such as Google Chrome or Mac Safari.
Normally, whenever any frontend is presented to users, it has various
elements such as forms, buttons, text boxes, and so on, and using these
frontend elements, the user can easily interact with the application.

Frontend technologies and stack

Front-end also refers to the client-side of the application. So, anything we are
developing on the frontend is mostly the client-side development.
Client-side development can be Web-based (browser-based) or can use some
mobile frameworks to present the frontend to the users.
If the frontend application uses the browser to display the application, then
technologies or stack that is used in the development is mostly as follows:

HTML
CSS
JavaScript
CSS Frameworks like Bootstrap
JavaScript Libraries like jQuery

Mostly if the front-end application uses mobile to display applications, then
the technologies or stack that is used mostly depend on the type of
application. These applications can be classified into two types:

Native apps
Hybrid apps

Native mobile apps
Native mobile apps are developed for a specific platform like Android or
iOS. They are native in nature which means they are developed using
technologies or programming languages that are related to these platforms.
For example, if we write a Native app for Android, then the app will use Java
as a programming language, and thus app developers should develop and
code their app in the Native language for the Android platform, which is
Java. The same thing applies to iOS-based Native apps. In the case of iOS
apps, we need to develop these apps in their native language, which is
Objective C.
Native apps have advantages in terms of the user experience, and they are
also fast than hybrid mobile apps. But these are more costly to develop as we
need to develop these apps for all the platforms; for example, an app needs to
be developed separately for Android as well as iOS, which also costs time.
The major programming languages that are used to develop Native apps are
as follows:

Java
Objective C

Hybrid mobile apps
Hybrid mobile apps are developed using the combined features of both Web
and native technologies. Mostly these apps use the elements and components
from both Web and native platforms.
Usually, hybrid apps are faster to develop and are also cross-platform
compatible, which means that if we are developing a hybrid app, then it can
be supported by different mobile platforms like Android and iOS.
Mostly hybrid apps work great on multi-platforms, and many new
frameworks are coming up that help develop them. Most of these use Web-
based technologies plus some features of the devices, which are native. These
hybrid apps work on a Web view. Basically, a hybrid app runs like a Web
app on mobile platforms and uses additional native features of mobile
platforms.
Hybrid apps work on multi-platforms due to the wrapper which they use,
which helps run these hybrid apps on different mobile platforms.
The major programming languages and frameworks which are used to
develop hybrid apps are as follows:

HTML
CSS
JavaScript
jQuery mobile
Ionic framework
Facebook’s React Native framework
PhoneGap framework
Google’s Flutter framework
Python Kivy framework
Python BeeWare framework

Backend

The backend also refers to the server-side of the application. Anything we are
developing on the server end is mostly server-side development. It uses
various server-side applications and components to render the results to the
client. Right from the request that is sent to the server by clients, the server
then processes them using various services and programs, which are running
on the server end, and these are hidden from the client-side.

Back-end technologies and stack
Backend technologies and stack can include Web servers such as Apache
HTTP Server, database servers like MongoDB or MySQL, and server-side
programming languages, applications, frameworks, and server app stacks
such as PHP, Node.js, Express.js, Python, WAMP, LAMP, or MAMP.
Backend application uses various server stacks, technologies, programming
languages, and backend frameworks to render results to the client. These
could vary widely from one backend application to another, and these could
include the following:

Web servers such as Apache HTTP Server and Nginx Server.
Server stacks such as—WAMP, LAMP, and so on.
Server-side programming languages, such as PHP, Java, Node.js,
Python, Ruby on Rails, C#, ASP.Net, and so on.
Server-side frameworks, such as Express.js, Sails.js, Laravel,
CodeIgniter, Symphony, Zend Framework, Django, and so on.
Database servers, such as MongoDB, Redis, Firebase, ElasticSearch,
Neo4j, OrientDB, MSSQL, Mysql, Oracle, and so on.
Application servers such as—Apache Tomcat, JBoss, and so on.

Full-stack
Full-stack is a term used to donate the technology development part of an
application or computer program that uses technologies related to the
frontend as well as the backend. Full-stack combines various technologies,
programming languages, frameworks, software libraries, and other
technology stacks such as Web stack, mobile stack, hybrid stack, and so on to
develop the entire ecosystem of the application.

Full-stack development and technologies
Full-stack development refers to the use of the right mix of both frontend and
backend technologies to develop applications across Web, mobile, and
various other devices such as tabs, smart TV, IoT, and so on.
There are various technologies that are listed in our previous sections, which
cover technologies used in the frontend and backend. During any full-stack
development, we may pick and use these technologies according to our
requirements.
There are various stacks available today that we can use based on our
requirements; these are combinations of various technologies and
programming languages, such as:

MEAN stack: MongoDB, Express.js, Angular JS and Node.js
MERN stack: MongoDB, Express.js, React.js, and Node.js
MEVN stack: MongoDB, Express.js, VUE.js, and Node.js
Meteor.js: a full-stack framework based on Node.js and supports
Angular.js and React.js for frontend development and has inbuilt
support for MongoDB

There are many other stacks available that have the combination of various
technologies, and those can be used along with MongoDB, such as:

WAMP and LAMP Stack where we can use MongoDB
Python with MongoDB

Full-stack developer
By going through and reading the above sections, many of you might be
thinking that why we have mentioned so many technologies as we are
learning MongoDB in this book? This list could be more, but in order to
make you understand the use of MongoDB with the current technologies in
today’s modern applications, we have covered these technologies in this
chapter.
We are not going to learn all of these technologies in this book as it is out of
the scope of this book. The goal is to experience practical use of MongoDB
with the help of the right mix of technologies that are trending and used by

development companies widely across the globe. So you are able to
understand that MongoDB is used widely and almost everywhere.
MongoDB is one of the first choices of developers and organizations today
because of its availability and compatibility with most of the widely used
programming languages, its developer friendliness, and flexibility.
A full-stack developer is a person who can develop an application in frontend
as well as backend technologies by using the right mix of programming
languages and frameworks.
The purpose of the next chapters in which we are going to create a “full-stack
application” with a mix of various technologies is to make you understand
how we can use MongoDB with various technologies and programming
languages so that you can acquire a good knowledge of application
development using MongoDB and you can use the same knowledge in your
future development of various applications.
Our next chapters are related to the step-by-step application development
using MongoDB and various client-side languages such as HTML, CSS, and
JavaScript and server-side programming languages such as PHP, Node.js,
and Python, which we are going to cover following by keeping MongoDB in
the center of the whole ecosystem of various applications:

Development of CRUD based backend Web application using PHP and
MongoDB
Development of RESTful APIs using Node.js and MongoDB
Development of dynamic bookshop frontend using Node.js and
MongoDB
Development of mobile book review app using React Native and
MongoDB

The whole ecosystem of Web and mobile applications, which we are going to
create in our upcoming chapters, can be better understood by the following
figure (figure 7.1):

Figure 7.1: Full-stack development with MongoDB—eco system

Conclusion
In this chapter, we have covered topics related to application development

and also learned about application and software development terms, such as
frontend, backend, and full-stack development, and understood various
technologies, frameworks, and stacks, which are used in these various types
of applications. We have also learned about an overview of various
technologies and tools that we would be using to develop our Web and
mobile apps in our upcoming advanced chapters of this book.
In the upcoming chapter, we will cover the step-by-step method to develop a
CRUD-based backend Web application using PHP and MongoDB, in which
we will create a dynamic backend application.

Questions
1. What is a frontend?
2. Name some frontend programming languages.
3. What is a backend?
4. Can we use JavaScript for backend application development?
5. What do you understand by the term “full-stack”?
6. Name any full-stack framework.

CHAPTER 8
MongoDB Step by Step Practical

Application Development Using PHP

Backend catalog of a publication house
Till now, in this book, we have been covered various programming
languages, such as PHP, Node.js, React Native, and Python, and learned how
to use these with MongoDB. In this chapter, we will cover the practical step-
by-step development of CRUD-based backend application using PHP and
MongoDB along with frontend languages such as HTML, CSS, and
JavaScript. Later in this chapter, we will learn how we can create a dashboard
for our application and various other related functionalities required for the
overall development of the catalog management system for a publication
house. All the sections have been explained in step-by-step practical manner
so that by the end of this chapter you feel more confident in PHP and
MongoDB application development.

Structure
In this chapter, we will discuss the following topics:

Overview of our CRUD based Web application developed using PHP
and MongoDB
Requirements
How our final application looks like
Pre-development steps
Backend catalog dashboard development
Listing of catalog functionality
Adding new book functionality
Deleting functionality

Objectives
After studying this chapter, the reader will be able to understand how we can
develop a CRUD-based Web application using PHP and MongoDB. Before
we start with the coding and application development part, we will have a
sneak preview of what our final application will look like and then
understand and perform some pre-development steps. Later in this chapter,
we will learn how to develop a backend catalog dashboard using PHP and
MongoDB, including various other functionalities, such as the listing of
catalog functionality, adding new book functionality, and deleting
functionality, using PHP and MongoDB.

Overview of our Web application developed using
PHP and MongoDB
In this chapter, we are going to develop a CRUD application using PHP,
MongoDB, HTML, CSS, and JavaScript.
We are going to create an application in which we are able to create the
backend catalog of a publication house such as BPB publications.
This backend application will have the following features:

Ability to add (create) the book with its details
Ability to list (read) all the books in the catalog
Ability to modify (update) the details of existing book entry
Ability to remove (delete) any existing book entry

In order to create this interface, we would be writing some codes using the
following:

PHP—to connect to MongoDB Server using the PHP driver and to do
server-side CRUD operations and interacting with MongoDB.
HTML—to present user interfaces such as forms and buttons so that
users can interact with these pages to add, update, delete, or list the
catalog.
CSS—to add some nice styles to our forms and buttons so that they
look a bit pretty.

JavaScript—We would be using client-side JavaScript and jQuery
(which is a very popular and widely used client-side JavaScript library)
for form validations, modal windows, and performing some actions
when some event occurs (event handling).

Requirements
The reader should have the basic knowledge and understanding of the
following:

PHP
HTML
CSS
HTML Forms
CSS Flexbox
JavaScript
jQuery (recommended, but optional for this chapter)

Final application
As we complete all the sections of this chapter, our final app will look
something like this (as shown in figure 8.1 and figure 8.2):

Application Dashboard Page

Figure 8.1: Application Dashboard page—preview

Add new book page

Figure 8.2: Add new book page—preview

Let us divide our application into the following sections so that we can then
combine all these sections having all the features of this backend catalog
application. Following are the sections that we would be working on:

Backend catalog dashboard
Listing of catalogs
Adding new book functionality
Deleting functionality
Editing and updating functionality (code yourself)

Let us start now with the actual development part. To start with, let us first
get ready with the real environment so that what we will code will reflect on
the system.

Pre-development steps
In our previous chapter, where we have given the introduction about getting
started with MongoDB and PHP, we have used MongoDB Extension and
written our codes accordingly. It is possible to follow the same way in this

chapter, where we can use the PHP MongoDB extension and code. But there
is another better way to do it by using the MongoDB PHP library instead of
the PHP MongoDB extension. MongoDB PHP library provides a high-level
abstraction for the low-level API which PHP extension provides. So, we are
going to install and use the MongoDB PHP library in this chapter before we
start coding. Follow these steps before we start to code.
Step 1—install composer

1. Composer is the package and dependency manager for PHP, just like
NPM for Node.js or PyPI for Python. So, in order to install the
composer, visit: https://getcomposer.org and click the download link
which will open the download page:
https://getcomposer.org/download/, as shown in figure 8.3:

Figure 8.3: Composer Home page

2. You can download the composer installer and run it. Just follow the
instructions given on the website and install the composer. The
installation would be similar to the other software installers that you run
on your Windows machine (in case you are using other operating
systems such as Linux or Mac OS, please follow the related instructions

https://getcomposer.org
https://getcomposer.org/download/

for installing composer on these operating systems). Once you run the
composer installer, the installation wizard will appear, and it will install
composer on your Windows machine, as shown in figure 8.4:

Figure 8.4: Composer installation wizard

3. During the installation, the composer will ask you to provide the
location of the PHP as we are running a WAMP server and using PHP
version 7.3.21 (this version will vary in case of new releases. So, you
should check the correct version from your WAMP server by clicking
the WAMP green icon in your Windows system tray). Just click the
Browse button, navigate to the WAMP PHP directory and select
“php.exe” from there, which has a similar path like:
D:\wamp64\bin\php\php7.3.21\php.exe. You should also check the
checkbox that says “Add this PHP to your path?” and then click the
“Next” button, as shown in figure 8.5:

Figure 8.5: Composer installation—PHP path

4. Once the composer installation is completed by the installer wizard,
read the important information provided by the installation wizard and
then click the “Next” button to proceed to the finish screen, as shown in
figure 8.6:

Figure 8.6: Composer installation

5. Click the Finish button, and we are done with the installation part, as
shown in figure 8.7:

Figure 8.7: Composer installation—completed

Step 2—adding MongoDB Extension to php.ini file
As we have given the command line PHP path to:
D:\wamp64\bin\php\php7.3.21\php.exe while installing the composer, it
will now take the reference of PHP using this path and use php.ini of this
location. Make sure that you have enabled the MongoDB extension in this
file if you have not done it yet (this step was explained in the previous
chapter - Chapter 3 (Starting Up Programming with MongoDB and PHP) of
this book, where we have given the basic introduction of PHP with
MongoDB). To enable this extension for this location, just open the php.ini
file in the location: D:\wamp64\bin\php\php7.3.21\ (make sure this file is
related to your PHP version and located on the right path, which is
“D:\wamp64\bin\php\php7.3.21\php.ini”, in our case. You can also
navigate to this path and open this right “php.ini” using a text editor like
Notepad). We will add the following line where you see other extensions like
MySQL in this file, and after adding this line save this file and close it, as
shown in figure 8.8:

extension=mongodb

Figure 8.8: php.ini file—adding MongoDB extension

Step 3—start WAMP server
You should start the WAMP server by typing “wamp” on the search area of
the taskbar. Opening the WAMP server will launch the WAMP server on
your Windows machine, as shown in figure 8.9:

Figure 8.9: Launching WAMP server

1. Once the WAMP server has been successfully started, you will see the
WAMP server icon (in green) in the Task Bar tray. When you run the
WAMP server, it usually takes a few seconds to start all the services
such as Apache, MySQL, and so on, and the icon changes from red to
orange and finally to green. If the WAMP icon is green, it means that all
the services have been successfully started, and now you can use the
WAMP server, as shown in figure 8.10:

Figure 8.10: WAMP server—all services have been started successfully

Step 4—check MongoDB server windows service
Whenever you install MongoDB on Windows Machine by using MongoDB
installer, by default, MongoDB service is installed, and by using this, we are
able to run MongoDB server without any commands. This service should be
running on our Windows machine so that we are able to use MongoDB
Server and connect using any MongoDB client or using some programming
language like PHP. In order to check that the MongoDB service is running
correctly on our Windows machine, please follow these steps:

1. In the search section of your taskbar, type “services” and open it, as
shown in figure 8.11:

Figure 8.11: Open services manager

2. This will open Windows services manager. You will see all the services
that are installed on your Windows machine. Navigate to MongoDB.
Navigate to MongoDB server (MongoDB). Click this service and start
it, if in case it is not yet started (you may leave this step if it is already
started), as shown in figure 8.12:

Figure 8.12: Starting MongoDB service from Windows service manager

Step 5—running localhost
Once the WAMP server has started on your machine, you can start working
with the local server, which has Apache and PHP installed. As we have the
required environment ready, we can run localhost.

1. To run localhost, just open your favorite browser like Google Chrome
and type: http://localhost/ and then press Enter. This will open up a
new page, and you will be shown the WAMP server default page on
your localhost. Here, you will get all the information about the version
of the WAMP server and server configurations, which have a list of
various software running in the background along with their version
details such as Apache Web Server and PHP, as shown in figure 8.13:

Figure 8.13: WAMP server—localhost

If you are able to see this page, then this means that most of the things are
ready to start the application development part of this chapter. Let us now
start with the development before we start with the actual code. Let us do a
few more steps.
Step 6—start creating a skeleton for your application
Follow these instructions to create the project folders:
It is also recommended that you should create a folder under your WAMP
www folder for this purpose and save your files under that folder. The path
could be somewhat like this: D:\wamp64\www\bpb-catalog-app-backend, as
shown in figure 8.14:

Figure 8.14: Start creating a skeleton for your application

1. Now, under the following path: D:\wamp64\www\bpb-catalog-app-

backend create three more sub-folders named as follows and as shown
in figure 8.15:

images
css
js

Figure 8.15: Start creating a skeleton for your application—subfolders

Step 7—create a MongoDB database for your application
Follow these instructions to create the MongoDB database for this
application:

1. In the search section of your taskbar, type “Compass” and open it. This
will open the MongoDB Compass client in your machine, as shown in
figure 8.16:

Figure 8.16: Create MongoDB database for your application—launch Compass

2. After the MongoDB Compass is launched, we need to first connect to
MongoDB Server. For this, you can either connect using MongoDB
URL String or by filling the individual fields like we are using in our
example. Type “localhost” for hostname and “27017” for the port.
Keep all other settings as it is and then click the Connect button to
connect to the MongoDB server, as shown in figure 8.17:

Figure 8.17: Create MongoDB database for your application—connect to MongoDB server
using Compass

3. As we need to create a new database for our application, click the
“CREATE DATABASE” button to create a new database, as shown in figure
8.18:

Figure 8.18: Create MongoDB database for your application—create database using Compass

4. This will open a new popup window in which you need to enter the

name of the database and also the name of the collection. Enter
“Database Name” as “BPBCatalogDB” and “Collection Name” as
“BPBCatalogCollection” and then click the “CREATE DATABASE” button
to create a new database along with the collection. Once this is done, we
will have a new database as well as a new collection ready to be used in
our application, as shown in figure 8.19:

Figure 8.19: Create MongoDB database for your application—create database using Compass

Developing our application
As we are now ready with the right environment and skeleton of our
application, along with the new database and collection that we are going to
use in this application, let us start with the coding part.
Note that as we are using PHP and writing PHP code, it will be recommended
to use some code editor or Integrated Development Environment (IDE)
like Microsoft Visual Studio Code or any Code Editor of your choice. You
can download and install Microsoft Visual Studio Code from this link:
https://code.visualstudio.com. Microsoft Visual Studio Code is open-source
and free software and is available for almost all operating systems.
Step 1—installing MongoDB PHP Library in our project folder using

https://code.visualstudio.com

composer
As in the previous section of this chapter, we have installed composer; now
let us install the MongoDB PHP library to our project folder so that we can
use this library in our project and code.

1. Open a command prompt and then navigate to your project folder,
which is: “D:\wamp64\www\bpb-catalog-app-backend” in our case. In
the command prompt, type the following command:
composer require mongodb/mongodb

This will install the MongoDB PHP library into your project folder, as
shown in figure 8.20:

Figure 8.20: Installing MongoDB PHP library using composer

2. Once the composer has installed the MongoDB PHP library into your
project folder, you can see that it has installed the MongoDB PHP
library code and has created a “vendor” folder and two other files,
“composer.json” and “composer.lock” (as shown in figure 8.21). You
may browse the “vendor” folder and check the contents.

