
Building Games
with Flutter
The ultimate guide to creating multiplatform games
using the Flame engine in Flutter 3

Paul Teale

Building G
am

es w
ith Flutter

With its powerful tools and quick implementation capabilities, Flutter provides a new way to build
scalable cross-platform apps. In this book, you'll learn how to build on your knowledge and use
Flutter as the foundation for creating games.

This game development book takes a hands-on approach to building a complete game from scratch.
You'll see how to get started with the Flame library and build a simple animated example to test
Flame. You'll then discover how to organize and load images and audio in your Flutter game. As
you advance, you'll gain insights into the game loop and set it up for fast and effi cient processing.
The book also guides you in using Tiled to create maps, add sprites to the maps that the player can
interact with, and see how to use tilemap collision to create paths for a player to walk on. Finally,
you'll learn how to make enemies more intelligent with artifi cial intelligence (AI).

By the end of the book, you'll have gained the confi dence to build fun multiplatform games
with Flutter.

Building Games
with Flutter

Things you will learn:

• Discover the Flame engine and how to
use it in game programming in Flutter

• Organize the graphics and sounds used
in your game

• Animate a sprite in your games and
detect when the player collides with tiles

• Run the game as a web page and
desktop app

• Expand our player control with
key navigation

• Build your fi rst game and make
your enemies more intelligent with
AI for games

Building Games
with Flutter

The ultimate guide to creating multiplatform games
using the Flame engine in Flutter 3

Paul Teale

BIRMINGHAM—MUMBAI

Building Games with Flutter
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Aaron Tanna
Senior Editor: Hayden Edwards
Content Development Editor: Rashi Dubey
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Aparna Bhagat
Marketing Coordinator: Anamika Singh

First published: June 2022

Production reference: 1310522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-698-4

www.packt.com

http://www.packt.com

To my beautiful wife, Mariel, and our adorable baby boy, Alfie, who I love
with all my heart. In memory of my parents, Alfred and Vera Teale.

– Paul Teale

Contributors

About the author
Paul Teale was born and raised in Leeds, West Yorkshire, before moving to London to
pursue a career in software engineering. He has been a software engineer for 25+ years,
covering backend, web, and mobile, where he has spent the last 13 years as a mobile
developer covering Android and, more recently, Flutter. He has worked on many large
projects during his career for companies including Discovery, Sky, Shazam, Visa, NBC, and
Channel 5. He is a massive sci-fi fan and loves watching all the latest movies. He has been
happily married to Mariel for the last 16 years and they live together in West London with
their son, Alfie, and their 2 cats.

I would like to thank the people who are close to me and have supported
me, especially my sisters, Sandra, Angela, and Debra.

And to my great friends, Philip Hartley, Iain Baker, and Linda Chan,
who have helped me through so much in my life.

About the reviewers
Linda Chan is a software engineer with a passion for exploring new technologies, teaching
children to code, and developing fun games.

Working in London for start-ups and large companies, Linda began her career as a web
developer and quickly transitioned to building native iOS apps. She saw huge potential
in the early days of Flutter and has not looked back.

She now resides in Wales with her husband, daughter, and cat named Qwerty. Outside
of coding, Linda enjoys drawing, playing the venova, guitar, piano and searching for
Koroks in the land of Hyrule.

Samarth Agarwal is an experienced software engineer who specializes in the creation of
mobile and web applications. He has been an active Flutter developer and has contributed
numerous text and video-based courses on app development across a wide range of
technologies. As a result of his content being used on multiple platforms, Samarth has
helped over 20,000 students worldwide.

Currently, Samarth is a senior software engineer at QuillBot. When he is not working,
he enjoys listening to music and playing first-person shooter games, not to mention that
he enjoys exploring new locations and capturing everything through a lens.

Satyam Sharma is a Flutter developer from India. He has designed, developed, and
shipped several apps on the Play Store.

He enjoys playing RPGs, reading books, and traveling in his free time. If he isn't busy
with that, you can almost always find him looking for new project ideas. He goes by
the username satyamx64 on the internet.

Table of Contents
Preface

Part 1: Game Basics

1
Getting Started with Flutter Games

Technical requirements� 4
Working with Flutter� 5
Using Dart � 5
Compilation types� 5
Hot reload� 6
Native bridge� 6
Garbage collection� 7
Thread control� 7

Summarizing the book� 7
Flame� 7
Designing a game� 8

Graphics� 8
Input� 8
Sounds� 8
Level design� 8
Cross-platform games� 9
Advanced graphics effects� 9
Game AI� 9
Finishing the game� 9

Creating a simple example
animation� 10
Summary� 14
Questions� 14

2
Working with the Flame Engine

Technical requirements� 16
Organizing the assets in your
game� 16
Adding the game loop� 18
Update� 18
Render� 19

Working with components� 20
FlameGame� 20
Converting our code to use
components� 22

Summary� 28
Questions� 28

viii Table of Contents

3
Building a Game Design

Planning a game� 30
Designing the game screens� 33

Summary� 36
Questions� 36

Part 2: Graphics and Sound

4
Drawing and Animating Graphics

Technical requirements� 40
Drawing on the screen� 41
Working with sprite animation� 47
Moving a sprite around the

screen� 49
Colliding with other sprites� 52
Summary� 64
Questions� 64

5
Moving the Graphics with Input

Technical requirements� 66
Drawing onscreen controls� 66
Moving our character with
onscreen controls� 75

Moving our character
with touch� 80
Summary� 86
Questions� 86

6
Playing Sound Effects and Music

Technical requirements� 88
Playing background music� 89
Playing sound effects� 90

Controlling the volume� 95
Summary� 96
Questions� 96

Table of Contents ix

7
Designing Your Own Levels

Technical requirements� 98
Introduction to Tiled� 99
Loading a tile map� 102
Adding dynamic objects
to the map� 103
Understanding map navigation� 108

Detecting tile collisions� 111
Understanding collisions� 112
Implementing collisions� 113

Summary� 118
Questions� 118

8
Scaling the Game for Web and Desktop

Technical requirements� 120
Building the game for the web
and desktop� 120
Setting the new screen boundary� 122
Fixing the sprites� 123
Fixing the coin and water components� 125
Fixing the background and tile map� 127
Fixing the HUD components� 129

Setting background music� 134
Setting Flutter Web build
parameters� 135
Navigating with key events� 137
Summary� 141
Questions� 141

Part 3: Advanced Games Programming

9
Implementing Advanced Graphics Effects

Technical requirements� 146
What are particle effects?� 146
Animating with particles� 147

Creating shadows with layers� 149
Summary� 154
Questions� 154

x Table of Contents

10
Making Intelligent Enemies with AI

Technical requirements� 156
Making enemies chase
the player� 157
Navigating obstacles with

pathfinding� 163
Summary� 173
Questions� 173

11
Finishing the Game

Technical requirements� 176
Wrapping up the game� 176
Adding a menu screen� 177
Adding a settings screen� 180
Adding a game over screen� 182
Compiling all screens with navigation
routes and music volume� 183

Monetizing your game� 186
Adverts� 186
In-app purchases� 187

Purchase� 187

What else should I learn?� 188
Forge2d� 188
Nakama� 188
Rive � 189
What games shall I make?� 189

Where to get help?� 190
Summary� 190
Questions� 191

Appendix: Answers

Index

Other Books You May Enjoy

Preface
With its powerful tools and quick implementation capabilities, Flutter provides a new way to
build scalable cross-platform apps. In this book, you'll learn how to build on your knowledge
and use Flutter as the foundation for creating games.

This game development book takes a hands-on approach to building a complete game from
scratch. You'll see how to get started with the Flame library and build a simple animated
example to test Flame. You'll then discover how to organize and load images and audio in
your Flutter game. As you advance, you'll gain insights into the game loop and set it up for
fast and efficient processing. The book also guides you in using Tiled to create maps, add
sprites to the maps that the player can interact with, and see how to use tilemap collision
to create paths for a player to walk on. Finally, you'll learn how to make enemies more
intelligent with artificial intelligence (AI).

By the end of the book, you'll have gained the confidence to build fun multiplatform games
with Flutter.

Who this book is for
If you are a Flutter developer looking to apply your Flutter programming skills to games
development, this book is for you. Basic knowledge of Dart will assist with understanding
the concepts covered.

What this book covers
Chapter 1, Getting Started with Flutter Games, explains why to use Flutter/Dart for game
programming. You'll see why Flutter and Dart allow the rapid development of cross-
platform games and cover the key concepts involved in game programming.

Chapter 2, Working with the Flame Engine, provides an overview of the Flame engine used
throughout the book to build games.

xii Preface

Chapter 3, Building a Game Design, introduces the game we will be building, along with
the game's design. The game we will build throughout the book is Gold Rush, and we'll
see how to plan the content and screens for the game to build a game plan.

Chapter 4, Drawing and Animating Graphics, gives you a detailed look at how to draw
and animate graphics on the screen. You will see what sprites are and how we move them
around the screen, learn how to animate sprites for realism, and see how to detect when
sprites bump into other sprites on the screen.

Chapter 5, Moving the Graphics with Input, provides a detailed look at how to move
graphics with touch events and onscreen buttons. By drawing an onscreen joystick, we
show how to move a sprite around the screen in response to the user's control of the
joystick and see how to use touchscreens to move sprites.

Chapter 6, Playing Sound Effects and Music, gives you a detailed look at playing music
and sounds in response to game events.

Chapter 7, Designing Your Own Levels, explains how to create game levels and navigate
around them.

Chapter 8, Scaling the Game for Web and Desktop, details how to get the same game
working across different platforms by scaling up the graphics for different screen
resolutions and how navigation could differ between a computer and a phone due
to the lack of physical keys on a phone.

Chapter 9, Implementing Advanced Graphics Effects, explains how to enhance your game
graphics with powerful particle and layer effects.

Chapter 10, Making Intelligent Enemies with AI, covers adding intelligence to games with
AI. You will see how using AI allows us to make enemies appear more intelligent by
chasing our player when they are close, and how we can make our player avoid obstacles
while navigating the map.

Chapter 11, Finishing the Game, shows you how to add extra screens to your game and
navigate between them. It also explains what else you could learn and where to go for help.

To get the most out of this book
You will be expected to have some knowledge of Flutter and Dart but no knowledge
of game development. The book does not teach either Flutter or Dart.

Preface xiii

It's assumed that you have a good knowledge of your development tool of choice, such as
Visual Studio Code.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

The code for the book was developed with Visual Studio Code but works equally well with
Android Studio and other editors.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Building-Games-with-Flutter. If there's
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801816984_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Now that you have finished updating the pubspec.yaml file,
save the changes."

https://github.com/PacktPublishing/Building-Games-with-Flutter
https://github.com/PacktPublishing/Building-Games-with-Flutter
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801816984_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801816984_ColorImages.pdf

xiv Preface

A block of code is set as follows:

void main() async {

 final goldRush = GoldRush();

 WidgetsFlutterBinding.ensureInitialized();

 await Flame.device.fullScreen();

 await Flame.device.setPortrait();

 runApp(

 GameWidget(game: goldRush)

);

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

cd build/web/

python3 -m http.server 8000 &

Any command-line input or output is written as follows:

flutter pub get

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "The Game
Over!! screen will be shown when the player dies in the game and then they return to the
game menu."

Tips or Important Notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

mailto:customercare@packtpub.com

Preface xv

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Part 1:
Game Basics

In this section, you will be introduced to Flutter and the Flame game engine and to the
game we will build throughout the book by describing the design of the game.

This section contains the following chapters:

•	 Chapter 1, Getting Started with Flutter Games

•	 Chapter 2, Working with the Flame Engine

•	 Chapter 3, Building a Game Design

1
Getting Started with

Flutter Games
Welcome to Building Games with Flutter!

We will show you how to use Google's Flutter framework to build scalable games that
work across mobile and web platforms. Flutter may seem a strange choice at first for
building games because there are more established frameworks for making games, such
as Unity or Unreal Engine, but a lot of these tools are very complex to learn and it takes
a long time to start producing games with them.

Building on your existing knowledge of Flutter and Dart, we will take you through the
steps needed to build a 2D game that will work across all supported platforms. Starting
with the basics, we will build on this knowledge and gradually get on to more advanced
game topics. By the end of the book, you will be able to make your own 2D games
containing the following:

•	 Animating graphics around the screen

•	 Playing sound effects and music

•	 Controlling your player with keys, joystick, or gestures

•	 Detecting when graphics collide

4 Getting Started with Flutter Games

•	 Creating game level maps and navigating around them

•	 Designing games

•	 Scaling the game across different platforms

•	 Advanced graphical effects

•	 Intelligent enemies

We will cover the core concepts with examples and then build on this, chapter by chapter,
gradually building up a full game that works across different devices. Each chapter will
contain code samples to help learn the building blocks of game development, along with
the code, image, and sound resources to build our complete game. The game involves the
player navigating around a map and avoiding the enemies while collecting as much gold
as they can.

In this chapter, we want to delve a bit deeper into Flutter and Dart and what features
they have that make them a great choice for game development. This will give you an
understanding of why Flutter and Dart can be used for fast, smooth games across
many platforms.

In this chapter, we will cover the following topics:

•	 Working with Flutter

•	 Using Dart

•	 Summarizing the book

•	 Creating a simple example animation

We have a lot to cover, so let's get started!

Technical requirements
In this chapter, you should have your code editor set up along with the latest versions
of Flutter and Dart installed. The book is based on Flutter v3.0.0, Dart 2.17.0, and
Flame v1.0.0.

All the source code for this book can be downloaded from the Git repository at
https://github.com/PacktPublishing/Building-Games-with-
Flutter.git.

The source code for this chapter specifically can be found here: https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter01.

https://github.com/PacktPublishing/Building-Games-with-Flutter.git
https://github.com/PacktPublishing/Building-Games-with-Flutter.git
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter01
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter01
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter01

Working with Flutter 5

Working with Flutter
You will have used Flutter to build apps or websites before and may be wondering
whether Flutter is good enough to make great games. Flutter is a great choice for game
programming for the following reasons:

•	 Flutter has very fast rendering times and is scalable across many platforms.

•	 Flutter games aim to draw at 60 frames per second (FPS) for smooth animation,
or 120 FPS on devices capable of supporting higher refresh rates.

•	 Flutter code uses a single code base to make maintenance easier and enables the
code to run on many devices.

•	 The Flutter core is written in C++, which makes games run at native speeds.

•	 Flutter is cost-effective due to being open source (businesses like Flutter because
they don't have to pay for expensive licenses as they have to with some other
frameworks).

Unlike other frameworks, Flutter does not use native components and instead draws
its own, all drawn with the lightning-fast Skia Graphics Engine. Skia is an open source
graphics library that works on a variety of hardware and software platforms, which
abstracts away platform-specific graphics APIs that are different on each platform.
The APIs provide functionality for drawing shapes, text, and images.

Now that we have explained Flutter, let's delve deeper into the language that Flutter
uses, Dart.

Using Dart
In this section, we will discuss Dart and the language features that make it a great fit for
game development. We will discuss how Dart is compiled, and how it uses threads and
garbage collection. We will also discuss great features such as how hot reload aids us in
developing code fast.

Compilation types
Computer programming languages can be either static or dynamic. A static language
will be compiled into machine code before it runs, such as C++. A dynamic language is
executed by an interpreter, so it does not need to be compiled before running (such as
JavaScript).

6 Getting Started with Flutter Games

As programming languages evolved, virtual machines were invented, which made it easier
to port a language to a new hardware platform. The code is converted to bytecode, which
is then run on the virtual machine. Java is an example of a language that uses bytecode.

The virtual machine imitates hardware in software and can be ported to run on different
hardware platforms, making the code portable.

As compiler technology evolved, just-in-time (JIT) compilers were invented, which
improved the performance of code running on virtual machines by compiling the
code on the fly.

Compiling a program into machine code before running became known as ahead-of-time
(AOT) compilation. Dart is unique in that it supports both JIT and AOT compilation
types, which provides a massive advantage for developers. Developers can distribute
the app compiled with AOT for maximum speed and performance, which helps games
run smoothly.

When running in JIT compilation mode, Flutter and Dart have an amazing feature called
stateful hot reload that cuts down development time.

Hot reload
Flutter uses the JIT compiler to allow you to reload and run code in less than a second.
This allows you to change code and see the changes reflected on the emulator or web
browser instantly, while retaining the internal state of the game.

This is great for game development as you can modify code and see the effect of the
change, which speeds up development massively. It feels like painting with code!

For instance, you might reposition a graphic by a few pixels or change a color. In
traditional development, you would have to rebuild the code (which could take many
minutes) to see the change, but in Flutter, this is instant.

Native bridge
Dynamic languages such as JavaScript communicate with the native code on the platform
over a bridge, which is very slow. They do this for things such as drawing the native
components of the platform they are running on.

The native bridge is used to provide an interface between dynamic code and native code
for all code, sending state information for user interface (UI) components.

In Flutter, instead of this, Skia draws all the components on a canvas (and makes them
look and feel like native components), so it bypasses the need for a native bridge.

Summarizing the book 7

This is massive because with a native bridge you also need to pass the state of the UI
components before they can be drawn, which slows everything down and can cause your
UI to skip frames instead of keeping the animation smooth.

Garbage collection
Dart uses an advanced garbage collection system that quickly handles short-lived objects
in memory.

As Flutter rebuilds the widget tree every frame, it throws away the old objects and
recreates new objects. In a language such as Java, this would cause issues, but Dart is
optimized to handle this very quickly.

Most languages require the use of locks to access shared memory, but Dart can perform
its garbage collection most of the time without using locks. This fast garbage collection
results in very smooth graphics performance, which greatly enhances our game.

Thread control
The developer has more control over code execution in Dart due to the way threads are
implemented. Because Dart doesn't usually require locks for accessing shared memory,
unlike most other languages, we have more control over the execution of the code.

Without locks, we avoid a type of call called a race condition, which can happen when
separate threads want access to the shared resource (in this case, memory) and it can't
be accessed because some other thread has locked access and the lock has to be released
before other threads can access it.

In this section, we have discussed how the features of the Dart language help us to
write fast games. In the next section, we will summarize what you will learn throughout
the book.

Summarizing the book
In the following subsections, let's start to take a look at what each chapter will explore.

Flame
In the next chapter, Chapter 2, Working with the Flame Engine, we will cover the basics
of how to use the Flame engine library to set up a game loop, and how to organize your
assets for efficient loading.

8 Getting Started with Flutter Games

Designing a game
It is important to plan ahead so that you have a blueprint to refer to as you progress
through your game.

In Chapter 3, Building a Game Design, we will talk about how to plan and design a game
using an example that I will refer to throughout the book.

Graphics
Apart from text-based games, all games have graphics. The graphics are the first thing
someone will see when deciding whether to buy or play your game, so it's important for
these to look nice if you want to sell your game.

In Chapter 4, Drawing and Animating Graphics, we will show you how to draw graphics
on the screen, and how to animate them so they look real. We will also show you how to
detect when graphics collide with each other, such as a bullet hitting an enemy, which can
be used to trigger another animation, such as the enemy exploding.

Input
All games require some type of input, whether this is touching a screen, pressing a key,
or moving a virtual joystick to control a player.

In Chapter 5, Moving the Graphics with Input, we will explain the many methods for
controlling the character so that the input and animation are synchronized and feel
smooth and responsive.

Sounds
Sound effects and music play an important part in games to enhance the experience for
the player. The background music also plays an important part in any game; as you play
the game, the music can change to highlight something important in the game or to
change the mood of the game.

In Chapter 6, Playing Sound Effects and Music, we will discuss how to synchronize playing
a sound effect in response to a game event, such as playing an explosion sound when a
bullet collides with an enemy.

Level design
Most games are not played on a single screen and require careful thought about how each
level is designed.

Summarizing the book 9

In Chapter 7, Designing Your Own Levels, we will explain how to load graphics, sounds,
and level data that is needed for the current level, to ensure we don't run into memory
or performance issues, which can be a real problem when developing games for low-end
devices such as mobile phones.

We will also explain how to make a map that is larger than the physical screen, and how to
navigate your player around the screen and scroll the map as the player moves around.

Cross-platform games
One of the key benefits of using Flutter and Dart is the cross-platform features it has for
making the game work across multiple devices. We will discuss this topic in more detail in
Chapter 8, Scaling the Game for Web and Desktop.

Advanced graphics effects
As we mentioned earlier, graphics are the first thing a user sees so they must look impressive.

In Chapter 9, Implementing Advanced Graphics Effects, we discuss advanced graphical
effects and what we can do to make your game look amazing.

We will use particle effects to enhance the existing graphics and make the game really
stand out.

We will also discuss how graphical layers can be used to draw graphics more efficiently
when there is a lot of animation on the screen.

Game AI
Games are more fun when they are realistic, which we can achieve with artificial
intelligence (AI).

In Chapter 10, Making Intelligent Enemies with AI, we will show you how to make enemies
that can move from one location to another, avoiding obstacles and enemies that can hunt
you when they see you.

Finishing the game
In Chapter 11, Finishing the Game, we will discuss some things needed to finish off the game.
This will include other screens that most games have, such as a splash screen for branding
and a settings screen for game options (such as controlling the volume of the music).

10 Getting Started with Flutter Games

We will discuss how to sell your game on app stores and how to increase sales of your
game through in-app purchases.

Finally, by this point in the book, we will have taught you the basics of game programming
but there is so much more you could learn. We will discuss what else you should learn if
you want to make more advanced games, and where to go for help if you get stuck while
making games.

Now that we have provided an overview of the chapters we will cover throughout the
book, in the next section, we will go through a simple animation example to show you
how easy it is to get started with game programming in Flutter.

Creating a simple example animation
Here is a code sample for you to run to show how easy it is to draw and animate
a simple shape.

To run this example, follow these steps:

1.	 First, create a new project in the command line by running the following command:

flutter create goldrush

2.	 Open the goldrush folder that Flutter created in your code editor, and then open
the pubspec.yaml file.

3.	 Update the description to the following:

description: Flutter game from Building Games with
Flutter

4.	 Update the environment SDK to the following:

 sdk: ">=2.17.0 <3.0.0"

This is the latest version of the SDK at the time of writing the book, and supports
the latest features of Flutter and Dart.

5.	 Under the dependencies section, we need to add a library called Flame (which we
will talk more about in the next chapter):

cupertino_icons: ^1.0.2

flame: 1.0.0

Flame is a great library and provides us with a lot of functionality needed to build
games using Flutter and Dart.

Creating a simple example animation 11

6.	 Now that we have finished updating the pubspec.yaml file, save the changes.
7.	 After saving the changes, your code editor should download the new dependency.

If this doesn't update, you can manually run the following command from the
command line in the same directory as your project:

flutter pub get

8.	 Next, open the lib/main.dart file and delete all the boilerplate code.
9.	 Then, we need to set up the imports we will need for this example:

import 'dart:ui';

import 'package:flame/flame.dart';

import 'package:flame/palette.dart';

import 'package:flutter/material.dart';

import 'package:flame/game.dart';

10.	 Under this, we need to add our main function to initialize the game and the screen:

void main() async {

 final goldRush = GoldRush();

 WidgetsFlutterBinding.ensureInitialized();

 await Flame.device.fullScreen();

 await Flame.device.setPortrait();

 runApp(

 GameWidget(game: goldRush)

);

}

Here, we set up our GoldRush game object (which we will define next) and told
Flame that we want to run the game in full screen and in portrait mode. We also
ran the app, passing the GameWidget.