Figure 8.21: Installing MongoDB PHP library using composer —folder and files created by the
composer during installation

Step 1—creating a MongoDB connection file
In our example, we have used the “$mongoDBClientConnection” variable,
which is assigned as an object for the “MongoClient()” class. We have saved
this file as “mongodb-connection.php” under this path: D:\wamp64\www\bpb-
catalog-app-backend and the following is the code for the same, as shown
in figure 8.22:

Code 1
<?php

require 'vendor/autoload.php';

// Composer Autoloader which will include MongoDB PHP Library

Files in the Project

$mongoDBClientConnection = new

MongoDB\Client("mongodb://localhost:27017");

//Connecting to MongoDB Server

?>

Figure 8.22: Creating a MongoDB connection file – Microsoft Visual Studio Code

Step 2—creating an HTML structure and dividing it into parts

Before we can code the various sections, let us create a basic structure for our
app. We will do it by writing some HTML and then dividing this HTML into
a few parts and calling these parts of HTML with the help of PHP (including
them using PHP). We will divide this code into two separate PHP files and
name them as follows, as shown in figure 8.23:

header.php
footer.php

We are going to save these files in our project folder, which is:
D:\wamp64\www\bpb-catalog-app-backend

Code 1—our basic HTML structure
<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>BPB - Backend Catalog Application in PHP and

MongoDB</title>

<meta name="description" content="Backend Catalog of a

Publication House">

<meta name="author" content="BPB Publications">

<link rel="stylesheet" href="css/styles.css">

</head>

<body>

<script src="js/scripts.js"></script>

</body>

</html>

Figure 8.23: Working with PHP files using Microsoft Visual Studio Code

Code 2—our header.php file
<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>BPB - Backend Catalog Application in PHP and

MongoDB</title>

<meta name="description" content="Backend Catalog of a

Publication House">

<meta name="author" content="BPB Publications">

<link rel="stylesheet" href="css/styles.css">

</head>

<body>

Code 3—our footer.php file
<script src="js/scripts.js"></script>

</body>

</html>

Step 3—adding MongoDB connection and publishing house logo to our
application
In this step, we are going to add Mongo DB connection (using PHP require
method) and logo (using image using HTML tag) in header.php.
For this, open your header.php file and add the new code at the end of this
file (we already have a mongodb-connection.php file which we have already
created in our previous steps, and we also have one logo image in our project
“images” directory named as “bpb_logo.png” which we are going to use
here). Following is the updated code for header.php:

Code 1—our header.php file (updated)
<?php

require("mongodb-connection.php");

?>

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>BPB - Backend Catalog Application in PHP and

MongoDB</title>

<meta name="description" content="Backend Catalog of a

Publication House">

<meta name="author" content="BPB Publications">

<link rel="stylesheet" href="css/styles.css">

</head>

<body>

<div class="top-section">

<div class="logo"><img src="images/bpb-logo.png" alt="BPB Logo"

title="BPB Logo"/></div>

<div class="title-text"><h1>Backend Catalog of a Publication

House</h1></div>

</div>

<hr />

Step 4—creating application main file (index.php)
In this step, we will create a new file named “index.php”, and which will be
our main dashboard file (or template). We will include “header.php” and
“footer.php” in this file, and we will save this file in the same location of
our project folder, which is: D:\wamp64\www\bpb-catalog-app-backend

Code 1—our index.php file
<?php

include("header.php");

?>

<div class="content">

<h2>Application Dashboard</h2>

</div>

<?php

include("footer.php");

?>

Step 5—testing the application for first run
In this step, we are going to simply open the application using the browser.
For this type, your project URL on the browser, which is:
http://localhost/bpb-catalog-app-backend/ in our case. If everything is
working fine till now and you have followed all the previous instructions,
then a new page will open in the browser displaying all the code that we have
done till now without any errors, as shown in figure 8.24:

Figure 8.24: Testing the application for first run

Step 6—adding CSS and JavaScript to our project
In this step, we are going to add some CSS and JavaScript to our project. If
you have noticed in the “header.php” and “footer.php” files of our project,
we already have a reference of one CSS file named “styles.css” in the
“header.php” file and “scripts.js” in the “footer.php” file. Now let us
create these two files under their respective folders. We will create the
following new files under our project directory:

styles.css: Under the “css” directory of our project and the path
would be something similar to this: D:\wamp64\www\bpb-catalog-app-
backend\css

scripts.js: Under the “js” directory of our project and the path would
be something similar to this: D:\wamp64\www\bpb-catalog-app-

backend\js

We would be writing some code for CSS, in which we would be using
Flexbox, which is a modern and flexible (as the name suggests) layout model
for CSS, and it is supported by all the modern browsers these days. We
would be doing some alignments in the top section of the application where
we would be aligning logo and top text in one line using CSS Flexbox, and
the following is the code for the same:

Code 1—our styles.css file
.top-section{

display: flex;

flex-direction: row;

margin-left:20px;

margin-right:20px;

}

.title-text{

padding-left:50px;

}

.content{

margin-left:20px;

margin-right:20px;

}

Let us also add some JavaScript in the scripts.js file. Here we would only
be testing if our JavaScript file is loading properly, and to verify this, we will
print one message on the browser console. Following is the code for the
same:

Code 2—our scripts.js file
console.log("*******BPB Publications*******");

console.log("If you can see this in your Console that means The

JavaScript File has been loaded Properly");

After you have created these two files, go back to your browser and refresh
your page. Also, now open the console of your browser (you can open the
console by right-clicking anywhere in the browser page and clicking Inspect
Element. This will open the Developer Tools, where you can find the
Console option).
If everything is working fine, then, in this case, you will see the screen with
the new changes done by CSS on the top section as well as the console
message printed using JavaScript, as shown in figure 8.25:

Figure 8.25: Application dashboard after adding CSS and JS code

As we are almost done with the initial setup and configuration of our
application, let us now start creating the CRUD functionalities for our
backend application. We have divided this application into the following
parts and then will code each of them separately to develop a final
application:

Backend catalog dashboard
Add new book functionality
Listing of catalog
Edit and update functionality
Delete functionality

Backend catalog dashboard
In this part, we will be creating our catalog dashboard. We have already
created an index file for this purpose in the previous section of this chapter.
Now let us add some more functionalities in this section.
A typical application dashboard should be simple to use and should have all
the functionalities which are user-friendly so that users can easily navigate
and perform various operations. Let us keep this in mind and make it simple
by following some steps.

Step 1 – Adding “Add New Book” button in our dashboard
We have added a few codes in “index.php”, and our CSS File “styles.css”
(which is in the “css” folder of our Project Directory), and the following is
the new code for these two files that we have added to it:

Code 1—our index.php file
<?php

include("header.php");

?>

<div class="content">

<h2>Application Dashboard</h2>

<div class="addnewbook-container"><button type="button"

name="addnewbook" id="addnewbook" class="addnewbook-btn"

onclick="location.href='add-new-book.php'">Add New

Book</button></div>

</div>

<?php

include("footer.php");

?>

Code 2—our styles.css file
/* Top Section */

.top-section{

display: flex;

flex-direction: row;

margin-left:20px;

margin-right:20px;

}

.title-text{

padding-left:50px;

}

/* Content Section */

.content{

margin-left:20px;

margin-right:20px;

}

/* Dashboard */

.addnewbook-container{

text-align:right;

}

.addnewbook-btn{

display: inline-block;

padding: 15px 30px;
background-color:#002b80;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

After the new changes done in these two files, you will see that a new button
will appear in your dashboard, as shown in figure 8.26:

Figure 8.26: Application dashboard after adding “Add New Book” button

As a button has appeared in the dashboard, this button should now be used to
perform some action. If some user clicks on this, there are two different ways
to create this functionality:

1. Clicking this button will take you to a new page where there would be
an HTML form in which the user can add details of a book.

2. Clicking this button will open up a popup dialog where there would be
an HTML form in which the user can add details of a book.

In Case 2, we would stay on the same page without leaving this dashboard
page, and it is a more user-friendly approach and better in terms of User
Experience (UX).
But if we go with our second approach (which might seem to be a bit tricky
for some readers), we need some libraries like jQuery and jQuery UI to
achieve this, and we have to use AJAX too.
You might be familiar with jQuery, which is one of the most popular client-
side JavaScript libraries. jQuery has many features such as Document
Object Model (DOM) manipulations, event handling, CSS effects,
animations, and much more. Many Web-based scripts and programs use

jQuery as their base.
The second approach could be difficult for the readers who have less
experience in jQuery. But if you want to try the second approach, you can do
this with the help of jQuery. For this, you would be using jQuery and jQuery
UI libraries and including them in your code. You would be using the jQuery
UI Dialog Widget. If you want more details about this Widget, you can visit
https://jqueryui.com/dialog/. Once you visit this link, you will get all the
information from the official jQuery UI website, as shown in figure 8.27:

Figure 8.27: jQuery UI widgets

But we are not going with the second approach for this chapter as it could be
more complex for some users. We would go with our first approach, which is
simpler than the second approach. Also, the main target of this chapter is to
make you aware of using MongoDB with PHP. So we are going to keep it
simple for now.

https://jqueryui.com/dialog/

Adding new book functionality
In this part, we will be creating new functionality to add a book. For this
functionality, we need to create a new PHP file that will have an HTML form
presented to the users so that users can fill in the details of the book. After the
user fills in all the details of the book, press the Submit button of the form,
and these details are stored in our MongoDB collection.
Let us now develop this functionality by following some steps:

Step 1—creating add new book functionality file (add-new-book.php)
In this step, we will create a new file named “add-new-book.php”, which
would be our main file (or template) to add new books. We will include
“header.php” and “footer.php” in this file, and we will save this file in the
same location of our project folder, which is: D:\wamp64\www\bpb-catalog-
app-backend and following is the code for the same:

Code 1—our add-new-book.php file
<?php

include("header.php");

?>

<div class="content">

<h2>Add New Book</h2>

</div>

<?php

include("footer.php");

?>

Now add HTML form in this file so that the user can enter the book details,
and the following is the code for the same:

Code 2—our add-new-book.php file (updated)
<?php

include("header.php");

?>

<div class="content">

<h2>Add New Book</h2>

<div class="addnewbook-form-container">

<form action="add-new-book.php" onsubmit="return

addNewBookFormValidation()" method="post">

<label for="book-title">Book Title:</label>

<input type="text" id="book-title" name="book-title"

placeholder="Please Enter Book Title">

<label for="book-author-name">Book Author:</label>

<input type="text" id="book-author-name" name="book-author-

name" placeholder="Please Enter Book Author Name">

<label for="book-isbn-number">Book ISBN Number:</label>

<input type="text" id="book-isbn-number" name="book-isbn-

number" placeholder="Please Enter Book ISBN Number">

<label for="book-publication-year">Book Publication Year:

</label>

<input type="text" id="book-publication-year" name="book-

publication-year" placeholder="Please Enter Book Publication

Year">

<input type="submit" value="Submit">

</form>

</div>

</div>

<?php

include("footer.php");

?>

In this step, we are going to simply open the new application file that we
have created just now using the browser. For this type, your project URL on
the browser along with the file name, which is: http://localhost/bpb-catalog-
app-backend/add-new-book.php in our case. If everything is working fine
till now and you have followed all the previous instructions, then a new page
will open in the browser displaying all the code that we have done till now
without any errors, as shown in figure 8.28:

http://localhost/bpb-catalog-app-backend/add-new-book.php

Figure 8.28: Application Add New Book page

Step 2—adding CSS and JavaScript to our form
In this step, we are going to add some CSS and JavaScript to our form so that
it will look better. We can also add some validations so that if the user
submits the form with blank values, then it will show some alerts, and the
following is the code for the same:

Code 1—our styles.css file (appended code)
/* Add New Book */

.addnewbook-form-container{

max-width:700px;

}

.addnewbook-form-container input[type=text] {

width: 100%;

display: inline-block;

padding: 10px 15px;
margin: 10px 0;
border: 1px solid #ff99ff;
border-radius: none;

box-sizing: border-box;

}

.addnewbook-form-container input[type=text]:hover {

border: 1px solid #ff99ff;
border-radius: none;

}

.addnewbook-form-container input[type=submit] {

width: 100%;

padding: 10px 15px;
margin: 10px 0;
background-color: #4d004d;

color: white;

border: none;

border-radius: none;

cursor: pointer;

}

.addnewbook-form-container input[type=submit]:hover {

background-color: #73264d;

cursor: pointer;

}

After applying this CSS, the add new book page will look better, as shown in
figure 8.29:

Figure 8.29: Application Add New Book Page—after applying CSS

Code 2—our scripts.js file (updated code)
console.log("*******BPB Publications*******");

console.log("If you can see this in your Console that means The

JavaScript File has been loaded Properly");

function addNewBookFormValidation() {
var booktitle = document.getElementById("book-title").value;
var bookauthorname = document.getElementById("book-author-
name").value;

var bookisbnnumber = document.getElementById("book-isbn-
number").value;

var bookpublicationyear = document.getElementById("book-
publication-year").value;

if (booktitle == "" || bookauthorname == "" || bookisbnnumber

== "" || bookpublicationyear == "") {

alert("Please fill out all the Fields Correctly, Some Fields

are left Blank");

return false;

}

}

After applying this JavaScript validation in the add new book page form, an
alert box will start working as expected if the user tries to fill the form
without entering the values in the form, as shown in figure 8.30:

Figure 8.30: Application Add New Book Page—after applying JS

Let us now add two more fields in this form. The first one is for the “Book
Price” and the second one is for the “Book Cover Image” and also update
our styles.css and scripts.css file accordingly.

Step 3—Adding two more fields “Book Price” and “Book Cover Image”
As we are almost done with the form part, let us add two more fields in this
form related to Book Price and Book Cover Image, and then we are ready for
the next steps:

Code 1—our add-new-book.php file (updated code)
<form action="add-new-book.

php" onsubmit="return addNewBookFormValidation()" method="post"
enctype="multipart/form-data">

<div class="form-content-container">

<div class="form-content-left">

<h3>Basic Info</h3>

<label for="book-title">Book Title:</label>

<input type="text" id="book-title" name="book-title"

placeholder="Please Enter Book Title">

<label for="book-author-name">Book Author:</label>

<input type="text" id="book-author-name" name="book-author-

name" placeholder="Please Enter Book Author Name">

<label for="book-isbn-number">Book ISBN Number:</label>

<input type="text" id="book-isbn-number" name="book-isbn-

number" placeholder="Please Enter Book ISBN Number">

<label for="book-publication-year">Book Publication Year:

</label>

<input type="text" id="book-publication-year" name="book-

publication-year" placeholder="Please Enter Book Publication

Year">

<input type="submit" value="Submit" name="submit-form-

button">

</div>

<div class="form-content-right">

<h3>Additional Info</h3>

<label for="book-price">Book Price:</label>

<input type="text" id="book-price" name="book-price"

placeholder="Please Enter Book Price">

<label for="book-cover-image">Book Cover Image (Optional):

</label>

<input type="file" id="book-cover-image" name="book-cover-

image">

</div>

</div>

</form>

Code 2—our styles.css file (appended code)
.addnewbook-form-container input[type=submit]:hover {

background-color: #73264d;

cursor: pointer;

}

.addnewbook-form-container .form-content-container{

display: flex;

flex-direction: row;

}

.addnewbook-form-container .form-content-container .form-

content-left{

width:70%;

margin-right:10px;

}

.addnewbook-form-container .form-content-container .form-

content-right{

width:30%;

margin-left:10px;

}

Code 3—our scripts.js file (updated code)
console.log("*******BPB Publications*******");

console.log("If you can see this in your Console that means The

JavaScript File has been loaded Properly");

function addNewBookFormValidation() {

var booktitle = document.getElementById("book-title").value;

var bookauthorname = document.getElementById("book-author-

name").value;

var bookisbnnumber = document.getElementById("book-isbn-

number").value;

var bookpublicationyear = document.getElementById("book-

publication-year").value;

var bookprice = document.getElementById("book-price").value;

if (booktitle == "" || bookauthorname == "" || bookisbnnumber

== "" || bookpublicationyear == "" || bookprice == "") {

alert("Please fill out all the Fields Correctly, Some Fields

are left Blank");

return false;

}

}

After applying updates in all three files, there would be a change in the look
and feel of the form, as shown in figure 8.31:

Figure 8.31: Application Add New Book page—adding new fields

As we are done with the form part, let us now start with the form submitting
part and storing the values entered from the form in our MongoDB
Collection:

Step 4—submitting the form values to MongoDB
In this step, we are going to write some HTML, CSS, and PHP code, which
will take all the values submitted from the form and use MongoDB driver
extension; it will then interact with the MongoDB server and submit these
forms values to the MongoDB collection. We have also added one extra
HTML text area field (optional) in our form and added the code in PHP so
that if the user enters a book description, then it would be added to our
MongoDB database. Also, we have added the code to upload the book cover
image file to the “images” folder if the user selects any book cover image
during the form submission.

Code 1—our add-new-book.php file (updated PHP code)
<?php

include("header.php");

// Form Submit and MongoDB Collection Related Code

if(isset($_POST['submit-form-button'])){ // If the Form is
Submitted

// Collecting all the Data Submiited by the Form Post Method

and Assigning it to PHP Variables

$booktitle = $_POST['book-title'];

$bookauthorname = $_POST['book-author-name'];

$bookisbnnumber = $_POST['book-isbn-number'];

$bookpublicationyear = $_POST['book-publication-year'];

$bookprice = $_POST['book-price'];

// If the User doen't Enter any Book Description then add this

text "Book Description is Not Available" to Document

$bookdescription = ($_POST['book-description'] == '') ? 'Book
Description is Not Available' : $_POST['book-description'];
// $mongoDBClientConnection is defined in our mongodb-

connection.php File which we have included in our header.php

// $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection

= "Connection String"->"Database Name"->"Collection Name"

$mongoDBCollection = $mongoDBClientConnection->BPBCatalogDB-

>BPBCatalogCollection;

//Create a Array with the field-value Pairs

$documentArray = ['title' => $booktitle, 'authorname' =>

$bookauthorname, 'isbnnumber' => $bookisbnnumber,

'publicationyear' => $bookpublicationyear, 'price' =>

$bookprice, 'description' => $bookdescription];

// Using insertOne Method to insert the Document in a

Collection based on key-value Pairs

$result = $mongoDBCollection->insertOne($documentArray);

// If the Book Cover Image File is Selected and Uploaded

if(isset($_FILES['book-cover-image'])){

// File Details

$upload_dir = 'images/';

$file_name = $_FILES['book-cover-image']['name'];

$file_ext_arr = explode('.', $file_name);

$file_ext = strtolower(end($file_ext_arr));

$file_tmp_name =$_FILES['book-cover-image']['tmp_name'];

$new_file_name = $result->getInsertedId().'.'.$file_ext;

$upload_file_with_path = $upload_dir.$new_file_name;

$book_cover_upload_status = false;

if(move_uploaded_file($file_tmp_name, $upload_file_with_path))

{

$book_cover_upload_status = true;

// Now Update the Current Document with the name of the Book

Cover Image File

// $mongoDBCollection->updateOne - First Parameter is the

Query String or Filter Criteria to Match the Document and

Second Parameter are field-value pairs which has to be

updated

$updateResult = $mongoDBCollection->updateOne(

['_id' => $result->getInsertedId()],

['$set' => ['coverimage' => $new_file_name]]

);

} else {

$book_cover_upload_status = false;

}

}

?>

<div class="form-submitted">Form is Submitted!
Document is

Successfully Inserted with ID = <?php echo $result-

>getInsertedId(); ?>

<?php

if($book_cover_upload_status == true) {

echo "Book Cover Image File has been successfully Uploaded

";

} else {

echo "Error While Uploading the Book Cover File
»;

}

?>

</div>

<div class="addnewbookagain-container"><button type="button"

name="addnewbookagain" id="addnewbookagain"

class="addnewbookagain-btn" onclick="location.href='add-new-

book.php'">Add New Book Again</button></div>

<?php

}

?>

Code 2—our add-new-book.php file (updated HTML code)
<div class="content">

<h2>Add New Book</h2>

<div class="gotodashboard-container"><button type="button"

name="gotodashboard" id="gotodashboard" class="gotodashboard-

btn" onclick="location.href='index.php'">Go To

Dashboard</button></div>

<?php

if(!isset($_POST['submit-form-button'])){ // If the Form is Not

Submitted, Then Show the Form, else if the form is Submitted

then Don't Show the Form

?>

<div class="addnewbook-form-container">

<form action="add-new-book.php" onsubmit="return

addNewBookFormValidation()" method="post"

enctype="multipart/form-data">

<div class="form-content-container">

<div class="form-content-left">

<h3>Basic Info</h3>

<label for="book-title">Book Title:</label>

<input type="text" id="book-title" name="book-title"

placeholder="Please Enter Book Title">

<label for="book-author-name">Book Author:</label>

<input type="text" id="book-author-name" name="book-

author-name" placeholder="Please Enter Book Author Name">

<label for="book-isbn-number">Book ISBN Number:</label>

<input type="text" id="book-isbn-number" name="book-isbn-

number" placeholder="Please Enter Book ISBN Number">

<label for="book-publication-year">Book Publication Year:

</label>

<input type="text" id="book-publication-year" name="book-

publication-year" placeholder="Please Enter Book

Publication Year">

<input type="submit" value="Submit" name="submit-form-

button">

</div>

<div class="form-content-right">

<h3>Additional Info</h3>

<label for="book-price">Book Price:</label>

<input type="text" id="book-price" name="book-price"

placeholder="Please Enter Book Price">

<label for="book-price">Book Description (Optional):

</label>

<textarea id="book-description" name="book-description"

placeholder="Please Enter Book Description"></textarea>

<label for="book-cover-image">Book Cover Image

(Optional):</label>

<input type="file" id="book-cover-image" name="book-

cover-image">

</div>

</div>

</form>

</div>

<?php

}

?>

</div>

<?php

include("footer.php");

?>

Code 2—our styles.css file (appended CSS code)
/* Add New Book Additional Styles */

.gotodashboard-container{

text-align:right;

}

.gotodashboard-btn{

display: inline-block;

padding: 15px 30px;

background-color:#002b80;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

.form-submitted{

display: inline-block;

padding: 15px 30px;

background-color:#00802b;

border: #004d1a;

color: white;

}

.addnewbookagain-container{

margin-top:20px;

}

.addnewbookagain-btn{

display: inline-block;

padding: 15px 30px;

background-color:#4d004d;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

.addnewbookagain-btn:hover{

background-color: #73264d;

cursor: pointer;

}

.addnewbook-form-container textarea {

width: 100%;

height:150px;

display: inline-block;

padding: 10px 15px;

margin: 10px 0;

border: 1px solid #ff99ff;

border-radius: none;

box-sizing: border-box;

}

Once we have added this code, we can now refresh the “Add New Book” page
(add-new-book.php) using our browser and add some new records, as shown
in figure 8.32:

Figure 8.32: Application Add New Book page—submitting a form

After you add this record and the record will be entered successfully in the
MongoDB database, it will show you the success message on your screen.
You can also add new books by clicking the button “Add New Books Again”,
as shown in figure 8.33:

Figure 8.33: Application Add New Book page—form is successfully submitted

Now, after adding new books by submitting the book details by form, if we
check the MongoDB collection with MongoDB Compass, we can easily see
the new MongoDB documents in our MongoDB collection, as shown in
figure 8.34:

Figure 8.34: Application Add New Book page—verifying form submitted values from MongoDB
Compass

Also, we can check that all the book cover images have been successfully
uploaded to our Project “images” folder, as shown in figure 8.35:

Figure 8.35: Application Add New Book page—book cover image files have been successfully
uploaded

Listing of catalog functionality
In this part, we will be creating new functionality to list all the books that
have been entered by the “Add New Book” functionality in our previous
section. For this functionality, we need to use our existing “index.php” file
in which we will have a simple HTML layout presented to the users so that
users can view the details of the book, and there would be a delete button to
delete any book along with the book details which are stored to our
MongoDB Collection.
Let us now develop this functionality by following some steps.
Step 1—creating list books functionality in our dashboard with our
index file (index.php)
The following are the code updates for index.php that is located in the
“root”, as well as styles.css that is located in the “css” folder of our
project.

Code 1—finding all the documents from MongoDB collection
(updated index.php file)
<?php

include("header.php");

// List Book Functionality

// $mongoDBClientConnection is defined in our mongodb-

connection.php File which we have included in our header.php

// $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection

= "Connection String"->"Database Name"->"Collection Name"

$mongoDBCollection = $mongoDBClientConnection->BPBCatalogDB-

>BPBCatalogCollection;

// Using $mongoDBCollection->find() Method to find all the

Documents in the Collection

$documents = $mongoDBCollection->find();

?>

Code 2—displaying the list of all the documents from
MongoDB collection by using PHP foreach() construct
(updated index.php file—HTML part)
<div class="content">

<h2>Application Dashboard</h2>

<div class="addnewbook-container"><button type="button"

name="addnewbook" id="addnewbook" class="addnewbook-btn"

onclick="location.href='add-new-book.php'">Add New

Book</button></div>

<div class="row-container">

<div class="row">

<div class="col-container headings">

<div class="col">
Book ID

</div>

<div class="col">
Book Title

</div>

<div class="col">
Delete

</div>

</div>

</div>

<?php

// Fetch Documents from the Collection

// Iteration using PHP foreach() Construct

foreach ($documents as $document) {

?>

<div class="row">

<div class="col-container">

<div class="col">

<?php echo $document['_id']; ?>

</div>

<div class="col">

<?php echo $document['title']; ?>

</div>

<div class="col">

<a class="delete-book-link" onclick="return confirm('Please

confirm deletion');" href="delete-book.php?id=<?php echo

$document['_id']; ?>">Delete

</div>

</div>

</div>

<?php

}

?>

</div>

</div>

<?php

include("footer.php");

?>

Code 3—our updated styles.css file (appended code)
/* Dashboard – List Books */

.row-container{

max-width:1000px;

margin-bottom:40px;

}

.col-container{

display: flex;

}

.col-container.headings{

font-size:20px;

font-weight:bold;

}

.row{

margin-top:5px;

margin-bottom:5px;

border-bottom: 1px solid #ff99ff;

}

.col{

width:300px;

}

.delete-book-link{

display: inline-block;

padding: 15px 30px;

background-color:#4d004d;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

Once we have added this code, we can now refresh the dashboard page
(index.php) using our browser. We can see that our project dashboard is now
listing all the books, which we have entered into the MongoDB database
using the “Add New Book” functionality in our previous section, as shown in
figure 8.36:

Figure 8.36: List books functionality in our dashboard

Deleting functionality
In this part, we will be creating new functionality to delete a book, which is
shown by the “Listing of Catalog” functionality in our previous section.
For this functionality, we need to create a new “delete-book.php” file in
which we will only write PHP code that will delete the document from
MongoDB collection based on the id which is passed from our “index.php”
delete link. Have a look at the following code again, which we have already
used in our dashboard catalog listing in “index.php”

Code 1—delete code (index.php—no change)
<a class="delete-book-link" onclick="return confirm('Please
confirm deletion');" href="delete-book.php?id=<?php echo

$document['_id']; ?>">Delete

Let us now develop the delete functionality by following some steps:

Step 1—creating delete book functionality file (delete-book.php)
In this step, we will create a new file named “delete-book.php”, which
would be our main file (or template) to delete existing books. We will include
“header.php” and “footer.php” in this file, and we will save this file in the
same location of our project folder, which is: D:\wamp64\www\bpb-catalog-
app-backend and following is the code for the same:

Code 1—delete book functionality (delete-book.php)
<?php

include("header.php");

// $mongoDBClientConnection is defined in our mongodb-

connection.php File which we have included in our header.php

// $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection

= "Connection String"->"Database Name"->"Collection Name"

$mongoDBCollection = $mongoDBClientConnection->BPBCatalogDB-

>BPBCatalogCollection;

// Get Document ID from PHP $_GET Method

$documentid = new MongoDB\BSON\ObjectID($_GET['id']);

$deleteResult = $mongoDBCollection->deleteOne(['_id' =>

$documentid]);

//If Delete is Sucessful then Forwarded to the Dashboard

(index.php)

if($deleteResult->getDeletedCount()==1){

header("Location: index.php?delete=true");

exit();

}

include("footer.php");

?>

Code 2—delete book functionality (index.php—small update
for displaying an alert after the book is deleted successfully)
<div class="content">

<h2>Application Dashboard</h2>

<?php

// If the Book is Sucessfully Deleted then show the Alert Box

if(isset($_GET['delete'])){

?>

<script>

alert("The Book Record is Deleted from the Database");

</script>

<?php

}

?>

<div class="addnewbook-container"><button type="button"

name="addnewbook" id="addnewbook" class="addnewbook-btn"

onclick="location.href='add-new-book.php'">Add New

Book</button></div>

Once we have added this code, we can now refresh the dashboard page
(index.php) using our browser, and then we can click on the “Delete” button
to check the delete book functionality, as shown in figure 8.37:

Figure 8.37: Delete book functionality in our dashboard

We have seen how we can create a backend with CRUD features using PHP

and MongoDB along with frontend programming languages such as HTML,
CSS, and JavaScript. You should feel free to make changes in the code and
create various other functionalities.

Edit and update functionality
As this is a practical chapter and we have learned so many things in this
chapter, try to code this edit and update functionality with the skills that you
have learned from this chapter. You can take references from the MongoDB
PHP library. The official URLs are listed as follows:

MongoDB official home page for PHP library:
https://docs.mongodb.com/php-library/current/
PHP official home page for MongoDB PHP library:
https://www.php.net/manual/en/mongodb.tutorial.library.php

Conclusion
In this chapter, we have covered the practical step-by-step development of
CRUD-based backend applications using PHP and MongoDB along with
frontend languages such as HTML, CSS, and JavaScript. Finally, we have
learned how we can create a dashboard for our application and various other
related functionalities required for the overall development of the catalog
management system for a publication house. In the upcoming chapter, we
will be covering new applications, which are related to APIs using Node.js
and Express.js; we will learn how we can use MongoDB data with API calls;
these APIs will further be used in our upcoming advanced chapter of mobile
application development.

Questions
1. What is Composer?
2. What is the PHP MongoDB library?
3. Explain the process of using the MongoDB PHP library with your PHP-

based project.

https://docs.mongodb.com/php-library/current/
https://www.php.net/manual/en/mongodb.tutorial.library.php

CHAPTER 9
MongoDB Step by Step Practical
Application Development Using

JavaScript (Node.js with Express.js)
REST API development—creating RESTful Web services of a
publication house
Many of you could be familiar with the term “API” some of you could have
already been using them in your applications. What exactly is an API? and
how we can develop and use these in our applications? This chapter covers
the same, and in this chapter, we will learn how to practically develop REST-
based APIs using Node.js, Express.js, and MongoDB. All the sections have
been explained in a step-by-step practical manner so that by the end of this
chapter, you will feel more confident in Node.js, Express.js, and MongoDB
Web services and API development.

Structure
In this chapter, we will discuss the following topics:

An overview of our RESTful web services developed using Node.js and
MongoDB
Requirements
Brief introduction to API
Brief introduction to RESTful APIs
Pre-development steps
Developing our APIs
Using REST API to fetch data from MongoDB collection based on
MongoDB document ID (REST GET method)
Using REST API to insert data into MongoDB collection (REST POST

method)
Using REST API to update data into MongoDB document based on
MongoDB document ID (REST PUT method) and giving thumbs up for
a book
Using REST API to update data into MongoDB document based on
MongoDB document ID (REST PUT method) and giving thumbs down
for a book

Objectives
After studying this chapter, the reader will be able to understand how we can
develop RESTful Web services developed using Node.js and MongoDB and
what are the basic requirements before one can start learning and coding
them. In this chapter, the reader will learn about API and RESTful APIs and
will also understand what are the pre-development steps required to set up the
right environment for API development. This chapter covers how one can
develop APIs and how one can use the REST method to fetch data from
MongoDB collection based on MongoDB document ID (REST GET
method), REST method to add data into MongoDB collection (REST POST
method), and also understand how one can use REST method to update data
into MongoDB document based on MongoDB document ID (REST PUT
method).

RESTful Web services using Node.js and MongoDB
—an overview
In this chapter, we are going to develop REST APIs using Node.js and
MongoDB. We will be creating a RESTful web service in which we will be
able to create a few APIs using some HTTP methods.
This API (RESTful Web services) will have the following features:

Ability to list (read) all the books in the catalog
Ability to add (insert) new book entry
Ability to modify (update) the details of existing book entry
Ability to delete the existing book-entry (code yourself)

In order to create this interface, we would be writing some codes using the
following:

Node.js: To connect to MongoDB server using the Node.js and do
server-side operations and interact with MongoDB.
Express.js: Express.js is the application framework for Node.js and is
used widely for developing web applications and API.

Requirements
The reader should have the basic knowledge and understanding of the
following:

Node.js
Express.js (recommended, installation, and a brief introduction is given
in this chapter)
JavaScript
API (recommended and a brief introduction is given in this chapter)
RESTful APIs (recommended and a brief introduction is given in this
chapter)

Introduction to API
API is an acronym for Application Programming Interface, and it is used
to communicate between different devices or applications running on these
devices. It allows different applications to talk and communicate with each
other. Every API call has a defined method and data format that we need to
follow in order to implement these API calls.
There are two main API types:

Simple Object Access Protocol (SOAP): This was originally
developed by Microsoft, and it has been used for many years. It uses
XML.
Representational State Transfer (REST): This is more flexible, easy
to implement, and popular than SOAP these days among developers
worldwide.

In this chapter, we will be using REST-based APIs.

RESTful APIs
RESTful APIs are based on the REST protocols, and these API uses the
REST methods to communicate between the devices and applications.
There are mainly four major parts of REST-based APIs as follows:

Root endpoint and paths: These are basically the route to the API
access. It is just like a URL, for example,
https://api.bpbonline.com/getALLBPBBooks. Here,
https://api.bpbonline.com is the API root endpoint, and
getALLBPBBooks is the path to access the particular API
Method: These are some methods like GET (to get the resource from
the server), POST (to create a new resource on the server), PUT (to
update an existing resource on the server), DELETE (to delete an
existing resource on the server), and so on.
Headers: They are used to provide information to both client and server
and can be used in various scenarios.
Body: It contains the data that needs to be sent to the server. It is useful
whenever we want to use API to send some data which needs to be
added. For example, in the case of adding some book with the API call,
we need to send the details of the book like “Title” or “Year of
Publication”.

What our final application will look like?
As we will complete all the sections of this chapter, our final App will look
as shown in figure 9.1 and figure 9.2.

Application running from the command prompt
Following is the screenshot of the API app, which is serving the requests on
localhost and port 3,000, waiting for the incoming requests from the other
clients such as Postman.

https://api.bpbonline.com/getALLBPBBooks
https://api.bpbonline.com

Figure 9.1: Application command line interface—preview

API calls using Postman application
Following is the screenshot of the Postman software client, which shows how
the API calls are made.

Figure 9.2: Calling APIs using Postman application—preview

Let us divide our application into the following sections so that we can then
combine all these sections having all the features of this backend catalog
application. The following are the sections that we would be working on:

Adding REST API endpoint to fetch data from MongoDB collection
based on MongoDB document ID (REST GET method)

Adding REST API endpoint to add data into MongoDB Collection
(REST POST method)
Adding REST API endpoint to update data into MongoDB Document
based on MongoDB Document ID (REST PUT method)—giving
Thumbs Up for a book
Adding REST API Endpoint to update data into MongoDB Document
based on MongoDB Document ID (REST PUT method)—giving
Thumbs Down for a book

Let us start now with the real development part. To start with, let us first get
ready with the real environment so that what we will code will reflect on the
system.

Pre-development steps
In our previous chapter [Chapter 4, Starting up Programming with MongoDB
and JavaScript (Node.js)], where we have given the introduction about
getting started with MongoDB and JavaScript (Node.js), we have already
covered how to install the Node.js and NPM (Node Package Manager).
Follow these steps before we start to code:

Step 1—check Node.js and NPM on your system
You should first verify that Node.js and Node Package Manager (NPM). In
order to verify these two softwares on your Windows Machine, open the
command prompt by typing “cmd” from the search bar located in the taskbar,
as shown in figure 9.3:

Figure 9.3: Open command prompt

1. Type the following two commands one by one to verify Node.js and
NPM installation in the command prompt, as shown in figure 9.4:
node --version

npm --version

Figure 9.4: Command prompt—verifying Node.js and NPM version on Windows

As you can see, both Node.js and NPM have been correctly installed on your
Windows Machine.

Step 2—creating a project folder in your system
Choose any location on your machine and create a new folder or directory
named as “bpb-catalog-app-api”. The location could be similar to D:\bpb-
catalog-app-api, as shown in figure 9.5:

Figure 9.5: Create a new directory named as “bpb-catalog-app-api” on your Windows Machine

Step 3—NPM init
NPM init is a command-based interface used to set up new or existing NPM
based packages; when we type “npm init” command in our Project
Directory, which is: D:\bpb-catalog-app-api and it will ask us a few details
such as “Package Name”, “Package Version”, “Author”, and so on. After we
enter all these details, it will create a “package.json” file automatically, as
shown in figure 9.6:

Figure 9.6: Command prompt—npm init

After “npm init” is executed, it will create a new file, “package.json” in
case we are running it the first time under the folder where it was run. We can
verify this by opening this file in some IDE like Visual Studio code, as shown
in figure 9.7:

Figure 9.7: Visual Studio code—npm init

Step 4—installing the Express.js using NPM
Before we learn how to install and use Express.js, let us understand what
Express.js is.
About Express.js:
Express.js is a major backend framework for Node.js, and it is very widely
used. Express.js is a modular-based framework, and it is very helpful in Web
application development, as well as API development using Node.js.
Express.js provides an easy way to create routes, and based on these routes,
the calls are diverted to the various sections of the application that are related
to the particular calls. Thus, it is very easy to write the code related to the
routes, and it is very developer-friendly.
As we have now learned about Express.js, let us now install it using NPM. To
install Express.js with NPM, follow these steps:

1. Open up your command prompt and navigate to this directory “bpb-
catalog-app-api”, as shown in figure 9.8:

Figure 9.8: Navigating to “bpb-catalog-app-api” directory

2. Open your favorite browser, such as Google Chrome, and in the address
bar, type: https://expressjs.com and press Enter. This will open the
“Express.js” home page. Here you will see all the details about
Express.js, including the command to install it in your project, as shown
in figure 9.9:

Figure 9.9: Express.js Home page

3. Now run any one of the following commands mentioned. This will
install Express.js for Node.js to our directory, where we are now going
to create our Node.js application along with MongoDB (as shown in
figure 9.10).
npm install express

OR
npm i express

https://expressjs.com

Figure 9.10: Installing Express.js

Step 4 –running Express.js using NPM

1. Create a new file index.js in the project directory, which is: D:\bpb-
catalog-app-api in our case. Following is the new code for this file
that we have added in it:

Code 1—our index.js file
const express = require(‘express’); // Express Module

const app = express();

const port = 3000; // Port, You can Change this Port to

anything you would like For example ٨٠٠٠, For this Book we
will Keep this as ٣٠٠٠ for Node.js > Express.js Based API
Examples

app.get(‘/’, (req, res) => {

res.send(‘Welcome to BPB Publications RESTful API’) //

This is the Default API Message

});

app.listen(port, () => {

console.log(“API App Listening to: http://localhost:” +

port); // Connection Listing to Port 3000

});

2. Open package.json file in your project folder and add start script under
scripts section. Following is the code for the same (as shown in figure
9.11).

Code 1—update package.json file
“scripts”: {

“start”: “node index.js”,

“test”: “echo \”Error: no test specified\” && exit ١”
},

Figure 9.11: Updating “package.json” file and adding the start script

3. Open the command prompt and then navigate to your project folder and
run the following command (as shown in figure 9.12).
npm start

The preceding command will check the “package.json” file for the
start option under scripts, and as we have given the value as “node
index.js”, here, Node.js will execute the index.js. So, this is the better
way of running Node.js applications. As and when projects grow in
size, we can have various options available under “scripts”, and we can
use npm to execute them. This is also really helpful when we have
various versions of the applications, such as the development version or
production version.

Figure 9.12: Running “npm start” in command prompt

4. Now, open your favorite browser, such as Google Chrome, and type:
http://localhost:3000/ and press Enter. This will open our API
route or endpoint “/”, which is defined in index.js, and show us the
message “Welcome to BPB Publications RESTful API”, as shown in
figure 9.13:

Figure 9.13: Opening default API route (endpoint) in browser

Step 5—installing the MongoDB Driver for Node.js using NPM

1. If you are still on Step 4, then you need to stop the Node Script, which
is already running. For this, press “Ctrl + C” to stop the Node Script,
which is already running (the system may prompt you that if you want
to “Terminate this Job”. Press “Y” to terminate it), and then you can

continue to Point 3.
2. If you have already done that and is returning back, then open up your

command prompt and navigate to this directory “bpb-catalog-app-
api”

3. Now, run any one of the following commands that have been mentioned
in the MongoDB driver home page of the NPM website at:
https://www.npmjs.com/package/mongodb. This will install the
MongoDB driver for Node.js to our directory, where we are now going
to create our Node.js application along with MongoDB (as shown in
figure 9.14).
npm i mongodb

OR
npm install mongodb

Figure 9.14: Installing MongoDB driver for Node.js

If you open your “bpb-catalog-app-api” folder (or directory), you will find
that a folder named as “node_modules” has been created automatically by the
preceding steps while we have installed NPM modules, and along with this
process, a file named as “package-lock.json” has also been created.

https://www.npmjs.com/package/mongodb

Basically, whenever you install any node module in Node.js, it will create a
folder named as “node_modules”, where it will download and copy all the
node modules, which are required by a specific module (here, we have
installed Express.js and MongoDB Driver for Node.js) or we can say those
Node.js modules on which the NPM modules like Express.js or MongoDB
driver is dependent plus its own files, as shown in figure 9.15:

Figure 9.15: “node_modules” Folder and “package-lock.json” File is automatically created by the
NPM installation process

You may also open the “node_modules” folder and could see the other
modules, which are downloaded by the installation process, as shown in
figure 9.16:

Figure 9.16: Express.js and MongoDB driver has been installed along with the other dependencies

The “package-lock.json” is a file where the module and its dependencies
are displayed in JSON tree format. For more information about “package-

lock.json”, you can visit this URL: https://docs.npmjs.com/configuring-
npm/package-lock-json.html
As we are done with the setup of our environment with Expess.js and
MongoDB Driver, now we can start with the programming part.

Developing our APIs
As we are now ready with the right environment and the skeleton of our
application, along with the new database and collection that we are going to
use in this API development, let us start with the coding part.
Note that as we are using Node.js and writing Node.js code. It is
recommended to use some Code Editor or Integrated Development
Environment (IDE) like Microsoft Visual Studio Code or any code editor of
your choice. You can download and install Microsoft Visual Studio Code
from this link: https://code.visualstudio.com. Microsoft Visual Studio Code
is open-source and free software and is available for almost all operating
systems.

Step 1—connecting to MongoDB (updating index.js)
In our example, we have used “MongoDBClient” constant, which is assigned
as an object for “MongoClient” class. Then, we have called the connect
method using this object which will help to connect to MongoDB. We have
done changes in our “index.js” under this path: D:\bpb-catalog-app-api,
and the following is the code for the same (as shown in figure 9.17).

Code 1
const express = require('express'); // Express Module

const app = express();

const port = 3000; // Port, You can Change this Port to anything

you would like For example ٨٠٠٠, For this Book we will Keep this
as ٣٠٠٠ for Node.js > Express.js Based API Examples
const MongoDBClient = require('mongodb').MongoClient; // MongoDB
Driver

const MongoDBObjectId = require("mongodb").ObjectId; // Create a
new ObjectID instance, used for Converting String to MongoDB

ObjectID Type and opposite

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

app.get('/', (req, res) => {

https://docs.npmjs.com/configuring-npm/package-lock-json.html
https://code.visualstudio.com

res.send('Welcome to BPB Publications RESTful API') // This is

the Default API Message

});

app.listen(port, () => { // Here Our Application will try to

create a Host using Express.js and Listen to the requests on

Port Specfied, In our Case it is "3000"

// MongoDB Connection URL String

const url = 'mongodb://localhost:27017';

// Connecting to MongoDB Server using connect Method

MongoDBClient.connect(url, { useUnifiedTopology: true },

function(err, client) {

if(err){

console.log("Some Error While Connecting to MongoDB Server" +

err);

}else{

console.log("Connected Sucessfully to MongoDB Server using

Node.js Driver for MongoDB");

// Select DB

dbname = "BPBCatalogDB";

db = client.db(dbname);

// Get the "BPBCatalogCollection" Collection

collection = db.collection('BPBCatalogCollection');

console.log("Connected to MongoDB DB:" + dbname)

}

});

console.log("API App Listening to: http://localhost:" + port);

// Connection Listing to Port 3000

});

Following is the screenshot for the same in Microsoft Visual Studio Code:

Figure 9.17: Creating a MongoDB connection file—Microsoft Visual Studio Code

You can see that MongoDB connection related code is put inside the code
block where the application is creating the host on a port 3,000, Also note
that we are using the same MongoDB database and collection that we have
used in the previous chapter [Chapter 8, MongoDB Step by Step Practical
Application Development Using PHP] in which we have created a CRUD
backend application using PHP and MongoDB.
Step 2—adding REST API endpoint to fetch data from MongoDB
collection (REST GET method)
In our example, we have used Express.js “app.get()” method in which we
have declared our route or API endpoint as “getAllBPBBooks”. We have
done changes in our “index.js” under this path: D:\bpb-catalog-app-api,
and the following is the code for the same.

Code 1 (index.js updated)
app.get('/', (req, res) => {

res.send('Welcome to BPB Publications RESTful API') // This is

the Default API Message

});

// API Endpoint "getAllBPBBooks" using GET Request

app.get("/getAllBPBBooks", (request, response) => {

collection.find().toArray((error, result) => { // Featching the

Collection Data using "toArray"

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

Now, after updating the code, we need to restart our Node.js application if it
has not been restarted yet. In order to do this, go to the command prompt
where your Node.js App is currently running and then press “Ctrl + C” and
then “Y” when you are prompted to terminate the task. After this, you should
again type “npm start”, and press Enter to run this Node.js API application
again on your machine, as shown in figure 9.18:

Figure 9.18: Restarting our application

In our example, we have created an API that uses the GET method. We can
use the browser to fetch this data, as shown in figure 9.19:

Figure 9.19: Calling our API from browser

But as we can use any of the RESTful methods such as POST, PUT, or
DELETE, in this case, we need some better way to perform API calls during
our development. In this case, we can use some better applications, which
will serve our purpose during the API development. There are many ways to
do it, including “curl”, powerful command-line software to transfer the data
to or from the server. Let us use some GUI-based apps. For this chapter, we
would be using “Postman”.