11.	 Next, let's set up the game widget and some variables that we will use in the game:

class GoldRush with Loadable, Game {

 static const int squareSpeed = 250;

 static final squarePaint =

 BasicPalette.green.paint();

12 Getting Started with Flutter Games

 static final squareWidth = 100.0, squareHeight =

 100.0;

 late Rect squarePos;

 int squareDirection = 1;

 late double screenWidth, screenHeight, centerX,

 centerY;

Let's break down what we did here:

	� Here, we set up the animation speed of the square to be 250; you can adjust
this to a higher number to make the animation faster or lower to make the
animation slower.

	� We set the color of our box to green.

	� The width and height of the box are set to a fixed size of 100 pixels.

	� Because we will adjust the position of the box, we use Rect for the square
position, which will be initialized in onLoad once we have calculated the
center of the screen for the starting position.

	� We set the direction to be a positive value, which will increase the x value and
move the box to the right.

	� Finally, we set up the variables for the screen width and height, and the center
of the screen.

12.	 In the onLoad function, we will calculate the center starting position of the box
based on the screen size:

 @override

 Future<void> onLoad() async {

 super.onLoad();

 screenWidth =

 MediaQueryData.fromWindow(window).size.width;

 screenHeight =

 MediaQueryData.fromWindow(window).size.height;

 centerX = (screenWidth / 2) - (squareWidth / 2);

 centerY = (screenHeight / 2) - (squareHeight / 2);

 squarePos = Rect.fromLTWH(centerX, centerY,

 squareWidth, squareHeight);

 }

Creating a simple example animation 13

13.	 Next, we will define the render function, which draws the square on the screen at its
current position:

 @override

 void render(Canvas canvas) {

 canvas.drawRect(squarePos, squarePaint);

 }

14.	 Next, we update the square position every frame based on its speed and direction,
plus the time that has elapsed since the previous frame.

Then, if the position of the square has reached the edge of the screen, we can flip
the direction of the square:

 @override

 void update(double deltaTime) {

 squarePos = squarePos.translate(squareSpeed *

 squareDirection * deltaTime, 0);

 if (squareDirection == 1 && squarePos.right >

 screenWidth) {

 squareDirection = -1;

 } else if (squareDirection == -1 && squarePos.left

 < 0) {

 squareDirection = 1;

 }

 }

}

15.	 Now, we can run the example and see our simple green square animating from left
to right, reversing its direction when it hits the side of the screen.

Now, we have gone through a simple animation example to show how easy it is to get
started and to give you a feel for game programming with Flutter.

Feel free to play with the code, maybe changing the color of the square or adding more
squares at a different position. In the next chapter, we will dig deeper into this code.

14 Getting Started with Flutter Games

Summary
In this chapter, we explained why Flutter and Dart are well suited to multiplatform game
development. We explained the building blocks of games that we will focus on in each
section of the book. Finally, we showed you a simple code example to play with.

In the next chapter, we will start using Flame, the game engine library that works with
Flutter to add features related to game programming.

Questions
1.	 What is the minimum constant frame rate that Flutter draws at?
2.	 What is the name of the graphics engine used by Flutter?
3.	 Which platforms can we support with Flutter?
4.	 What is Skia and what is it used for?
5.	 What types of compilation does Dart support and why are they beneficial?
6.	 Why is stateful hot reload beneficial for rapid game development?
7.	 Why is Dart's garbage collection beneficial for the smooth animation used

in games?

2
Working with the

Flame Engine
Flame is a game engine that is added, as a library, to your Flutter project. It provides us
with modules that allow us to build our game. These include support for images and
sprites, animations, audio, collision detection, and more advanced modules for 2D physics
and tile maps.

In this chapter, we will focus on how to get started with Flame and gain an understanding
of the basics of the game engine, including its assets, game loops, and components. It's
important to know all of this so that you have a good understanding of the library and
how everything fits together to make games with Flame.

Once you are familiar with the basics of Flame, you will be able to progress to the more
advanced topics later in the book.

In this chapter, we will cover the following topics:

•	 Organizing the assets in your game

•	 Adding the game loop

•	 Working with components

16 Working with the Flame Engine

Technical requirements
To examine the sources mentioned in this chapter, you can download them at https://
github.com/PacktPublishing/Building-Games-with-Flutter/tree/
main/chapter02.

The Flame project is evolving very quickly, so please refer to the very latest documentation
for any changes or new features at https://flame-engine.org/docs/#/. At the
time of writing, the latest version is 1.0.0, which has been integrated with Flutter v3.0.0
onward.

To install the latest version to your project, please add the following to your
pubspec.yaml file:

dependencies:

 flame: 1.0.0

After saving the file, the dependency will be downloaded, and the Flame modules will
become available. If you followed the example at the end of the previous chapter, then
you will already have this set up, so please ensure you have already done this.

The newest versions of Flame can always be found in the pub repository at
https://pub.dev/packages/flame/install.

Organizing the assets in your game
Your game will include many assets, such as images, audio, fonts, maps, and game data.

As with Flutter, Flame supports the asynchronous loading of assets and caching. However,
it also builds on top of that functionality to add features that are useful for images and
audio, to help use and manage those assets effectively. For example, if you have a sprite
sheet containing many frames of animation, you can load them and split them into their
individual sprites very easily. This is covered, in more depth, in Chapter 4, Drawing and
Animating Graphics.

All of your assets go under the assets folder in Flutter. I recommend the following
folder structure to keep everything well organized:

assets

--- audio

------ music

--------- music_menu.mp3

------ sounds

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter02
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter02
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter02
https://flame-engine.org/docs/#/
https://pub.dev/packages/flame/install

Organizing the assets in your game 17

--------- sound_shoot.mp3

--- images

------ sprites

--------- sprite_player.png

--------- sprite_enemy.png

--- fonts

------ font_highscore.ttf

--- maps

------ map_level.tmx

If they are stored within the assets folder, Flutter and Flame allow you to organize your
assets however you want.

In your pubspec.yaml file, the previous assets should then look like this:

flutter:

 assets:

 - assets/audio/music/music_menu.mp3

 - assets/audio/sound/sound_shoot.mp3

 - assets/images/sprites/player.png

 - assets/images/sprites/enemy.png

 - assets/fonts/font_highscore.ttf

 - assets/maps/map_level.tmx

I recommend prefixing the asset type to make it very clear what the asset is. For
instance, you might have a player sound and a player sprite, so having them named
sound_player.mp3 and sprite_player.png makes what they represent clearer.

Additionally, you should load any game assets for your current screen or level in advance
at the start of the game or level. Flame has an onLoad() function that you can use to
override this, which we will discuss further in the next section.

Flame has some helper functions to load the different asset types:

await Flame.images.load('player.png');

await FlameAudio.audioCache.load('explosion.mp3');

18 Working with the Flame Engine

Here, the load function loads the asset into Flutter's internal memory cache for faster
access. Also, it's important to use async/await as the assets are loading asynchronously,
so we need to wait until the assets have been loaded before continuing.

Now that we understand how to add assets to our game, let's talk about how Flame
constantly redraws the screen based on the current game state.

Adding the game loop
The game loop controls any updates to the game state and then draws any graphics on the
screen to reflect the current game state.

For instance, the player might move the character they are controlling to the right, which
will then increase the x position of the player's sprite during the game state update. Now
that the game state has changed, the player will be drawn at the new position.

In a more complex game, hundreds of enemy sprites could also be moving around.
Therefore, the state of these sprites also needs to be calculated.

This continues in a loop, where anything that is currently on the screen is updated and
then redrawn. Each redraw is known as a game frame.

The number of frames drawn per second reflects how smooth the game is. In Flutter, apps
and games redraw at 60 frames per second (FPS) to allow for very smooth redrawing.

In Flame, there are two functions that we can override to control the updating of the game
state and drawing:

void update (double deltaTime)

void render (Canvas canvas)

Let's look at these functions in more detail.

Update
In the update function, a parameter is passed called deltaTime, which tells us the time
that has elapsed since the previous frame was drawn. We need this value to ensure our
sprites run at consistent speeds across different devices. Devices run at different speeds
depending on the processing power, so if we ignore the delta value and just run everything
at the maximum speed the processor can run, the player might have trouble controlling
their character properly as it would be too fast. By using the deltaTime parameter in
our movement calculation, we can guarantee our sprites will move at the speed that we
want on devices with different processor speeds, ensuring a consistent speed on all devices.

Adding the game loop 19

To see this in practice, let's break down the example in Chapter 1, Getting Started with
Flutter Games, to understand what is going on:

static const int squareSpeed = 250;

int squareDirection = 1;

Here, we want to set the speed of our square to the consistent value of 250. Our direction
will be set to a positive value of 1. If you increase the x value of a sprite by 1, it will move
to the right, whereas if you reduce it by -1, it will move left. For the y position, increasing
by 1 will move the sprite down, while decreasing it will move the sprite up.

We can keep track of the position using a Rect, which represents a rectangle containing
the x and y positions, along with the width and height of the rectangle.

In the update function, we then translate the x position by considering the speed and
current direction using the deltaTime parameter, as follows:

squarePos = squarePos.translate(squareSpeed *

 squareDirection * deltaTime, 0);

This translates the x value of the square position by multiplying the speed, direction, and
deltaTime parameters together. The y value is 0, which means we are not translating the
y value. This is because, in this example, we are not moving in the y direction. However,
you can update them at the same time to travel diagonally if you ever need to.

Render
The render function has a Canvas object parameter, which is a blank canvas that we
draw onto. The canvas class has many functions for drawing shapes and images directly
onto the canvas, as follows:

canvas.drawRect(squarePos, squarePaint);

Here, we draw a rectangle on the canvas using the position of our sprite and using the
color of the paint object to apply the paint styling. The paint object represents styling
similar to CSS for the web by applying the styling to the square. In this example, the
position is being updated manually by a fixed amount; however, in Chapter 5, Moving the
Graphics with Input, we will go into greater detail about how to control the position based
on the user's input.

20 Working with the Flame Engine

In Flame, we implement the game loop by extending one of the base classes, which
automatically calls our update and render functions continuously. In the first example
from Chapter 1, Getting Started with Flutter Games, we used the Game mixin. This allowed
us to override the update and render functions. This allowed us a lot of control over
the process, but it can be very cumbersome once you start drawing and updating a lot of
sprites. Then, when you start adding input controls and collision detection, it can quickly
become difficult to maintain and keep track of everything.

Fortunately, Flame has classes to help with all this as your game grows, which we will
discuss further in the next section.

Working with components
As with any growing code base, it's important to have a structure. This is so that the code
is easy to maintain as we add more features to the game.

Currently, our code contains a simple example of how to render and update a square on
the screen, using the Game mixin to override these functions.

Using the Game mixin gives us a lot of control over our code, but we would have to
write a lot of extra code to support the game as the game grows. This is great once you
become more familiar with Flame and games programming and want that level of control.
However, to begin, it's better to extend from the FlameGame class.

Components provide us with a structured way to organize our game as our game increases
in complexity.

FlameGame
The FlameGame class builds on the Game mixin and adds a lot of useful functionality
to help us manage the complexity of our game as it grows. This includes the following:

•	 Flame Component System

•	 Collision detection tracking

•	 Default implementations for render and update

Flame Component System allows us to split parts of our game up into components
(classes) that represent an entity in our game, such as the player. For instance, we can have
a SpriteComponent component to encapsulate everything related to our player sprite
to manage drawing and updating any objects the player has collided with, or any other
state that is specifically related to the player.

Working with components 21

The FlameGame class maintains a list of all components for the game, and these can
be added dynamically to the game as needed; for instance, we might add several enemy
SpriteComponent components to the game and then remove them from the game
as the player kills the enemies. Then, the FlameGame class will iterate over these
components by telling each component to update and render itself.

Flame Component System has a lot of different types of components to help with
managing different parts of our game. Here is a list of some of the most common
components:

•	 SpriteComponent: For managing any sprites our game has

•	 JoystickComponent: A virtual joystick for managing input

•	 TextComponent: Text that we draw on the screen, such as the score

•	 ParticleComponent: Particle graphic effects

The complete hierarchy for the component system can be seen at https://docs.
flame-engine.org/1.0.0/components.html.

As you can see from the component diagram at the top of Flame's website, there are a lot
of components in which to handle different things, but most of the interesting ones extend
from PositionComponent.

The PositionComponent component represents an object on the screen that has
variables to keep track of the position, the size, and the angle direction of the component.

SpriteComponent extends from PositionComponent, so it gains these variables by
default because we are going to need to position and size our sprites.

It then adds extra variables that are more specific to sprites, such as the renderFlipX
and renderFlipY variables, to reverse anything drawn to the canvas. This can be useful
if you have an image of a character walking from left to right; by setting renderFlipX to
true, it will then draw the sprite images in reverse so that it appears to be walking from
right to left.

Any components that are added to the FlameGame class can also be tracked for collision
detection once we have set up the component's bounding boxes. After setting this up, we
will get a callback in an onCollision function that we override. This tells us which
components our component has collided with. This makes something that is quite difficult
to keep track of much simpler. We will discuss collision detection, in more depth, later.

Let's convert our existing code to use the FlameGame class and Flame Component
System.

https://docs.flame-engine.org/1.0.0/components.html
https://docs.flame-engine.org/1.0.0/components.html

22 Working with the Flame Engine

Converting our code to use components
In this section, we will convert our previous code to use components that improve the
readability and maintainability of our code. To do this, perform the following steps:

1.	 Create a new directory under our lib directory to store our components, called
components. You can do this in Visual Studio Code by right-clicking on the lib
folder and selecting New Folder. Alternatively, you can do this from the command
line within the lib directory:

mkdir components

2.	 In the new components directory, create a new file, called player.dart, where
we will add our new component code for the player.

3.	 Open the file, and let's start defining our player's PositionComponent. At the top
of the file, import the components package from the Flame library:

import 'dart.ui';

import 'package:flame/components.dart';

import 'package:flame/geometry.dart';

import 'package:flame/palette.dart';

import 'package:flutter/material.dart';

4.	 Next, we define the outline for our Player class by overriding the update and
render functions:

class Player extends PositionComponent {

 @override

 void update(double deltaTime) {

 super.update(deltaTime);

 }

 @override

 void render(Canvas canvas) {

 super.render(canvas);

 }

}

Working with components 23

5.	 A requirement of the overriding components is that we must call the base class
using super for both the update and render functions.

In the update and render functions, let's copy the code from our GoldRush
game class to our Player class after the super calls to the base class:

@override

void update(double deltaTime) {

super.update(deltaTime);

squarePos = squarePos.translate(squareSpeed *

 squareDirection * deltaTime, 0);

if (squareDirection == 1 &&

 squarePos.right > screenWidth) {

 squareDirection = -1;

 }

else if (squareDirection == -1 &&

 squarePos.left < 0) {

 squareDirection = 1;

 }

 }

 @override

 void render(Canvas canvas) {

 super.render(canvas);

 canvas.drawRect(squarePos, squarePaint);

 }

6.	 In your code editor, the square variables might now be highlighted in red; this is
because we haven't yet defined those variables in this class. So, to do that, let's move
them from the GoldRush class and add the following to the top of the Player class:

 static const int squareSpeed = 250;

 static final squarePaint =

 BasicPalette.green.paint();

 static final squareWidth = 100.0,

 squareHeight = 100.0;

 late Rect squarePos;

24 Working with the Flame Engine

 int squareDirection = 1;

 late double screenWidth, screenHeight, centerX,

 centerY;

7.	 To calculate the initial square position, the screen dimensions, and the center of
the screen, let's move the onLoad function from the GoldRush class to inside
our Player component, just below where we defined the variables:

 @override

 Future<void> onLoad() async {

 super.onLoad();

 screenWidth =

 MediaQueryData.fromWindow(window).size.width;

 screenHeight =

 MediaQueryData.fromWindow(window).size.height;

 centerX = (screenWidth / 2) - (squareWidth / 2);

 centerY = (screenHeight / 2) - (squareHeight / 2);

 squarePos = Rect.fromLTWH(centerX, centerY,

 squareWidth, squareHeight);

 }

8.	 Now, in the GoldRush class, you can remove the variables and the functions for
render, update, and onLoad that have moved to the Player class.

9.	 Next, let's change the class definition to use the FlameGame class instead of the
Game mixin:

class GoldRush extends FlameGame {

10.	 In the GoldRush class imports, you can tidy up any imports that are no longer
required in this class for palette and the UI.

Now we are going to add the Player component to our FlameGame class so that
it can keep track of this component for drawing and updating purposes. Let's add
the Player component to the GoldRush onLoad function:

@override

Future<void> onLoad() async {

 super.onLoad();

 add(Player());

}

Working with components 25

11.	 Then, update the imports to add the Player component:

import 'components/player.dart';

12.	 Now, if you run the game, you will see that everything works as before, with the
green square animating from left to right and bouncing off the sides.

Because we added the Player component to the onLoad function, the
FlameGame class is now tracking the component and calling its own onLoad
function to initialize the sprite. Then, it continuously calls the sprite's update
and render functions to animate the square.

As mentioned previously, another great feature of using the FlameGame class is the
collision detection tracking for every registered component once we have initialized
the component's bounding box. So, let's do that next.

13.	 In the GoldRush class, first, we add the HasCollidables mixin as follows:

class GoldRush extends FlameGame with HasCollidables {

This tells the FlameGame class to start tracking any collidable objects that we want
to track.

14.	 In the onLoad function, we are now going to add a special type of collidable
object that we want to check for, called ScreenCollidable. If we add
ScreenCollidable to our list of collidable components to track, we will be
notified any time our bouncing square hits the edges of the screen:

 @override

 Future<void> onLoad() async {

 super.onLoad();

 add(Player());

 add(ScreenCollidable());

 }

15.	 Also, let's import package:flame/components.dart where
ScreenCollidable is, as follows:

import 'package:flame/components.dart';

26 Working with the Flame Engine

16.	 Now, in our Player class, in the line that defines the class, we need to add the
HasHitboxes and Collidable mixins:

class Player extends PositionComponent with HasHitboxes,
Collidable {

This will allow us to receive a callback when we collide with the sides of the screen
in the onCollision function, which we will implement next.

17.	 Implement the onCollision function by adding the following:

 @override

 void onCollision(Set<Vector2> points,

 Collidable other) {

 if (other is ScreenCollidable) {

 if (squareDirection == 1) {

 squareDirection = -1;

 } else {

 squareDirection = 1;

 }

 }

 }

Here, when we receive a callback to onCollision to tell us what component we
have collided with, we check whether we have collided with ScreenCollidable,
and if so, we simply flip the direction the square is traveling in.

18.	 Now that we are using the built-in collision tracking system, we must set up the
position of our sprite correctly for the bounding box to be set, so we will use
the built-in position variable that is inherited from the PositionComponent
component.

First, you can delete or comment the squarePos rectangle as we no longer
need this:

// late Rect squarePos;

19.	 Then, in the onLoad function, delete or comment the following line:

// squarePos = Rect.fromLTWH(centerX, centerY,

// squareWidth, squareHeight);

Working with components 27

20.	 Below this, we will set up the internal variables, position and size:

position = Vector2(centerX, centerY);

size = Vector2(squareWidth, squareHeight);

Here, we are setting the position and size based on our existing variables where we
calculate the center of the screen and have a fixed value for the width and height.

21.	 Next, we need to add a shape for the HitBox mixin or it won't detect that it has
collided with anything. There are a few built-in shapes that you can use depending
on the shape of your sprite and which points of the sprite you want to use for
collision detection. Most commonly, your sprites will be rectangular/square-shaped,
so you could use HitBoxRectangle as your shape. However, if your sprite were a
ball, you would use HitBoxCircle instead. You can also make custom shapes, but
in most cases, that is unnecessary.

Our shape is a square, so let's add our shape for the collision tracking where we just
set up the position and size, as follows:

addHitbox(HitboxRectangle());

22.	 Our onLoad function should now look like this:

 @override

 Future<void> onLoad() async {

 super.onLoad();

 screenWidth =

 MediaQueryData.fromWindow(window).size.width;

 screenHeight =

 MediaQueryData.fromWindow(window).size.height;

 centerX = (screenWidth / 2) - (squareWidth / 2);

 centerY = (screenHeight / 2) - (squareHeight / 2);

 position = Vector2(centerX, centerY);

 size = Vector2(squareWidth, squareHeight);

 addHitbox(HitboxRectangle());

 }

23.	 Now that we have removed our squarePos rectangle, we need to update the
render and update functions to use the internal position value:

 @override

 void render(Canvas canvas) {

 super.render(canvas);

28 Working with the Flame Engine

 renderHitboxes(canvas, paint: squarePaint);

 }

Because we have set up a HitBox mixin that is the same shape and uses the
position and size of the PositionComponent component, we can use a built-in
function, called renderHitboxes, to draw our shape. Note that we pass in our
squarePaint object to keep the look the same.

In the update function, we can remove a lot of code, as updating the position has
now become much simpler and our direction change is already handled by the
collision tracking:

 @override

 void update(double deltaTime) {

 super.update(deltaTime);

 position.x +=

 squareSpeed * squareDirection * deltaTime;

 }

Now our code is looking better, and the Player class is taking care of updating its
location and rendering, along with dealing with any collisions.

Summary
In this chapter, you were introduced to Flame, which is a great library for building games
with Flutter. Additionally, you learned how to set up Flame and organize your assets.
We covered the game loop and why the render and update functions are important.
Finally, we covered components and converted our existing code to use components
for a more organized structure as our game expands.

In the next chapter, we will discuss how to design games using the design template,
which we will use for our own game: Gold Rush!

Questions
1.	 What does the deltaTime value that is passed to the update function represent?
2.	 How does Flame Component System benefit your code?
3.	 What shape should you use for detecting a collision with square sprites?

3
Building a Game

Design
Now that we have discussed Flame and shown you some basic animation, we want to
discuss the game we are going to build throughout the rest of the book.

The game will be called Gold Rush, and has the following objectives:

•	 Avoid being attacked by zombies and skeletons.

•	 Explore the map, collecting as many gold coins as you can before you die.

It will be a simple game but will teach you a lot of skills by adding a lot of common
features included in most games, including the following:

•	 Drawing sprite graphics

•	 Detecting collisions between sprites

•	 Controlling a player with virtual joysticks, touch, or keys

•	 Playing music and sounds

•	 Drawing and moving around maps larger than the screen

•	 Drawing particle and shadow advanced graphical effects

30 Building a Game Design

•	 Creating intelligent enemies

•	 Navigating around obstacles

•	 Navigating between game screens

We will go through each of these topics in turn, gradually building out a full game. We will
cover the following topics in this chapter:

•	 Planning a game

•	 Designing the game screens

Planning a game
Let's start by defining a synopsis for our game that we could use to market the game
and give a brief reason to the player why they might want to play the game. Here is
the synopsis:

In Gold Rush, you play as an explorer who must travel across the land in search of wealth
by collecting any gold coins you can find. Beware, though: the path ahead won't be easy.
You must avoid the zombies and skeletons that roam the land in search of your blood!

A nice, simple summary that tells the player what the goal of the game is and what they
must do to succeed (collect as much gold as possible) while avoiding losing the game
(by being attacked by zombies and skeletons).

In most games, you have a main character who is the game representation of yourself.
In our game, this is George.

Figure 3.1 – Our protagonist, George

George will move around the game map controlled by the player either by the touch
on a location on the screen, by controlling the on-screen joystick, or with the keys on
a physical keyboard.

George can run to try to escape the enemies that are chasing him. His health is measured
as a percentage that starts at 100% and decreases by 25% each time he is caught by a
zombie or skeleton. Once George's health reaches 0, it's game over.

Planning a game 31

There are two types of enemies in the game – zombies and skeletons.

Figure 3.2 – Our game enemies, zombies and skeletons

The enemies will chase George when he is nearby and within their line of sight. When they
catch George, they will explode on impact and die, reducing George's health by 25%.

George will take the risk of being killed by zombies and skeletons because he can become
very rich by avoiding the enemies and collecting the gold coins that are scattered around
the map.

Figure 3.3 – The gold coins George collects to become richer

Every time George collects a spinning gold coin, his score increases by 20.

George has a large game world to explore, which will scroll around the screen as
he explores.

Figure 3.4 – The game world George can explore

32 Building a Game Design

The game world is mostly grass but has paths that George can follow. The map is
surrounded by water, which George cannot cross. There is a central diamond area,
which is the focal point of the map and is surrounded by water for decoration.

The game world is made up of a tile map using the Tiled application, which allows us to
reuse smaller tiles to make larger maps efficiently. The following image is used to create
our game world map (available at https://opengameart.org) and is originally
created by Luis Zuno:

Figure 3.5 – The tile map used to create our game world map

The game will use music and sound to enhance the game. There is background music
that will play while the game is playing, and the volume for this will be changeable in
the game settings.

There are three sound effects that we will use during the game:

•	 George movement – A running sound that will play constantly while George
is moving.

•	 Enemy dying – Every time an enemy attacks George, it will die and make this sound.

•	 Coins – Every time George collects a coin, this sound will play.

https://opengameart.org

Designing the game screens 33

The sound will stop playing if the game is placed in the background on mobile.

Now that we have discussed our game content, let's discuss the designs of the game
screens and how to navigate between them.

Designing the game screens
Now that we have discussed the elements of the game, let's discuss the screens we will use
in the game and how the player will navigate between them.

The following is a basic outline to illustrate the flow of the game screens:

Figure 3.6 – Gold Rush screen game flow

Here, we can see the player is shown the game menu at the start, where they can play the
game, go to the settings screen, or exit the game.

If they choose Play Game, the game is loaded and they begin to play the game.

If they choose Settings, they can adjust the music and then return to the game menu.

The Game Over!! screen will be shown when the player dies in the game and then they
can return to the game menu.

Let's have a look at the final designs and appearances for these screens.

34 Building a Game Design

The following screenshot shows the game menu screen:

Figure 3.7 – The game menu screen for Gold Rush

This is what the Settings screen will look like:

Figure 3.8 – The Settings screen for Gold Rush

Designing the game screens 35

Figure 3.9 shows the screen when the game is over:

Figure 3.9 – The Game Over!! screen for Gold Rush

The following screenshot shows George, the enemies, the map, and virtual controls for
Gold Rush:

Figure 3.10 – Game screen showing George, the enemies, the map, and virtual controls

36 Building a Game Design

In this section, we walked through how the game screens will look and how to navigate
between them.

Summary
In this chapter, we discussed the aim of the game and what the sprites and screens will
look like.

When you are planning your games, try and put together a game design document like we
discussed in this chapter, as it will be a useful blueprint of the game you intend to build
that you can refer to during game development.

Try and think about the content that you want to add, even if you don't know how it will
look yet. You can even draw stick men figures to represent the sprites if you haven't made
the final decision of which sprites you will use.

In the next chapter, we will start to build out the game, starting with drawing and
animating sprites.

Questions
1.	 Why is making a synopsis a good idea for your game?
2.	 How much health will George lose when an enemy attacks him?
3.	 How many points does George gain for collecting a gold coin?
4.	 What is water used for on the game map?

Part 2:
Graphics and Sound

In this part of the book, we will demonstrate how to use the media capabilities of the
Flame library to animate graphics and play sound. We will also discuss how to animate
the graphics based on input received from the player. Finally, we will discuss level design
and how to scale your game across multiple platforms.

This part contains the following chapters:

•	 Chapter 4, Drawing and Animating Graphics

•	 Chapter 5, Moving the Graphics with Input

•	 Chapter 6, Playing Sound Effects and Music

•	 Chapter 7, Designing Your Own Levels

•	 Chapter 8, Scaling the Game for Web and Desktop

4
Drawing and

Animating Graphics
In this chapter, we will go beyond drawing simple shapes and discuss how to draw and
animate pixel graphics seen in most games. This will make our game look much nicer
and bring the game to life as the characters animate around the screen.

In game programming, a graphic or image that is drawn to the screen is known as
a sprite, which can be anything from a single non-animated image, a player character
with multiple frames of animation, or even the background image drawn behind other
graphics on the screen.

We will start by showing how to load and draw a simple sprite instead of our square,
and then animate the sprite to show movement. Next, we will move the sprite around
the screen and the animation will change based on the direction the sprite is currently
moving in.

And finally, we will create an enemy sprite for the player sprite to collide into as we build
on our knowledge of collision detection.

40 Drawing and Animating Graphics

So, we will cover the following topics:

•	 Drawing on the screen

•	 Working with sprite animation

•	 Moving a sprite around the screen

•	 Colliding with other sprites

Let's get started by setting up the assets we will use for this chapter.

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter04.

For this chapter, you will also need to download some images to use for the animation.

Also, I used the sprite sheets downloadable from the following links:

•	 For our player character, we will use the sprite sheet image at https://github.
com/PacktPublishing/Building-Games-with-Flutter/blob/main/
chapter04/assets/images/george.png.

•	 For the enemies, we will use the sprite sheet image at https://github.com/
PacktPublishing/Building-Games-with-Flutter/blob/main/
chapter04/assets/images/zombie_n_skeleton.png.

Now, we will add the images to our game with the following steps:

1.	 Open your file manager and go to the goldrush folder for your project.
2.	 Create a folder called assets in the goldrush folder.
3.	 Go into the assets folder and create another folder called images.
4.	 Move the two images we downloaded into the images folder.

If you have set up everything correctly, your directory structure will look like this:
goldrush

--- assets

------ images

--------- george.png

--------- zombie_n_skeleton.png

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter04
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter04
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter04
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter04/assets/images/george.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter04/assets/images/george.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter04/assets/images/george.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter04/assets/images/zombie_n_skeleton.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter04/assets/images/zombie_n_skeleton.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter04/assets/images/zombie_n_skeleton.png

Drawing on the screen 41

5.	 Next, open the pubspec.yaml file located in the project folder.
6.	 Uncomment the assets line by removing the # symbol at the beginning of

this line:

assets:

7.	 Next, add the following lines below the asset line (notice the missing #):

 assets:

 - assets/images/george.png

 - assets/images/zombie_n_skeleton.png

8.	 If you now save the pubspec.yaml file, it will check for changes in the file to
confirm that it is set up correctly. If this doesn't happen, you can manually run
the following from a terminal:

flutter pub get

In this section, we downloaded and set up the sprites we will use during this chapter.

In the next section, we will see how to load the sprite sheets containing multiple animation
frames and draw the sprite on the screen.

Drawing on the screen
Now that we are familiar with drawing basic shapes on the screen, which we covered in
the previous chapter, we will expand our knowledge and start drawing sprites, which are
more common in games.

Let's create a new SpriteComponent for our character, George, and load the
sprite sheet:

1.	 In the components folder, create a new file called george.dart.
2.	 Open the file and add the following imports at the top of the file:

import 'package:flame/components.dart';

import 'package:flame/flame.dart';

import 'package:flame/sprite.dart';

import 'package:flutter/material.dart';

import 'dart:ui';

42 Drawing and Animating Graphics

3.	 Create a class called George, which extends SpriteComponent:

class George extends SpriteComponent {

}

4.	 At the top of the class, let's define some variables for the sprite, screen dimensions,
and sprite size:

late double screenWidth, screenHeight, centerX, centerY;

late double georgeSizeWidth = 48.0, georgeSizeHeight =
48.0;

As the sprite sheet size is 192 x 192 pixels with four rows and columns, this means
that each individual frame is 192 / 4 = 48 pixels width and height, which is what
we have set the values of georgeSizeWidth and georgeSizeHeight to.

5.	 Next, we will override the onLoad function, set up the screen variables, load the
sprite sheet, and set up our sprite's position and size:

 @override

 Future<void> onLoad() async {

 super.onLoad();

 screenWidth =

 MediaQueryData.fromWindow(window).size.width;

 screenHeight =

 MediaQueryData.fromWindow(window).size.height;

 centerX =

 (screenWidth / 2) - (georgeSizeWidth / 2);

 centerY =

 (screenHeight / 2) - (georgeSizeHeight / 2);

 var spriteImages =

 await Flame.images.load('george.png');

 final spriteSheet = SpriteSheet(image:

 spriteImages, srcSize: Vector2(georgeSizeWidth,

 georgeSizeHeight));

Drawing on the screen 43

 sprite = spriteSheet.getSprite(0, 0);

 position = Vector2(centerX, centerY);

 size = Vector2(georgeSizeWidth, georgeSizeHeight);

 }

Here, we use the Flame helper class to load the sprite sheet images and set up
the sprite.

For now, we are going to get the first sprite frame and show only that frame. The first
frame we get is 0, 0 in the sprite sheet:

Figure 4.1 – Sprite at 0, 0

6.	 Now, let's switch to the main.dart file, so we can add the George component to
see it on the screen. In the onLoad function, we can remove the lines that add the
Player and ScreenCollidable components, and add the George component,
like this:

 @override

 Future<void> onLoad() async {

 super.onLoad();

 add(George());

 }

7.	 We can now remove the following imports of the Player and
ScreenCollidable components that were used to show the green square,
which we used in Chapter 2, Working with the Flame Engine:

import 'components/player.dart';

import 'package:flame/comonents.dart';

44 Drawing and Animating Graphics

8.	 And, as we are no longer using the Player component, we can also delete
the player.dart file containing the Player component, which is not
needed anymore.

9.	 As we have added the George component, we need to add the import for the class
at the top of the file with other imports:

import 'package:goldrush/components/george.dart';

If you run the game now, you will see a single frame showing George on a black
background.

It's difficult to see against the black background though, so let's create a
Background component and change the background color, which will be drawn
before George, so we can see the sprite more clearly.

10.	 In the components folder, create a new file called background.dart. Open the
file and enter the following imports and code:

import 'package:flame/components.dart';

import 'package:flame/palette.dart';

import 'package:flutter/material.dart';

import 'dart:ui';

class Background extends PositionComponent {

 static final backgroundPaint =

 BasicPalette.white.paint();

 late double screenWidth, screenHeight;

 @override

 Future<void> onLoad() async {

 super.onLoad();

 screenWidth =

 MediaQueryData.fromWindow(window).size.width;

 screenHeight =

 MediaQueryData.fromWindow(window).size.height;

Drawing on the screen 45

 position = Vector2(0, 0);

 size = Vector2(screenWidth, screenHeight);

 }

 @override

 void render(Canvas canvas) {

 super.render(canvas);

canvas.drawRect(Rect.fromPoints(position.toOffset(),

 size.toOffset()), backgroundPaint);

 }

}

In the onLoad function, we set backgroundPaint to white to make the George
sprite more visible. We also set the position to 0, 0, and the size to the full width
and height of the screen, so that when we paint the white color in the render
function, it covers the whole screen.

11.	 Back in the main.dart file, let's add import to the top of the file and the
Background component to the onLoad function:

import 'components/background.dart';

 @override

 Future<void> onLoad() async {

 super.onLoad();

 add(Background());

 add(George());

 }

Note that we add the Background component before the George component so
that it gets drawn first.

46 Drawing and Animating Graphics

If you run this, you will now see George drawn against a white background, which is much
easier to see:

Figure 4.2 – George on a white background

In the next section, we will discuss how to animate George instead of just showing
a single frame.

Working with sprite animation 47

Working with sprite animation
Let's change the George class to play an animation sequence instead of just a single frame
by changing the class:

1.	 First, change the class definition to extend from SpriteAnimationComponent
instead of SpriteComponent:

class George extends SpriteAnimationComponent {

2.	 Because we are going to set up an animation within
SpriteAnimationComponent, we can remove the references to georgeSprite
as this will be managed by the class. So, let's remove or comment the following lines:

// late Sprite georgeSprite;

// georgeSprite = spriteSheet.getSprite(0, 0);

You can also remove or comment the render function now as the drawing will be
managed by the class:

 // @override

 // void render(Canvas canvas) {

 // super.render(canvas);

 // georgeSprite.render(canvas);

 // }

3.	 To create an animation from the sprite sheet we set up, the SpriteSheet class
has a createAnimation helper function, which allows us to set which row
the animation should be created from. If you look closely at our george.png
file, you will notice that our animations are in columns and not rows. At the time
of writing, the current version of the Flame createAnimation library works
with rows and not columns, so we will use Dart extensions to add a variant of
createAnimation to the SpriteSheet class that works on columns too. After
the class definition for our SpriteAnimationComponent in george.dart,
add the following:

extension CreateAnimationByColumn on SpriteSheet {

 SpriteAnimation createAnimationByColumn({

 required int column,

 required double stepTime,

 bool loop = true,

48 Drawing and Animating Graphics

 int from = 0,

 int? to,

 }) {

 to ??= columns;

 final spriteList = List<int>.generate(to - from,

 (i) => from + i)

 .map((e) => getSprite(e, column))

 .toList();

 return SpriteAnimation.spriteList(

 spriteList,

 stepTime: stepTime,

 loop: loop,

);

 }

}

This extension will create a list of sprites based on the column and then create
a SpriteAnimation from the sprite list.

4.	 Now, we can use the sprite list to create an animation that we will assign to our
SpriteAnimationComponent animation field. At the end of the onLoad
function, add the following code:

animation = spriteSheet.createAnimationByColumn(

 column: 0, stepTime: 0.2);

Here, we call the new createAnimationByColumn extension function, passing
0 for the first column animation, and the stepTime animation speed to 0.2,
which gives the impression of a normal walking speed in the animation.

Now, we have expanded our sprite by drawing multiple frames to create an animation.

In the next section, we will set up animations for each of George's directions and move
him around the screen, changing directions every few seconds, and changing the
animation to match the direction he is traveling in.

Moving a sprite around the screen 49

Moving a sprite around the screen
Now that we have the George sprite animating, we will build on that and change the
animation based on the direction of travel:

1.	 Let's add some variables at the top of the George class to store the animations and
direction information:

 late SpriteAnimation georgeDownAnimation,

 georgeLeftAnimation, georgeUpAnimation,

 georgeRightAnimation;

 double elapsedTime = 0.0;

 double georgeSpeed = 40.0;

 int currentDirection = down;

 static const int down = 0, left = 1, up = 2,

 right = 3;

2.	 Below the onLoad function, define a new function called changeDirection,
which we will call every 3 seconds to change George's direction randomly:

 void changeDirection() {

 Random random = Random();

 int newDirection = random.nextInt(4);

 switch (newDirection) {

 case down:

 animation = georgeDownAnimation;

 break;

 case left:

 animation = georgeLeftAnimation;

 break;

 case up:

 animation = georgeUpAnimation;

 break;

 case right:

 animation = georgeRightAnimation;

 break;

 }

50 Drawing and Animating Graphics

 currentDirection = newDirection;

 }

Here, we generate a random number between 0 and 3 that maps to our columns.
Then, we set the animation class field to use the animations, which we will
initialize shortly. Finally, we set the current direction to be the new direction,
which we can use to move the sprite later.

3.	 At the bottom of the onLoad function, remove the line that sets up the class field
animation, as we now do this in the changeDirection function, and replace it
with the following lines to initialize the animations:

 georgeDownAnimation =

 spriteSheet.createAnimationByColumn(column: 0,

 stepTime: 0.2);

 georgeLeftAnimation =

 spriteSheet.createAnimationByColumn(column: 1,

 stepTime: 0.2);

 georgeUpAnimation =

 spriteSheet.createAnimationByColumn(column: 2,

 stepTime: 0.2);

 georgeRightAnimation =

 spriteSheet.createAnimationByColumn(column: 3,

 stepTime: 0.2);

 changeDirection();

4.	 Now we have our animations set up, let's add an update function to change
direction every 3 seconds and move the sprite in the same direction that the
animation is facing. Under the changeDirection function, add the following
update function code:

 @override

 void update(double deltaTime) {

 super.update(deltaTime);

 elapsedTime += deltaTime;

 if (elapsedTime > 3.0) {

Moving a sprite around the screen 51

 changeDirection();

 elapsedTime = 0.0;

 }

 switch (currentDirection) {

 case down:

 position.y += georgeSpeed * deltaTime;

 break;

 case left:

 position.x -= georgeSpeed * deltaTime;

 break;

 case up:

 position.y -= georgeSpeed * deltaTime;

 break;

 case right:

 position.x += georgeSpeed * deltaTime;

 break;

 }

 }

5.	 Finally, let's fix the import for the Random class by adding the following line at the
top of this file:

import 'dart:math';

If you run the code now, you will see George move around for 3 seconds and then change
direction randomly, occasionally continuing in the same direction if the random number
chosen is the same as the previous 3 seconds. If you let this run for a while, you may see
George vanish off the side of the screen, as we currently aren't detecting when he collides
with the edge of the screen.

In the next section, we will make George flip direction when he collides with the edge of
the screen, and add zombies and skeletons that move around and die if George collides
with them.

52 Drawing and Animating Graphics

Colliding with other sprites
Let's fix the issue with George wandering off the edge of the screen that we saw at the end
of the last section and flip the direction if he hits the edge of the screen. To do this, follow
these steps:

1.	 In the onLoad function of main.dart, let's add the ScreenCollidable
component to the bottom of the function so we can detect collisions between
George and the screen edges:

add(ScreenCollidable());

2.	 In the george.dart file, change the class definition to add the HasHitBoxes
and Collidable mixins:

class George extends SpriteAnimationComponent with
HasHitBoxes, Collidable {

3.	 At the bottom of the onLoad function, add the HitboxRectangle shape for the
collision detection:

addHitbox(HitboxRectangle());

4.	 Add the following import at the top of the file to resolve the reference to
HitboxRectangle:

import 'package:flame/geometry.dart';

5.	 At the bottom of this class file, after the update function definition, add the
following onCollision function definition:

 @override

 void onCollision(Set<Vector2> points,

 Collidable other) {

 if (other is ScreenCollidable) {

 switch (currentDirection) {

 case down:

 currentDirection = up;

 animation = georgeUpAnimation;

 break;

 case left:

 currentDirection = right;

 animation = georgeRightAnimation;

Colliding with other sprites 53

 break;

 case up:

 currentDirection = down;

 animation = georgeDownAnimation;

 break;

 case right:

 currentDirection = left;

 animation = georgeLeftAnimation;

 break;

 }

 elapsedTime = 0.0;

 }

 }

Here, we flip the currentDirection and animation if George collides with
the edge of the screen; for instance, if George was moving right, he will now move
left, and the animation will change to georgeLeftAnimation. We also reset
elapsedTime to 0.0 so that our 3-second counter starts again.

If you run the game now, you will see that after some time, when George hits the
side of the screen, he will flip direction and the animation will update. You can
change the georgeSpeed variable value to speed this up if you like.

Next, let's add the zombies and skeletons to the game!

If you look at the sprite sheet for the zombies and skeletons, you will notice both
are in the same sprite sheet, both are organized by rows and now columns, and both
have a zombie and a skeleton on each row. So, while we are building the animations,
we must specify a from and to field to indicate which part of the sprite sheet
makes up the animation.

For example, for the animation that makes the zombie's direction walk to the left, it
would be on row 1, from column 0 to 2. The sprite image is 192 pixels wide by 256
pixels high containing six frames horizontally and four frames down, so to calculate
the size of a sprite, it would be as follows:

192 / 6 = 32

256 / 4 = 64

54 Drawing and Animating Graphics

So, our sprite size is 32 pixels in width and 64 pixels high:

Figure 4.3 – Enemy sprites, showing the size of each frame

If we make a class for our zombie and skeleton, the code would be very similar
to the George class because we need to load the sprites, organize them into
animations, update the animations based on directions, and flip the direction
if we bump into the edge of the screen.

To avoid a lot of unnecessary code duplication, we are going to create a base class
for all our sprites for this common functionality. Then, the individual classes will be
much smaller to keep the code clean and easy to read.

To start with, we will move a lot of the code from the George class into a new base
class we will call Character. As we do this, we will make the variable names more
generic, such as renaming georgeSpeed to speed and adding a constructor to
pass values such as the position, size, and speed to make this more flexible.

6.	 In the components folder, create a new file called character.dart with the
following class definition:

import 'dart:math';

import 'package:flame/components.dart';

import 'package:flame/sprite.dart';

Colliding with other sprites 55

class Character extends SpriteAnimationComponent with

 HasHitboxes, Collidable {

}

7.	 Next, we add a constructor for passing the position, size, and speed and some
variables for the animations and direction information:

 Character({required Vector2 position,

 required Vector2 size, required double speed}) {

 this.position = position;

 this.size = size;

 this.speed = speed;

 }

 late SpriteAnimation downAnimation, leftAnimation,

 upAnimation, rightAnimation;

 late double speed;

 double elapsedTime = 0.0;

 int currentDirection = down;

 static const int down = 0, left = 1, up = 2,

 right = 3;

As you can see, the variable naming is more generic now in this base class.

8.	 Next, we will migrate the three functions (changeDirection, update, and
onCollision) from the George class to the Character class.

First, we will add the changeDirection function:
 void changeDirection() {

 Random random = new Random();

 int newDirection = random.nextInt(4);

 switch (newDirection) {

 case down:

 animation = downAnimation;

 break;

 case left:

 animation = leftAnimation;

56 Drawing and Animating Graphics

 break;

 case up:

 animation = upAnimation;

 break;

 case right:

 animation = rightAnimation;

 break;

 }

 currentDirection = newDirection;

 }

Now that we have added changeDirection, let's add the update function:
 @override

 void update(double deltaTime) {

 super.update(deltaTime);

 elapsedTime += deltaTime;

 if (elapsedTime > 3.0) {

 changeDirection();

 elapsedTime = 0.0;

 }

 switch (currentDirection) {

 case down:

 position.y += speed * deltaTime;

 break;

 case left:

 position.x -= speed * deltaTime;

 break;

 case up:

 position.y -= speed * deltaTime;

 break;

 case right:

 position.x += speed * deltaTime;

 break;

 }

 }

Colliding with other sprites 57

Next, let's add the onCollision function:
 @override

 void onCollision(Set<Vector2> points,

 Collidable other) {

 if (other is ScreenCollidable) {

 switch (currentDirection) {

 case down:

 currentDirection = up;

 animation = upAnimation;

 break;

 case left:

 currentDirection = right;

 animation = rightAnimation;

 break;

 case up:

 currentDirection = down;

 animation = downAnimation;

 break;

 case right:

 currentDirection = left;

 animation = leftAnimation;

 break;

 }

 elapsedTime = 0.0;

 }

 }

}

As you can see from these three functions, they have the same functionality that we
have in the George class, but we have named the variables to be more generic now,
which is better for a base class.

Because we created an extension function for the George class for creating
animations by columns, we will bring that over to the character.dart file too.
The function will be available to use in all our sprites so that we can either create
them by column or row.