Step 3—download and install Postman

1. Postman is a software application that is helpful for API development,
and it is one of the widely used applications among developers. Visit:
https://www.postman.com/downloads/ and click the Download the

App button, as shown in figure 9.20:

Figure 9.20: Postman Home page

2. You can download the Postman installer and run it. Just follow the
instructions. The installation would be similar to the other software
installers that you run on your Windows Machine (in case you are using
other operating systems such as Linux or Mac OS, then please follow
the related instructions for installing on these operating systems) After
you have successfully installed Postman on your machine, open it and
launch it. This will open the application on your machine.
After the Postman application is launched, choose the GET method.

https://www.postman.com/downloads/

Enter the API Endpoint as http://localhost:3000/getAllBPBBooks
under the “Enter Request URL” and then click “Send” button. After
you click “Send” button, it will take a few seconds to call the API and
get the records from the API, as shown in figure 9.21:

Figure 9.21: Postman application—calling our API using GET method

Step 4—adding REST API endpoint to fetch data from MongoDB
collection based on MongoDB Document ID (REST GET method)
In our example, we have used Express.js “app.get()” method in which we
have declared our route or API endpoint as “getBPBBookById”. We have
done changes in our “index.js” under this path: D:\bpb-catalog-app-api.
We have added this code just after the previous code where we have created
our API route or endpoint for “getAllBPBBooks”, and the following is the
code for the same:

Code 1 (index.js updated)
// API Endpoint "getBPBBookById" using GET Request

app.get("/getBPBBookById/:bookid", (request, response) => {

collection.findOne({ "_id": new

MongoDBObjectId(request.params.bookid)},(error, result) => { //

Here we are not using "toArray" because it is a single document

and also we are using MongoDB findOne() Method instaed of find()

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

In our example, we have created an API that uses the GET method. We can
use the browser to fetch this data based on Book ID. We can now use the
Postman application to fetch this data using the GET method (as shown in
figure 9.22).
Now, after updating the code, we need to restart our Node.js application. In
order to do this, press “Ctrl + C” and then “Y” when you are prompted to
terminate the task. After this, you should again type “npm start”, and press
Enter to run this Node.js API application again on your machine.

Figure 9.22: Postman application—calling our API using GET method and book ID

Step 5—adding REST API endpoint to add data into MongoDB
collection (REST POST method)
In our example, we have used Express.js “app.post()” method in which we
have declared our route or API endpoint as “addNewBPBBook”. We have done
changes in our “index.js” under this path: D:\bpb-catalog-app-api. We
have added this code just after the previous code where we have created our
API route or endpoint for “getBPBBookByID”, and the following is the code
for the same.

Code 1 (index.js updated)
// API Endpoint “addNewBPBBook” using POST Request

app.post(“/addNewBPBBook”, (request, response) => {

collection.insertOne(request.body, (error, result) => { // Here

we are using “request.body” parameter which will take the

values from the body of the POST request made by the CLient

while this API is called

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

In our example, we have created an API that uses the POST method. We can
now use the Postman application to send this data using the POST method.
We also need to provide the body to this API before we call this API. So,
select “Body” under Postman params and then insert JSON with key and
body. You can take the following example. (as shown in figure 9.23).
Now, after updating the code, we need to restart our Node.js application. In
order to do this, go to the Command Prompt where your Node.js App is
currently running and then press “Ctrl + C” and then “Y” when you are
prompted to terminate the task. After this, you should again type “npm
start”, and press Enter to run this Node.js API application again on your
machine.

Code 2 (JSON body params to be used in Postman)
{

"title": "Practical Robotics in C++",

"authorname": "Lloyd Brombach",

"isbnnumber": "9789389423464",

"publicationyear": "2021",

"price": "1040",

"description": "Practical Robotics in C++ teaches the

complete spectrum of Robotics, right from the setting up a

computer for a robot controller to putting power to the wheel

motors. The book brings you the workshop knowledge of the

electronics, hardware, and software for building a mobile

robot platform. You will learn how to use sensors to detect

obstacles, how to train your robot to build itself a map and

plan an obstacle-avoiding path, and how to structure your

code for modularity and interchangeability with other robot

projects. Throughout the book, you can experience the

demonstrations of complete coding of robotics with the use of

simple and clear C++ programming. In addition, you will

explore how to leverage the Raspberry Pi GPIO hardware

interface pins and existing libraries to make an incredibly

capable machine on the most affordable computer platform

ever."

}

Figure 9.23: Postman application—calling our API using POST method and with body params

After we press “Send” button from the Postman application, the API request
will be sent along with the body, and a new document is inserted into our
MongoDB collection. We can also see in the Postman that we receive a
response back with the status: “200 OK” along with the response body, as
shown in figure 9.24:

Figure 9.24: Postman application—response body

We can also verify this using any MongoDB client such as MongoDB
Compass (official GUI-based client application for MongoDB). Just launch
MongoDB Compass on your computer and then navigate to our Application
MongoDB Collection, which is “BPBCatalogCollection” in our case. You
can see that the new MongoDB document has been successfully inserted by
our API, as shown in figure 9.25:

Figure 9.25: MongoDB Compass—verifying the new document added by our API

Step 5—adding REST API Endpoint to update data into MongoDB
document based on MongoDB Document ID (REST PUT method)
—giving thumbs up for a book
In our example, we have used Express.js “app.put()” method in which we
have declared our route or API Endpoint as “thumbsUPForBPBBook”. We have
done changes in our “index.js” under this path: D:\bpb-catalog-app-api.
We have added this code just after the previous code where we have created
our API route or endpoint for “addNewBPBBook”, and the following is the code
for the same.

Code 1 (index.js updated)
// API Endpoint “thumbsUPForBPBBook” using PUT Request

app.put(“/thumbsUPForBPBBook/:bookid”, (request, response) => {

collection.findOne({ “_id”: new

MongoDBObjectId(request.params.bookid)},(error, result) => { //

We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsUPCounter)){ // If there is no existing

value for “thumbsUPCounter” in the MongoDB Document

var thumbsUPCounterValue = 1; // Just assign a new Value to 1

}else{

var thumbsUPCounterValue = result.thumbsUPCounter + 1; // We

are taking the existing “thumbsUPCounter” value from our

Database and then Incrementing the Thums UP Counter value

“thumbsUPCounterValue” to ١
}

collection.updateOne({ “_id”: new

MongoDBObjectId(request.params.bookid)}, { $set:

{thumbsUPCounter:thumbsUPCounterValue} }, (error, result) =>

{ // We are using MongoDB updateOne() Method to Update the

incremented “thumbsUPCounter” value back to the database

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

In our example, we have created an API that uses the PUT method. We can
now use the Postman application to update MongoDB documents using the
PUT method.
Now, after updating the code, we need to restart our Node.js application. In
order to do this, go to the Command Prompt where your Node.js App is
currently running and then press “Ctrl + C” and then “Y” when you are
prompted to terminate the task. After this, you should again type “npm
start”, and press Enter to run this Node.js API application again on your
machine.
After we press “Send” button from the Postman application, the API request
will call the endpoint and will update the MongoDB document based on the
document ID provided and increase the value of Thumbs Up counter
“thumbsUPCounter” to 1 every time this API is called. We can also see in the
Postman that we receive a response back with the status: “200 OK” along with
the response body. In our example, we have made six calls to this API, which
includes four calls using one book ID and two calls using another book ID, as

shown in figure 9.26:

Figure 9.26: Postman application—calling our API using PUT method

We can also verify this using the MongoDB Compass. Just launch MongoDB
Compass on your computer and then navigate to our application MongoDB
collection, which is “BPBCatalogCollection” in our case. You can see that
MongoDB documents have been successfully updated by our API calls. In
case MongoDB Compass has been already opened in your machine, then just
click the refresh button on the top left corner to refresh the MongoDB
collection documents data, as shown in figure 9.27:

Figure 9.27: MongoDB Compass—verifying the documents updated by our API calls

Step 5—adding REST API Endpoint to update data into MongoDB
document based on MongoDB Document ID (REST PUT method)
—giving Thumbs Down for a book
Before we add this functionality to our API application, let us create a
dummy book as we never want to give thumbs down to any good books that
we have in our database. For this, we have to use our existing API
“addNewBPBBook” and pass the JSON in the body params before calling this
API using the POST method, as shown in figure 9.28:

Figure 9.28: Adding dummy book with our API

In our example, we have used Express.js “app.put()” method in which we
have declared our route or API endpoint as “thumbsDOWNForBPBBook”. We
have done changes in our “index.js” under this path: D:\bpb-catalog-app-
api. We have added this code just after the previous code where we have
created our API route or endpoint for “thumbsUpForBPBBook”, and the
following is the code for the same.

Code 1 (index.js updated)
// API Endpoint "thumbsDOWNForBPBBook" using PUT Request

app.put("/thumbsDOWNForBPBBook/:bookid", (request, response) =>

{

collection.findOne({ "_id": new

MongoDBObjectId(request.params.bookid)},(error, result) => { //

We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsDOWNCounter)){ // If there is no existing

value for "thumbsDOWNCounter" in the MongoDB Document

var thumbsDOWNCounterValue = 1; // Just assign a new Value to 1

}else{

var thumbsDOWNCounterValue = result.thumbsDOWNCounter + 1; //

We are taking the existing "thumbsDOWNCounter" value from our

Database and then Incrementing the Thums UP Counter value

"thumbsDOWNCounterValue" to 1

}

collection.updateOne({ "_id": new

MongoDBObjectId(request.params.bookid)}, { $set:

{thumbsDOWNCounter:thumbsDOWNCounterValue} }, (error, result)

=> { // We are using MongoDB updateOne() Method to Update the

incremented "thumbsDOWNCounter" value back to the database

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

In our example, we have created an API that uses the PUT method. We can
now use the Postman application to update MongoDB documents using the
PUT method.
Now, after updating the code, we need to restart our Node.js application. In
order to do this, go to the Command Prompt where your Node.js App is
currently running and then press “Ctrl + C” and then “Y” when you are
prompted to terminate the task. After this, you should again type “npm
start”, and press Enter to run this Node.js API application again on your
machine.
After we press “Send” button from the Postman application, the API request
will call the endpoint and will update the MongoDB document based on the
Document ID provided and increase the value of Thumbs DOWN Counter
“thumbsDOWNCounter” to 1 every time this API is called. We can also see in
the Postman that we receive a response back with the status: “200 OK” along
with the response body. In our example, we have made two calls to this API
using our Dummy book ID that we created before, as shown in figure 9.29:

Figure 9.29: Postman application—calling our API using PUT method

We can also verify this using the MongoDB Compass; just launch MongoDB
Compass in your computer and then navigate to our Application MongoDB
Collection, which is “BPBCatalogCollection” in our case. You can see that
MongoDB documents have been successfully updated by our API Calls. In
case MongoDB Compass has been already opened in your machine, then just
click the refresh button on the top left corner to refresh the MongoDB
Collection documents data, as shown in figure 9.30:

Figure 9.30: MongoDB Compass—verifying the documents updated by our API calls

Adding REST API endpoint to delete MongoDB
document based on MongoDB document ID (REST
DELETE method)
As this is a practical chapter and we have learned so many things in this
chapter, try to code this delete API functionality with the skills you have
learned from this chapter. You can take references from the Node.js
MongoDB driver and Express.js Official documentation home page as listed:

Node.js MongoDB driver official repository home page at GitHub:
https://github.com/mongodb/node-mongodb-native
Express.js Official Guide:
https://expressjs.com/en/guide/routing.html

Conclusion

https://github.com/mongodb/node-mongodb-native
https://expressjs.com/en/guide/routing.html

In this chapter, we have learnt how to develop REST-based APIs using
practical step-by-step development. We have also learnt how we can use
Node.js, Express.js, and MongoDB driver to develop these APIs. Later, we
have also learnt about the REST-based methods and various other related
functionalities required for the overall development of APIs for a Publication
House. In the upcoming chapter, we will cover the practical step-by-step
development of a mobile app developed using React Native and MongoDB.
We will learn how to create a mobile app for a publication house and will
start with the overview of our mobile app development using React Native,
Expo, Expo CLI, Node.js, Express.js, and MongoDB, along with the API’s,
which we have created in this chapter.

Questions
1. What is an API?
2. What is REST-based API?
3. What are the two main API types?
4. What is Express.js?
5. What are the different types of REST methods? Name a few of them.
6. What is the Postman application, and why it is useful for API

development?

H

CHAPTER 10
MongoDB Step by Step Practical

Mobile App Development Using React
Native

ave you ever thought about how dynamic mobile apps works? Some of
you might have some questions in your mind about how these mobile

applications render data from the database and show them to the mobile users
in their apps? Interesting? Let us learn how to create a dynamic data-driven
mobile app. This chapter covers the practical step-by-step development of a
mobile app developed using React Native and MongoDB. We will learn how
to create a mobile app for a publication house and will start with the overview
of our mobile app development using React Native, Expo, Expo CLI,
Node.js, Express.js, and MongoDB. We will learn how to add the “Thumbs
Up” and “Thumbs Down” functionality and how to store their counts in the
MongoDB Database using the API calls. In this chapter, all the sections have
been covered step by step and detailed manner.

Structure
In this chapter, we will discuss the following topics:

An overview of our mobile app developed using React Native and
MongoDB
Requirements
Connecting to MongoDB via API
Starting with React Native mobile app development
API Fetch part—networking
Working on book list section
Introduction to CORS

Installing and adding CORS Module in our Node.js (Express.js) API
app
Enabling CORS in Node.js (Express.js) app routes
Adding book pictures in the book list section of our mobile app
Adding “Thumbs Up” and “Thumbs Down” in the book list section of
our mobile app
Adding database functionality to “Thumbs Up” and “Thumbs Down” of
our mobile app
Running the React Native mobile app on an Android device/emulator

Objectives
After studying this chapter, the reader will be able to understand an overview
of our mobile app developed using React Native and MongoDB. We will
start with React Native mobile app development and learn about the API
Fetch Part—networking in React Native, and we will also be working on the
Book List section. We will understand what CORS is and learn about
installing and adding CORS Module in our Node.js (Express.js) API app. We
will also be enabling CORS in Node.js (Express.js) app Routes so that the
CORS-related issues will get resolved during the API calls made by the React
Native mobile app. We will work on adding Book Pictures in the Book List
section of our mobile app, “Thumbs Up” and “Thumbs Down” in the Book
List section of our mobile app, and in the last part of this book, we will add
Database Functionality to “Thumbs Up” and “Thumbs Down” of our mobile
app and then run the React Native mobile app on Android device/emulator.

An overview of our mobile app developed using
React Native and MongoDB
In this chapter, we are going to develop a mobile app using React Native and
MongoDB.
We will be using RESTful Web from our Node.js (Express.js) API app.
This React Native mobile app will have the following features:

Ability to list (read) all the books in the catalog and show their
information and book picture

Ability to give (insert) new “thumbs up” and “thumbs down” to a book

So, in order to create this mobile app, we will be writing and modifying some
codes using the following:

React Native—to build the cross-platform mobile app
Expo and Expo CLI—use expo and expo tools helpful in creating the
mobile app
Node.js—to connect to MongoDB server using the Node.js and to do
server-side operations and interacting with MongoDB
Express.js—Express.js is the application framework for Node.js and is
used widely for developing Web applications and API

Requirements
Readers should have the basic knowledge and understanding of the following
(recommended and brief introduction of all these is provided in the previous
chapters of the book):

React Native
Expo and Expo CLI
Android Studio
Node.js
JavaScript
API
RESTful APIs

Example 1—connecting to MongoDB via API
Before we start connecting to MongoDB with the API. Let us make sure that
the Node.js application that we have created in the previous chapter of this
book is started [Chapter 9, MongoDB Step by Step Practical Application
Development Using JavaScript (Node.js with Express.js)], so that we can use
it.
In Chapter 9, MongoDB Step by Step Practical Application Development
Using JavaScript (Node.js with Express.js), we have also discussed the
Postman and created APIs to read and write to MongoDB collection. Let’s

now first start the Node.js application.
We need to follow these steps:

1. To start the Node.js API application, you need to open the command
prompt and navigate to the correct directory that is related to the API
development part using Node.js and Express.js, which is “D:\bpb-
catalog-app-api” in our case, as shown in figure 10.1:

Figure 10.1: Command prompt and navigate to the Node.js and Express.js API project folder

2. The next step is to start this application using the “npm start” as we
have learned earlier. Once this application is started, you will see the
console messages that the application has been connected to the
MongoDB database, and we can use this application and the APIs to be
further used in our react native mobile app, which we are further
enhancing in this chapter, as shown in the figure 10.2:

Figure 10.2: Starting the API App using “npm start”

3. The next step is to write a code in our React Native mobile app so that
we can be able to connect our mobile app to MongoDB Server using the
API call and then fetch some dynamic data into our mobile app. To
achieve this, we need to further do some code in our React Native App
that we have started in Chapter 5, Starting up Programming with
MongoDB and React Native of this book).

For this, we need to open our React Native mobile app folder in some code
editor like Microsoft Visual Studio Code or any editor of your choice, and
then we need to open App.js in the code editor. In our case, the location of
the React Native mobile app folder is as follows:
“D:\bpb-catalog-mobile-app”

Please refer to the following code; we have now used two React.js Hooks in
the App.js file.

Note: Hooks are the latest introduction in React.js; they are helpful in
writing the codes without the use of Class. You can think of these as special
functions which are useful for doing some special things in React.js

Here, we have used the following two hooks:

useEffect: This hook is used for some side effects tasks such as data
fetching, manually changing the DOM in React.js Components, and so
on.
useState: This hook lets us use React State to the function components.

Code 1
The following code is the “import section” of our script where we are
importing React and React Native libraries.
import { StatusBar } from 'expo-status-bar';

import React from 'react';

import { StyleSheet, Text, View, Image } from 'react-native'; //

Imported the Image Component

import { useEffect, useState } from 'react'; // import the

useEffect and useState React.js Hooks

We have a new code now in our default App() function where we have used
the fetch() API, which is a React Native API for network-related stuff; we
have used it to make API call. We have used the same API endpoint
“http://localhost:3000/getAllBPBBooks” which we have created in our

last chapter [Chapter 9, MongoDB Step by Step Practical Application
Development Using JavaScript (Node.js with Express.js)] as well, it also
contains all the other codes of this app (which are Stylesheet, Header Section,
Book List Section and the Return Part of this App) and following is the code
for the same:

Code 2
Our application is divided into sections for better readability, and comments
in the code will make you better understand these sections.
export default function App() {

// API Fetch Part - Networking

// Style Sheets

// Header Section

// Books List Section

// Return Part of the App

}

The default function App() will contain all the sections of our mobile app.

Code 3—API fetch part—networking
The following code is the API Fetch Part of React Native; using the Fetch
API; we can access the API endpoint and get the data from the MongoDB
database.
// API Fetch Part - Networking

const [isLoading, setLoading] = useState(true);

const [data, setData] = useState([]); // setData Function and

useState Hook is helpful in using the React State of the

function Components

useEffect(() => {

fetch('http://localhost:3000/getAllBPBBooks') // Our API Call

using Fetch API "API Developed in Node.js and Express.js

Chapter of this Book"

.then((response) => response.json()) // Response from the API

Server

.then((json) => setData(json)) // Using setData Function

response is sent back and then it is stored in "data"

.catch((error) => console.error(error)) // Error if any is

caught and logged

.finally(() => setLoading(false)); // Finally the task is done

}, []);

The other two sections of the code remain the same (with a few little updated
codes for styling and layout) as of the previous chapter of this book, where

we have started learning on how to create a mobile app using React Native.
These are related to the Style Sheet, App Header section, and the code of the
same is as follows:

Code 3—style sheets
Following are the style sheets that are used in our app to make it look nice. In
React Native, we are using the StyleSheet.create() method to create the
style sheets for our mobile application.
// Style Sheets

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'flex-start', /* Flex Start */

maxWidth:300,

marginLeft:'auto',

marginRight:'auto',

},

logo: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

width:250,

height: 150,

marginTop:20,

marginBottom:20

},

heading: {

fontSize:15,

fontWeight:'bold'

},

booklistview: {

borderWidth:2,

borderColor:'blue',

marginTop:20

}

});

Code 4—header section
In the header section of our app, we are creating one variable which we will
be going to use later in the return part of the app, and in this section, we are

using a <View>, < image>, <Text>, and <StatusBar> components or React
Native.
// Header Section

const appHeaderSection = (

<View>

<Image source={require('./images/bpb-logo.png')} style=

{styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile

App</Text>

<StatusBar style="auto" />

</View>

);

We have added one more section in which we will display the data of the
books that we have in our MongoDB Server using the API call, and the
following is the code for the same:

Code 5—book list section
In the following code, we are using the map() function to create a list from
the Book Data, which we fetched from the Fetch API of react-native.
// Header Section

const appHeaderSection = (

<View>

<Image source={require('./images/bpb-logo.png')} style=

{styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile

App</Text>

<StatusBar style="auto" />

</View>

);

// Books List Section

// We are using the "data" which was fetched using the fetch API

and then we are iterating the same with the help of "map" to

present the list of books

const appBookdListSection = (

<View style={styles.booklistview}>

{data.map((book, index) =>

<Text key={book._id}>

<li style={{paddingRight:'10px'}}>{book.title} <i>[By:

{book.authorname}]</i>

</Text>

)}

</View>

);

We have just added “appBookdListSection” in the “Return Part of the App”.
This part of the default App() function will return the actual application to us
after all the process is done.

Code 6—return part of the app
In the last part of the code, we are using a <View>, which will show the
header section and the book list section of the app and following is the code
for the same:
return (

<View style={styles.container}>

{appHeaderSection}

{appBookdListSection}

</View>

);

} // Default App Function Ends Here

Let us now run this code using Expo CLI (keeping in mind that our Node.js
and Express.js API application is still running).
Now, navigate to your React Native app from the command prompt; the
location of our React Native app in our case is: “D:\bpb-catalog-mobile-
app\bpb-mobile-app” from the command prompt and run the following
command:
npm start

After you enter this command, Expo CLI will try to run the React Native app,
and after some time, it will try to open the Expo developer tools in the default
browser of your machine automatically.
Once the Expo developer tool is loaded in your browser, click the link which
says “Run in web browser”, as shown in figure 10.3:

Figure 10.3: Starting the Metro Bundler (Expo Dev Tools) using the EXPO CLI—“expo start”
Command

Once you click the link “Run in web browser”, the Metro Bundler will try to
build our app, and when it finishes building our app, it will try to open our
app in the default browser in a separate tab of the browser, as shown in figure
10.4:

Figure 10.4: Expo Dev tools—open our app in Web browser

Now many of us would be thinking that why our book section, which we
have coded in our example, is not shown in the app as it would have been
called by the Fetch API and displayed as a list.