58 Drawing and Animating Graphics

After the class definition for the Character base class and at the bottom of the
character.dart file, add the extension code for createAnimationByColumn:

extension CreateAnimationByColumn on SpriteSheet {

 SpriteAnimation createAnimationByColumn({

 required int column,

 required double stepTime,

 bool loop = true,

 int from = 0,

 int? to,

 }) {

 to ??= columns;

 final spriteList =

 List<int>.generate(to - from, (i) => from + i)

 .map((e) => getSprite(e, column))

 .toList();

 return SpriteAnimation.spriteList(

 spriteList,

 stepTime: stepTime,

 loop: loop,

);

 }

}

Now we have our Character base component set up, this makes the George class
a lot simpler.

9.	 In the George class, delete all the code and replace it with the following:

import 'package:flame/components.dart';

import 'package:flame/flame.dart';

import 'package:flame/geometry.dart';

import 'package:flame/sprite.dart';

import 'package:goldrush/components/character.dart';

class George extends Character {

 George({required Vector2 position,

Colliding with other sprites 59

 required Vector2 size, required double speed}) :

 super(position: position, size: size,

 speed: speed);

 @override

 Future<void> onLoad() async {

 super.onLoad();

 var spriteImages =

 await Flame.images.load('george.png');

 final spriteSheet = SpriteSheet(image:

 spriteImages, srcSize: Vector2(width, height));

 downAnimation =

 spriteSheet.createAnimationByColumn(column: 0,

 stepTime: 0.2);

 leftAnimation =

 spriteSheet.createAnimationByColumn(column: 1,

 stepTime: 0.2);

 upAnimation =

 spriteSheet.createAnimationByColumn(column: 2,

 stepTime: 0.2);

 rightAnimation =

 spriteSheet.createAnimationByColumn(column: 3,

 stepTime: 0.2);

 changeDirection();

 addHitbox(HitboxRectangle());

 }

}

As you can see, we only need to load the sprite sheet and set up the animations and
we're good to go. It's a lot less code and much cleaner now it inherits the direction,
movement, and collision code from the base class.

60 Drawing and Animating Graphics

10.	 Now, let's set up a class for the zombie. In the components folder, create a new file
called zombie.dart and add the following code:

import 'package:flame/components.dart';

import 'package:flame/flame.dart';

import 'package:flame/geometry.dart';

import 'package:flame/sprite.dart';

import 'package:goldrush/components/character.dart';

class Zombie extends Character {

 Zombie({required Vector2 position, required Vector2

 size, required double speed}) : super(position:

 position, size: size, speed: speed);

 @override

 Future<void> onLoad() async {

 super.onLoad();

 var spriteImages = await

 Flame.images.load('zombie_n_skeleton.png');

 final spriteSheet = SpriteSheet(image:

 spriteImages, srcSize: size);

 downAnimation = spriteSheet.createAnimation(

 row: 0, stepTime: 0.2, from: 0, to: 2);

 leftAnimation = spriteSheet.createAnimation(

 row: 1, stepTime: 0.2, from: 0, to: 2);

 upAnimation = spriteSheet.createAnimation(

 row: 3, stepTime: 0.2, from: 0, to: 2);

 rightAnimation = spriteSheet.createAnimation(

 row: 2, stepTime: 0.2, from: 0, to: 2);

 changeDirection();

 addHitbox(HitboxRectangle());

 }

}

Colliding with other sprites 61

Once again, the amount of code is small, just setting up the animation in the
onLoad function. As it extends the Character class, we get all the same code
we have for George too.

The main difference here is we use the built-in sprite sheet's createAnimation
function instead of our extension function, as this sprite sheet is in rows and not
columns. For the zombies, the animation frames are from columns 0 to 2, so we
add those parameters in the createAnimation call too.

11.	 Now, let's set up the skeleton enemy. In the components folder, create a new file
called skeleton.dart and add the following code:

import 'package:flame/components.dart';

import 'package:flame/flame.dart';

import 'package:flame/geometry.dart';

import 'package:flame/sprite.dart';

import 'package:goldrush/components/character.dart';

class Skeleton extends Character {

 Skeleton({required Vector2 position, required

 Vector2 size, required double speed}) : super(

 position: position, size: size, speed: speed);

 @override

 Future<void> onLoad() async {

 super.onLoad();

 var spriteImages = await

 Flame.images.load('zombie_n_skeleton.png');

 final spriteSheet = SpriteSheet(

 image: spriteImages, srcSize: size);

 downAnimation = spriteSheet.createAnimation(

 row: 0, stepTime: 0.2, from: 3, to: 5);

 leftAnimation = spriteSheet.createAnimation(

 row: 1, stepTime: 0.2, from: 3, to: 5);

 upAnimation = spriteSheet.createAnimation(

 row: 3, stepTime: 0.2, from: 3, to: 5);

 rightAnimation = spriteSheet.createAnimation(

62 Drawing and Animating Graphics

 row: 2, stepTime: 0.2, from: 3, to: 5);

 changeDirection();

 addHitbox(HitboxRectangle());

 }

}

As with the zombie code, it's compact and inherits most functionality from the
Character component. Because of the way the sprite sheet image is set up, we set
the from and to fields to 3 to 5, respectively, to grab the correct animation frames
for the skeleton.

Now we have the zombies and skeletons set up, let's add some extra collision code to
the George class so that every time the George sprite collides with either a zombie
or skeleton, it will delete the enemy from the screen as if the enemy had been killed.

12.	 At the bottom of the George class, add the following onCollision function:

 @override

 void onCollision(Set<Vector2> points,

 Collidable other) {

 super.onCollision(points, other);

 if (other is Zombie || other is Skeleton) {

 other.removeFromParent();

 }

 }

13.	 Next, add the imports at the top of the George file for the Zombie and
Skeleton classes:

import 'package:goldrush/components/skeleton.dart';

import 'package:goldrush/components/zombie.dart';

14.	 Finally, let's add the same imports that we just added to the George file to the
main.dart file. Then, in the onLoad function, let's add the following code to add
some zombies and skeletons and update George to pass the position, size, and speed:

add(George(position: Vector2(200, 400),

 size: Vector2(48.0, 48.0), speed: 40.0));

Colliding with other sprites 63

add (Zombie(position: Vector2(100, 200), size:

 Vector2(32.0, 64.0), speed: 20.0));

add (Zombie(position: Vector2(300, 200), size:

 Vector2(32.0, 64.0), speed: 20.0));

add (Skeleton(position: Vector2(100, 600), size:

 Vector2(32.0, 64.0), speed: 60.0));

add (Skeleton(position: Vector2(300, 600), size:

 Vector2(32.0, 64.0), speed: 60.0));

If you run the code now, you will see a few zombies and skeletons and George wandering
around, randomly changing direction every few seconds and when they hit the edges. If
George collides with an enemy, the enemy will be removed from the screen.

Here is a picture of how the game looks so far:

Figure 4.4 – George and the enemy sprites

64 Drawing and Animating Graphics

In this section, we added enemy sprites to the game and collision code to detect when
George collides with the enemies. We extracted the common code for movement and
animation changes to a base class called Character and then built the sprite classes
using this.

Summary
In this chapter, we showed you how to load graphics from a sprite sheet and extract and
play the animations. Then, we showed you how to move the sprites around and change
the animation to match the direction of travel. Finally, we showed you how to animate
multiple sprites independently and detect when they collide with each other or the
screen edges.

In the next chapter, we will add more interactivity by learning how to control your player
character with virtual joysticks and buttons. We will also look at other methods of input
control, including detecting touch events on the screen and using them to control the
player character.

Questions
1.	 What is a sprite?
2.	 What functions should we use for the code which initializes the animations?
3.	 What are the benefits of using SpriteAnimationComponent?
4.	 What parameters should you set in the createAnimation function to specify

a range within a sprite sheet?
5.	 What is the benefit of creating a base class for all our sprites?

5
Moving the Graphics

with Input
In this chapter, we will take control of our own character and move them around the
screen with virtual joysticks and touch events, so the player can choose where they
want to move their character.

We will start by looking at how to draw onscreen controls that behave like a thumb-
stick on a PlayStation controller, with action buttons for things such as attacking and
jumping. Next, we will connect the virtual controls with our George sprite and get him
moving around the screen. And finally, we will discuss an alternative or addition to virtual
controls, by controlling George with touch events, such as tapping on the screen and
moving George to a tapped location.

So, we will cover the following topics:

•	 Drawing onscreen controls

•	 Moving our character with onscreen controls

•	 Moving our character with touch

66 Moving the Graphics with Input

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter05.

You can find additional information on Flame input in the online documentation at
https://docs.flame-engine.org/1.0.0/gesture-input.html and
https://docs.flame-engine.org/1.0.0/other-inputs.html.

In the next section, we will start by adding the onscreen controls and drawing them
on the screen.

Drawing onscreen controls
In this section, we will add a joystick and a button to the screen that will allow us to
control the character and some text for showing the player their score. These three
components will form part of our Heads-Up Display (HUD), which is part of the user
interface, showing game information that is drawn over the other graphics in the game
and remains in a fixed position. The type of information could be the player's health,
the number of lives remaining, or, in our case, the game score.

We will encapsulate our HUD into a single component, which makes showing or hiding
it easier. The HUD component will contain JoyStickComponent for controlling
the direction that George moves; the joystick will work by dragging an onscreen circle
within a larger circle in the direction you want to move. The HUD will also include
HudButtonComponent, an onscreen button that the player can press to double
George's walking speed, making him run.

We will connect the HUD components in the next section, but for now, let's draw them
on the screen:

1.	 First, create a folder inside the components folder called hud to hold our components.
2.	 Inside the hud folder, create four files called hud.dart, joystick.dart,

run_button.dart, and score_text.dart.
3.	 In the run_button.dart file, add the following imports and class definition:

import 'package:flame/components.dart';

import 'package:flame/input.dart';

import 'package:flutter/material.dart';

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter05
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter05
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter05
https://docs.flame-engine.org/1.0.0/gesture-input.html
https://docs.flame-engine.org/1.0.0/other-inputs.html

Drawing onscreen controls 67

class RunButton extends HudButtonComponent {

}

4.	 Next, we will add the constructor inside the class definition; this will include
the values we need to pass to the HudButtonComponent base class via a call
with super:

 RunButton({

 required button,

 buttonDown,

 EdgeInsets? margin,

 Vector2? position,

 Vector2? size,

 Anchor anchor = Anchor.center,

 onPressed,

 }) : super(

 button: button,

 buttonDown: buttonDown,

 margin: margin,

 position: position,

 size: size ?? button.size,

 anchor: anchor,

 onPressed: onPressed

);

5.	 Below this constructor, let's add a Boolean variable to keep track of whether this
button is pressed or not, the default being false:

bool buttonPressed = false;

6.	 HudButtonComponent has a mixin called Tappable that allows us to detect
when this button is pressed on the screen and override callbacks for onTapUp,
onTapDown, and onTapCancel, which we will use to update the buttonPressed
Boolean. Let's add these functions after the buttonPressed definition:

 @override

 bool onTapDown(TapDownInfo info) {

 super.onTapDown(info);

68 Moving the Graphics with Input

 buttonPressed = true;

 return true;

 }

 @override

 bool onTapUp(TapUpInfo info) {

 super.onTapUp(info);

 buttonPressed = false;

 return false;

 }

 @override

 bool onTapCancel() {

 super.onTapCancel();

 buttonPressed = false;

 return true;

 }

We will use RunButton in the HUD component in the hud.dart file, but for
now, let's move on to defining TextComponent for our score.

7.	 Open the score_text.dart file and add the following imports and class
definition:

import 'package:flame/components.dart';

import 'package:flame/input.dart';

import 'package:flame/palette.dart';

import 'package:flutter/cupertino.dart';

class ScoreText extends HudMarginComponent {

}

Drawing onscreen controls 69

Note here that the ScoreText class extends HudMarginComponent and not
TextComponent. This is because we want to place TextComponent with
margins around it. We will create TextComponent inside this class, add it as a
child component of HudMarginComponent, and pass the margins into the class
via the constructor, which we will add next.

8.	 Add the following constructor inside the class to pass the margins to the class:

ScoreText({EdgeInsets? margin}) : super (margin: margin);

9.	 Below the constructor, add the following variables for score and the
TextComponent child:

int score = 0;

String scoreText = "Score: ";

late TextPaint _regularPaint;

late TextComponent scoreTextComponent;

10.	 Below these variables, let's add the onLoad function, which is called when the
component is first used, to set up TextComponent:

@override

Future<void> onLoad() async {

 super.onLoad();

 TextStyle textStyle = TextStyle(color:

 BasicPalette.blue.color, fontSize: 30.0);

 regularPaint = TextPaint(style: textStyle);

 scoreTextComponent = TextComponent(text: scoreText +

 score.toString(), textRenderer: _regularPaint);

 add(scoreTextComponent);

}

Here, we are setting the text color to blue and adding scoreTextComponent
as a child to ScoreText.

70 Moving the Graphics with Input

11.	 Finally, for TextComponent, we want to expose a function for updating the score
that will get updated every time George collides with one of the enemy sprites.
So, let's add the setScore function below the onLoad function:

 setScore(int score) {

 this.score += score;

 scoreTextComponent.text =

 scoreText + this.score.toString();

 }

12.	 Next, we will add a simple JoystickComponent for controlling George's
movement. To do that, open the joystick.dart file and add the following code:

import 'package:flame/components.dart';

import 'package:flutter/material.dart';

class Joystick extends JoystickComponent {

 Joystick({required PositionComponent knob,

 PositionComponent? background, EdgeInsets?

 margin}) : super (knob: knob, background:

 background, margin: margin);

}

We will keep this simple for now, but it's worth keeping JoystickComponent
in its own file in case you want to style it more later, by using custom images for
the joystick instead of colors.

13.	 Now that we have our joystick, run button, and score text components, let's create a
HUD component that will handle the initialization of these components. First, open
the hud.dart file and add the following imports and class definition:

import 'package:flame/components.dart';

import

 'package:goldrush/components/hud/run_button.dart';

import

 'package:goldrush/components/hud/score_text.dart';

import

 'package:goldrush/components/hud/joystick.dart';

import 'package:flame/palette.dart';

Drawing onscreen controls 71

import 'package:flutter/material.dart';

class HudComponent extends PositionComponent {

}

Here, we extend from PositionComponent, giving us control over how we
arrange our child components with margins. PositionComponent is a base
class that allows the positioning of components within it.

14.	 At the top of the HudComponent class, let's add a constructor that sets
priority to 20:

HudComponent() : super(priority: 20);

priority is used to indicate the order components are drawn, with the default
being 0. So, setting this higher than 0 will ensure that the HUD is drawn on top
of everything else.

Later, when we start using a map that is larger than the physical screen, the character
and enemies will move around the map, but we want the score to stay at the top left
of the screen while the map scrolls around.

15.	 Below this, we now define the variables to hold our child components:

late Joystick joystick;

late RunButton runButton;

late ScoreText scoreText;

16.	 Now, set these child components up on the onLoad function:

 @override

 Future<void> onLoad() async {

 super.onLoad();

 final joystickKnobPaint =

 BasicPalette.blue.withAlpha(200).paint();

 final joystickBackgroundPaint =

 BasicPalette.blue.withAlpha(100).paint();

 final buttonRunPaint =

 BasicPalette.red.withAlpha(200).paint();

72 Moving the Graphics with Input

 final buttonDownRunPaint =

 BasicPalette.red.withAlpha(100).paint();

 joystick = Joystick(

 knob: CircleComponent(radius: 20.0, paint:

 joystickKnobPaint),

 background: CircleComponent(radius: 40.0, paint:

 joystickBackgroundPaint),

 margin: const EdgeInsets.only(left: 40, bottom:

 40),

);

 runButton = RunButton(

 button: CircleComponent(radius: 25.0, paint:

 buttonRunPaint),

 buttonDown: CircleComponent(radius: 25.0, paint:

 buttonDownRunPaint),

 margin: const EdgeInsets.only(right: 20, bottom:

 50),

 onPressed: () => {}

);

 scoreText = ScoreText(margin: const

 EdgeInsets.only(left: 40, top: 60));

 add(joystick);

 add(runButton);

 add(scoreText);

 positionType = PositionType.viewport;

 }

Drawing onscreen controls 73

Here, we set up some Paint objects for the colors of the components.

Next, we set up the joystick, using circles for the knob and background, and set the
margin at the bottom left of the screen where the joystick will be located.

Then, we set up the run button in a similar way, with its margin at the bottom
right to draw it opposite the joystick.

We then set the score text up with the margin at the top left of the screen.

After that, we add the HUD components and set positionType to
PositionType.viewport.

PositionType ensures that this component is drawn on top of everything, even if
the game camera moves around.

Please note that for the run button, it takes a function callback for when the button
is pressed, but because we are managing the tap handling ourselves in the run
button class, we can just ignore this and pass {} instead.

17.	 Let's add our HudComponent to the game so we can see our new components.
Open the main.dart file and add the following import to the top of the file:

import 'package:goldrush/components/hud/hud.dart';

18.	 At the top of the onLoad function, let's add our HudComponent:

add(HudComponent());

19.	 As the HudComponent class contains components that are draggable (Joystick)
and tappable (RunButton), we must pass the mixins for HasDraggables and
HasTappables to the class definition for MyGame:

class MyGame extends FlameGame with HasCollidables,
HasDraggables, HasTappables {

74 Moving the Graphics with Input

If you run the game now, you will see the new components displayed with the
existing game sprites:

Figure 5.1 – The game with the HUD controls

In this section, we learned how to add a joystick, a button, and a score to our game and
positioned them on the screen.

In the next section, we will connect the joystick to George's movement and make him run
faster when the run button is pressed. We will also update the score by 10 when George
collides with an enemy.

Moving our character with onscreen controls 75

Moving our character with onscreen controls
In this section, we will start by connecting George's movement to the joystick.

Currently, the George class inherits his movement from the base class, Character,
which it shares with the Skeleton and Zombie classes. As George will have different
movement code from the enemy sprites, let's refactor the code to allow the enemy sprites'
movement code. We will move the existing movement code into an EnemyCharacter
class, which will become the new base class for the enemy sprites and remove this code
from the Character class.

Let's get started:

1.	 In the components folder, create a file called character_enemy.dart.
2.	 Open the file and add the code at https://github.com/PacktPublishing/

Building-Games-with-Flutter/blob/main/chapter05/lib/
components/character_enemy.dart.

In this code, the EnemyCharacter class extends our Character class, and we
have copied the onCollision, update, and changeDirection functions
straight from the Character class.

3.	 In the changeDirection function in the EnemyCharacter class, you will need
to update the switch case block to prepend the directions with the Character
base class. Once done, the block will look like this:

 switch (newDirection) {

 case Character.down:

 animation = downAnimation;

 break;

 case Character.left:

 animation = leftAnimation;

 break;

 case Character.up:

 animation = upAnimation;

 break;

 case Character.right:

 animation = rightAnimation;

 break;

 }

https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter05/lib/components/character_enemy.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter05/lib/components/character_enemy.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter05/lib/components/character_enemy.dart

76 Moving the Graphics with Input

4.	 Open the zombie.dart and skeleton.dart files, and inside them both,
instead of extending from Character, change the class definition to extend
from EnemyCharacter.

5.	 Remove the previous import for character.dart and replace this with the
following:

import 'character_enemy.dart';

6.	 Open the character.dart class and remove the functions for onCollision,
update, and changeDirection that we now have in the EnemyCharacter
class. You can also remove the import for the math package now too.

7.	 Open the file for george.dart and remove the line for changeDirection in
the onLoad function.

8.	 If you run the game now, you will see George is invisible because we have not
updated him and set his animation yet. Let's fix that by adding the following
code in the onLoad function in the george.dart file:

 animation = downAnimation;

 playing = false;

9.	 Next, we will set up some variables for walkingSpeed and runningSpeed that
will be toggled when the run button is pressed. At the top of the George class,
below the constructor, add the following variables:

late double walkingSpeed, runningSpeed;

10.	 Then, at the top of the onLoad function, let's set walkingSpeed to equal the
default speed that the sprite will move at and runningSpeed to be twice as fast:

 walkingSpeed = speed;

 runningSpeed = speed * 2;

11.	 Because we want to read the status on the joystick and the run button, we need to
get a reference to HudComponent. So, let's pass the HUD via the constructor and
store the HUD in a variable:

final HudComponent hud;

Moving our character with onscreen controls 77

12.	 Then, update the constructor to pass the HUD so that we can access the values from
the HUD in this class:

George({required this.hud, required Vector2 position,
required Vector2 size, required double speed}) :
super(position: position, size: size, speed: speed);

13.	 Next, we need to add the import for HudComponent:

import 'package:goldrush/components/hud/hud.dart';

14.	 Now, we will add the update function below the onCollision function and
connect the run button to the speed variable:

 @override

 void update(double dt) {

 super.update(dt);

 speed = hud.runButton.buttonPressed ?

 runningSpeed : walkingSpeed;

}

If the run button is pressed, the speed will be runningSpeed; otherwise, it will be
walkingSpeed.

15.	 After the line that sets the speed for walking and running, let's add the code that
links the joystick to the character's movements and set the character's direction
and animation based on the direction of the joystick:

 if (!hud.joystick.delta.isZero()) {

 position.add(hud.joystick.relativeDelta * speed

 * dt);

 playing = true;

 switch (hud.joystick.direction) {

 case JoystickDirection.up:

 case JoystickDirection.upRight:

 case JoystickDirection.upLeft:

 animation = upAnimation;

 currentDirection = Character.up;

 break;

78 Moving the Graphics with Input

 case JoystickDirection.down:

 case JoystickDirection.downRight:

 case JoystickDirection.downLeft:

 animation = downAnimation;

 currentDirection = Character.down;

 break;

 case JoystickDirection.left:

 animation = leftAnimation;

 currentDirection = Character.left;

 break;

 case JoystickDirection.right:

 animation = rightAnimation;

 currentDirection = Character.right;

 break;

 case JoystickDirection.idle:

 animation = null;

 break;

 }

 } else {

 if (playing) {

 stopAnimations();

 }

 }

Here, if the joystick reading is 0, the character doesn't move, but if it is above 0,
the character is moving. If the joystick is moving, we update our position based
on the value from the joystick, the current speed, and deltaTime. Then, based
on the joystick direction, we set the correct direction and animation. If there is no
joystick movement, we check whether the animation is playing; if it is, we will call
stopAnimations, which we will define next.

16.	 At the bottom of the class, we will create a new function called stopAnimations
with the following code:

 void stopAnimations() {

 animation?.currentIndex = 0;

 playing = false;

 }

Moving our character with onscreen controls 79

The stopAnimations function stops the animation from playing by setting the
variable to false and sets the current animation index to 0; this draws the first
frame of the animation as a static image. This gives the impression that we animate
the character while the joystick is being used and the character George stands still
when we stop using the joystick.

17.	 Let's increase the score by 10 every time an enemy is killed. In the onCollision
function, update the function like so to increase the score:

 if (other is Zombie || other is Skeleton) {

 other.removeFromParent();

 hud.scoreText.setScore(10);

 }

18.	 Finally, open the main.dart file and update the onLoad function so that we
create HudComponent as its own variable. This is used to store the HUD value
that is passed to the George class as a parameter:

 @override

 Future<void> onLoad() async {

 var hud = HudComponent();

 add(Background());

 add (George(hud: hud, position: Vector2(200, 400),

 size: Vector2(48.0, 48.0), speed: 40.0));

 add (Zombie(position: Vector2(100, 200),

 size: Vector2(32.0, 64.0), speed: 20.0));

 add (Zombie(position: Vector2(300, 200),

 size: Vector2(32.0, 64.0), speed: 20.0));

 add (Skeleton(position: Vector2(100, 600),

 size: Vector2(32.0, 64.0), speed: 60.0));

 add (Skeleton(position: Vector2(300, 600),

 size: Vector2(32.0, 64.0), speed: 60.0));

 add(ScreenCollidable());

 add(hud);

 }

If you run the app now, you will be able to control George with the joystick and
chase down and kill the enemies much quicker when you collide with them. If you
press and hold the run button while you are controlling the joystick, you will see
George move at his running speed.

80 Moving the Graphics with Input

In this section, we added a HUD containing a joystick, run button, and score text, which
we connected to the game to control George's movement and update the score when
George kills an enemy.

In the next section, we will show you an alternative way to control George instead of using
the joystick control, by detecting touch events on the screen and then moving George to
that location.

Moving our character with touch
Now that we have George moving with the joystick, let's look at an alternative method
for moving our character via screen touch events, which is very popular in games. With
mobile devices having very sensitive high-resolution screens nowadays, we can use touch
events or gestures to move our character from its current location to the location on the
screen that was tapped. Using trigonometry, we can calculate the angle between the origin
and target locations and use the angle to move George in the correct direction, with the
correct animation that matches the direction.

We are already detecting a tap event for the run button via the HasTappables
mixin. So, to detect touches on the screen, we need to add the Tappable mixin to the
Background class and override onTapUp to get an x and y location that we can use
to calculate the movement.

Because we need to know this coordinate inside of the George class, we will need to pass
in a reference to the George class into the Background class so that we can pass the tap
event when the player touches the screen.

To get started, let's modify the Background class:

1.	 Open the background.dart file. Add the following constructor and variable
for holding the reference to the George class at the top of the class. We will use this
for passing events back to the George class when the player touches the screen, and
we will call a function on the George class called moveToLocation and pass the
tap event:

 Background(this.george);

 final George george;

2.	 Resolve the reference to the George class with this import:

import 'george.dart';

3.	 Change the Background class definition by adding the Tappable mixin:

class Background extends PositionComponent with Tappable
{

Moving our character with touch 81

4.	 Add the following code to the bottom of the class to override the onTapUp
function and pass the TapUpInfo event to the George class:

 @override

 bool onTapUp(TapUpInfo info) {

 george.moveToLocation(info);

 return true;

 }

At the moment, the moveToLocation function doesn't exist in the George class,
but we will add that later when we update the George class. Because we are going
to use the touch event, we return true from this function to indicate that the touch
event was handled.

5.	 Add the following import to resolve the TapUpInfo reference:

import 'package:flame/input.dart';

6.	 In the main.dart file's onLoad function, let's make the George class into
a variable, and then we can pass that into the Background class constructor.
To do this, change the first few lines on the onLoad function like this:

 @override

 Future<void> onLoad() async {

 var hud = HudComponent();

 var george = George(hud: hud, position:

 Vector2(200, 400), size: Vector2(48.0, 48.0),

 speed: 40.0);

 add(Background(george));

 add (george);

Note that only the top part of the onLoad function is presented here to show
the changed lines, but the rest of the lines that add the enemies, HUD, and
ScreenCollidable are left the same.

Before we make the final changes to the George class, let's create a math utility
class for storing a function to get the angle between George's location and the
location on the screen where the player touches.

7.	 In the lib folder, create a new folder called utils, and in that folder, create a new
file called math_utils.dart.

82 Moving the Graphics with Input

8.	 Open the new math_utils.dart file and add the following code for the
getAngle function:

import 'dart:math';

import 'package:flame/components.dart';

double getAngle(Vector2 origin, Vector2 target) {

 double dx = target.x - origin.x;

 double dy = -(target.y - origin.y);

 double angleInRadians = atan2(dy, dx);

 if (angleInRadians < 0) {

 angleInRadians = angleInRadians.abs();

 }

 else {

 angleInRadians = 2 * pi - angleInRadians;

 }

 return angleInRadians * radians2Degrees;

}

We are not going to go into much detail about how the getAngle function works,
but it uses basic trigonometry covered in most high school math classes. The
getAngle function will return an angle between 0 and 360, with 0 degrees facing
right, 90 degrees facing down, 180 degrees facing left, and 270 degrees facing up.

9.	 Open the george.dart file and add the following imports for the math
utilities class:

import 'package:goldrush/utils/math_utils.dart';

10.	 In the George class, after the constructor, let's add a couple of variables for the
targetLocation vector and a variable to track whether we are moving via touch:

 late Vector2 targetLocation;

 bool movingToTouchedLocation = false;

11.	 Now, let's add the moveToLocation function we referenced earlier in the
Background component, set targetLocation to the touch event that was
passed, and set movingToTouchedLocation to true:

 void moveToLocation(TapUpInfo info) {

 targetLocation = info.eventPosition.game;

Moving our character with touch 83

 movingToTouchedLocation = true;

 }

Sprites have an anchor point that defaults to the top left of the sprite in Flame, so
if we touch on the screen the sprite would be moved and the top-left corner of
the sprite would align with the touched point on the screen. It feels more natural
to center the sprite around the center of the sprite rather than the top left, so let's
update the anchor point to be in the center.

12.	 At the bottom of the onLoad function and before adding the hitbox, add the
following code to set the anchor in the center of the sprite.

anchor = Anchor.center;

addHitbox(HitboxRectangle());

13.	 Finally, we are going to add code to our update function that will move George to
the touched location. In the update function, look for the else block containing
the following code:

if (playing) {

 stopAnimations();

}

Replace it with this code block:
if (movingToTouchedLocation) {

 } else {

 if (playing) {

 stopAnimations();

 }

 }

14.	 Inside the if code block, add the following code to set the new anchor position:

position += (targetLocation - position).normalized() *
(speed * dt);

This code updates George's position based on the difference between
targetLocation and the current position, while taking account of the
current speed and the time since the last update was called, to ensure the
movement is smooth.

84 Moving the Graphics with Input

15.	 When we arrive at the touched location, we want to stop any animations from
playing and set movedToTouchedLocation to false. Because we are moving
the character based on fractions that could have rounding issues, we allow for a
small threshold value in deciding whether George is near enough to the touched
location, and if he is, we stop the animations. So, let's continue inside this code block
and add the check for the threshold:

double threshold = 1.0;

var difference = targetLocation - position;

if (difference.x.abs() < threshold &&

 difference.y.abs() < threshold) {

 stopAnimations();

 movingToTouchedLocation = false;

 return;

}

16.	 Finally, we will use the getAngle function we created earlier and use the angle
to decide what direction George is moving in and which is the closest animation
to this. For instance, we only have four animations – up, down, left, and right – so
we will approximate the direction by splitting the directions into four 90-degree
quadrants, illustrated by the following diagram:

Figure 5.2 – The quadrant mapping to move direction

Moving our character with touch 85

Based on our diagram, if we are moving between 45 degrees and 135 degrees,
we are approximately moving down, so we can set the direction to down and use
downAnimation to animate the sprite correctly. Remember that 0 degrees points
east, and we need 2 checks for moving right, between 315 to 360 degrees and 0 to
45 degrees. So, let's add code for this logic, continuing in the same code block:

 playing = true;

 var angle = getAngle(position, targetLocation);

 if ((angle > 315 && angle < 360) || (angle > 0

 && angle < 45)) { // Moving right

 animation = rightAnimation;

 currentDirection = Character.right;

 }

 // Moving down

 else if (angle > 45 && angle < 135) {

 animation = downAnimation;

 currentDirection = Character.down;

 }

 // Moving left

 else if (angle > 135 && angle < 225) {

 animation = leftAnimation;

 currentDirection = Character.left;

 }

 // Moving up

 else if (angle > 225 && angle < 315) {

 animation = upAnimation;

 currentDirection = Character.up;

 }

Now, if you run the code, you can control George by touching anywhere on the screen,
and he will move there. You can also use the joystick if you want to. Whichever movement
method you prefer, the run button will still make George run faster while pressed. Also,
note that if you use touch to move the character and then switch to joystick control,
it will interrupt the movement caused by the touch, allowing you to manually control
George's movement.

86 Moving the Graphics with Input

Summary
We covered a lot in this chapter, and the game is really starting to take shape. We learned
how to create onscreen controls for our game with a joystick and a run button, as well as
how to add text on the screen for our score. We then learned an alternative method for
controlling George by allowing you to touch the screen to move him to the touched location.

The game is a bit quiet at the moment, though. In most games, music soundtracks and
sound effects are used to create atmosphere and bring them to life. In the next chapter,
we will add some music and sounds to the game to enhance it further.

Questions
1.	 What is a HUD and what is it used for in our game?
2.	 Which mixin do we use to convert a component to detect when it is touched?
3.	 What component do we use to draw text on the screen?
4.	 Why do you think JoystickComponent needs the HasDraggables mixin?

6
Playing Sound

Effects and Music
In this chapter, we will bring our game to life by adding sound effects and music that will
enhance the game. Audio is a very important part of any game; it can alert you to key
events happening in a game or create atmosphere. Imagine walking through a forest in
a game and hearing a nearby river or the birds singing in the trees. It makes the whole
game more immersive if the sound matches what you would expect to hear if you were
in that forest.

It is important though that if the player puts the game in the background to, for example,
check their email, that we stop the music or sound from playing, and that the sound
resumes when they return to the game, otherwise the ongoing sound could be annoying
for the player. To handle this, we will cover how to listen for these life cycle events so that
we ensure the audio is paused and resumed correctly.

Audio also takes up memory and we will discuss how Flame uses an audio cache to help
load and keep these audio resources so we can play them whenever we need them in a
game. Often, sound effects are played multiple times, so we need to be able to access these
easily and play them repeatedly when needed.

88 Playing Sound Effects and Music

So, in this chapter, we will cover the following topics:

•	 Playing background music

•	 Playing sound effects

•	 Controlling the volume

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter06.

You can find additional information on Flame audio in the online documentation at
https://docs.flame-engine.org/1.0.0/audio.html.

To get started playing sounds and music in our game, we must download the asset files
and add them to our pubspec.yaml file. We can find all the sound files we want to add
at the excellent free website https://freesound.org.

The sound effects and music we want to add are the following:

•	 Background music playing throughout the game

•	 A sound effect for when an enemy dies

•	 A sound effect when George moves around

Here are some I found while browsing the site, but feel free to browse the site and find
other sounds you may prefer:

•	 Background music – https://github.com/PacktPublishing/
Building-Games-with-Flutter/blob/main/chapter06/assets/
audio/music/music.mp3

•	 George movement – https://github.com/PacktPublishing/Building-
Games-with-Flutter/blob/main/chapter06/assets/audio/
sounds/running.wav

•	 Enemy dying – https://github.com/PacktPublishing/Building-
Games-with-Flutter/blob/main/chapter06/assets/audio/
sounds/enemy_dies.wav

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter06
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter06
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter06
https://docs.flame-engine.org/1.0.0/audio.html
https://freesound.org
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/music/music.mp3
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/music/music.mp3
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/music/music.mp3
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/sounds/running.wav
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/sounds/running.wav
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/sounds/running.wav
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/sounds/enemy_dies.wav
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/sounds/enemy_dies.wav
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter06/assets/audio/sounds/enemy_dies.wav

Playing background music 89

In the following steps, we will download some sounds to use in our game:

1.	 Download the music and sound effects mentioned or find some of your own
on the website.

2.	 Rename the music file to be called music.mp3, George's movement sound to be
called running.wav, and the enemy dying sound to be called enemy_dies.wav.

3.	 Open the assets folder and create a new folder called audio.
4.	 In the audio folder, create a folder called music and a folder called sounds.
5.	 In the music folder, add the music.mp3 file.
6.	 In the sounds folder, add the enemy_dies.wav and running.wav files.
7.	 Next, open the pubspec.yaml file and add the following assets below the existing

assets that we have for the sprite images:

- assets/audio/music/music.mp3

- assets/audio/sounds/enemy_dies.wav

- assets/audio/sounds/running.wav

8.	 Under the line where we added the Flame library, we will add a line for the Flame
audio library, so your dependencies should now look like this:

flame: 1.0.0

flame_audio: ^1.0.0

9.	 Save this file, and pub get will update to validate the new assets and download the
Flame audio library.

Now that we have the audio files set up as assets, let's add them to the game.

Playing background music
In this section, we will add the music playback, which will load at the start of the game and
continue playing while we play the game. The Flame audio library has a static class called
Bgm (background music) that adds music to the audio cache and will pause and resume the
music when the app is backgrounded or brought back to the front. We get this functionality
built into the Bgm class, so it requires very little code to get the music loaded and playing.
As you will see in the next section regarding the playing of sound effects, we must do a bit
more work to ensure sound effects pause and resume when backgrounded. Unfortunately,
this is how it currently works in the Flame library at this time, but hopefully, this will be
improved in future versions of the library.

90 Playing Sound Effects and Music

To add the music playback to the code, do the following:

1.	 Open the main.dart file and import the Flame audio library:

import 'package:flame_audio/flame_audio.dart';

2.	 At the top of the onLoad function, add the following code to initialize the library,
load the music into the audio cache, and play the background music:

FlameAudio.bgm.initialize();

await FlameAudio.bgm.load('music/music.mp3');

await FlameAudio.bgm.play('music/music.mp3');

3.	 In the MyGame class, below the onLoad function, add the following code, which
stops playing the music and clears in the audio cache when the game closes:

@override

void onRemove() {

 FlameAudio.bgm.stop();

 FlameAudio.bgm.clearAll();

 super.onRemove();

}

If you run the game now, you will hear our music playing. If you background the app on
mobile, you will notice the music stops playing and will resume if you bring the game back
to the foreground. If you close the game completely, by killing the app, you will notice the
music also stops.

It is important to do these steps on the onRemove function so that we avoid memory
leaks. In the next section, we will add sound effects to the game when we move George
and when an enemy dies.

Playing sound effects
As mentioned in the previous section, when playing sound effects, we need to handle the
pausing and resuming of the sound effects if they are still playing when the app is put
in the background, for instance, to check something else on your phone, as this is not
currently handled by the library.

We will initially update our Character class, which is our top-level base class for all our
sprites, to add onPaused and onResumed callbacks, which all our sprites can use.

Playing sound effects 91

We will then listen for life cycle change events in our game and if these are called, we will
iterate over all our sprites and pass on these events.

And finally, as the sound effects are related to George, we will update the George class
to play sounds and pause and resume these sound effects when needed. Let's get started:

1.	 Open up the character.dart file. At the bottom of the Character class, add
the following function definitions:

void onPaused() {}

void onResumed() {}

Note that we will leave these functions empty as we will override these in the
George class.

2.	 Open the main.dart file, and below the onRemove function that we recently
added, add the following code to listen and handle life cycle events:

@override

void lifecycleStateChange(AppLifecycleState state) {

 switch(state) {

 case AppLifecycleState.paused:

 children.forEach((component) {

 if (component is Character) {

 component.onPaused();

 }

 });

 break;

 case AppLifecycleState.resumed:

 children.forEach((component) {

 if (component is Character) {

 component.onResumed();

 }

 });

 break;

 case AppLifecycleState.inactive:

 case AppLifecycleState.detached:

 break;

 }

}

92 Playing Sound Effects and Music

In the lifecycleStateChange function that we override, we are passing
an AppLifecycleState event, which can be either a paused, resumed,
inactive, or detached event. As we only care about the paused and resumed
states, these are the only events we handle in this function.

Flame keeps track of all the children components we have added to the game in a
variable called children, which is a set of data we can iterate over. Don't forget
that HudComponent and ScreenCollidable are also components that will be
in this dataset, so we must check when we iterate over the data that the class is of
the Character type and ignore the other component types.

We can then safely pass on the pause and resume event via our onPaused and
onResumed callbacks as we know these are available to any classes that use
Character as a base class, such as our enemy sprites or George sprite.

3.	 Add the following import for the Character class:

Import 'package:goldrush/components/character.dart';

4.	 Open the george.dart file and add the following imports:

import 'package:flame_audio/flame_audio.dart';

import 'package:audioplayers/audioplayers.dart';

5.	 The two sound effects we will play are when an enemy collides with George and
when George walks or runs, controlled by the joystick or touch. If you have played
the sounds that we downloaded, you will notice the enemy dying sound effect is
short and the running sound effect is much longer. The challenge is that if George
keeps moving longer than the sound effect lasts, we need to keep the sound playing
by looping the sound.

Also, as mentioned earlier, if the game is put in the background, we need to pause
the sound and then resume it from the same point if the user returns to the game.
Because of this, we need to store a reference to AudioPlayer returned when
playing the long-looped audio returned from the running sound effect, meaning
we have control over its playback.

Let's create a couple of variables at the top of the George class that we have opened
for tracking whether a user is moving and for accessing the audio player state:

bool isMoving = false;

late AudioPlayer audioPlayerRunning;

Playing sound effects 93

6.	 At the bottom of the onLoad function, let's load the sound effects into the
audio cache:

await FlameAudio.audioCache.loadAll(

 ['sounds/enemy_dies.wav', 'sounds/running.wav']);

We use await on this line to wait until all the sound effect files are loaded into
the cache.

7.	 At the bottom of the onCollision function after the code block that checks
whether the other is a zombie or skeleton and sets the score, add the following
code to play the enemy dies sound effect when we collide with an enemy:

FlameAudio.play('sounds/enemy_dies.wav');

8.	 At the bottom of the George class, let's add the two functions for pausing and
resuming AudioPlayer when the app is put in the background:

@override

void onPaused() {

 if (isMoving) {

 audioPlayerRunning.pause();

 }

}

@override

void onResumed() async {

 if (isMoving) {

 audioPlayerRunning.resume();

 }

}

9.	 In the update function, we have a few changes to make to play the long looping
audio and to control it. In the code block at the top of the update function, where
we are already checking whether the joystick has moved, let's add the following code
where we set playing = true;, so it looks like this:

playing = true;

movingToTouchedLocation = false;

if (!isMoving) {

 isMoving = true;

94 Playing Sound Effects and Music

 audioPlayerRunning = await

 FlameAudio.loopLongAudio('sounds/running.wav');

}

10.	 As we are waiting for the long-looped audio, we need to change the function
signature to be asynchronous. Do this with the following change:

@override

void update(double dt) async {

11.	 In the else block, in the code block where we check whether
movingToTouchedLocation is true, we will add the same code that we added
for the joystick check, to start the audio playing and set the flag for isMoving
to true:

} else {

 if (movingToTouchedLocation) {

 if (!isMoving) {

 isMoving = true;

 audioPlayerRunning = await

 FlameAudio.loopLongAudio('sounds/running.wav');

 }

Because we added the code in both locations, the running sound will start playing
irrespective of whether the player controls George with either the joystick or
by touch.

12.	 Further down this update function, where we called stopAnimations and set
movingToTouchedLocation to false and return, let's stop the audio and
set isMoving to false:

stopAnimations();

audioPlayerRunning.stop();

isMoving = false;

movingToTouchedLocation = false;

This code is within the code block where we check the threshold value and decide
whether George is near enough to the touched location to stop him from moving.

Controlling the volume 95

13.	 At the bottom of the update function in the final else block, we will add the
same isMoving check we added for the touched location check. This will stop the
running sound effect when the user stops moving the joystick, so we have both the
joystick and touch covered.

The else block at the bottom of the function should now look like this:
} else {

 if (playing) {

 stopAnimations();

 }

 if (isMoving) {

 isMoving = false;

 audioPlayerRunning.stop();

 }

}

In this section, we added sound effects for George running and colliding with an enemy.
We also added the correct handling for stopping the long-looped running sound when
George stops moving or when the game is moved to the background.

If you run the game now, you will hear the background music playing but the sound
effects may be difficult to hear at the same time because of the music playing too. This
is because both the sound effects and music have the same default volume, making it
difficult to hear them both clearly.

In the next section, we will adjust the volume of the sound effects and music to fix this
issue and make it easier to hear the sound effects.

Controlling the volume
Fixing the volume of the music and sound effects is very easy and only requires a few
small changes. Let's take a look:

1.	 Open the main.dart file. In the onLoad function, where we added the call to play
the background music, change this line to pass the volume parameter:

await FlameAudio.bgm.play('music/music.mp3',

 volume: 0.1);

96 Playing Sound Effects and Music

Here we set the music volume to 0.1, keeping it low so we can hear the sound
effects better. The volume parameter can be any value between 0.0 and 1.0 (0.0
mutes the sound of the music or sound effect completely, whereas 1.0 plays the
sound at full volume).

2.	 Open the george.dart file and let's update the calls to play each sound effect
to use the volume parameter. In the onCollision function, update the enemy
dying sound effect like this:

FlameAudio.play('sounds/enemy_dies.wav', volume: 1.0);

3.	 In the update function, change the two calls to play the running sound effect, and
add the volume parameter in both places:

audioPlayerRunning = await FlameAudio.loopLongAudio(

 'sounds/running.wav', volume: 1.0);

If you run the game now, you will be able to hear the sound effects over the music.

Summary
In this chapter, we introduced music and sound effects to make the game better. We
handled the playback and paused the sound when the app is in the background, and
resumed it when the player returns to the game, by handling the life cycle events.

In the next chapter, we will go beyond the limits of the physical screen and learn how to
make game levels that use maps that we can scroll around as we move around the map.

Questions
1.	 Which library do we use to add audio to our games?
2.	 Why is it beneficial to load the audio into the audio cache?
3.	 Why do we need to clear the audio buffer after the components are removed from

the game?
4.	 Which life cycle change states do we need to handle when the game is backgrounded?
5.	 What class do we use to keep a reference to a longer sound effect?
6.	 How do we change the default volume for music or sound effects?

7
Designing Your Own

Levels
So far, our game has used the physical limits of the device screen as the boundary for both
George and our enemy sprites. In this chapter, we are going to show you how to make
game levels that are bigger than the screen and how to scroll around the level using a
camera to show part of the level.

We will show you how to add dynamic objects or sprites and how to deal with collisions
on these larger levels. This is a very common technique and is used by most types of
games, including platform games such as Sonic and 2D role-playing games such as
Ultima or Zelda.

We will cover the following topics:

•	 Introduction to Tiled

•	 Loading a tile map

•	 Adding dynamic objects to the map

•	 Understanding map navigation

•	 Detecting tile collisions

98 Designing Your Own Levels

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter07 by following these steps:

1.	 From https://github.com/PacktPublishing/Building-Games-
with-Flutter/blob/main/chapter07/assets/images/tiles.png,
download the tiles.png file and move it into the assets/images local
project folder.

2.	 From https://github.com/PacktPublishing/Building-Games-
with-Flutter/blob/main/chapter07/assets/tiles/tiles.tmx,
download the tiles.tmx file.

From https://github.com/PacktPublishing/Building-Games-
with-Flutter/blob/main/chapter07/assets/tiles/tiles.tsx,
download the tiles.tsx file.

Then, move both files into the assets/tiles local project folder after creating
this folder.

3.	 Open the pubspec.yaml file and add the following library dependency:

flame_tiled: ^1.0.0

4.	 In the assets section of the same file, let's add the tile assets we just downloaded:

- assets/tiles/tiles.tmx

- assets/tiles/tiles.tsx

- assets/images/tiles.png

5.	 Save the file and allow pub get to download this dependency and validate
the assets:

flutter pub get

Now that we have downloaded the required tile map files and dependencies, let's look into
the software used to create tile maps.