The reason for this could be found in the “Console” of our browser; let us
open our “Console” to troubleshoot this issue. To open the console, first,
click the browser menu (Google Chrome in our case), then click the “More
tools” option. It will open another menu under which you will see the
“Developer tools”. Click the Developer tools from where we can further
navigate to console, as shown in figure 10.5:

Figure 10.5: Open our app in Web browser—book section not showing—open developer tools

The console will be open along with the Developer tools, and you can see
the console logs, as shown in figure 10.6:

Figure 10.6: Developer tools—Console—CORS error

If we check in our console we get the following message:
Access to fetch at ‘http://localhost:3000/getAllBPBBooks’ from

origin ‘http://localhost:19006’ has been blocked by CORS policy:

No ‘Access-Control-Allow-Origin’ header is present on the

requested resource. If an opaque response serves your needs, set

the request’s mode to ‘no-cors’ to fetch the resource with CORS

disabled.

So, we can see that something is blocked here, and because of this reason, our
React Native app is unable to fetch the book’s data using the API call.
So, what exactly is happening here?
Let us understand this first before rectifying this issue. If you see, the
following things are happening here:

Our React Native API call is requested from http://localhost:19006
Our React Native API request is blocked from
http://localhost:3000/getAllBPBBooks

The CORS policy: No 'Access-Control-Allow-Origin' is the reason for
this blockage

CORS
CORS is the acronym for Cross-Origin Request Sharing, and it is a protocol
or mechanism to restrict the access of resources that originates from other
domains.
In our example, you can see that the React Native app, which is running on
Port 19006, is requesting the “Book Data” from the Node.js and Express.js
API App, which is running on a different domain (Port 3000). So, the CORS
policy has been applied to this request, and the request is failed.

Resolving the issue
To resolve this issue, we can do any one of the following things:

1. Add “Access-Control-Allow-Origin” header on the requested
resource

2. Use some Node.js modules, which will help to resolve this issue
3. Set the request's mode to “no-cors” to fetch the resource with CORS

disabled.

It is better to use some Node.js and Express.js official methods to resolve this
issue. In Node.js, there is a package named “cors”, which is a middleware to
enable CORS with Express.js routes. Let us install and enable this on our
Node.js and Express.js application so that the API calls which are requested
from our React Native App will be served without a CORS issue.
Please open your browser and open this link:
https://www.npmjs.com/package/cors. You will see all the details related to
the “cors” package for Node.js and how we can use it with Express.js, as
shown in figure 10.7:

Figure 10.7: NPM—“cors” Package for Node.js—Home Page

Now, we need to first install and use this “cors” package in our Node.js and
Express.js-based application.
Remember this and it is important that the CORS related changes that we are
going to do now, including the installation of the Node.js “cors” package,
will be done in the following application directory (and not in our current
React Native app directory):
D:\bpb-catalog-app-api

So, you need to navigate to the current directory and do the required changes.
Let us start doing changes now, but before we do any code change, we need
to first stop our Node.js and Express.js app, which is already running. To do
this, open your command prompt where your Node.js and Express.js-based

https://www.npmjs.com/package/cors

applications are running, and then to stop these, press “Ctrl + C”. Once you
press this key, you will be asked that would you like to “Terminate batch
job”. Press “Y” and then enter. Doing this will stop your Node.js and
Express.js application, as shown in figure 10.8:

Figure 10.8: Command prompt—stopping our Node.js API app

Now, we can install our Node.js “cors” package using NPM to this remain in
the same command prompt where you have just stopped your Node.js and
Express.js-based application and then run the following command to install
“cors” using NPM, as shown in figure 10.9:
npm install cors

OR
npm i cors

Figure 10.9: Command prompt—Node.js and Express.js API project folder—installing “cors” package

Now, as the “cors” package is installed successfully, we can do some
modifications in our “index.js” file of our Node.js and Express.js-based
application, and the location for the same is: “
The following are the changes that we are going to do:

Change 1 in index.js—adding CORS module using require
var cors = require('cors') // CORS Module

We have added this single line of code after Express Module:
const express = require('express'); // Express Module

var cors = require('cors') // CORS Module

const app = express();

const port = 3000; // Port, You can Change this Port to anything

you would like For example 8000, For this Book, we will Keep

this as 3000 for Node.js > Express.js Based API Examples

const MongoDBClient = require('mongodb').MongoClient; // MongoDB

Driver

const MongoDBObjectId = require("mongodb").ObjectId; // Create a

new ObjectID instance, used for Converting String to MongoDB

ObjectID Type and opposite

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

Change 2 in index.js—enabling CORS in “getAllBPBBooks”
route
// API Endpoint "getAllBPBBooks" using GET Request

app.get("/getAllBPBBooks", cors(), (request, response) => {

We have added cors() function in the get based method of our Express.js
Route (getAllBPBBooks):
app.use(express.json());

app.use(express.urlencoded({ extended: true }));

app.get('/', (req, res) => {

res.send('Welcome to BPB Publications RESTful API') // This is

the Default API Message

});

// API Endpoint "getAllBPBBooks" using GET Request

// Now CORS Enabled

app.get("/getAllBPBBooks", cors(), (request, response) => {

collection.find().toArray((error, result) => { // Fetching the

Collection Data using "toArray"

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

Figure 10.10: Microsoft Visual Studio Code—opening “index.js” file

So, we have done only two lines of code changes or updates, and now you
will see that our CORS issue will be resolved for this API call when fetch is
called in our React Native app.
Before we can resume working on our react Native app, we have to start this
Node.js and Express.js-based application. To do this, run the following
command in the same command prompt where we recently installed the
“cors” package for Node.js using NPM, as shown in figure 10.11:

Figure 10.11: Command prompt—restarting the API app

After you make these updates in your Node.js and Express.js and start your
application, you can refresh your browser where your React Native app is
running. Once you refresh the browser window, you will see that the CORS
issue is resolved, and you will be able to see the Book List section of your
React Native App, as shown in figure 10.12:

Figure 10.12: Refreshing the mobile app browser Window—book section appears

As we have seen how we can connect React Native mobile app with
MongoDB and how we can show the MongoDB Data in mobile apps using
React Native, let us add some more functionalities in our app with some more
examples.

Example 2—adding book pictures in the book list section of our
mobile app
We have done some updates to our code and added the following code for
fetching images from the localhost.

Code 1 (updated App.js file) —CSS section (added some more
CSS and changed the class names to “camelCase”)
// Style Sheets

const styles = StyleSheet.create({

bookContainer: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

marginLeft:'auto',

marginRight:'auto',

borderWidth:2,

borderColor:'darkblue',

padding:10

},

logo: {

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

width:150,

height: 100,

marginTop:5,

marginBottom:5,

marginLeft:'auto',

marginRight:'auto'

},

heading: {

fontSize:17,

fontWeight:'bold',

marginTop:5,

marginBottom:5,

marginLeft:'auto',

marginRight:'auto',

marginBottom:20

},

appBookdListSection:{

marginBottom:400

},

bookCover: {

width:280,

height: 350,

marginTop:20,

marginBottom:20

},

bookListTitle: {

fontSize:25,

fontWeight:'bold',

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

},

bookListAuthor: {

fontSize:20,

fontWeight:'bold',

fontStyle:'italic',

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

},

/* Item Separator CSS */

itemSeparator:{

height: 0.5,

width: '100%',

backgroundColor:'darkblue',

borderWidth:2,

borderBottomColor:'darkmagenta',

marginTop:20,

marginBottom:20,

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

}

});

Code 2 (updated App.js File) —update in book list section and
use of react native “FlatList” component instead of “.map”
method
As we are expanding our application and want to show images of the book,
we are going to use React Native’s FlatList component as it is useful in
displaying the structured data in the scrollable list and also renders only that
data to the screen, which is shown on the screen and will not render all the
data. FlatList has many other features, such as separator support and scroll
loading.
For more information about the React Native FlatList component, you can
refer to the official documentation at: https://reactnative.dev/docs/flatlist
Following is the updated code for the App.js file:
Importing the React Native “FlatList” and “SafeAreaView”:
import { StatusBar } from 'expo-status-bar';

import { StyleSheet, Text, View, Image } from 'react-native'; //

Imported the Image Component

//import React from 'react';

import React, { useEffect, useState } from 'react'; // Import

the useEffect and useState React.js Hooks

import { SafeAreaView, FlatList } from 'react-native'; // Import

React Native FlatList and SafeAreaView

Code change in header section—update in image path, calling logo image
from app backend:
// Header Section

const appHeaderSection = (

<View>

<Image source={{uri:'http://localhost/bpb-catalog-app-

backend/images/bpb-logo.png'}} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile

App</Text>

<StatusBar style="auto" />

</View>

);

Code change in book list section:
// Books List Section

// We are using the "data" which was fetched using the fetch API

and then we are using the React Native Flatlist Component to

render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the

FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://localhost/bpb-catalog-app-

backend/images/'+item.coverimage}} style={styles.bookCover}/>

</View>

</View>

);

};

const ItemSeparatorView = () => {

return (

//Item Separator

<View style={styles.itemSeparator} />

);

};

const appBookdListSection = (

<View style={styles.appBookdListSection}>

<FlatList

data={data}

//data defined in constructor

ItemSeparatorComponent={ItemSeparatorView}

//Item Separator View

renderItem={ItemView}

keyExtractor={(item, index) => index.toString()}

/>

</View>

);

In the preceding code, we have also used the image component and fetched
all the book cover images dynamically using the data, which is fetched using
the Fetch API call. Here, if you see, the source of the image is coming from
our localhost PHP backend application.
Example: 'http://localhost/bpb-catalog-app-
backend/images/'+book.coverimage
Where “book.coverimage” is the file name of the cover image for the book.
These book data have been entered by us while we have created our backend
application using PHP and MongoDB.

If you remember that in our previous chapter [Chapter 8, MongoDB Step by
Step Practical Application Development Using PHP] of this book, we have
created the “Backend for Publication House” using PHP, MongoDB, and
WAMP Server.
We need to now run that backend application, too, before we can run and test
our React Native app so that images can be fetched using our backend app
URL, as discussed earlier.
Please start the WAMP server first and check if your backend application is
working fine. For this, follow these steps:

1. Type “WAMP” on the “Search Bar” in the Task Bar of your Windows and
open it, as shown in figure 10.13:

Figure 10.13: Starting the WAMP server

2. Once the WAMP server has started all the services, you can see the
WAMP server icon in green color under your “Windows System Tray”,

as shown in figure 10.14:

Figure 10.14: Windows system tray—WAMP started

3. Now verify if our PHP and MongoDB Based application is running fine
by typing: http://localhost/bpb-catalog-app-backend/ in your
browser address bar, and you should see your PHP and MongoDB-
based backend application running smoothly, as shown in figure 10.15:

Figure 10.15: PHP and MongoDB based backend catalogue application

Now, we can refresh our browser to check our React Native mobile app. The
interesting thing to note here is that once you do changes in your React
Native app, the Expo will automatically refresh your code, and you can see
the instant changes in the browser whatsoever you are doing it in your code.

So the changes would be reflected automatically. But as we have started the
WAMP server to serve the book images for this app, let us refresh our React
Native app in the browser, and we can see the changes reflected as the result
of our new code, as shown in figure 10.16:

Figure 10.16: Refreshing the browser Window of our mobile app—display of book cover images

We can scroll and see that all the books have been listed correctly by our
React Native-based mobile app, as shown in figure 10.17:

Figure 10.17: Refreshing the browser Window of our mobile app —display of book cover images—
scrolling to view more books

So, we have seen how we can add dynamic images to our mobile app, which
are fetched from the PHP-based backend application that we have created
earlier. Now, let us add some more functionality to our app with some more
interesting examples.

Example 3—adding “Thumbs Up” and “Thumbs Down” in the
book list section of our mobile app
In the last examples, we have added the books list and book image and have
used the Fetch API to show the list of the books. Now, let us add some more
functionality in this app so that we can give the “Thumbs Up” or “Thumbs
Down” to a book.
We need some good icons for this purpose which can be clickable and for
this reason, we have to add an NPM Package for this which is named “Expo
Vector Icons”.
To install it first, visit the official NPM page of this package. Open this URL
in your browser window: https://www.npmjs.com/package/@expo/vector-
icons, as shown in figure 10.18:

Figure 10.18: NPM—Expo Vector Icons— Home Page

Now, we need to install this package in our React Native mobile app. Before
we can install this package, we need to first stop our app, which is running
using the Expo CLI from the command prompt. To stop the app, go to the
command prompt from where we have run our React Native app using Expo
CLI and then type “Ctrl + C”. This will stop our app, as shown in figure
10.19:

https://www.npmjs.com/package/@expo/vector-icons

Figure 10.19: Stopping our mobile app

Now, we need to install the “Expo Vector Icons” package in our React
Native app. To do this, type the following command (as shown in figure
10.20):

npm i @expo/vector-icons

OR
npm install @expo/vector-icons

We have done some updates to our code and added the following code for
fetching images from the localhost.

Figure 10.20: React Native mobile app folder —Installing “Expo Vector Icons” Package using npm
install command

As we have now installed the required “Expo Vector Icons”, we can now use
the same in our app. We can start our app again using the following
command:
npm start

So, we have done the following updates in our code to implement the
“Thumbs Up” and “Thumbs Down” functionality.

Code 1 (updated App.js file)—import FontAwesome from
Vector Icons
import { StatusBar } from 'expo-status-bar';

import { StyleSheet, Text, View, Image } from 'react-native'; //

Imported the Image Component

//import React from 'react';

import React, { useEffect, useState } from 'react'; // Import

the useEffect and useState React.js Hooks

import { SafeAreaView, FlatList } from 'react-native'; // Import

React Native FlatList and SafeAreaView

import { FontAwesome } from '@expo/vector-icons'; // Import Font

Awesome

Code 2 (updated App.js File)—CSS section (added some more
CSS for “Thumbs Up” and “Thumbs Down”)
/* Item Separator CSS */

itemSeparator:{

height: 0.5,

width: '100%',

backgroundColor:'darkblue',

borderWidth:2,

borderBottomColor:'darkmagenta',

marginTop:20,

marginBottom:20,

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

},

/* New CSS for "Thumbs Up" and "Thumbs Down" */

thumbsUP: {

width:200,

marginBottom:5,

},

thumbsDOWN: {

width:200,

marginTop:5,

marginBottom:5

}

});

Code 3 (updated App.js file)—added “Thumbs Up” and
“Thumbs Down” button components and functions
// Header Section

const appHeaderSection = (

<View>

<Image source={{uri:'http://localhost/bpb-catalog-app-

backend/images/bpb-logo.png'}} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile

App</Text>

<StatusBar style="auto" />

</View>

);

// Thumbs Up Button

const thumbsUP = (

<FontAwesome.Button name="thumbs-up" onPress={() =>

doThumbsUP()}>

Thumbs Up

</FontAwesome.Button>

);

// Thumbs Down Button

const thumbsDOWN = (

<FontAwesome.Button name="thumbs-down" onPress={() =>

doThumbsDOWN()}>

Thumbs Down

</FontAwesome.Button>

);

const doThumbsUP = () => {

console.log('Thumbs Up Pressed');

}

const doThumbsDOWN = () => {

console.log('Thumbs Down Pressed');

}

Code 4 (updated App.js file)—book list section (added
“Thumbs Up” and “Thumbs Down” button components)
Here, we have added the “Thumbs Up” and “Thumbs Down” buttons in all
the books listed under the book section of the app.
// Books List Section

// We are using the "data" which was fetched using the fetch API

and then we are using the React Native Flatlist Component to

render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the

FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://localhost/bpb-catalog-app-

backend/images/'+item.coverimage}} style={styles.bookCover}/>

</View>

<View style={styles.thumbsUP}>

{thumbsUP}

</View>

<View style={styles.thumbsDOWN}>

{thumbsDOWN}

</View>

</View>

);

};

So, if you see the button components, you will see that the event “onPress” is
in both of the buttons that we have created. When the user presses these
buttons, their respective functions will be called, and the logs will be shown
in the console, as shown in figure 10.21:

Figure 10.21: Dev Tools > Console > Console logs

Example 4—adding database functionality to “Thumbs Up”
and “Thumbs Down” of our mobile app
In the last example, we have added functionality for “Thumbs Up” and
“Thumbs Down” to a book. This functionality will be incomplete if we
cannot store “Thumbs Up” and “Thumbs Down” counts to the MongoDB
database. To have this functionality, we have to use two more APIs from our
Node.js (Express.js) API app.
We already have two existing API methods for this purpose that we can use
here. But, we need to first stop our Node.js API App as explained previously
in this chapter and then enable “CORS” in these API methods.
We can now do some modifications in our “index.js” file of our Node.js,
and Express.js-based application, and the location for the same is: “
The following are the changes that we are going to do:

Change 1 in index.js—enabling CORS in
“thumbsUPForBPBBook” route
// API Endpoint "thumbsUPForBPBBook" using PUT Request

app.put("/thumbsUPForBPBBook/:bookid", cors(), (request,

response) => {

We have added cors() function in the get based method of our Express.js
Route (thumbsUPForBPBBook):
// API Endpoint "thumbsUPForBPBBook" using PUT Request

app.put("/thumbsUPForBPBBook/:bookid", cors(), (request,

response) => {

collection.findOne({ "_id": new

MongoDBObjectId(request.params.bookid)},(error, result) => { //

We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsUPCounter)){ // If there is no existing

value for "thumbsUPCounter" in the MongoDB Document

var thumbsUPCounterValue = 1; // Just assign a new Value to 1

}else{

var thumbsUPCounterValue = result.thumbsUPCounter + 1; // We

are taking the existing "thumbsUPCounter" value from our

Database and then Incrementing the Thumbs UP Counter value

"thumbsUPCounterValue" to 1

}

collection.updateOne({ "_id": new

MongoDBObjectId(request.params.bookid)}, { $set:

{thumbsUPCounter:thumbsUPCounterValue} }, (error, result) =>

{ // We are using MongoDB updateOne() Method to Update the

incremented "thumbsUPCounter" value back to the database

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

Change 2 in index.js—enabling CORS in
“thumbsDOWNForBPBBook” route
// API Endpoint "thumbsDOWNForBPBBook" using PUT Request

app.put("/thumbsDOWNForBPBBook/:bookid", cors(), (request,

response) => {

We have added cors() function in the get based method of our Express.js
route (thumbsDOWNForBPBBook):
// API Endpoint "thumbsDOWNForBPBBook" using PUT Request

app.put("/thumbsDOWNForBPBBook/:bookid", cors(), (request,

response) => {

collection.findOne({ "_id": new

MongoDBObjectId(request.params.bookid)},(error, result) => { //

We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsDOWNCounter)){ // If there is no

existing value for "thumbsDOWNCounter" in the MongoDB

Document

var thumbsDOWNCounterValue = 1; // Just assign a new Value to

1

}else{

var thumbsDOWNCounterValue = result.thumbsDOWNCounter + 1; //

We are taking the existing "thumbsDOWNCounter" value from our

Database and then Incrementing the Thumbs UP Counter value

"thumbsDOWNCounterValue" to 1

}

collection.updateOne({ "_id": new

MongoDBObjectId(request.params.bookid)}, { $set:

{thumbsDOWNCounter:thumbsDOWNCounterValue} }, (error, result)

=> { // We are using MongoDB updateOne() Method to Update the

incremented "thumbsDOWNCounter" value back to the database

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

Sometimes, enabling “cors” on a particular route might still give you CORS
related issues as follows:
Access to fetch at
'http://localhost:3000/thumbsUPForBPBBook/615974498124895ebe4bd836'
from origin 'http://localhost:19006' has been blocked by CORS policy:
Response to preflight request doesn't pass access control check: No 'Access-
Control-Allow-Origin' header is present on the requested resource. If an
opaque response serves your needs, set the request's mode to 'no-cors' to fetch
the resource with CORS disabled.
It is generally recommended to enable CORS on a route that is required to
serve the requests from other apps, but if you still face the issues as described
previously, you may enable the whole app for CORS. For this, you need to

put the following code in our Node.js App as shown:
app.use(cors()) // Enable Whole App for CORS

You can include the preceding code in the top section of your Node.js app as
follows:
const express = require('express'); // Express Module

var cors = require('cors') // CORS Module

const app = express();

const port = 3000; // Port, You can Change this Port to anything

you would like For example 8000, For this Book, we will Keep

this as 3000 for Node.js > Express.js Based API Examples

const MongoDBClient = require('mongodb').MongoClient; // MongoDB

Driver

const MongoDBObjectId = require("mongodb").ObjectId; // Create a

new ObjectID instance, used for Converting String to MongoDB

ObjectID Type and opposite

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

app.use(cors()) // Enable Whole App for CORS

As we have now done these updates in our Node.js API app, we should stop
and start our app again using “Ctrl + C” to stop and the “npm start”
command to start our Node.js app from the command prompt as explained in
the previous section of this chapter.
After our API app has been started successfully. Now, in our React Native
app, we need to add these API calls inside the “doThumbsUP” and
“doThumbsDOWN” methods, respectively, and below are the updated codes
for the same.

Code 3 (updated App.js file)—updated “Thumbs Up” and
“Thumbs Down” button components, functions, and book list
section
Following is the major change in the code as we have now passed the book
ID (item._id) in the book section while creating the buttons, and this is
further passed to the other method for “onPress” event method calls.
// Thumbs Up Button

const thumbsUP = (id) => {

return (

<FontAwesome.Button name="thumbs-up" onPress={() =>

doThumbsUP(id)}>

Thumbs Up

</FontAwesome.Button>

)

};

// Thumbs Down Button

const thumbsDOWN = (id) => {

return (

<FontAwesome.Button name="thumbs-down" onPress={() =>

doThumbsDOWN(id)}>

Thumbs Down

</FontAwesome.Button>

)

};

const doThumbsUP = (id) => {

console.log('Thumbs Up Pressed');

console.log(id);

fetch('http://localhost:3000/thumbsUPForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js

and Express.js Chapter of this Book"

}

const doThumbsDOWN = (id) => {

console.log('Thumbs Down Pressed');

console.log(id);

fetch('http://localhost:3000/thumbsDOWNForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js

and Express.js Chapter of this Book"

}

// Books List Section

// We are using the "data" which was fetched using the fetch API

and then we are using the React Native Flatlist Component to

render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the

FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://localhost/bpb-catalog-app-

backend/images/'+item.coverimage}} style={styles.bookCover}/>

</View>

<View style={styles.thumbsUP}>

{thumbsUP(item._id)}

</View>

<View style={styles.thumbsDOWN}>

{thumbsDOWN(item._id)}

</View>

</View>

);

};

We can verify this change and check if the “onPress” event method calls are
now updating the values of the “thumbsUPCounter” as well as
“thumbsUPCounter” of the book records (documents in the MongoDB
database). For this, you need to open MongoDB Compass and check the
status of these counters (“thumbsUPCounter” as well as “thumbsUPCounter”
document fields in our collection “BPBCatalogCollection” which is under
the database “BPBCatalogDB”), as shown in figure 10.22:

Figure 10.22: MongoDB Compass—checking the “ThumbsUPCounter” and “ThumbsDOWNCounter”

As you can see, the “onPress” event method calls are now updating the
values of the “thumbsUPCounter” as well as “thumbsUPCounter” of the book
records (documents in the MongoDB database).
Now it is time to open this app in Android Emulator so that we are sure that it
will work perfectly fine on mobile. But, before we can do that, we need to
change all the references of “http://localhost” to the IP address of our
machine.
Let us see how we can check the IP address of our Windows machine. To do
this, follow these steps:

1. On the system tray of your Windows Task Bar, select WiFi Network
and then click on the Properties of the network to which you are
connected, as shown in figure 10.23:

Figure 10.23: Windows system tray > WiFi Network > Your Connected Network > Properties

2. Once you click the Properties of your network, it will open up a new
window. You need to scroll down and check for your Local IP Address.
You should use “IPv4 address”, as shown in figure 10.24:

Figure 10.24: Windows system tray > WiFi Network > Your Connected Network > Properties
> IPv4 address

In our case, the IP Address is “192.168.1.10”.
Now, in order to view your application correctly under Android
device/emulator, you need to change all the references of the
“http://localhost” in App.js to “http://192.168.1.10”. Following are
the code snippets that need to be changed in App.js.

Changes in App.js
// API Fetch Part - Networking

const [isLoading, setLoading] = useState(true);

const [data, setData] = useState([]); // setData Function and

useState Hook is helpful in using the React State of the

function Components

useEffect(() => {

fetch('http://192.168.1.10:3000/getAllBPBBooks') // Our API

Call using Fetch API "API Developed in Node.js and Express.js

Chapter of this Book"

.then((response) => response.json()) // Response from the API

Server

.then((json) => setData(json)) // Using setData Function

response is sent back and then it is stored in "data"

.catch((error) => console.error(error)) // Error if any is

caught and logged

.finally(() => setLoading(false)); // Finally the task is

done

}, []);

// Header Section

const appHeaderSection = (

<View>

<Image source={{uri:'http://192.168.1.10/bpb-catalog-app-

backend/images/bpb-logo.png'}} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile

App</Text>

<StatusBar style="auto" />

</View>

);

const doThumbsUP = (id) => {

console.log('Thumbs Up Pressed');

console.log(id);

fetch('http://192.168.1.10:3000/thumbsUPForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js

and Express.js Chapter of this Book"

}

const doThumbsDOWN = (id) => {

console.log('Thumbs Down Pressed');

console.log(id);

fetch('http://192.168.1.10:3000/thumbsDOWNForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js

and Express.js Chapter of this Book"

}

// Books List Section

// We are using the "data" which was fetched using the fetch API

and then we are using the React Native Flatlist Component to

render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the

FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://192.168.1.10/bpb-catalog-

app-backend/images/'+item.coverimage}} style=

{styles.bookCover}/>

</View>

<View style={styles.thumbsUP}>

{thumbsUP(item._id)}

</View>

<View style={styles.thumbsDOWN}>

{thumbsDOWN(item._id)}

</View>

</View>

);

};

To open the app in Android Emulator, you can then go to the Expo Dev
Tools page in your browser and click the link, which says “Run on Android
device/emulator”. Once you click this link, the Expo Dev Tools will try to
launch the app in the Emulator with the help of Metro Bundler. But in case it
does not work, you can first open Android Studio and then open AVD
Manager and then run the Android Virtual Device (AVD). This step has
been explained in our previous chapter [Chapter 5, Starting up Programming
with MongoDB and React Native], where we have started the App

Development using React Native. You can follow the same instructions, as
shown in figure 10.25:

Figure 10.25: Expo dev tools > run on android device/emulator

After you click the “Launch this AVD in Emulator”, it will open the
Android Virtual Device. After that, you can again click the link, which says
“Run on Android device/emulator”. This will launch our app in Android
Emulator, as shown in figure 10.26:

Figure 10.26: App Running successfully on Android device/emulator

You can also press the “Thumbs Up” and “Thumbs Down” buttons and check
the Books Records (MongoDB Documents) for the counter updates using
MongoDB Compass, as explained in the previous step.

Conclusion
In this chapter, we have covered the practical step-by-step development of a
mobile app developed using React Native and MongoDB, and we have
learned how to create a mobile app for a publication house. This chapter
explains all the sections in step by step practical manner, and after reading
this chapter, you must have felt more confident in React Native and
MongoDB mobile app development. In the upcoming chapter, we will cover
the practical step-by-step development of a frontend application developed
using Python and MongoDB. We will learn how to create a website for a
publication house where we start with the overview of our frontend
development using Python, Django, and MongoDB.

Questions
1. What is CORS?
2. How can we solve the issue of CORS for Node.js applications using the

Express.js framework?
3. Explain the React Native’s Fetch API?
4. Write a few words on React Native FlatList component.

CHAPTER 11
MongoDB Step by Step Practical

Frontend Development Using Python
Frontend development—creating a website of a publication house
This chapter covers the practical step-by-step development of the frontend
application developed using Python and MongoDB. In this chapter, we will
learn how to create a website for a publication house. This chapter starts with
an overview of our frontend development using Python, Django, PyMongo,
and MongoDB. We will start this chapter with basic requirements. Later in
this chapter, we will learn how we can build the various functionalities of the
frontend application like displaying the book catalog list and displaying the
book cover images, a total number of “Thumbs Up” and “Thumbs Down” for
that particular book using the Python and its Django framework with the help
of Python’s official MongoDB driver. In this chapter, all the sections have
been explained in a step-by-step practical manner so that by the end of this
chapter, you feel more confident in dynamic Python application development
with MongoDB.

Structure
In this chapter, we will discuss the following topics:

An overview of our frontend application developed using Python and
MongoDB
Installing Python’s Django framework on Windows operating system
Building our frontend application

Step 1—Install Django using PIP
Step 2—Creating a default Django project
Step 3—Creating a new Django app
Step 4—Updating the Django app and Django project files

Step 5—Using PyMongo in Django to connect to MongoDB
Step 6—Adding CSS and static files in our Django app
Step 7—Designing our frontend with CSS Flex (Flexible Box
Layout)
Step 8—Adding book pictures to our frontend app

Step 8.1—Start WAMP server
Step 8.2—Running localhost
Step 8.3—Coding part

Step 9—Adding more details functionality to our frontend app
Step 10—Fixing underscore attribute issue for Django using the
Django template tags
Step 11—Creating the More Details page
Step 12—Designing the More Details page
Step 13—Making “Thumbs Up” and “Thumbs Down” looks nicer

Objectives
After studying this chapter, you will learn how to develop the frontend
application using Python, Django, PyMongo, and MongoDB. This chapter
starts with the basic requirements, and then in the latter part of this chapter,
readers will learn how they can build the various functionalities of the
frontend application like displaying the book catalog list and displaying the
book cover images, total number of “Thumbs Up” and “Thumbs Down” for
that particular book using the Python and its Django framework with the help
of Python’s official MongoDB driver.

An overview of our frontend application developed
using Python and MongoDB
In this chapter, we are going to develop a frontend application using Python
and MongoDB.
We are going to use Python’s Django framework and Python’s official
MongoDB driver, “PyMongo” which we have already worked on in Chapter
6, Starting up Programming with MongoDB and Python.

This Python frontend application will have the following features:

Ability to list (read) all the books in the catalog and show their
information and book picture
Ability to show the total number of “Thumbs Up” and “Thumbs Down”
counts related to the particular book

So, in order to create this frontend application, we would be writing and
modifying some codes using the following:

Python and Python’s Django framework—to build the frontend
application
PyMongo driver for MongoDB—to connect with Mongo DB

Requirements
The reader should have the basic knowledge and understanding of the
following:

Python (recommended; a brief introduction is given in Chapter 6,
Starting up Programming with MongoDB and Python of this book).

Installing Python’s Django framework on Windows operating
system
Let us install the Django framework on Windows operating system by
following the step-by-step installation method.

Installation steps
Let us start with the installation of Python on our machine; the following are
the steps that are required to be performed to install Django.
Step 1—Install Django using PIP

1. Open the Django official website download page
—https://www.djangoproject.com/download/ in your favorite
browser, as shown in figure 11.1:

Figure 11.1: Django official website download page

2. In order to install the Django framework, we need to first create our
project folder that is “bpb-catalog-app-frontend” in our case, the
location of this folder is “D:\bpb-catalog-app-frontend”, as shown in
figure 11.2:

Figure 11.2: Creating a project folder: “bpb-catalog-app-frontend”

3. Now first, open the Command Prompt and navigate to the project
folder, the path of which is “D:\bpb-catalog-app-frontend” in our
case, as shown in figure 11.3:

Figure 11.3: Command prompt—navigating to our Project Folder: “bpb-catalog-app-
frontend”

4. Now in the Command Prompt, then navigate to the project directory,
which is “D:\bpb-catalog-app-frontend” in our case and type the
following command and press Enter to install the Django framework for
Python (as shown in figure 11.4):
pip install Django

Figure 11.4: Installing Django

5. Now in the same Command Prompt, type the following command to
verify if Django has been installed successfully (as shown in figure
11.5):
python -m django --version

Figure 11.5: Installing Django

Step 2—Creating a default Django project

1. Open the Command Prompt, then navigate to the project directory that
is “D:\bpb-catalog-app-frontend” in our case and type the following
command and press Enter to create the new Django project (as shown in
figure 11.6):
jango-admin startproject BPBOnlineBookShop

Figure 11.6: Creating a new Django project using Django admin command

2. If you look into your main project folder, which is “D:\bpb-catalog-
app-frontend”, you will now see that there is a new Django project
folder created by the command given in point 1 of this step with the
name same as the Django project name ”BPBOnlineBookShop” given as
the parameter to the command. You will see that under the folder
“BPBOnlineBookShop”, there is one subfolder with the same name plus
one file, “manage.py” that is a command-line utility to communicate
with the Django project, all these have been automatically created by
the Django Admin command “django-admin”. So this is the starting
point of creating our Django application, as shown in figure 11.7:

Figure 11.7: New folder and files are created by the Django admin command

3. Now go to the command prompt and navigate to the Django project, the
location of which is “D:\bpb-catalog-app-
frontend\BPBOnlineBookShop” and then run the following command
(as shown in figure 11.8):
python manage.py runserver

Figure 11.8: Starting our app with Django—run server command

4. Once you run the command mentioned in the above point, you will get
the message that Python has started the development server in the local
URL such as http://127.0.0.1:8000 in our case, as shown in figure
11.9:

Figure 11.9: Starting our app with Django—run server command—development server started

5. Open your favorite browser, such as Google Chrome, and type the
abovementioned URL: http://127.0.0.1:8000 in the Address Bar and
press Enter. Once you do this, you will see the Django demo app loaded
in your browser window, as shown in figure 11.10:

Figure 11.10: Django demo app loaded in the browser

Step 3—Creating a New Django app
In the previous step, we have created a default demo project in Django. Note
that the Django project can have many apps; now it is time to create a new
Django app so that we can connect it to MongoDB.

1. Open the Command Prompt, then navigate to the Django Project
Directory, which is “D:\bpb-catalog-app-
frontend\BPBOnlineBookShop” in our case and type the following
command and press Enter to create the new Django app under the
current Django project (as shown in figure 11.11):
python manage.py startapp BPBOnlineBookShopMongoDBApp

Figure 11.11: Django—creating a new app

2. If you look into your Django project folder, which is “D:\bpb-catalog-
app-frontend\BPBOnlineBookShop” in our case, you will now see that
there is a new Django app folder created by the command given in point
1 of this step with the name same as the Django app name”
BPBOnlineBookShopMongoDBApp” given as the parameter to the

command. You will see that under the folder
“BPBOnlineBookShopMongoDBApp”, there is one subfolder with the name
“migrations”, plus other python app-related files which has been
created automatically by Django, as shown in figure 11.12:

Figure 11.12: Django—creating a new app —new app related files and folders created by
Django command

The important thing that is related to Django app files in this scenario is that
Django created the necessary files for our app, and the only thing now we
need to do is to modify these files or add new files according to our
requirements. Before we make our app dynamic with MongoDB, we have to
do some adjustments to the existing files and create some new files. With the
help of the next step, we will do some modifications in the current Django
app, as well as Django project files, so that it would render us the HTML
output as required to display by the app.

Step 4—Updating the Django app and Django project files
Let us first create a template that we would like to render on the home page
of the Django project; as in the previous step of this chapter, we have seen
that when we start our project and browse it using the browser, it opens up
the default Django Home Page. As we are working on our custom app now,
we want to show the app-specific page. So in order to achieve this, we will do
some modifications and additions to the current Django app folder as well as
the Django project folder. Following are the points for this step:

1. Open the current Django Project in any Code Editor or Integrated
Development Environment (IDE) like Visual Studio Code, as shown
in figure 11.13:

Figure 11.13: Opening a Django project in a Code Editor like Visual Studio Code

2. Now create a new folder named “templates” under the app folder,
which is “BPBOnlineBookShopMongoDBApp” in our case, as shown in
figure 11.14:

Figure 11.14: Creating a “templates” folder in our Django app

3. Now create a new folder named as same as our Django app name
“BPBOnlineBookShopMongoDBApp” under the “templates” folder. This
structure will be according to the Django naming convention, as shown
in figure 11.15:

Figure 11.15: Creating a “BPBOnlineBookShopMongoDBApp” subfolder under the
“templates” folder in our Django App

4. Now create a new HTML Template file named “bpbAppIndex.html”
under the current path, which is “D:\bpb-catalog-app-
frontend\BPBOnlineBookShop\BPBOnlineBookShopMongoDBApp\templates\BPBOnlineBookShopMongoDBApp

in our case, as shown in figure 11.16:

Figure 11.16: Creating a “bpbAppIndex.html” file under the
“BPBOnlineBookShopMongoDBApp” folder in our Django app

5. Now add the following HTML in the “bpbAppIndex.html” file, as
shown in figure 11.17:
<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

</head>

<body>

<h1>BPB Online Bookshop<h1>

</body>

</html>

Figure 11.17: Adding HTML code in “bpbAppIndex.html” file

6. Modify the “views.py” file in our app and create a new function related
to the rendering of the view, as shown in figure 11.18:
from django.shortcuts import render

Create your views here.

def bpbAppIndex(request):

return render(request,

'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html')

Figure 11.18: Modifying “views.py” file in our Django app

7. We need to create a new file named urls.py in our app and connect this

file to the existing urls.py file of the project folder. The newly created
urls.py is similar to the urls.py which is located in our project folder.
If we look into the default “urls.py” file located in our project
directory, we can code some code from there to be pasted in the newly
created “urls.py” file in our app. Following is the code that we will use
in our app’s urls.py file with a few changes. We have copied the
following lines from the existing urls.py file in our project directory.
from django.urls import path

urlpatterns = [

path('',),

]

8. Basically, the “import” statement and “urlpatterns” list, and we will
do some changes in this file. The first thing is to include the views to be
used in this file so that we can use the views that we created in our app,
as shown in figure 11.19:
from django.urls import path

from . import views

urlpatterns = [

path('', views.bpbAppIndex, name='BPB-Book-Shop-Home-

Page'),

]

Figure 11.19: Creating a new “urls.py” file in our Django app

9. We have to finally map this “urls.py” file which is our app’s directory,
to the urls.py file of our project’s directory. For this purpose, we need
to open the urls.py file located in our project’s directory and map both
urls.py files using the “urlpatterns” list of the project’s directory
urls.py; the code is shown as follows:
First, we have to add the include function in the import sections of the
“django.urls”
from django.urls import path,include

And then add the following line to the “urlpatterns”:
path('', include('BPBOnlineBookShopMongoDBApp.urls'))

The final code in our project’s “urls.py” file will look like this, as
shown in figure 11.20:
from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('BPBOnlineBookShopMongoDBApp.urls'))

]

Figure 11.20: Updating the “urls.py” file in our Django project —including the “urls.py” file
from our Django app

10. The next step is the register our app in the “settings.py” file located in
the project’s directory. Open the “settings.py” file in the project’s

directory and register the app in the “Application definition” section
under the “INSTALLED_APPS” list as follows:
“BPBOnlineBookShopMongoDBApp.apps.BpbonlinebookshopmongodbappConfig”,

The above code contains the <Name of our App>.apps.<Name of the
Class defined in the apps.py file Located in the App’s

Folder>

The name of the class file of our app is located under the “apps.py” file
in our app directory, as shown in figure 11.21:

Figure 11.21: “apps.py” file under our app folder—taking reference to the app class file

11. We need to copy the class name from the “apps.py” file located in the
app’s folder to use while registering our app in the list of installed apps,
as shown in figure 11.22:
The final code will look like the following:
Application definition

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'BPBOnlineBookShopMongoDBApp.apps.BpbonlinebookshopmongodbappConfig'

]

Figure 11.22: Updating “settings.py” file in our Django project and registering our new app
under the list of installed apps

12. Now we have actually created our app, and it is now ready to be run. To
do this, we need to open the Command Prompt and navigate to our
project folder, which is located at “D:\bpb-catalog-app-
frontend\BPBOnlineBookShop”, as shown in figure 11.23:

Figure 11.23: Command Prompt—navigating to our project folder

13. We can run the server using the following command, as shown in figure
11.24:
python manage.py runserver

Figure 11.24: Command Prompt—Django run server command—starting our app

14. If we open http://127.0.0.1:8000 in our browser, we will see our app
will show the HTML which is rendered from the template view file for
the home page path, as shown in figure 11.25:

Figure 11.25: App home page is opened in browser—with new updates

Step 5—Using PyMongo in Django to connect to MongoDB
Now we will use PyMongo in Django to connect our Django app with
MongoDB.

1. The first step is to open the Django project’s “settings.py” file and do
the following modifications:
Comment the existing database-related settings, and add a new database
connection string.
DATABASES = {

'default': {

'ENGINE': 'django.db.backends.sqlite3',

'NAME': BASE_DIR / 'db.sqlite3',

}

}

DB_CONNECTION_STRING = 'mongodb://localhost:27017/'

Here, we are using the default localhost settings for MongoDB with the
default port number to connect Django with MongoDB using PyMongo.

Note:

1. We are not using Django features fully in this chapter. This
chapter gives you an overview of creating a Python app with
MongoDB. You can integrate Django apps with MongoDB in

many other ways, like using Django and other drivers with some
more features.

2. More information can be found at:
https://docs.djangoproject.com/en/3.2/ref/settings/#databases
https://pypi.org/project/djongo/

3. In this chapter, we are using PyMongo, which we have already
installed and used in Chapter 6, Starting up Programming with
MongoDB and Python of this book. Please go through the
instructions on how to install and use PyMongo with Python from
Chapter 6, Starting up Programming with MongoDB and Python
if you want to refresh the basics related to PyMongo.

2. Open the “views.py” file and add the following code:
import pymongo # Import PyMongo

from django.conf import settings # Import the Settings (We

will use DB_CONNECTION_STRING from the settings file)

The code and the comments above are self-explanatory.
3. Then in our existing view function “bpbAppIndex”. We will add the

code to fetch the data from the existing database “BPBCatalogDB” and
collection “BPBCatalogCollection” using the following code:
Create your views here.

def bpbAppIndex(request):

Connect to MongoDB Database from the Connection String

Defined in Django Project "settings.py"

PyMongoclient =

pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Then, the next step is to fetch the data from the collection.
Fetch All the Documents from Collection

BPBBooks = collection_name.find({})

The last step is to pass the MongoDB data object variable “BPBBooks”
to the related template’s output file
“BPBOnlineBookShopMongoDBApp/bpbAppIndex.html” using the JSON
Style “Key”: “Value” as an additional parameter to the “render”
function.

Pass the Data Object to the Template Output by passing

as a parameter using "Key" : "Value" Style

return render(request,

'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html', {'BPBBooks'

: BPBBooks})

The above data object will be used in the template file to show the
values fetched from the database.
The overall “views.py” file will look like this, as shown in figure
11.26:
from django.shortcuts import render

import pymongo # Import PyMongo

from django.conf import settings # Import the Settings (We

will use DB_CONNECTION_STRING from the settings file)

Create your views here.

def bpbAppIndex(request):

Connect to MongoDB Database from the Connection String

Defined in Django Project "settings.py"

PyMongoclient =

pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Fetch All the Documents from Collection

BPBBooks = collection_name.find({})

Pass the Data Object to the Template Output by passing

as a parameter using "Key" : "Value" Style

return render(request,

'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html', {'BPBBooks'

: BPBBooks})

Figure 11.26: Our app’s “views.py” updated file

4. In the related template output file
“BPBOnlineBookShopMongoDBApp/bpbAppIndex.html”, we will iterate
the data object passed as a parameter from the “render” function in the
“views.py” file to show the list of books title using the following code
(as shown in figure 11.27):
<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

</head>

<body>

<h1>BPB Online Bookshop</h1>

<hr />

{٪ for BPBBook in BPBBooks %}
{{BPBBook.title}}

{٪ endfor %}

</body>

</html>

Figure 11.27: Our app’s template view file—“bpbAppIndex.html” updated

5. We can now run the server using the following command (as shown in
figure 11.28):
python manage.py runserver

Figure 11.28: Django run server command—running our app

6. If we open our browser, we will see our app will show the HTML and
the title of the books fetched from the MongoDB collection documents,
as shown in figure 11.29:

Figure 11.29: Opening our app in the browser —new updates are loaded—list of books fetched
from MongoDB collection

Step 6—Adding CSS and static files in our Django app
Now, we can add some CSS to our template and make it look nicer.
To do this, we need to create a new folder with the name “static” to hold
CSS and other static files like static images and JavaScript files so that we
can call them in our template.
This “STATIC_URL” is already defined in the “settings.py” file under the
main project directory (as shown in figure 11.30).
For more details, you can refer to this URL:
https://docs.djangoproject.com/en/3.2/howto/static-files/

Figure 11.30: Django project—“settings.py” file—STATIC_URL path

You may change this to any other name. But for our case, we will keep it as it
is and will create a new folder with the name “static” in our Django app.
We will be following the Django specific path for our static files, which is:
my_app/static/my_app/example.jpg

This is in our case:
BPBOnlineBookShopMongoDBApp/static/

BPBOnlineBookShopMongoDBApp/example.jpg

1. So first, we will create a “static” folder under our app directory, which
is “BPBOnlineBookShopMongoDBApp” (as shown in figure 11.31)..