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter07/assets/images/tiles.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter07/assets/images/tiles.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter07/assets/tiles/tiles.tmx
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter07/assets/tiles/tiles.tmx
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter07/assets/tiles/tiles.tsx
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter07/assets/tiles/tiles.tsx

Introduction to Tiled 99

Introduction to Tiled
Tiled is a free, open source, easy-to-use, and flexible level editor that can be downloaded
from https://www.mapeditor.org/.

Figure 7.1 – Editing a map with the Tiled map editor

The levels we create with Tiled are known as tile maps. Tile maps are very common in 2D
game development as they allow us to create large maps or levels out of fixed-size tiles.

A tile map is like a sprite sheet, which we have used before in Chapter 4, Drawing and
Animating Graphics. The data is stored in one large image, and we extract what we need
into smaller components.

This is a very performant and memory-efficient way of creating maps larger than the
physical screen size. If you were to try and make this with a very large image, the image
would need to be loaded into memory, which may cause the game to crash or run
very slowly.

Let's look at an example of some graphics from a tile map and how they might be used.
The following example is from the website https://opengameart.org/content/
tilecraft-tile-set-ground#, which was made by user GrumpyDiamond.

https://www.mapeditor.org/
https://opengameart.org/content/tilecraft-tile-set-ground#
https://opengameart.org/content/tilecraft-tile-set-ground#

100 Designing Your Own Levels

As you can see in the following screenshot, it has different types of terrain that we can use
to create a larger map:

Figure 7.2 – An image containing various terrains

Sometimes, tile map images also contain buildings or trees that you can use on the maps
too, but in this example, we see tiles for making water, grass, paths, and a few plants.

We can then load this image and break each image part into its smaller tiles, which can
then be used to create a larger map, as in the following screenshot:

Figure 7.3 – Using the terrain images to make a larger map

Introduction to Tiled 101

Notice in Figure 7.3 that a much larger water area was created by reusing the smaller tile
images to build something much bigger.

The Tiled tool makes creating tile maps very easy, including tools such as image editing,
which allow you to draw with tiles onto the map however you like. You can export maps
from Tiled in a variety of formats, but XML and JSON are the most common.

Tiled is a tool that is easy to get started with but also has advanced features beyond the
scope of this book, so we won't go into any more detail about it here. Instead, we will
provide the premade tile maps for use in our game, so that you can use them directly, but I
do recommend spending some time with Tiled once you want to create tile maps for your
own games.

When you export a map from Tiled, it has a lot of information about the map and tile
size, but the map data section is represented as a 2D array, which could look something
like this:

[

 [1, 1, 1, 1, 1, 1, 1, 1],

 [1, 2, 2, 2, 2, 2, 2, 1],

 [1, 2, 3, 3, 3, 3, 2, 1],

 [1, 2, 2, 2, 2, 2, 2, 1],

 [1, 1, 1, 1, 1, 1, 1, 1]

]

The 2D array in the preceding code block is eight tiles wide and five tiles high. 1 in the
array could represent the tile ID for some mountains, 2 might represent a path, and
3 might be water. So, in this example, the map has a path around a lake in the center
of the map, with mountains around the outer edges.

Inside a game, we would load this data and iterate over the array and draw each visible tile
based on its tile ID. We will draw the tiles starting at the top left, 0,0, and then go through
the tile data line by line, drawing each tile in turn.

Now that we have had an introduction to tile maps, we will add our own to the game in
the next section.

102 Designing Your Own Levels

Loading a tile map
In the Technical requirements section, we added our tile map files and the flame_tiled
library, which is used for loading and displaying tile maps.

Each tile is 32 x 32 pixels, and the map is 50 tiles wide by 50 tiles high, so our total map
size in pixels will be 1,600 x 1,600 pixels, which is 50 * 32 for width and height.

You can open the tiles.tmx file in Tiled if you want to see how the tile map looks there,
but here is a screenshot of how our tile map looks when loaded and drawn:

Figure 7.4 – The Gold Rush tile map

The map is basic with water around the edges and paths leading to the center of the map,
with grass everywhere else on the map.

We will use this as our base, adding objects and enemies to the map and collision
detection to the water areas to prevent George or the enemies from moving off the
edges of the map.

Adding dynamic objects to the map 103

Let's get started by loading the tile map and displaying it:

1.	 Open the main.dart file. In the onLoad function, we will add the following code
to load the tile map into TiledComponent and make it a game component. Let's
add this in the following code block, where we previously added the code for the
Background component:

add(Background(george));

final tiledMap = await

 TiledComponent.load('tiles.tmx', Vector2.all(32));

add(tiledMap);

2.	 Add the following import at the top of the file:

import 'package:flame_tiled/flame_tiled.dart';

If you run the game now, you will see the tile map that we just loaded and George
and some of the enemies. You'll only see some of the enemies because some will be
drawn offscreen. You will need to switch your emulator from portrait to landscape
to see the map correctly.

In the next section, we are going to remove the hardcoded enemies and start using a map
layer to add the enemies dynamically to the map.

Adding dynamic objects to the map
So far in the game, we have added a couple of each enemy, but now we are going to show
you how enemies and other objects can be added dynamically to the game.

This is very common in games because you may want some treasure or an enemy to
spawn at a certain location on the map. Tiled has a really great way to help us with this,
with a feature called layers. The two most common layers are tile layers and object layers.
We already used tile layers to display our map in the previous section, Loading a tile map.
Object layers allow us to define objects that will be drawn on top of the map.

104 Designing Your Own Levels

In the following screenshot, we show our tile map opened in Tiled, where you can see
we have two layers named Enemies and Map. The Map layer is our tile layer, and the
Enemies layer shows an object layer. We will use this Enemies layer to define spawn
points for our enemies:

Figure 7.5 – Our tile map showing the tile and object layers

We have initially placed 12 enemies on the map, 3 enemies in each quadrant. The enemies
will wander around as mentioned in the Loading a tile map section. When we have loaded
them in the game, we will read their locations from the tile map object layer, Enemies. So,
let's add them to our game next:

1.	 Open the main.dart file and remove the four lines where we previously added
our enemies in our onLoad function:

add (Zombie(position: Vector2(100, 200),

 size: Vector2(32.0, 64.0), speed: 20.0));

add (Zombie(position: Vector2(300, 200),

 size: Vector2(32.0, 64.0), speed: 20.0));

add (Skeleton(position: Vector2(100, 600),

Adding dynamic objects to the map 105

 size: Vector2(32.0, 64.0), speed: 60.0));

add (Skeleton(position: Vector2(300, 600),

 size: Vector2(32.0, 64.0), speed: 60.0));

2.	 Add the following code to replace the code we just removed:

final enemies =

 tiledMap.tileMap.getObjectGroupFromLayer('Enemies');

enemies.objects.asMap().forEach((index, position) {

 if (index % 2 == 0) {

 add(Skeleton(position: Vector2(position.x,

 position.y), size: Vector2(32.0, 64.0),

 speed: 60.0));

 } else {

 add (Zombie(position: Vector2(position.x,

 position.y), size: Vector2(32.0, 64.0), speed:

 20.0));

 }

});

This code is to read the object layer from the tile map and iterate over the data,
which contains 12 enemies, so that we place 6 skeletons and 6 zombies around
the map.

If you run the game now, you will see that we have some enemies. However, you will
currently see fewer of them because they are spread out around the map. Currently,
we are only showing the top-left corner of the map, but before we learn to figure out
how to move around the map in the Understanding map navigation section, let's add
some other objects to the map.

If you recall from earlier in the book, in Chapter 1, Getting Started with Flutter
Games, the final goal of the game is to collect gold coins to build up your score, but
we don't yet have any gold coins in the game. So, let's fix that by introducing a new
animated coin sprite and placing them in random locations all over the map. Of
course, we could add these as an object layer on the tile map if we wanted to, but as
we have seen how we can add fixed objects with the enemies, let's make the coins'
locations random to make the game more fun.

106 Designing Your Own Levels

3.	 Download the coins image from https://github.com/PacktPublishing/
Building-Games-with-Flutter/tree/main/chapter07/assets/
images/coins.png and save the image in our assets/images project folder.

4.	 Download the coin audio file from https://github.com/
PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter07/assets/audio/sounds/coin.wav and save the audio file
in our assets/audio/sounds project folder.

5.	 Open the pubspec.yaml file and add the following line to your list of assets:

- assets/images/coins.png

- assets/audio/sounds/coin.wav

6.	 Save the file and allow pub get to validate the asset:

flutter pub get

7.	 In the component folder, create a file called coin.dart and open it. Then add the
following class definition for the Coin class, which loads the coin image, creates an
animation, and sets up the collision detection on the coin:

import 'package:flame/components.dart';

import 'package:flame/flame.dart';

import 'package:flame/geometry.dart';

import 'package:flame/sprite.dart';

class Coin extends SpriteAnimationComponent with

 HasHitboxes, Collidable {

 Coin({required Vector2 position, required Vector2

 size}) : super(position: position, size: size);

 @override

 Future<void> onLoad() async {

 super.onLoad();

 var spriteImages =

 await Flame.images.load('coins.png');

 final spriteSheet =

 SpriteSheet(image: spriteImages, srcSize: size);

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07/assets/images/coins.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07/assets/images/coins.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07/assets/images/coins.png
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07/assets/audio/sounds/coin.wav
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07/assets/audio/sounds/coin.wav
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter07/assets/audio/sounds/coin.wav

Adding dynamic objects to the map 107

 animation = spriteSheet.createAnimation(row: 0,

 stepTime: 0.1, from: 0, to: 7);

 addHitbox(HitboxRectangle());

 }

}

8.	 Open the main.dart file and add the following imports at the top of the file:

import 'package:goldrush/components/coin.dart';

import 'dart:math';

9.	 In the onLoad function, add the following code below where we add the enemies;
this will add the coins to the map:

Random random =

 Random(DateTime.now().millisecondsSinceEpoch);

for (int i = 0; i < 50; i++) {

 int randomX = random.nextInt(48) + 1;

 int randomY = random.nextInt(48) + 1;

 double posCoinX = (randomX * 32) + 5;

 double posCoinY = (randomY * 32) + 5;

 add(Coin(position: Vector2(posCoinX, posCoinY),

 size: Vector2(20, 20)));

}

The code creates a random number generator using the current clock time as the
seed to initialize the random numbers, which will make the numbers truly random.

If you want a more predictable sequence of numbers generated, you can pass the
same fixed integer each time. This can be useful in games where you want to create
a set of level data that's always the same but appears to be random.

Next, we generate a number between 1 and 48, because we don't want to draw coins
on the water tiles. Later, we will add collision detection to the water tiles to prevent
the player or enemies from walking on the water. By generating a number with these
bounds, it will give us a location on the map related to the map array data.

We then take those numbers and multiply the number by 32, which is the size of
the map tile, and add 5 to get the posCoinX and posCoinY values, which is the
location of the coin in pixels.

108 Designing Your Own Levels

We then use these values to add a new coin component to the map at this position.

Note that we do all this in a loop that adds 50 coins to the map, some of which will
be currently offscreen until we add the map navigation.

10.	 Now that we have our coins added to the map, let's continue and update the
George class so that George can collect the coins.

11.	 Open the george.dart file and at the top of the file, add the following import:

import 'package:goldrush/components/coin.dart';

12.	 At the bottom of the onLoad function, update the line that loads the audio files into
the audio cache to load the coin.wav audio file:

await FlameAudio.audioCache.loadAll(

 ['sounds/enemy_dies.wav', 'sounds/running.wav',

 'sounds/coin.wav']);

13.	 Finally, at the bottom of the onCollision function, let's add a check for a
collision with a coin – if we collide with a coin, it will remove the coin from the
game, update our score by 20, and play the coin audio:

if (other is Coin) {

 other.removeFromParent();

 hud.scoreText.setScore(20);

 FlameAudio.play('sounds/coin.wav', volume: 1.0);

}

If you run the game now, you will see the spinning coins on the map and you will
be able to move George around a little to collect the coins. However, you will notice
that we are still constrained to the top-left corner of the map, even if we try to move
beyond this top corner.

In the next section, we will break George and the enemies free of this restriction, allowing
them to move around the map by adding navigation to the game map!

Understanding map navigation
Now that we have our tile map loaded and enemies and coins dynamically added to the
map, we can fix the navigation so we can wander around the map. But before we do that,
let's talk about cameras and how we use them in our game.

Understanding map navigation 109

A camera allows us to change what we see on the screen, which is very useful when you
have a map that is larger than the physical screen. We can use this to do the following:

•	 Zoom the camera to show more or less of the map.

•	 Show a different part of the map than George's current location on the map.

•	 Move to a different part of the map using animation for a smooth transition.

•	 Link the camera's position to follow George, so that when George moves around
the map, the camera updates and George stays visible, and the map moves around
his position.

Most games use a combination of these, but it is the last point we are most interested in,
as we want the camera to follow George as he moves around.

Important Note
Look up cameras in the Flame documentation if you are interested in learning
more about the other points. The documentation for cameras can be found
at https://docs.flame-engine.org/main/camera_and_
viewport.html.

Let's get started with fixing the navigation:

1.	 Open the main.dart file and at the bottom on the onLoad function, add the
following code:

camera.speed = 1;

camera.followComponent(george, worldBounds:

 Rect.fromLTWH(0, 0, 1600, 1600));

Here, we set the camera speed, set the camera to follow George, and set the bounds
of the world to be 1,600 x 1,600, which is the 50 tiles' width and height times the
pixel size of each tile, which is 32.

If you run this now and navigate around the map, you may notice a couple of issues:

a. The enemies don't wander any further than the original screen size.

b. You can only touch to move within the original screen size.

Let's fix each of these issues in turn.

https://docs.flame-engine.org/main/camera_and_viewport.html
https://docs.flame-engine.org/main/camera_and_viewport.html

110 Designing Your Own Levels

2.	 The reason why the enemies don't move around the map is that they are colliding
with the ScreenCollidable that we added when the screen was a fixed size. As
we will do the collision for this in the next section, we can just delete the line where
we added the ScreenCollidable file at the bottom of the onLoad function:

add(ScreenCollidable());

3.	 The reason why you can only touch within the physical screen bounds is that the
touch events are picked up in the Background class, and the Background class
size is currently based on the physical dimensions of the screen.

Also, now, as we are drawing the map, the background is only used to detect and
pass on the touch event to George, so we can remove most of the drawing code from
the Background class. Open the background.dart file and change all the code
in the class and add the reduced code, as follows:

import 'package:flame/components.dart';

import 'package:flame/input.dart';

import 'george.dart';

class Background extends PositionComponent with

 Tappable {

 Background(this.george);

 final George george;

 @override

 Future<void> onLoad() async {

 super.onLoad();

 position = Vector2(0, 0);

 size = Vector2(1600, 1600);

 }

 @override

 bool onTapUp(TapUpInfo info) {

 george.moveToLocation(info);

Detecting tile collisions 111

 return true;

 }

}

Apart from reducing the code in this class, the main change is at the bottom of the
onLoad function, where we set the size to 1,600 x 1,600, which is the map size and
not the screen size that we had previously in the Drawing onscreen controls section
of Chapter 5, Moving the Graphics with Input.

If you run the game now, you will see these issues are fixed and we can
navigate around and collect coins. Unfortunately, now that we have removed
ScreenCollidable, George and the enemies can walk off the sides of the screen.

In the next section, we will fix this by making the water around the map into a collidable
object that we can check for as we move around the map, detecting whether we collide
with the water and preventing George or the enemies from moving over it.

Detecting tile collisions
So far in our game, we have used component-level collision detection to detect collisions
between George and the coins and enemies. When you are working with map levels, you
will generally add other objects on the map that act as barriers, such as water, buildings,
or trees. As the player navigates around maps with these types of items, we want to ensure
that neither George nor enemies walk through these objects.

In the Understanding map navigation section, we removed the ScreenCollidable
component to allow the enemies to freely move around the map, but now the enemies
and George can wander off the map.

In this section, we are going to add a water barrier that will go around the map. We will
check for collisions to prevent both George and the enemies from being able to leave the
map. We will read the map locations of the water from an object layer and create new
Water components. We will make these components collidable and add these to the
game so that Flame will check for collisions with the water and we can prevent George
or the enemies from moving over the water.

This presents some interesting challenges because with our previous collision checks, we
just remove the enemy or coin when George collides with them, and George can continue
to move in the direction he is traveling in, but now we will have to prevent movement
when we collide with the water. Before we get into that, let's first talk a little bit more
about what is happening when Flame checks for collisions.

112 Designing Your Own Levels

Understanding collisions
When we set up a component to be collidable, we are adding a shape around the object.
Then, Flame can use these shapes to calculate if one shape intersects with another shape
and trigger a collision detection if that happens.

As the game grows, we keep adding more items that can be collided with, and the problem
with this process is that for every collidable item we add to the game, there needs to be
a collision check. The more collision checks we have, the more effort is required by the
processor to handle all the math behind that. Eventually, if you have too many collision
checks, the performance of the game will degrade, and you will notice that the game starts
to slow down.

Let's look at some of the math that we have in the game so far, to put this in context:

•	 We have 12 enemies in the game, 6 zombies and 6 skeletons.

•	 We have 50 coins in the game.

•	 We are going to add borders around the edges of the map, so that could be
around 200 water components due to each edge having 50 tiles with 4 edges
around the map.

•	 We also have our player, George.

This is 263 collidable objects in the game. At the moment, every one of these collidable
objects has a collision check with every other collidable object in the game. So, that is
263 * 263 = 69,169 collision checks. That's nearly 70,000 collision checks, and that's
happening every frame!

That's a scary number of collision checks and it's surprising our game is still running!

If you think about it, most of those checks are a complete waste, because a coin cannot
collide with other coins as they are all spread out around the map, and they don't move.
This is the same for the water objects that we will add too. Also, the water objects can't
collide with the coins either as they are in different locations.

Fortunately, Flame provides a great solution to this issue by allowing us to set
collidableType on the collidable component to let us tell Flame whether we
should do a check or not for this object.

The three collidable types are as follows:

•	 Active: An active collidable collides with other collidable objects that are of the
active or passive type. This is the default collidable type, if you don't set the value
for all collidable objects.

Detecting tile collisions 113

•	 Passive: A passive collidable collides with other collidables of the active type but not
with other passive collidable objects.

•	 Inactive: An inactive collidable will not collide with other collidable objects.

The solution for us to reduce the number of collision checks is to make the Water and
Coin objects passive and leave George and the enemy objects in their default active state.

Implementing collisions
Let's get started by adding the Water objects to our game:

1.	 In the project's component folder, create a new file called water.dart and add
the following code:

import 'package:flame/components.dart';

import 'package:flame/geometry.dart';

class Water extends PositionComponent with

 HasHitboxes, Collidable {

 Water({required Vector2 position, required Vector2

 size, required this.id}) : super(position:

 position, size: size);

 int id;

 @override

 Future<void> onLoad() async {

 super.onLoad();

 collidableType = CollidableType.passive;

 addHitbox(HitboxRectangle());

 }

}

Here, we define the Water object, which is a rectangular area that has a position
and size.

114 Designing Your Own Levels

In the onLoad function, we set collidableType to be of the
CollidableType.passive type and add a hitbox for the collision checks
between George and Water and the enemies and Water.

2.	 Open the main.dart file and at the bottom of the onLoad function, add the
following code below where we added the coins:

final water =

 tiledMap.tileMap.getObjectGroupFromLayer('Water');

water.objects.forEach((rect) {

 add(Water(position: Vector2(rect.x, rect.y), size:

 Vector2(rect.width, rect.height), id: rect.id));

});

Here, we get the water objects from the tile map as an object group and iterate over
these objects, using the x, y, width, and height values from this to create and add a
Water component to the game.

If you open the tile map in Tiled, you can see that the Water object layer consists
of four simple rectangles, which reduces the amount of collisions checks. We don't
really care about which individual water tile we collide with, so we can just check
the four edges.

3.	 At the top of the same file, add the following import for the Water component:

import 'package:goldrush/components/water.dart';

4.	 Open the coin.dart file and add the following code to the onLoad function to
set collidableType to be passive:

super.onLoad();

collidableType = CollidableType.passive;

5.	 Let's change the collision for the enemies first as it's a very quick change. Open the
character_enemy.dart file and at the top of the onCollision function, let's
change the object check to use the Water object instead of ScreenCollidable
with the following code:

if (other is Water) {

6.	 Next, we need to add the import for the Water class at the top of this file:

import 'package:goldrush/components/water.dart';

Detecting tile collisions 115

Moving on, Flame has debugMode, which we can set to true to see the bounding
boxes (a box that shows the boundary limits of the area of detection) of the
collidable boxes, which is useful for debugging collision detection. Let's add
that next.

7.	 Open the main.dart file and at the top of the onLoad function, add the
following line:

debugMode = true;

If you run the game now, you will see the bounding boxes and you may notice
an issue.

The Skeleton and Zombie sprites have a large amount of space at the top of the
sprites, which means if George collides with the top of these sprites, the collision
will happen sooner than expected because of the extra space in the image. To get
around this, we can pass two values to HitboxRectangle, which are relation
and relativeOffset.

The relation value defines the relationship between the length of the horizontal
and vertical sides and the size of the bounding box, and the relativeOffset
value is the position of your shape in relation to its size from (-1,-1) to (1,1).

To fix the space issue at the top of the enemy sprite classes, open both the zombie.
dart and skeleton.dart files, and at the bottom of the onLoad function,
change the line that adds the hitbox in both classes to the following code:

addHitbox(HitboxRectangle(relation: Vector2(1.0, 0.7))..
relativeOffset = Vector2(0.0, 0.3));

If you run the game now, you will see the bounding box is tightly aligned with the
size of the sprite, which will give us much better results with the collision detection.

8.	 We can also tweak the sprite that we use for George to improve the bounding box
further on the George sprite. Open the george.dart file and at the bottom of the
onLoad function, change the line that adds the hitbox to the following code:

addHitbox(HitboxRectangle(relation: Vector2(0.7, 0.7))..
relativeOffset = Vector2(0.0, 0.1));

Please note that the values are different from the ones we used for the enemy sprites.

9.	 Now that we have finished tweaking our bounding boxes, we can now remove the
debugMode line in the main.dart file.

116 Designing Your Own Levels

10.	 Let's continue adding the final collision checks in the George class.

At the top of the George class where we previously defined the class variables,
add these two new variables, which we will use to keep track of whether we have
collided with the Water component and what the direction of travel was when
we collided:

int collisionDirection = Character.down;

bool hasCollided = false;

We set collisionDirection to down because George starts the game
facing down.

11.	 Next, let's add an import for the Water object, which we are going to use in the
collision check. At the top of the file where the rest of the imports are, add the
following import:

import 'package:goldrush/components/water.dart';

12.	 At the bottom of the onCollision function, let's add the following code to set the
collision variables when a collision is detected with the Water border:

if (other is Water) {

 if (!hasCollided) {

 if (movingToTouchedLocation) {

 movingToTouchedLocation = false;

 } else {

 hasCollided = true;

 collisionDirection = currentDirection;

 }

 }

}

We will use these values in the next few steps to prevent us from moving George
when we collide with the water. But also notice in the preceding code that if a
collision has been detected and we are moving to a touched location, we now set
movingToTouchedLocation to false to stop George from continuing to try
to move.

Detecting tile collisions 117

13.	 We also want to set the hasCollided variable back to false when a collision has
ended, and fortunately Flame has a function called onCollisionEnd that we can
override and will get called when the objects have stopped colliding:

@override

void onCollisionEnd(Collidable other) {

 hasCollided = false;

}

14.	 Next, we will create a function for handling all our movement code and will only
allow the movement if there hasn't been a collision. Because we calculate the
movement of a touched location differently, we will split the code up based on
whether we are moving to a touched location or not, or whether the player is
using the joystick to control the movement:

void movePlayer(double delta) {

 if (!(hasCollided && collisionDirection ==

 currentDirection)) {

 if (movingToTouchedLocation) {

 position.add((targetLocation -

 position).normalized() * (speed * delta));

 } else {

 switch (currentDirection) {

 case Character.left:

 position.add(Vector2(delta * -speed, 0));

 break;

 case Character.right:

 position.add(Vector2(delta * speed, 0));

 break;

 case Character.up:

 position.add(Vector2(0, delta * -speed));

 break;

 case Character.down:

 position.add(Vector2(0, delta * speed));

 break;

 }

 }

 }

}

118 Designing Your Own Levels

15.	 Let's update the update function and replace the two places where we change the
sprite position for both touch and joystick control.

Replace the following line with movePlayer(dt);:
position.add(hud.joystick.relativeDelta * speed * dt);

Also, replace the following line with movePlayer(dt);:
position += (targetLocation - position).normalized() *
(speed * dt);

If you run the app now and move around with the joystick or by touch, you will see that
you can't go outside of the screen, as we now collide with the water and prevent the player
from moving over the water and outside the bounds of the screen.

Summary
In this chapter, we learned all about tile maps, how to create them and add dynamic objects,
and how to navigate around them while avoiding colliding with our collision objects.

So far in the book, we have mainly been building the game for mobile, but Flutter also
supports other platforms. In the next chapter, we will show you how to build the app for
web and desktop, convert the game to support the bigger available screen area, and add
extra controls to move George around with the keyboard.

Questions
1.	 What is the Tiled application used for?
2.	 Why should we use a tile map instead of one large image for the map?
3.	 How is map data stored inside a tile map?
4.	 What are the different types of layers that we can use on our tile maps?
5.	 How can we use a camera to adjust the map to keep a sprite in focus while we

navigate around the map?
6.	 How can we add collidable objects using tile maps?
7.	 What are the three collidable types and why are they needed?

8
Scaling the Game for

Web and Desktop
So far in this book, we have focused on building games for mobile devices that have small
fixed-size screens. One of the benefits of Flutter, of course, is that it is a cross-platform
framework that works on mobile, the web, and desktop.

However, when building a game that will run on a website, there are issues that we don't
face on mobile. If, instead of launching one of the mobile emulators, you choose the
Chrome browser as the target platform in Visual Studio Code and then run the game,
you would notice that the map and UI are drawn incorrectly, that there is no background
music, and touch events don't work properly.

In this chapter, we will convert the game so that it works on the web and desktop, making
sure to fix these issues. When dealing with resizing, we will need to redraw the map and
reposition all our components based on our new screen size. Some screens are very high
resolution and larger than our physical map size of 1,600 x 1,600, which means we will
need to ensure our game still looks great on these larger screens.

120 Scaling the Game for Web and Desktop

In this chapter, we will cover the following topics:

•	 Building the game for the web and desktop

•	 Setting background music

•	 Setting Flutter Web build parameters

•	 Navigating with key events

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter08.

Building the game for the web and desktop
As mentioned in the introduction, if you launched our game in Google Chrome, you
would notice that the map and UI are drawn incorrectly and are in the wrong places.
So, what is going on here?

The larger screen size that is changing constantly when we resize the screen is confusing
our game, which currently thinks the size is fixed and the initial positions of our
components are set relative to our fixed screen size. Because of this confusion, the
graphics can look weird and our previously working touch events can now get confused
because of this new screen size.

The solution to this is to ask the game to tell us when the screen is resized, and for us to
use the new screen size to recalculate the positions of all our components. To make this
more straightforward, we are going to mathematically calculate the boundaries of our
game so that we know where the top, left, right, and bottom of our map are in relation
to our new screen size, and then adjust the components based on this boundary.

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter08
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter08
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter08

Building the game for the web and desktop 121

The following image shows what we want to achieve by fixing the current user interface
issues:

Figure 8.1 – The web version of the game with user interface issues fixed

In Figure 8.1, you can see that when the screen is wider than the map, the tile component
draws black borders for the empty space. As the screen's width is larger than the map's
width, we see these black borders on the sides, but this is not the case for the height. The
screen's height is less than the map's height, so no black borders are drawn at the top and
bottom. This may be different on your screen depending on your screen size.

The red rectangle in the preceding image shows the boundary that we want to calculate so
that we can adjust everything else relative to it. In this section, we will do just that.

122 Scaling the Game for Web and Desktop

Setting the new screen boundary
Now that we know the boundary we need to calculate, let's go ahead and add it to
our code:

1.	 Open the maths_utils.dart file and add the following function:

Rect getGameScreenBounds(Vector2 canvasSize) {

}

2.	 At the top of the getGameScreenBounds function, add this code:

 double left = 0, right = 0, top = 0, bottom = 0;

 if (canvasSize.x > 1600) {

 left = (canvasSize.x - 1600) / 2;

 }

 if (canvasSize.y > 1600) {

 top = (canvasSize.y - 1600) / 2;

 }

Here, we initially define some variables to store our left, right, top, and
bottom values.

If the width or height of the screen is less than the map size, 1,600 x 1,600, we set the
default values to 0, 0 and only update the default values if the width or height of
the screen is greater than the map size.

We pass in canvasSize to the function, which is the current screen size, and
deduct 1600 to get the total difference between the two values. We then divide the
total difference by 2 because we want to ensure any adjustments will center the map
in the available space.

We will call this function at the start of the game, and every time the player changes
the screen size by resizing the window, we will then adjust all the components based
on this new screen size so they look correct.

3.	 Let's continue in our getGameScreenBounds function and set our right and
top variables next:

if (canvasSize.x < 1600) {

 right = canvasSize.x;

} else {

 right = left + 1600;

Building the game for the web and desktop 123

}

if (canvasSize.y < 1600) {

 bottom = canvasSize.y;

} else {

 bottom = top + 1600;

}

return Rect.fromLTRB(left, top, right, bottom);

Here, we check whether the screen's width is less than 1600, and if it is, we set the
right value to the screen's width. Otherwise, to get the right value, we add the
left value and the map's width, 1600.

Then we do the same calculation for the bottom value using the screen's height
instead.

Next, we create a rectangle to store our values and return it from the function.

Important Note
All the values are based on the absolute pixel values to help us when we
calculate the positions of the components, and especially the HUD, which must
align closely with the corners.

4.	 Finally, we add the following import at the top of the file to resolve the references
to the Vector2 and Rect classes we use in this function:

import 'package:flame/extensions.dart';

Now that we have the maths sorted for calculating the bounds when the screen resizes,
let's start applying this to our components.

Fixing the sprites
We will start with George and the enemies, which have a top-level base class of
Character. So, let's listen for the game resize event in that class:

1.	 Open the character.dart file and add the following variable to the
Character class to keep track of the original position of the sprite:

late Vector2 originalPosition;

124 Scaling the Game for Web and Desktop

2.	 Next, let's add the code to listen for the game resize event by overriding the
onGameResize function that is part of the Component class, which all our sprites
inherit from. Then we adjust the current position based on originalPosition
and the current game screen bounds, as shown here:

@override

void onGameResize(Vector2 canvasSize) {

super.onGameResize(canvasSize);

Rect gameScreenBounds =

 getGameScreenBounds(canvasSize);

position = Vector2(originalPosition.x +

 gameScreenBounds.left, originalPosition.y +

 gameScreenBounds.top);

}

3.	 Now that we have the code for handling the resizing, let's add the imports at the top
of this file:

import 'package:goldrush/utils/math _ utils.dart';

import 'package:flame/extensions.dart';

With the Character base class resizing now handled, it's very easy to fix George
and the enemies. We just need to store the original position in the constructor
and the sprites will move correctly when the screen is resized by their callback
to onGameResize, which is handled in their Character base class.

4.	 So, open the george.dart file and change the constructor to this:

George({required this.hud, required Vector2 position,

 required Vector2 size, required double speed}) :

 super(position: position, size: size, speed:

 speed) {

 originalPosition = position;

 }

5.	 Next, open the skeleton.dart file and change the constructor to this:

Skeleton({required Vector2 position, required Vector2

 size, required double speed}) : super(position:

 position, size: size, speed: speed) {

Building the game for the web and desktop 125

 originalPosition = position;

}

6.	 Then, open the zombie.dart file and change the constructor to this:

Zombie({required Vector2 position, required Vector2

 size, required double speed}) : super(position:

 position, size: size, speed: speed) {

 originalPosition = position;

}

Now that we have fixed our main sprites, let's fix the Coin and Water components.

Fixing the coin and water components
To start fixing the water and coin components, perform the following steps:

1.	 Open the coin.dart file, change the Coin class constructor, and add a variable
for the original position like this:

Coin({required Vector2 position, required Vector2

 size}) :

 originalPosition = position,

 super(position: position, size: size);

late Vector2 originalPosition;

2.	 Add the following onGameResize function to the Coin class:

@override

void onGameResize(Vector2 canvasSize) {

 super.onGameResize(canvasSize);

 Rect gameScreenBounds =

 getGameScreenBounds(canvasSize);

 position = Vector2(originalPosition.x +

 gameScreenBounds.left, originalPosition.y +

 gameScreenBounds.top);

}

126 Scaling the Game for Web and Desktop

3.	 And finally for the Coin class, let's add the imports at the top of the file:

import 'dart:ui';

import 'package:goldrush/utils/math _ utils.dart';

The code we have added to the Coin class is similar to what we added to the
Character classes where we store the originalPosition in the constructor,
and then use this value with the new screen size when the game gets resized to
calculate our new position.

Let's do the same for the Water class.

4.	 Open the water.dart file, change the Water class constructor, and add a variable
for the original position like this:

Water({required Vector2 position, required Vector2

 size, required this.id}) :

 originalPosition = position,

 super(position: position, size: size);

late Vector2 originalPosition;

5.	 Add the following onGameResize function to the Water class:

@override

void onGameResize(Vector2 canvasSize) {

 super.onGameResize(canvasSize);

 Rect gameScreenBounds =

 getGameScreenBounds(canvasSize);

 position = Vector2(originalPosition.x +

 gameScreenBounds.left, originalPosition.y +

 gameScreenBounds.top);

}

6.	 And finally for the Water class, let's add the imports at the top of the file:

import 'package:goldrush/utils/math _ utils.dart';

import 'dart:ui';

Now that we have fixed the sprites, let's fix the background and the tile map.

Building the game for the web and desktop 127

Fixing the background and tile map
For our tile map, we currently use TiledComponent, which itself extends from the
Component class. This is the base class for all other components, and this class doesn't
itself have a position. This is a problem for tracking the game bounds for the tile map.
So, the solution for this is to wrap our TiledComponent around another class, which
we will name TileMapComponent.

TileMapComponent is itself a position component and we will make
TiledComponent a child of the new TileMapComponent class. By doing this,
we can freely position this new class when the screen resizes.

So, let's continue and add this new wrapper class:

1.	 In the components folder, create a new file called tilemap.dart and add the
following code:

import 'package:flame/components.dart';

import 'package:flame _ tiled/flame _ tiled.dart';

import 'package:flutter/material.dart';

import 'package:goldrush/utils/math _ utils.dart';

class TileMapComponent extends PositionComponent {

 TileMapComponent(this.tiledComponent) {

 add(tiledComponent);

 }

 TiledComponent tiledComponent;

 @override

 void onGameResize(Vector2 canvasSize) {

 super.onGameResize(canvasSize);

 Rect gameScreenBounds =

 getGameScreenBounds(canvasSize);

 if (canvasSize.x > 1600) {

 double xAdjust = (canvasSize.x - 1600) / 2;

 position = Vector2(gameScreenBounds.left +

 xAdjust, gameScreenBounds.top);

128 Scaling the Game for Web and Desktop

 } else {

 position = Vector2(gameScreenBounds.left,

 gameScreenBounds.top);

 }

 size = Vector2(1600, 1600);

 }

}

In this new class, we take TiledComponent via the constructor and add it as
a child component, so it will be positioned in the same position as this class. Then,
in the onGameResize function, we are adjusting the position and fixing the size
of this component to the map size, 1,600 x 1,600.

Moving on to the Background class, in this class, we want to remove the
position and size settings – that happens currently in the onLoad function
– by removing this function and then setting position and size in the
onGameResize function.

2.	 Open the background.dart file, remove the onLoad function completely,
and add the following code:

@override

void onGameResize(Vector2 canvasSize) {

 super.onGameResize(canvasSize);

 Rect gameScreenBounds =

 getGameScreenBounds(canvasSize);

 if (canvasSize.x > 1600) {

 double xAdjust = (canvasSize.x - 1600) / 2;

 position = Vector2(gameScreenBounds.left +

 xAdjust, gameScreenBounds.top);

 } else {

 position = Vector2(gameScreenBounds.left,

 gameScreenBounds.top);

 }

 size = Vector2(1600, 1600);

}

Building the game for the web and desktop 129

As with the TileMapComponent object we just added, this sets position and
size based on the new screen size, after a resize.

Important Note
Please note that onGameResize is always called when the component is first
created and then again any time after that if the screen is resized. Therefore, we
don't need to do anything on onLoad anymore.

3.	 Next, let's add the imports:

import 'package:goldrush/utils/math _ utils.dart';

import 'dart:ui';

4.	 Finally for the Background class, we are going to change the constructor to
increase the priority of the component to ensure that touch events are being
picked up currently. Please change the constructor to the following:

Background(this.george) : super(priority: 20);

In the next section, we will discuss how to fix the HUD components.

Fixing the HUD components
Now let's move on to fixing the HUD components.

Currently, in our HUD, we use the margins to adjust the joystick, run button, and
score text locations based on the corners of the screen. There are some known issues
at present with the Flame library when the game screen resizes that prevent this from
working correctly.

So, we will rewrite part of the HUD to use position instead of margins, and then we can
apply our usual calculations of getting the game screen bounds and adjusting the position
of the HUD components when the screen resizes.

As in step 2 of the Fixing the background and tile map section, with the Background
class, we are going to remove the onLoad functionality and do the resizing in the
onGameResize function. We are also going to split this function in two. The first time
onGameResize is called, we need to create the HUD components and add them as
children adjusting their positions based on the screen size. Every time after that when
onGameResize is called, we will just update the HUD components' new positions.

130 Scaling the Game for Web and Desktop

To keep track of this, we will create a variable called isInitialised to track whether
we have set up the HUD components already and call the correct code based on that:

1.	 Open the hud.dart file and add the isInitialised variable at the top of
the class:

bool isInitialised = false;

2.	 Remove the onLoad function and add the following code:

@override

void onGameResize(Vector2 canvasSize) {

 super.onGameResize(canvasSize);

 Rect gameScreenBounds =

 getGameScreenBounds(canvasSize);

 if(!isInitialised) {

 } else {

 }

}

3.	 In the first if code block that checks whether isInitialised is false, add the
following code:

final joystickKnobPaint =

 BasicPalette.blue.withAlpha(200).paint();

final joystickBackgroundPaint =

 BasicPalette.blue.withAlpha(100).paint();

final buttonRunPaint =

 BasicPalette.red.withAlpha(200).paint();

final buttonDownRunPaint =

 BasicPalette.red.withAlpha(100).paint();

joystick = Joystick(

knob: CircleComponent(radius: 20.0, paint:

 joystickKnobPaint),

background: CircleComponent(radius: 40.0, paint:

 joystickBackgroundPaint),

Building the game for the web and desktop 131

position: Vector2(gameScreenBounds.left + 100,

 gameScreenBounds.bottom - 80),

);

runButton = RunButton(

button: CircleComponent(radius: 25.0, paint:

 buttonRunPaint),

buttonDown: CircleComponent(radius: 25.0, paint:

 buttonDownRunPaint),

position: Vector2(gameScreenBounds.right - 80,

 gameScreenBounds.bottom - 80),

onPressed: () => {}

);

scoreText = ScoreText(position: Vector2(

 gameScreenBounds.left + 80, gameScreenBounds.top +

 60));

add(joystick);

add(runButton);

add(scoreText);

positionType = PositionType.viewport;

isInitialised = true;

Most of this code will be familiar from our previous onLoad function. Then we set
up our HUD components using position instead of margins and add them as
children. And then set the isInitialised variable to true, so we don't rerun
this code every time the game is resized and keep on adding more components.

You may notice at this point that the child components show an error as they don't
currently have a position value, but we will fix that soon.

4.	 In the else block, please add the following code, which will update the position of
components that we created in the if block:

joystick.position = Vector2(gameScreenBounds.left +

 80, gameScreenBounds.bottom - 80);

runButton.position = Vector2(gameScreenBounds.right –

 80, gameScreenBounds.bottom - 80);

scoreText.position = Vector2(gameScreenBounds.left +

 80, gameScreenBounds.top + 60);

132 Scaling the Game for Web and Desktop

5.	 And finally, for the HudComponent class, let's add the imports at the top of the file:

import 'package:goldrush/utils/math _ utils.dart';

Next, let's fix the Joystick and ScoreText classes to use positions instead
of margin. Note the RunButton class already had the position value in its
constructor, so we don't need to update the RunButton class.

6.	 Open the joystick.dart file and change the constructor to the following:

Joystick({required PositionComponent knob,

 PositionComponent? background, Vector2? position}) :

 super (knob: knob, background: background,

 position: position);

7.	 We can also now remove the unused import:

import 'package:flutter/material.dart';

8.	 Open the score_text.dart file and change the constructor to the following:

ScoreText({Vector2? position}) : super (position:

 position);

Now let's switch our focus to tying up all these component changes by making
changes in our main.dart file to use the new game screen bounds.

9.	 Open the main.dart file and add the following imports at the top of the file:

import 'package:goldrush/components/tilemap.dart';

import 'package:goldrush/utils/math _ utils.dart';

In the onLoad function, we want to set up the originalPosition variables
for each component by calculating the game screen bounds and using the result
from this along with our intended position to adjust the position when the
screen is resized.

10.	 Continuing in the main.dart file, let's add the code to get the game screen bounds
below where we call onLoad in the base class:

@override

Future<void> onLoad() async {

 super.onLoad();

Building the game for the web and desktop 133

 Rect gameScreenBounds =

 getGameScreenBounds(canvasSize);

11.	 Next, let's update where we create the George class by passing the position. Let's
also change the priority of the George component to fix a loading issue that
only happens on the web:

var george = George(hud: hud, position:

 Vector2(gameScreenBounds.left + 300,

 gameScreenBounds.top + 300), size: Vector2(48.0,

 48.0), speed: 40.0);

add (george);

children.changePriority(george, 15);

12.	 Where we create and load the TiledComponent data, we now need to wrap it
with our new TileMapComponent:

final tiledMap = await

 TiledComponent.load('tiles.tmx', Vector2.all(32));

add(TileMapComponent(tiledMap));

13.	 Let's change the positions of the Skeleton and Zombie classes next:

if (index % 2 == 0) {

 add(Skeleton(position: Vector2(position.x +

 gameScreenBounds.left, position.y +

 gameScreenBounds.top), size: Vector2(32.0,

 64.0), speed: 60.0));

} else {

 add(Zombie(position: Vector2(position.x +

 gameScreenBounds.left, position.y +

 gameScreenBounds.top), size: Vector2(32.0,

 64.0), speed: 20.0));

}

14.	 Next, let's fix the Coin class with the new position:

double posCoinX = (randomX * 32) + 5 + gameScreenBounds.
left;

double posCoinY = (randomY * 32) + 5 + gameScreenBounds.
top;

134 Scaling the Game for Web and Desktop

15.	 And next, let's fix the Water class' position:

add(Water(position: Vector2(rect.x +

 gameScreenBounds.left, rect.y +

 gameScreenBounds.top), size: Vector2(rect.width,

 rect.height), id: rect.id));

16.	 And finally for the user interface issues, let's update the camera so that when it
follows George, it considers the new game screen bounds:

camera.followComponent(george, worldBounds:

 Rect.fromLTWH(gameScreenBounds.left,

 gameScreenBounds.top, 1600, 1600));

If you have not previously set up the app for the web, you may need to run the following
command in the project folder to create the web folder for the project: flutter
create.

Note
All these changes will modify the existing lines in place and use the new game
screen bounds along with an initial position where needed.

Now that we have fixed the user interface issues, let's look at why the music isn't playing in
the background.

Setting background music
Modern browsers such as Chrome, Safari, and Firefox block websites from playing
audio in the background until the user has interacted with the page to ensure that this
is what the user really wants. Websites often open pop up sites that annoy users with
advertisements. So, the companies that make these browsers added measures such as
preventing background audio to give the user more control over these annoying popups.

The browsers specifically don't want background music attempting to play when a page
is first loaded, which we are trying to do by starting the music in our game's onLoad
function. To fix this for our game temporarily, we can click on the padlock icon that is to
the left of the website address and enable any sound permissions in Chrome. Then refresh
the page and you will hear the background music again.

Setting Flutter Web build parameters 135

Figure 8.2 – Audio permissions in the Chrome browser

This is fine for development, but obviously not great for your players who may visit your
website. In the final chapter, Chapter 11, Finishing the Game, we will add some setting
screens to the game and allow the player to turn on background music based on a user
interface interaction. This will allow the user to turn the music on or off, based on the
player's preferences.

In the next section, we will discuss build parameters that we can set to improve the
performance of Flutter Web.

Setting Flutter Web build parameters
If you run the game now using Chrome as the device, you will see you can resize the
browser window and the page will resize, and components will be updated based on this,
although when running the game, the performance isn't great. So, let's discuss how we
compile the code for a release and deploy it via a web server for better performance.

136 Scaling the Game for Web and Desktop

When building a web release, we must pass a parameter to the flutter build web
command to indicate the web renderer we want to choose from these two options:

•	 html: Choose this web renderer if you are optimizing download size over
performance.

•	 canvaskit: Choose this web renderer if you are prioritizing performance and
pixel-perfect consistency across platforms.

We will use canvaskit as performance is more important than download size
nowadays, but just be aware that html is there as an option if you ever need it:

1.	 Let's run the command that will create our release build.

Open a command-line terminal in the project folder and type the following:
flutter build web --release --web-renderer canvaskit

When this has finished compiling, it will save the web code in the build/web
folder.

2.	 Next, let's run the web server from the build/web folder:

cd build/web/

python3 -m http.server 8000 &

Here, we move to the folder where the web code is and run the web server.

We are using the build in web server that the Python language provides for free.

If you don't have Python installed, please go online and install it from https://
www.python.org/downloads/ before running this command.

If you have your own web host, you can also upload the contents of the build/web
folder to your web host.

3.	 With the web server running our game, open any browser and enter
http://localhost:8000/ in the browser's address bar.

The game will load, and you will see it running in your browser. You will also notice
it loads and runs a lot faster than running it via the Chrome device.

When you have finished playing the game on the web, you should shut down the
web server. Because the web server is running in the background, we need to bring
it to the foreground first to shut it down.

https://www.python.org/downloads/
https://www.python.org/downloads/

Navigating with key events 137

4.	 In your terminal, press the Enter key to start a new line and then type the following
to bring the web server to the foreground:

fg

5.	 Next, hit the keys Ctrl + C to stop the web server.

If you need to start and stop the web server as you add new pieces of code that you want
to test, please be aware of a couple of things:

•	 You should always compile a release build from the project folder.

•	 You should always run the web server from the build/web folder.