Figure 11.31: Our app—creating a new Folder named “static”

2. Then we will create another sub-directory with the same name as our
app, which is “BPBOnlineBookShopMongoDBApp” under the newly
created “static” directory, as shown in figure 11.32:

Figure 11.32: Our app—creating a new subfolder named
“BPBOnlineBookShopMongoDBApp” under the “static” folder

3. We will now test this by copying the “BPB Publications” logo file into
this location or path, as shown in figure 11.33:

Figure 11.33: Copying static files such as logos to a newly created folder under our “static”
folder

4. For this, we will add the following code in our template file
“bpbAppIndex.html”:
First, we will add the following code on the top of our file, which
allows us to load the static files in our template.
{% load static %}

Then we will add some HTML and call the related file using the Django
template helpers (as shown in figure 11.34).

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}" alt="BPB

Publications Logo"></div>

Figure 11.34: Updating our template view file “bpbAppIndex.html”

The whole template file code looks like the following:
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

</head>

<body>

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}" alt="BPB

Publications Logo"></div>

<h1>BPB Online Bookshop</h1>

<hr />

{٪ for BPBBook in BPBBooks %}
{{BPBBook.title}}

{٪ endfor %}

</body>

</html>

5. We can now run the server using the following command (as shown in
figure 11.35):
python manage.py runserver

Figure 11.35: Django run server command—starting our app

6. If we open our browser, we will see our app will show the HTML and
the title of the books fetched from the MongoDB collection documents
along with the BPB publication logo, as shown in figure 11.36:

Figure 11.36: Our app running in browser—with logo

Step 7 – Designing our frontend with CSS Flex (Flexible Box Layout)
Let us follow this layout to create our frontend design, as shown in figure
11.37:

Figure 11.37: Frontend app layout to follow

As we follow this design, we need to add the HTML accordingly and also
write the CSS.
We will use <div> and use CSS Flex (Flexible Box Layout) to create our
front end, as shown in the figure above.

1. Now, we can create a new CSS File with the name “style.css” under
the Static folder of our app. The location in our case would be:
“static\BPBOnlineBookShopMongoDBApp\style.css”. This is the same
location where we have copied our logo file, as shown in figure 11.38:

Figure 11.38: Creating a new CSS file

2. Let us write some CSS code in this newly created style.css file. Here,
we will use CSS Flexbox (Flexible Box Layout) to style our frontend.
But even before adding CSS code, we have to do some modifications to
our template HTML file.

Include the CSS file in the template
Replace and with <div> with class names

The following is a modified code of the HTML template file
“bpbAppIndex.html”, which includes the required preceding two
changes:
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static

'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}
<div class="item">

<div class="book-image-container"></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button"></div>

</div>

{٪ endfor %}
</div>

</div>

</div>

</body>

</html>

The following is the CSS, which we write in our style.css:
.main-container {

margin: 0 auto;

max-width: 1200px;

}

.header-container {

background: #ffffff;

height: 200px;

}

.body-container {

width: 1200px;

background: #fafafa;

margin: 20px;

}

.items {

display: flex;

flex-wrap: wrap;

justify-content: center;

}

.item {

width: 300px;

height: 250px;

border: 1px;

border-style: solid;

border-color: blueviolet;

margin: 15px;

text-align: center;

padding: 10px;

}

.book-image {

display: inline-block;

width: 150px;

height: 150px;

}

.book-title {

margin-top: 5px;

font-family: Georgia, 'Times New Roman', Times, serif;

font-weight: bold;

font-size: 14px;

}

3. We can now run the server using the following command if it is not
running:
python manage.py runserver

If your server is already started, then if you refresh the browser page,
the layout will look as follows (figure 11.39):

Figure 11.39: Refreshing the page—new frontend layout

Step 8—Adding book pictures to our frontend app
Now, we will add the book cover pictures above the book title inside the
<div> with a class “book-image-container”.
In order to do so, we need to first run our backend application which we had
created with PHP and MongoDB earlier in Chapter 8, MongoDB Step by Step
Practical Application Development Using PHP of this book. To do that, we
just need to be sure that our WAMP server is running and our backend

application is accessible using the browser URL:
If you have not started the WAMP server, please start the WAMP server first.

Step 8.1—Start WAMP server
You should start the WAMP server by typing “wamp” on the search area of
the taskbar. Opening the WAMP server will launch the WAMP server on
your Windows machine, as shown in figure 11.40:

Figure 11.40: Launching WAMP server

Once the WAMP server has been successfully started, you will see the
WAMP server icon (in green) in the taskbar tray. When you run the WAMP
server, it usually takes a few seconds to start all the services such as Apache,
MySQL, and so on, and the icon changes from red to orange and finally to
green. If the WAMP icon is green, it means that all the services have been
successfully started, and now you can use the WAMP server, as shown in

figure 11.41:

Figure 11.41: WAMP server—all services have been started successfully

Step 8.2—running localhost
Once the WAMP server has started on your machine, you can start working
with the local server, which has Apache and PHP installed. As we have the
required environment ready, we can run localhost.
To run localhost, just open your favorite browser like Google Chrome and
type: http://localhost/ and then press Enter. This will open up a new
page, and you will be shown the WAMP server default page on your
localhost. Here, you will get all the information about the version of the
WAMP server, server configurations, which has a list of various software
running in the background along with their version details such as Apache
web server and PHP, as shown in figure 11.42:

Figure 11.42: WAMP server—localhost

If you are able to see this page, then this means that your WAMP server has
been successfully started.
Now try to open the PHP-based backend application using the URL:
http://localhost/bpb-catalog-app-backend/.
You should see the backend dashboard while you browse this URL, as shown
in figure 11.43:

Figure 11.43: Backend application in PHP—running using the WAMP server

Once we are able to open our backend application, it means we can now use
the backend application URL to display the book cover images.

Step 8.3—Coding part
Now, we need to update our HTML Code in “bpbAppIndex.html” as follows:
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static

'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}
<div class="item">

<div class="book-image-container"><img class="book-image"

src="http://localhost/bpb-catalog-app-

backend/images/{{BPBBook.coverimage}}" /></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button"></div>

</div>

{٪ endfor %}
</div>

</div>

</div>

</body>

</html>

If we see carefully in the above HTML code (template), we will find the
under the image src attribute the value is as follows:
http://localhost/bpb-catalog-app-
backend/images/{{BPBBook.coverimage}}

In which the {{BPBBook.coverimage}} will be appended to the URL from
the database according to the book cover page.
Let us now refresh the browser, and we will see the book cover images
appear in the frontend application. This will show the book’s images, and
these book images are rendered from our backend application which we
created earlier in this book using PHP, as shown in figure 11.44:

Figure 11.44: Our frontend application in Django—showing books images—these book images are
rendered from our backend application which we created earlier in this book using PHP

Now our next step is to create a link (or button) that will take us to the book
details page on click.
To do so, let us update our HTML and CSS.

HTML
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static

'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}
<div class="item">

<div class="book-image-container"><img class="book-image"

src="http://localhost/bpb-catalog-app-

backend/images/{{BPBBook.coverimage}}" /></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button"><a href="/book-

details">More Details</div>

</div>

{٪ endfor %}
</div>

</div>

</div>

</body>

</html>

CSS
.main-container {

margin: 0 auto;

max-width: 1200px;

}

.header-container {

background: #ffffff;

height: 200px;

}

.body-container {

width: 1200px;

background: #fafafa;

margin: 20px;

}

.items {

display: flex;

flex-wrap: wrap;

justify-content: center;

}

.item {

width: 300px;

height: 250px;

border: 1px;

border-style: solid;

border-color: blueviolet;

margin: 15px;

text-align: center;

padding: 10px;

}

.book-image {

display: inline-block;

width: 150px;

height: 150px;

}

.book-title {

margin-top: 5px;

font-family: Georgia, 'Times New Roman', Times, serif;

font-weight: bold;

font-size: 14px;

}

.more-details-button {

margin-top: 20px;

}

.more-details-button>a {

background-color: darkorchid;

color: white;

padding: 10px 15px;

text-decoration: none;

}

.more-details-button>a:hover {

background-color: blueviolet;

color: white;

padding: 10px 15px;

text-decoration: none;

}

If we refresh our browser, we will see that our changes are reflected, and we
can see the “More Details” button below the book title, as shown in figure
11.45:

Figure 11.45: Our frontend app—showing the “More Details” button

Our frontend application main page is almost complete, but now the next step
is to link the “More Details” button to the book details page. For this step,
we need to first append the “Book ID” to the button link so that we can refer
to the Book ID while we are navigating to the book details page.

Step 9—Adding more details functionality to our frontend app
In this step, we will add the “More Details” functionality to our app. In this,
once the More Details button is clicked, then it will open the details page
related to the specific book.
Let us try to append the following in the link:
/{{BPBBook._id}}

With this change the HTML of the button <div> gets updated as follows:
<div class="more-details-button"><a href="/book-

details/{{BPBBook._id}}">More Details</div>

Now, if you will refresh the browser, it will give you the error, and our
application will break, as shown in figure 11.46:

Figure 11.46: Our frontend app breaks due to the updated link code of the “More Details” button

We can even see the same error in the command prompt or console from
where we are running our frontend application, as shown in figure 11.47:

Figure 11.47: Command Prompt—app console showing the errors

This means that we cannot move ahead before fixing this issue. So, we need
to fix this issue before we move ahead in the frontend app development.

Step 10—Fixing underscore attribute issue for Django using the Django
template tags
As you can see that, the above issue arises because we are trying to get the
MongoDB document ID (_id) by referencing the MongoDB object
(BPBBook).
So in our case, BPBBook._id will not work as this is Django-specific
nomenclature that we need to follow.
To fix this issue, we need to use the Django template tags so that we can get
the MongoDB document ID in our template.

1. For this, we need to create a directory in our Django app with the name
“templatetags”. So in our case, the path would be:
BPBOnlineBookShopMongoDBApp/templatetags/, as shown in figure
11.48:

Figure 11.48: Creating a new directory named “templatetags” inside our app folder

2. The next step is to create a blank __init__.py into the “templatetags”
directory. The purpose of this file is to make the Django framework
know that this “templatetags” is a Module, and Django will
automatically treat this as a Module. So in our case, the path would be:
BPBOnlineBookShopMongoDBApp/templatetags/__init__.py, as
shown in figure 11.49:

Figure 11.49: Creating a new file named “__init__.py” inside the “templatetags” folder of our
app

3. After we finish creating our blank __init__.py file next step is to
create a new file that will contain the Template Tag code; for this
purpose, we will create a new file in the “templatetags” directory with
the name “custom-mongodb-tags.py”. So in our case, the path would
be: BPBOnlineBookShopMongoDBApp/templatetags/ custom-mongodb-
tags.py, as shown in figure 11.50:

Figure 11.50: Creating a new file named “custom-mongodb-tags.py” inside the “templatetags”
folder of our app

4. Now, we will add the Template Tag related code in this file which is as
follows:
from django import template

register = template.Library()

@register.filter(name='bpbfrontendapp')

def bpbfrontendapp(obj, attribute):

return obj[attribute]

The purpose of this code is to use the template library and register a new
filter with the name “bpbfrontendapp”. The function will have the same
name in this code, “bpbfrontendapp”, this function will take the two
arguments one is an “Object”, and the second one is the “attribute”, which
is a key. So this function will fetch the key’s value, or you can simply say
attribute’s value and return to the template from where it is called.

1. We have to use this Template Tag filter functionality in our Home Page
template, So for this, we need to open our template file, which is:
“bpbAppIndex.html”
So first step is to add the following code:
{% load custom-mongodb-tags %}

This code will load this Template Tag module in our Template View
file, and using this; we can then refer to this custom Template Tag
module function and filter.

2. We can use the Template Tag filter in our link, and the following is the
code for that:

<div class="more-details-button"><a href="/book-

details/{{ BPBBook|bpbfrontendapp:'_id' }}">More

Details</div>

So basically, we are referring to the “bpbfrontendapp” filter, which
will filter this value using the template Tag function and pass it back to
the template. So, in this case, the real value of MongoDB Document ID
will be returned, and the error will go.
The following is the full HTML code for “bpbAppIndex.html”:
{% load static %}

{% load custom-mongodb-tags %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static

'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}
<div class="item">

<div class="book-image-container"><img class="book-

image"

src="http://localhost/bpb-catalog-app-

backend/images/{{BPBBook.coverimage}}" /></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button"><a href="/book-

details/{{ BPBBook|bpbfrontendapp:'_id' }}">More

Details</div>

</div>

{٪ endfor %}
</div>

</div>

</div>

</body>

</html>

Now to verify if this functionality has worked and we are not getting the
previous error, we need to start our app from the command prompt if it is not
running, using the following command:
python manage.py runserver

If your server is already started, then if you refresh the browser page, the
layout will look as follows (figure 11.51):

Figure 11.51: Our frontend app—the error is gone, and we can now see the MongoDB Document
object ID appended to the URL

If you see the above image, you will see that once hovering the mouse to the
“More Details” button. You can now see that the MongoDB Document ID is
appended to the URL, and the error that we were getting earlier has also
gone.
Now, we have to create the “More Details” page for a specific book. In our
next step, we will learn how to create this new page.
Step 1—Creating the more details page
To create a More Details page, we need to perform the few similar tasks that

we did for the main page.
So the first thing is to create a route for this new More Details page; for this,
we need to open the “urls.py” file in our app and then add one new URL,
which will take care of routing it to the correct URL and load a related view.

1. In the “urlpatters” list we need to add the following code:
path('book-details/<str:bookId>',

views.bpbAppBookDetailsIndex, name='BPB-Book-Shop-Book-

Details-Page'),

This code has been already explained in the previous section, and we
are just adding our URL path, which is “book-details/<str:bookId>”
in which the “bookId” is the additional parameter that is actually a
dynamic MongoDB Document ID related to the particular book and is
of string type.
We have also specified the related view function (method)
“bpbAppBookDetailsIndex”, which we have to create next in our
“view.py” file in our app.
The following is the updated code for “urls.py” for our app, as shown
in figure 11.52:
from django.urls import path

from . import views

urlpatterns = [

path('', views.bpbAppIndex, name='BPB-Book-Shop-Home-

Page'),

path('book-details/<str:bookId>',

views.bpbAppBookDetailsIndex, name='BPB-Book-Shop-Book-

Details-Page'),

]

Figure 11.52: Updated “urls.py” file in our app

Before we create a template view file for this path or URL, Let us do
some adjustments to our existing “view.py” and add the new method
related to the new URL accordingly.

2. The first thing is to shift all the PyMongo related code from the existing
home page view “bpbAppIndex” to the use between all the views now.
As we are adding one new view related to the “More Details” page, the
following code has to be shifted in the global scope.
Connect to MongoDB Database from the Connection String

Defined in Django Project "settings.py"

PyMongoclient =

pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Create your views here.

3. The next update is to add the following line at the top of the file where
we are importing a few modules and libraries.
from bson.objectid import ObjectId # For MongoDB Document

Object reference in the PyMongo Functions

This will be required during the PyMongo find function call, where we
would be now referring to the MongoDB document with respect to
MongoDB document object ID.

4. Next, we will be defining our new view function, which will be as
follows:
def bpbAppBookDetailsIndex(request, bookId):

Fetch Specific Document from Collection with respect to

Document or Book ID

BPBBookFromId = collection_name.find_one({"_id" :

ObjectId(bookId)})

return render(request,

'BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.html',

{'BPBBookFromId' : BPBBookFromId})

This function will take a “bookId” as a second parameter from the URL
and pass it to the function. Our function will then fetch the relevant
document from the database with respect to this ID, and the whole
document object is then passed to the template view for further display
or process.
In our case, the template for this view would be
“BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.htm”,
which we have to create next.
The following is the updated code for the “views.py” file for our app
(as shown in figure 11.53):
from django.shortcuts import render

import pymongo # Import PyMongo

from django.conf import settings # Import the Settings (We

will use DB_CONNECTION_STRING from the settings file)

from bson.objectid import ObjectId # For MongoDB Document

Object reference in the PyMongo Functions

Connect to MongoDB Database from the Connection String

Defined in Django Project "settings.py"

PyMongoclient =

pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Create your views here.

def bpbAppIndex(request):

Fetch All the Documents from Collection

BPBBooks = collection_name.find({})

Pass the Data Object to the Template Output by passing

as a parameter using "Key" : "Value" Style

return render(request,

'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html', {'BPBBooks'

: BPBBooks})

def bpbAppBookDetailsIndex(request, bookId):

Fetch Specific Document from Collection with respect to

Document or Book ID

BPBBookFromId = collection_name.find_one({"_id" :

ObjectId(bookId)})

return render(request,

'BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.html',

{'BPBBookFromId' : BPBBookFromId})

Figure 11.53: Updated “views.py” file in our app

After we are done with the above parts, now we have to create the
HTML template file to render this new view.

5. For this, we have to create a new HTML template file under our
existing app templates folder, which would be:
“BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.html” in
our case:
The following is the code for the newly created template file (as shown
in figure 11.54):
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Book Details Page - BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static

'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

{{BPBBookFromId}}

</div>

</div>

</body>

</html>

Figure 11.54: New template file “bpbAppBookDetailsIndex.html” File in our App for More
Details Page

Before we do some fancy stuff with this template file using some new
CSS. Let us run it to check if everything is working fine with this page
till now.
To do this, we need to run our Django app if it is not running and then
first run the app server and then open our frontend application in the
browser; these steps have been explained many times in previous
sections. Please follow them if you have any confusion in this.
Make also sure that your WAMP server is running and you are able to
access the backend application, which is required to serve the images to
the frontend application. If it is not running, please start your WAMP

server.
After your app has been started and you have opened your frontend
application in the browser, you will see the home page of our frontend
application.

6. Now to check if everything is working for the new “More Details” page,
you need to now click on any of the book’s “More Details” button (as
shown in figure 11.55), and this will load the new page that we have
created.

Figure 11.55: Our app’s—home page – clicking More Details button

Once your new page is loaded, you can see the new page content as similar to
shown in the following screenshot (figure 11.56):

Figure 11.56: Our frontend app—more details page

As we can now see that we have all the data present to be displayed in our
frontend “More Details” page, we can now do some modifications in the
HTML and CSS to display this data beautifully.

Step 12—Designing the More Details page
So let us have a very simple layout for the More Details page, as shown in
figure 11.57:

Figure 11.57: More Details page template layout

1. We now follow the above layout for More Details page, and the
following is the updated HTML for the
“bpbAppBookDetailsIndex.html” file (as shown in figure 11.58):
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Book Details Page - BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static

'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="book-details-body-container">

<div class="book-details-book-image-container"><img

class="book-details-book-image"

src="http://localhost/bpb-catalog-app-

backend/images/{{BPBBookFromId.coverimage}}" />

</div>

<div class="book-details-book-title">

{{BPBBookFromId.title}}</div>

<div class="book-details-book-other-details">

Description :

{{BPBBookFromId.description}}
Price :

{{BPBBookFromId.price}}</div>

<div class="more-details-book-thumbs-up-down-

container">Thumbs Up Count :

{{BPBBookFromId.thumbsUPCounter}} Thumbs Down

Count : {{BPBBookFromId.thumbsDOWNCounter}}</div>

</div>

</div>

</body>

</html>

Figure 11.58: More Details page—updated HTML view file—bpbAppBookDetailsIndex.html

2. We have also updated the CSS according to this new layout. So
following is the updated code at the end of our existing CSS file, which
is located under the “static” folder of our app (as shown in figure
11.59):
/* More Details Page CSS Starts Here */

.book-details-body-container {

text-align: center;

}

.book-details-book-image {

display: inline-block;

width: 200px;

height: 200px;

margin-bottom: 20px;

}

.book-details-book-title {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 20px;

font-weight: bold;

margin-bottom: 20px;

}

.book-details-book-other-details {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 12px;

max-width: 1000px;

margin-left: auto;

margin-right: auto;

text-align: left;

margin-bottom: 20px;

}

Figure 11.59: Updated CSS file—style.css

Let us run it to check if everything is working fine with this page till
now.
To do this, we need to run our Django app. If it is not running and then
first run the app server and then open our frontend application in the
browser, these steps have been explained many times in previous
sections. Please follow them if you have any confusion in this.
Make also sure that your WAMP server is running and you are able to
access the backend application, which is required to serve the images to
the frontend application. If it is not running, please start your WAMP
server.

3. After your app has been started and you have opened your frontend
application in the browser, you will see the home page of our frontend
application. Please navigate to the More Details page by clicking the
“More Details” button of any of the listed books. Once you do this,
you will be able to see the More Details page with the new layout, as
shown in figure 11.60:

Figure 11.60: More Details page—updated changes are shown in the browser

We need to do a few of the changes in this layout to make it perfect:

If there is no count for “Thumbs Up” or “Thumbs Down”, then show
“0” instead of blank.
Use some Icons to show the “Thumbs Up” or “Thumbs Down”

In the last step of this application, we will make our “Thumbs Up” and
“Thumbs Down” looks nicer.

Step 13—Making “Thumbs Up” and “Thumbs Down” looks nicer
There are now two things that we need to do in this step that we mentioned in
the last step.

1. To make our “Thumbs Up” and “Thumbs Down” looks nicer. In this
step, we will use Google Font “Material Icons”. For more
information, you can refer to this URL: https://fonts.google.com/icons

2. To add Google font “Material Icons” we just need to include the
following line inside the <head> tag of our Template HTML file:
<link rel="stylesheet"

href="https://fonts.googleapis.com/icon?

family=Material+Icons">

Adding this line will call the external CSS file, which will help us to use

the CSS classes related to Google icons to be used in our template.
3. Now, we need to do some more modifications in the HTML file where

we are showing the “Thumbs Up” and “Thumbs Down” text in a
container <div> with class “more-details-book-thumbs-up-down-
container” inside this <div> we will modify the existing code and use
Google icons. The following is the updated code for the same:
<div class="more-details-book-thumbs-up-down-container">

<div class="more-details-book-thumbs-up"><i

class="material-icons">thumb_up</i>

{{BPBBookFromId.thumbsUPCounter}}</div>

<div class="more-details-book-thumbs-down"><i

class="material-icons">thumb_down</i>

{{BPBBookFromId.thumbsDOWNCounter}}</div>

</div>

4. As we have added the new <div>, we have to add a few CSS to make it
perfect, and the following is the updated CSS for this part:
/* Thumbs Up and Thumbs Down */

.more-details-book-thumbs-up-down-container {

display: flex;

flex-direction: row;

align-content: center;

justify-content: center;

flex-wrap: nowrap;

}

.more-details-book-thumbs-up, .more-details-book-thumbs-

down {

margin-right: 20px;

margin-left: 20px;

font-size: 30px;

}

5. As you will refresh your browser screen now, you will be able to see
that instead of “Thumbs Up” and “Thumbs Down” text. Now, the
Google Icons are appearing, which is making it look very nice, as
shown in figure 11.61:

Figure 11.61: More Details page—updated screen showing icons

The only thing which is not looking nice is the “Thumbs Down” icon
that is not showing anything; as for this book, there is no entry of
thumbs down in our database, so there would be many cases where
either the “Thumbs Up” or “Thumbs Down” will have no values in the
MongoDB document.
Like there is no “Thumbs Up” value for a “Dummy Book” in our
MongoDB collection, as shown in figure 11.62:

Figure 11.62: More Details page-icons showing blank counter values

To tackle this scenario, we need to work on our last part, which is as
follows:

If there is no count for “Thumbs Up” or “Thumbs Down” then
show “0” instead of blank.

For this, we need to add a simple “if” condition to our template HTML
file in the <div>, which consists of these icons.
Let us do some modifications, and we will be using Django template
helpers to perform this.

6. We will just use the simple if condition to check if the value of
“Thumbs Up” or “Thumbs Down” exists in the collection then only
display the values else display the 0 value for this and following is the
updated template HTML code for the same:

<div class="more-details-book-thumbs-up-down-container">

<div class="more-details-book-thumbs-up"><i

class="material-icons">thumb_up</i>

{٪ if BPBBookFromId.thumbsUPCounter %}
{{BPBBookFromId.thumbsUPCounter}} {% else %} 0 {%

endif %}

</div>

<div class="more-details-book-thumbs-down"><i

class="material-icons">thumb_down</i>

{٪ if BPBBookFromId.thumbsDOWNCounter %}
{{BPBBookFromId.thumbsDOWNCounter}} {% else %} 0 {%

endif %}

</div>

</div>

7. If you now refresh the browser and see the “Book Details” page, then it
will show value as “0” whenever there is no count for the “Thumbs Up”
or “Thumbs Down” in the MongoDB collection, as shown in figure
11.63:

Figure 11.63: More Details page—icons showing “0” values instead of blank

The same will be now shown for the “Thumbs Up” in the “Dummy Book” as
it has no value for “Thumbs Up”, as shown in figure 11.64:

Figure 11.64: More Details page—icons showing “0” values instead of blank

Following is the updated final code for template HTML and CSS.

HTML—for file “bpbAppBookDetailsIndex.html”
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Book Details Page - BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static

'BPBOnlineBookShopMongoDBApp/style.css' %}">

<link rel="stylesheet" href="https://fonts.googleapis.com/icon?

family=Material+Icons">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static

'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="book-details-body-container">

<div class="book-details-book-image-container"><img

class="book-details-book-image"

src="http://localhost/bpb-catalog-app-

backend/images/{{BPBBookFromId.coverimage}}" /></div>

<div class="book-details-book-title">{{BPBBookFromId.title}}

</div>

<div class="book-details-book-other-details">

Description :

{{BPBBookFromId.description}}
Price :

{{BPBBookFromId.price}}</div>

<div class="more-details-book-thumbs-up-down-container">

<div class="more-details-book-thumbs-up"><i

class="material-icons">thumb_up</i>

{٪ if BPBBookFromId.thumbsUPCounter %}
{{BPBBookFromId.thumbsUPCounter}} {% else %} 0 {% endif %}

</div>

<div class="more-details-book-thumbs-down"><i

class="material-icons">thumb_down</i>

{٪ if BPBBookFromId.thumbsDOWNCounter %}
{{BPBBookFromId.thumbsDOWNCounter}} {% else %} 0 {% endif

٪}
</div>

</div>

</div>

</div>

</body>

</html>

CSS—for file “style.css”
.main-container {

margin: 0 auto;

max-width: 1200px;

}

.header-container {

background: #ffffff;

height: 200px;

}

.body-container {

width: 1200px;

background: #fafafa;

margin: 20px;

}

.items {

display: flex;

flex-wrap: wrap;

justify-content: center;

}

.item {

width: 300px;

height: 250px;

border: 1px;

border-style: solid;

border-color: blueviolet;

margin: 15px;

text-align: center;

padding: 10px;

}

.book-image {

display: inline-block;

width: 150px;

height: 150px;

}

.book-title {

margin-top: 5px;

font-family: Georgia, 'Times New Roman', Times, serif;

font-weight: bold;

font-size: 14px;

}

.more-details-button {

margin-top: 20px;

}

.more-details-button>a {

background-color: darkorchid;

color: white;

padding: 10px 15px;

text-decoration: none;

}

.more-details-button>a:hover {

background-color: blueviolet;

color: white;

padding: 10px 15px;

text-decoration: none;

}

/* More Details Page CSS Starts Here */

.book-details-body-container {

text-align: center;

}

.book-details-book-image {

display: inline-block;

width: 200px;

height: 200px;

margin-bottom: 20px;

}

.book-details-book-title {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 20px;

font-weight: bold;

margin-bottom: 20px;

}

.book-details-book-other-details {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 12px;

max-width: 1000px;

margin-left: auto;

margin-right: auto;

text-align: left;

margin-bottom: 20px;

}

/* Thumbs Up and Thumbs Down */

.more-details-book-thumbs-up-down-container {

display: flex;

flex-direction: row;

align-content: center;

justify-content: center;

flex-wrap: nowrap;

}

.more-details-book-thumbs-up, .more-details-book-thumbs-down {

margin-right: 20px;

margin-left: 20px;

font-size: 30px;

}

Conclusion
In this chapter, we have learned the practical step-by-step development of a
frontend application developed using Python and MongoDB. We started this
chapter with an overview of our frontend development using Python, Django,
PyMongo, and MongoDB and basic requirements. Later in this chapter have
learned how we can build the various functionalities of the frontend
application like displaying the book catalog list and displaying the book
cover images, total number of “Thumbs Up” and “Thumbs Down” for that
particular book using the Python and its Django framework with the help of

Python’s official MongoDB driver. In this chapter, all the sections have been
explained in a step-by-step practical manner so that by the end of this
chapter, you feel more confident in dynamic python application development
with MongoDB.

Questions
1. What is a frontend application?
2. What is the Django framework?
3. How you can install Django?
4. What is PyMongo?

Index

A
Application Programming Interfaces (APIs)

about 100, 179
developing 191
index.js updated 192-207
JSON body params, using in Postman 199-201
Representational State Transfer (REST) 179
Simple Object Access Protocol (SOAP) 179

B
backend 121
backend catalog dashboard 148

index.php file 149
styles.css file 149-151

book functionality
add-new-book.php file 152
add-new-book.php file (updated) 154
add-new-book.php file (updated code) 157
add-new-book.php file (updated PHP code) 161
creating 152
scripts.js file (updated code) 156, 160
styles.css file (appended code) 154, 156
styles.css file (appended CSS code) 167, 168

C
catalog functionality

listing 169
updated index.php file 169
updated styles.css file (appended code) 173

client-side concept 2, 3
client-side DB concept 3, 4
Cross-Origin Request Sharing (CORS)

about 220
book list section, updating 230-235
book pictures, adding in book list section 227
database functionality, adding to Thumbs Down button 241-253
database functionality, adding to Thumbs Up button 241-253
enabling, in get method 224-227
FlatList component, using 230-235
issue, resolving 220-222

module, adding with require() function 224
Thumbs Down button, adding 235-241
Thumbs Up button, adding 235-241

CRUD application
backend features 128
developing 141, 142
developing, with MongoDB 128
developing, with PHP 128
footer.php file 144
header.php file 144, 145
HTML structure 143
index.php file 146, 147
overview 129, 130
pre-development steps 130-140
requisites 129
scripts.js file 148

CSS 129

D
data addition

with MongoDB Compass 14-22
delete functionality

about 173
delete book functionality (delete-book.php) 174
delete book functionality (index.php) 175
delete code (index.php) 174

Document Object Model (DOM) 62, 151

E
edit functionality 176
Express.js

about 185
index.js file 187
pre-development steps 185-191
update package.json file 187, 188

F
frontend 119
front-end application

CSS file, updating 294
developing, with MongoDB 256
developing, with Python 256
HTML file, updating 291
Hybrid mobile apps 120
more details functionality, adding 295, 296
more details page, creating 301-312
Native mobile apps 119

Thumbs Down button 313-317
Thumbs Up button 313-317
underscore attribute issue, fixing for Django with Django template tags 296-301

full-stack 121
full-stack developer 122-124
full-stack development

about 118, 122
backend 121
backend technologies and stack 121
frontend 118
frontend technologies and stack 119

full-stack technologies 122

G
Graphical User Interface (GUI) 10

H
HTML 128
Hybrid mobile apps

about 120
programming languages and frameworks 120

I
Integrated Development Environment (IDE) 38, 55, 93

J
JavaScript 44, 129

M
MEAN stack 122
MERN stack 122
Meteor.js 122
MEVN stack 122
Microsoft Visual Studio Code

reference link 38
mobile app

API Fetch Part 214
book list section 216, 217
connecting to, MongoDb via API 211, 212
developing, with MongoDB 210
developing, with React Native 210
header section 216
requisites 211
return() function 217-220

style sheets 214
MongoDB

about 3
connecting with 54
Node.js, using 44, 45
PHP, using 24
programming with 37, 100, 101, 113
Python, using 104
used, for developing CRUD application 128
used, for developing frontend application 256
used, for developing mobile app 210
using, in RESTful Web services 178

MongoDB Compass
about 10
data addition 14-22
launching 10-12
used, for connecting to MongoDB server 10-12
used, for MongoDB database collection 12, 13

MongoDB database
collection, with MongoDB Compass 12, 13
creating 12, 13

MongoDB documents
fetching, with Node.js 56-58
fetching, with PHP 40
fetching, with Python 114, 115

MongoDB driver for Node.js
installing, with NPM 51-54

MongoDB drivers
about 4-6
for programming languages 7
reference link 6

MongoDB PHP library
reference link 176

MongoDB server
connecting to, with MongoDB Compass 10-12
connecting to, with Node.js 55, 56
connecting to, with PHP 39
connecting to, with Python 113, 114
starting, with Windows service manager 37, 38

N
Native mobile apps 119
Node.js

connecting with 54
installing, on Windows machine 46-49
installing, on Windows operating system 44
post-installation, on Windows machine 50, 51
pre-development steps 181-184
URL 44

used, for connecting to MongoDB server 55, 56
used, for fetching MongoDB documents 56-58
using, in RESTful Web services 178
using, with MongoDB 44, 45
verifying, on Windows machine 50, 51

Node Package Manager (NPM)
about 51, 63
used, for installing MongoDB driver for Node.js 51-54

P
PHP

about 128
programming with 37
used, for connecting to MongoDB server 39
used, for developing CRUD application 128
used, for fetching MongoDB documents 40
using, with MongoDB 24

PHP Extension Community Library (PECL)
URL 32

Python
downloading 104, 105
installing, on Windows machine 106-109
installing, on Windows operating system 104
MongoDB driver for Python, installing with Python Package Index (PyPI) 111, 112
programming with 113
used, for connecting MongoDB server 113, 114
used, for developing frontend application 256
used, for fetching MongoDB documents 114, 115
using, with MongoDB 104
verifying, on Windows machine 109, 110

Python frontend application
features 257

Python Package Index (PyPI) 111
Python’s Django framework

installing, on Windows operating system 257-291

R
React Native

about 62
logo image, adding in mobile app 98, 99
programming with 93, 100, 101
text, modifying in mobile app 94-97
used, for developing mobile app 210

React Native Bundler
reference link 80

React Native, pre-development steps
about 63
Android SDK, installing 68-70

Android Studio, installing 64-68
environment variables, setting up 71-73
Expo CLI, installing with NPM 74-77
mobile App, creating with Expo 77, 78
mobile App, creating with Expo CLI 77, 78
mobile App, opening in Android Emulator 88-92
mobile App, opening with Expo 82-88
mobile App, running with Expo 79-82
mobile App, running with Expo CLI 79-82
mobile App, viewing in Android Emulator 88-92
mobile App, viewing with Expo 82-88
Node.js, verifying 63, 64
NPM, verifying 63, 64
project folder, creating in system 64

REST-based APIs
body 180
headers 180
method 180
root endpoint and paths 180

REST DELETE method
about 208
reference link 208

RESTful APIs 179-181
RESTful Web services

features 178
MongoDB, using 178
Node.js, using 178
requisites 179

Ruby on Rails (RoR) 3

S
server-side concept 2, 3
server-side DB concept 3, 4
Software Development Kit (SDK) 71

U
Universal Windows Platform (UWP) 62
update functionality 176
User Experience (UX) 151

W
WAMP server

installing, on Windows operating system 24-36
URL 25

Windows machine
used, for installing Node.js 46-49
used, for installing Python 106-109

used, for Node.js post-installation 50, 51
used, for verifying Node.js 50, 51
used, for verifying Python 109, 110

Windows operating system
used, for installing Python 104
used, for installing Python’s Django framework 257-291
used, for installing WAMP server 24-35, 36

Windows service manager
used, for starting MongoDB server 37, 38

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewers
	Acknowledgement
	Preface
	The four applications covered in this book
	Errata
	Table of Contents
	1. Client and Server-Side Concepts and Introduction to MongoDB Drivers
	Structure
	Objectives
	Client and server-side concepts
	Client and server-side DB concepts
	Introduction to MongoDB drivers
	MongoDB drivers for programming languages (PHP, JavaScript, and Python)
	Conclusion
	Questions

	2. Data Addition Using MongoDB Compass
	Structure
	Objectives
	About MongoDB Compass
	Launching MongoDB Compass and connecting to MongoDB server using MongoDB Compass
	Creating a MongoDB database and collection using MongoDB Compass
	Data addition using MongoDB Compass (creating some documents in our MongoDB collection)
	Conclusion
	Questions

	3. Starting Up Programming with MongoDB and PHP
	Structure
	Objectives
	Using PHP with MongoDB
	Installing WAMP server on Windows operating system
	Installation steps

	Programming with PHP and MongoDB
	Starting MongoDB server from Windows service manager
	Example 1—connecting to MongoDB Server using PHP
	Code 1
	Example 2—fetching MongoDB Documents using PHP
	Code 1

	Conclusion
	Questions

	4. Starting Up Programming with MongoDB and JavaScript (Node.js)
	Structure
	Objectives
	Using JavaScript (Node.js) with MongoDB
	Installing Node.js on Windows operating system
	Installation steps
	Step 2—install Node.js on your Windows machine.
	Step 3—post-installation steps and verifying Node.js on your Windows machine
	Step 4—installing the MongoDB driver for Node.js using NPM

	Connecting and working with Node.js and MongoDB
	Example 1—connecting to MongoDB server using Node.js
	Code 1
	Example 2—fetching MongoDB documents using Node.js
	Code 2

	Conclusion
	Questions

	5. Starting Up Programming with MongoDB and React Native
	Structure
	Objectives
	Introduction to React Native
	Pre-development steps
	Step 1—check Node.js and NPM on your system
	Step 2—creating a project folder in your system
	Step 3—installing Android Studio
	Step 4—installing Android SDK
	Step 5—setting up the environment variables
	Step 6—installing Expo CLI using NPM
	Step 7—creating our mobile App using Expo and Expo CLI
	Step 8—running our mobile App using Expo and Expo CLI
	Step 9—opening and viewing an app in mobile device using Expo app
	Step 10—opening and viewing app in Android Emulator

	Programming with React Native
	Example 1—changing the text in our mobile App
	Code 1
	Code 2
	Example 2—adding logo image in our mobile App
	Code 1

	A brief introduction to programming with React Native and MongoDB
	Conclusion
	Questions

	6. Starting Up Programming with MongoDB and Python
	Structure
	Objectives
	Using Python with MongoDB
	Installing Python on Windows operating system
	Installation steps
	Step 1—download Python
	Step 2—install Python on your Windows Machine
	Step 3—post-installation steps and verifying Python on your Windows Machine
	Step 4—installing MongoDB driver for Python using Python Package Index (PyPI)

	Programming with Python and MongoDB
	Example 1—connecting to MongoDB server using Python
	Code 1
	Example 2—fetching MongoDB documents using Python
	Code 1

	Conclusion
	Questions

	7. Full-Stack Development Using MongoDB
	Structure
	Objectives
	Introduction to full-stack development
	Frontend
	Frontend technologies and stack
	Native mobile apps
	Hybrid mobile apps

	Backend
	Back-end technologies and stack
	Full-stack
	Full-stack development and technologies
	Full-stack developer

	Conclusion
	Questions

	8. MongoDB Step by Step Practical Application Development Using PHP
	Structure
	Objectives
	Overview of our Web application developed using PHP and MongoDB
	Requirements
	Final application
	Pre-development steps
	Developing our application
	Code 1
	Code 1—our basic HTML structure
	Code 2—our header.php file
	Code 3—our footer.php file
	Code 1—our header.php file (updated)
	Code 1—our index.php file
	Code 1—our styles.css file
	Code 2—our scripts.js file

	Backend catalog dashboard
	Code 1—our index.php file
	Code 2—our styles.css file

	Adding new book functionality
	Code 1—our add-new-book.php file
	Code 2—our add-new-book.php file (updated)
	Code 1—our styles.css file (appended code)
	Code 2—our scripts.js file (updated code)
	Code 1—our add-new-book.php file (updated code)
	Code 2—our styles.css file (appended code)
	Code 3—our scripts.js file (updated code)
	Code 1—our add-new-book.php file (updated PHP code)
	Code 2—our add-new-book.php file (updated HTML code)
	Code 2—our styles.css file (appended CSS code)

	Listing of catalog functionality
	Code 1—finding all the documents from MongoDB collection (updated index.php file)
	Code 2—displaying the list of all the documents from MongoDB collection by using PHP foreach() construct (updated index.php file—HTML part)
	Code 3—our updated styles.css file (appended code)

	Deleting functionality
	Code 1—delete code (index.php—no change)
	Code 1—delete book functionality (delete-book.php)
	Code 2—delete book functionality (index.php—small update for displaying an alert after the book is deleted successfully)

	Edit and update functionality
	Conclusion
	Questions

	9. MongoDB Step by Step Practical Application Development Using JavaScript (Node.js with Express.js)
	Structure
	Objectives
	RESTful Web services using Node.js and MongoDB—an overview
	Requirements
	Introduction to API
	RESTful APIs
	Pre-development steps
	Code 1—our index.js file
	Code 1—update package.json file

	Developing our APIs
	Code 1
	Code 1 (index.js updated)
	Code 1 (index.js updated)
	Code 1 (index.js updated)
	Code 2 (JSON body params to be used in Postman)
	Code 1 (index.js updated)
	Code 1 (index.js updated)
	Adding REST API endpoint to delete MongoDB document based on MongoDB document ID (REST DELETE method)

	Conclusion
	Questions

	10. MongoDB Step by Step Practical Mobile App Development Using React Native
	Structure
	Objectives
	An overview of our mobile app developed using React Native and MongoDB
	Requirements
	Example 1—connecting to MongoDB via API
	Code 1
	Code 2
	Code 3—API fetch part—networking
	Code 3—style sheets
	Code 4—header section
	Code 5—book list section
	Code 6—return part of the app

	CORS
	Resolving the issue
	Change 1 in index.js—adding CORS module using require
	Change 2 in index.js—enabling CORS in “getAllBPBBooks” route
	Example 2—adding book pictures in the book list section of our mobile app
	Code 1 (updated App.js file) —CSS section (added some more CSS and changed the class names to “camelCase”)
	Code 2 (updated App.js File) —update in book list section and use of react native “FlatList” component instead of “.map” method
	Example 3—adding “Thumbs Up” and “Thumbs Down” in the book list section of our mobile app
	Code 1 (updated App.js file)—import FontAwesome from Vector Icons
	Code 2 (updated App.js File)—CSS section (added some more CSS for “Thumbs Up” and “Thumbs Down”)
	Code 3 (updated App.js file)—added “Thumbs Up” and “Thumbs Down” button components and functions
	Code 4 (updated App.js file)—book list section (added “Thumbs Up” and “Thumbs Down” button components)
	Example 4—adding database functionality to “Thumbs Up” and “Thumbs Down” of our mobile app
	Change 1 in index.js—enabling CORS in “thumbsUPForBPBBook” route
	Change 2 in index.js—enabling CORS in “thumbsDOWNForBPBBook” route
	Code 3 (updated App.js file)—updated “Thumbs Up” and “Thumbs Down” button components, functions, and book list section

	Conclusion
	Questions

	11. MongoDB Step by Step Practical Frontend Development Using Python
	Structure
	Objectives
	An overview of our frontend application developed using Python and MongoDB
	Requirements
	Installing Python’s Django framework on Windows operating system
	Installation steps

	HTML
	CSS
	HTML—for file “bpbAppBookDetailsIndex.html”
	CSS—for file “style.css”
	Conclusion
	Questions

	Index