In this section, we addressed the issues with dynamically sized user interfaces and discussed
a workaround for the background audio issue. We also discussed how to create a release
build for the web and tested this on a web server.

In the next section, we will discuss how to navigate with physical keys.

Navigating with key events
Our game already allows the player character to be controlled with either the joystick or
touch events, but for websites, a more common method would be to use the keyboard to
control the character.

In this section, we will add keyboard control as another option, so let's get started.

To listen for keyboard events in the game, we first have to tell our game that some of our
components will listen for keyboard events:

1.	 Open the main.dart file and change the class definition to include the
HasKeyboardHandlerComponents mixin:

class GoldRush extends FlameGame with HasCollidables,

 HasDraggables, HasTappables,

 HasKeyboardHandlerComponents {

2.	 Add the following input import at the top of the same file:

import 'package:flame/input.dart';

138 Scaling the Game for Web and Desktop

3.	 Open the george.dart file where we will listen for keyboard events and change
the class definition to add the KeyboardHandler mixin:

class George extends Character with KeyboardHandler {

4.	 Add the following import at the top of the same file:

import 'package:flutter/services.dart';

5.	 Next, let's add some variables to store the state of the keys that are pressed:

bool keyLeftPressed = false, keyRightPressed = false,

 keyUpPressed = false, keyDownPressed = false,

 keyRunningPressed = false;

In our game, we will use the following key mappings:

a. Left = A key

b. Right = D key

c. Up = W key

d. Down = S key

e. Run = R key

6.	 Override the following function to the George class to listen for key events and set
the variable set up in step 5 correctly, if any of the keys are pressed:

@override

bool onKeyEvent(RawKeyEvent event,

 Set<LogicalKeyboardKey> keysPressed) {

 if (event.data.keyLabel.toLowerCase().contains('a'))

 { keyLeftPressed = (event is RawKeyDownEvent); }

 if (event.data.keyLabel.toLowerCase().contains('d'))

 { keyRightPressed = (event is RawKeyDownEvent); }

 if (event.data.keyLabel.toLowerCase().contains('w'))

 { keyUpPressed = (event is RawKeyDownEvent); }

 if (event.data.keyLabel.toLowerCase().contains('s'))

 { keyDownPressed = (event is RawKeyDownEvent); }

 if (event.data.keyLabel.toLowerCase().contains('r'))

 { keyRunningPressed = (event is RawKeyDownEvent); }

Navigating with key events 139

 return true;

}

Here, we check whether the key event data key label equals the letter we mapped,
and then set the appropriate variable if the key is pressed.

Note that we convert the data to lowercase in case the player has the caps lock
pressed on the keyboard, which would generate a key event of S and not s.

7.	 Add the following import to resolve the key classes:

Import 'package:flutter/services.dart';

8.	 At the top of the update function and below our call to super.update(dt);,
let's change the speed value based on whether the run button is pressed or whether
the r key is pressed. Also, we will create a Boolean to track whether we are moving
using the keys if any of our variables from step 5 are set to true:

speed = (hud.runButton.buttonPressed ||

 keyRunningPressed) ? runningSpeed : walkingSpeed;

final bool isMovingByKeys = keyLeftPressed ||

 keyRightPressed || keyUpPressed || keyDownPressed;

9.	 Below this, in the update function, we have a check – if the joystick is non-zero,
meaning that it is being used. This check looks like this:

if (!hud.joystick.delta.isZero()) {

Let's add an else if clause at the end of that if block for our key movement and
add the following code, which will go between the if block and the else block:

} else if (isMovingByKeys) {

 movePlayer(dt);

 playing = true;

 movingToTouchedLocation = false;

 if (!isMoving) {

 isMoving = true;

 audioPlayerRunning = await

 FlameAudio.loopLongAudio('sounds/running.wav',

 volume: 1.0);

 }

140 Scaling the Game for Web and Desktop

 if (keyUpPressed && (keyLeftPressed ||

 keyRightPressed)) {

 animation = upAnimation;

 currentDirection = Character.up;

 } else if (keyDownPressed && (keyLeftPressed ||

 keyRightPressed)) {

 animation = downAnimation;

 currentDirection = Character.down;

 } else if (keyLeftPressed) {

 animation = leftAnimation;

 currentDirection = Character.left;

 } else if (keyRightPressed) {

 animation = rightAnimation;

 currentDirection = Character.right;

 } else if (keyUpPressed) {

 animation = upAnimation;

 currentDirection = Character.up;

 } else if (keyDownPressed) {

 animation = downAnimation;

 currentDirection = Character.down;

 } else {

 animation = null;

 }

This code works the same as the way the joystick handles movement, by trying
to move our player if it doesn't collide with the water and playing the walking
steps sound.

Then it sets the animation and currentDirection variables correctly based
on the key pressed.

10.	 In the stopAnimations function, let's reset the movement keys when animations
are stopped:

void stopAnimations() {

 animation?.currentIndex = 0;

 playing = false;

Summary 141

 keyLeftPressed = false;

 keyRightPressed = false;

 keyUpPressed = false;

 keyDownPressed = false;

}

If you run the game now on the Chrome device, you will be able to control George with
the keys on the keyboard.

Summary
In this chapter, we converted the game to work on the web by fixing user interface
issues when resizing the browser window and allowing movement to be controlled
via the keyboard.

In the next few chapters, we are going to start tackling the more advanced topics of game
development, starting in the next chapter with implementing advanced graphical effects.

We will use particle effects to make our enemies explode when we kill them and use layers
to create cool shadow effects for our sprites.

Questions
1.	 Why doesn't music play in the background when a web page first loads?
2.	 Why does resizing the game window cause our graphics to be drawn incorrectly?
3.	 Why do we have to wrap TiledComponent in another class to fix the user

interface issues with it?
4.	 Which web renderers are available for building a web release?
5.	 What mixin do we need to use to listen for keyboard events?

Part 3:
Advanced Games

Programming

This part is about advanced games programming techniques to give your game extra
polish and realism.

We will discuss advanced graphical effects to make your game stand out, along with
building different screens for your game. We also discuss how to make your enemies
appear to be intelligent by chasing the player and navigating around obstacles.

This part contains the following chapters:

•	 Chapter 9, Implementing Advanced Graphics Effects

•	 Chapter 10, Making Intelligent Enemies with AI

•	 Chapter 11, Finishing the Game

9
Implementing

Advanced Graphics
Effects

So far in the book, we have used graphics for animating sprite components and
drawing tile maps, but there is a lot more that we can do to improve the visual
aspect of the game.

In this chapter, we are going to discuss how to use particles and shadows to improve our
game. We will use particle effects to make the coins and enemies explode when they are
collided with and we will use layers to add a shadow effect to our sprites. These are simple
yet efficient ways to improve our game visuals that run very quickly and don't affect the
frame rate too much, so they are worth using to improve our game.

We will cover the following topics in this chapter:

•	 What are particle effects?

•	 Animating with particles

•	 Creating shadows with layers

146 Implementing Advanced Graphics Effects

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter09.

What are particle effects?
Particle effects are an easy way to create dynamic effects such as fire, smoke, explosions,
and magical effects for our games. Particles have various properties that can be changed,
which include the following:

•	 How long a particle lives

•	 How often a new particle is created

•	 The position where the particle is created

•	 The angle, distance, and speed of travel

•	 What colors the particles should be

•	 How physics affects the particles

A good example of a particle effect is fireworks. Fireworks explode in a variety of colors
and travel at different speeds and angles as they vanish into nothing in the sky after
a short time.

Flame supports many types of particle effects, which you can see examples of at
https://examples.flame-engine.org/#/Rendering_Particles. These
are discussed in more detail in the Flame documentation at https://docs.flame-
engine.org/1.0.0/particles.html, but let's summarize some of the different
types of particles here for your reference:

•	 MovingParticle – Moves the child particle between two points during
its lifetime

•	 AcceleratedParticle – Applies basic physics-based effects to the particle,
such as gravity or speed dampening

•	 CircleParticle – Draws circles in different sizes

•	 SpriteParticle – Uses sprite images in your particle

•	 ComputedParticle – For more advanced control of the particle, which may
need computed values to affect the particle

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter09
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter09
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter09
https://examples.flame-engine.org/#/Rendering_Particles
https://docs.flame-engine.org/1.0.0/particles.html
https://docs.flame-engine.org/1.0.0/particles.html

Animating with particles 147

In our game, we want to make the coins explode outward while fading out the alpha value.
We will make these particles yellow to match the coin color. For our enemies, we will reuse
the exploding effect but instead make the particles red to look like blood.

We will use ComputedParticle from the previous list of different types of particles, as
we want to split the exploding particles into 12 pieces. Each of these pieces will be moving
outward from the center at increasing 30-degree angles, which we will calculate with basic
trigonometry. The particle will be generated and calculated from these values, and the
opacity will be adjusted as it fades out based on the particle's progress.

Remember, particles have a lifespan that we can set. So, we will fade out the particle when
it gets nearer to the end of its lifespan.

The actual drawing will be a simple circle with the position, angle, and opacity calculated.

Let's get started with the code for the particles in the next section.

Animating with particles
In this section, we will show you how to create great particle effects and animate them.
First, we will create a new file for storing our effects in the utils folder, which we can
use from anywhere:

1.	 In the utils folder, create a new file called effects.dart and open the file.
2.	 Add the following code for creating the exploding particle:

Particle explodingParticle(Vector2 origin,

 MaterialColor color) {

 double distanceToMove = 15.0;

 return Particle.generate(

 lifespan: 0.8,

 count: 12,

 generator: (i) {

 double angle = i * 30;

 double xx =

 origin.x + (distanceToMove * cos(angle));

 double yy =

 origin.x + (distanceToMove * sin(angle));

 Vector2 destination = Vector2(xx, yy);

148 Implementing Advanced Graphics Effects

 return ComputedParticle(renderer: (Canvas

 canvas, Particle particle) {

 Paint paint = Paint()..color =

 color.withOpacity(1.0 - particle.progress);

 canvas.drawCircle(Offset.zero, 1.5, paint);

 }).moving(from: origin, to: destination);

 }

);

}

Here, we have the explodingParticle function, which returns
ComputedParticle. The function takes an origin position for where the particle
effect should start along with a color that we should use for the particle.

We want the particle to move a short distance of 15.0, which we use to calculate its
destination position based on the angle of travel from the origin. The final destination
where the particle will travel to over its lifespan is calculated using trigonometry.

We generate 12 particles at 30-degree angles, which is 12 * 30 = 360 degrees,
to cover all directions outward. The lifespan is set to just under a second at 0.8,
so the explosion happens rapidly and fades away.

Finally, this is wrapped with MovingParticle, which moves the particle between
the origin and the destination over its lifespan.

After the lifespan time has expired, the particle is removed from the game, so we
don't need to manually monitor this as Flame does this for us by removing expiring
particles from the game.

3.	 At the top of the effects.dart file, add the following imports for the
particle effects:

import 'package:flame/game.dart';

import 'package:flame/particles.dart';

import 'package:flutter/material.dart';

import 'dart:math';

Let's continue by creating the particle effects in the George class when our player
collides with a coin or an enemy.

Creating shadows with layers 149

4.	 Open the george.dart file and add the following imports:

import 'package:goldrush/utils/effects.dart';

import 'package:goldrush/main.dart';

import 'package:flutter/material.dart';

5.	 In the George class definition, we need to get a reference to the GoldRush class.
This is needed so that when we create the particle, we base the origin position based
on the world coordinates. So, let's update that code:

class George extends Character with KeyboardHandler,
HasGameRef<GoldRush> {

6.	 In the onCollision function, let's add the particle to the game via the gameRef
reference we just added in the previous code block, where we check whether the
collision is with Zombie or Skeleton:

if (other is Zombie || other is Skeleton) {

gameRef.add(ParticleComponent(explodingParticle(other.
position, Colors.red)));

7.	 Next, let's do the same where we check whether we have collided with a
Coin object:

if (other is Coin) {

gameRef.add(ParticleComponent(explodingParticle(other.
position, Colors.yellow)));

If you run the game now, you will see the coins explode into yellow particles when
we collide with them, and the enemies explode into red particles when we collide
with them.

Now that we have some nice-looking particle effects in the game, let's move on to adding
some shadows using layers in the next section.

Creating shadows with layers
Layers are a feature of Flame that allow us to group things we want to draw together or
draw a prerendered graphic that doesn't change much. In your game, you may have a
background that you draw once from a combination of sprites or images, but then it is
used as a static image that you use as a background and draw the other moving sprites
on top.

150 Implementing Advanced Graphics Effects

It would be inefficient to keep creating this background if it isn't changing. So, you can
create it once and store it as a layer, which you can draw before you render the other
game graphics.

In Flame, there are two types of layers:

•	 PreRenderedLayer – For static images

•	 DynamicLayer – For things that are moving

PreRenderedLayer would be suitable for backgrounds due to its static nature.

You may also want to change something in the layer and regenerate the layer, and then
cache the resulting image in the layer. For example, you may want to create a weather
effect in the game where the raindrops are updated and redrawn on the layer, and then
this layer is drawn on top of your game world to give the impression it is raining or
snowing. For this type of effect, DynamicLayer would be more suitable.

Flame also provides something called layer processors, which allow us to add effects to the
entire layer. Currently, the only supported layer processor is called ShadowProcessor,
which applies a shadow to the entire layer. It is possible to make your own processors
though by extending the LayerProcessor class if you want to create other processors.

We can use ShadowProcessor in combination with our sprites to create a shadow
behind each sprite to make them really stand out in the game. This is done by drawing
our sprites into a layer after applying the shadow processor.

Let's get started by creating our layer class:

1.	 Open the effects.dart file and below the explodingParticle function
we added earlier in Step 2 of the Animating with particles section, add the following
class definition for our layer:

class ShadowLayer extends DynamicLayer {

 final Function renderFunction;

 ShadowLayer(this.renderFunction) {

 preProcessors.add(ShadowProcessor(color:

 Colors.black, offset: const Offset(4, 4)));

 }

 @override

 void drawLayer() {

Creating shadows with layers 151

 renderFunction(canvas);

 }

}

Here, we create a class called ShadowLayer, which is a DynamicLayer. In the
constructor, we add the shadow processor to the list of preprocessors so that the
shadow effect gets applied before drawing the sprites. Note that this is a list of
preprocessors, so if you do create your own, you can add multiple effects to your
layers. Also, there is a postprocessors list available too, which adds effects after
your sprites are drawn if you need it.

We set the shadow to be black and drawn at an offset 4, 4 pixels away from where
the sprite is drawn to give the effect of a shadow behind the sprite.

In the constructor, we pass a function reference that is then used when we call
drawLayer(). We do this because we want to hold a reference to the super class
render function, so that we delegate the drawing to the layer. So, our sprites will
draw onto the layer where they will have their shadow applied, and then we call on
the super class to draw the layer to the game, based on whatever animation frame
we are currently rendering.

Because of this, when we render our sprites in the render function, we will render
into ShadowLayer and not make a call to the super class there, or we will be
drawing twice, which is inefficient and not needed.

2.	 Now, at the top of the file, let's add an import for the layer package:

import 'package:flame/layers.dart';

Next, let's set up the Coin class first and add a shadow to all our coins, so we can see
how this delegated rendering works in practice.

3.	 Open the coin.dart file and add the following import at the top of the file:

import 'package:goldrush/utils/effects.dart';

4.	 In the Coin class, add a variable to store ShadowLayer below where we store
originalPosition:

 late Vector2 originalPosition;

 late ShadowLayer shadowLayer;

152 Implementing Advanced Graphics Effects

5.	 Add the following import for ShadowLayer:

import 'package:goldrush/utils/effects.dart';

6.	 At the bottom of the onLoad function, add the following line to initialize the
shadow layer:

shadowLayer = ShadowLayer(super.render);

Here, we can see we are passing the function reference to the super class
render function.

7.	 At the bottom of the Coin class, add the following override for the render function,
which delegates the drawing to shadowLayer:

@override

void render(Canvas canvas) {

 shadowLayer.render(canvas);

}

If you run the game now, you will see our shadow effect behind all the coins in
the game.

Figure 9.1 – Shadow effects on the sprites

Creating shadows with layers 153

Let's continue and apply the same effect to our enemy sprites and our player
sprite, George.

We will add this to the Character class, which is the base class for George and
our enemies, to reduce duplicate code.

8.	 Open the character.dart file and add the following import for the
layer package:

import 'package:goldrush/utils/effects.dart';

9.	 In the Character class, add a variable to store ShadowLayer below where
we store originalPosition:

 late Vector2 originalPosition;

 late ShadowLayer shadowLayer;

10.	 Add the following onLoad function to the Character class to initialize the
shadow layer:

@override

Future<void> onLoad() async {

 super.onLoad();

 shadowLayer = ShadowLayer(super.render);

}

11.	 Finally, add the render function to the Character class to delegate the drawing
to shadowLayer:

@override

void render(Canvas canvas) {

 shadowLayer.render(canvas);

}

Note that you may see a message about calling the render function of the super
class, but we want to avoid this as it will be called from within our shadow layer,
so it is omitted here.

If you run the game now, you will see that our player and enemies now have lovely shadow
effects behind them, which really makes them stand out nicely against the background!

154 Implementing Advanced Graphics Effects

Summary
In this chapter, we learned how to apply advanced graphical effects to our game to make
the game look much better. We added particle effects to make the coins and enemies
explode when collided with and added some nice shadow effects behind our player,
enemies, and coins.

In the next chapter, we are going to discuss how to make our player and enemies appear
more intelligent by adding game Artificial Intelligence (AI) to them.

We will change the behavior of the enemies – instead of us attacking them, they will attack
us! The enemies will chase George when he gets too near to them and will still explode
when they hit us, but we will add a health value to George that will decrease if we collide
with an exploding enemy. Also, the enemies will only chase if they are facing and can see
George and are within a certain distance.

Plus, we will add some further obstacles to our game and show you how to use pathfinding
to make sure George walks around obstacles in our game world when moving, by
touching the screen.

Questions
1.	 What are some properties that are common to particle effects?
2.	 Why do particles need to be removed from the game by setting a lifespan?
3.	 What are some examples of particles that Flame supports?
4.	 What are the different types of layers that Flame supports?
5.	 Why do we need to delegate the rendering of the super class to the layer class?

10
Making Intelligent

Enemies with AI
The game is coming along nicely now, but there isn't really any challenge to it yet. We
collect the coins or kill our enemies, but that's all very predictable and easy.

In this chapter, we are going to change the game to make it more challenging by adding
a health value to our player, George, and making the enemies chase us instead, reducing
our health for each enemy that hits us. If our health gets to zero, we lose the game. So, the
objective will be to collect the coins while avoiding the enemies.

To make the enemies appear more intelligent, we will use very simple Artificial
Intelligence (AI) algorithms for the enemies to detect when George is nearby and, when
they can see him, their movement will change from random movements to moving in
George's direction to attack him.

We will then add some extra water to the map as obstacles and discuss how to move from
your origin to the destination while avoiding the water and walking around it to reach
your destination.

156 Making Intelligent Enemies with AI

We will cover the following topics in this chapter:

•	 Making enemies chase the player

•	 Navigating obstacles with pathfinding

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter10.

The following steps will add a library to the pubspec file to assist with pathfinding, along
with some new and updated assets:

1.	 In this chapter, we will use updated versions of the tile map files, so please download
these updated tile map files and place them in the assets/tiles folder,
overriding the existing files:

https://github.com/PacktPublishing/Building-Games-with-
Flutter/blob/main/chapter10/assets/tiles/tiles.tmx

https://github.com/PacktPublishing/Building-Games-with-
Flutter/blob/main/chapter10/assets/tiles/tiles.tsx

2.	 Open the pubspec.yaml file and add the following dependency:

a _ star _ algorithm: ^0.3.0

3.	 In this chapter, we will use a modified version of the sprite sheet for our character
George, so let's update that.

Download the george.png image from the following URL, https://raw.
githubusercontent.com/PacktPublishing/Building-Games-with-
Flutter/main/chapter10/assets/images/george.png, and overwrite
the file in the assets/images folder. Note that as we already have a reference in
the pubspec.yaml file for george.png, we don't need to do anything further
with it.

4.	 Save the file and allow pub get to download this dependency and validate
the assets:

flutter pub get

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter10
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter10
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter10
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/assets/tiles/tiles.tmx
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/assets/tiles/tiles.tmx
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/assets/tiles/tiles.tsx
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/assets/tiles/tiles.tsx
https://raw.githubusercontent.com/PacktPublishing/Building-Games-with-Flutter/main/chapter10/assets/images/george.png
https://raw.githubusercontent.com/PacktPublishing/Building-Games-with-Flutter/main/chapter10/assets/images/george.png
https://raw.githubusercontent.com/PacktPublishing/Building-Games-with-Flutter/main/chapter10/assets/images/george.png

Making enemies chase the player 157

Making enemies chase the player
There are two main challenges associated with making enemies chase the player that we
need to overcome, making the player believe the enemy is showing intelligence and is
hunting them down. They are as follows:

•	 The first is that the player is near enough to the enemy so that the enemy may see
or hear them. You don't want enemies to start chasing players when they are on the
other side of the map, otherwise, the effect is lost and isn't believable.

•	 The second is that the enemy is facing the player when they start chasing. If the
enemy is walking in the opposite direction, the player might be able to sneak past
them without the enemy noticing. So we won't make them chase when they are not
even facing the player.

To overcome these challenges, we will track the distance between the player and enemy at
every update, which happens 60 times per second. If the distance between them is below
a certain value, and if the angle between the player and enemy indicates that the enemy
is facing the player, then we will start the enemy chasing the player. If the player can run
away from the enemy, then the enemy will return to its normal movement pattern. We will
also change the enemies' speed so that the normal movement speed is trebled when they
are chasing.

Let's get started by making the enemies chase the player:

1.	 Open the character_enemy.dart file and, outside of the class definition, add
the following enum for defining whether we are walking about or chasing the player:

enum EnemyMovementType {

 WALKING,

 CHASING

}

2.	 In the EnemyCharacter class, below the constructor, add the following variables:

Character playerToTrack;

EnemyMovementType enemyMovementType =

 EnemyMovementType.WALKING;

static const DISTANCE _ TO _ TRACK = 150.0;

double walkingSpeed, chasingSpeed;

158 Making Intelligent Enemies with AI

Here, we create variables for tracking the character we want to chase and set the
enemy movement type to walking by default. We set a constant for the distance
check that we will use for detecting whether the enemy is near to the player and
create some values for maintaining the walking and chasing speeds.

3.	 Change the constructor to the following code to set up some of the values we
created in step 2:

EnemyCharacter({required Character player, required

 Vector2 position, required Vector2 size, required

 double speed}) :

 playerToTrack = player,

 walkingSpeed = speed,

 chasingSpeed = speed * 2,

 super(position: position, size: size, speed: speed);

Here, we set up the chasing speed to be twice as fast as our walking speed.

4.	 Let's import the math_utils.dart file so that we can use the getAngle
function to determine whether this enemy is facing the player:

import 'package:goldrush/utils/math _ utils.dart';

5.	 Next, let's create a function called isPlayerNearAndVisible to check that the
player is close by and visible to the enemy by facing in the player's direction:

bool isPlayerNearAndVisible() {

 bool isPlayerNear = position.distanceTo(

 playerToTrack.position) < DISTANCE _ TO _ TRACK;

 bool isEnemyFacingPlayer = false;

 var angle =

 getAngle(position, playerToTrack.position);

 if ((angle > 315 && angle < 360) || (angle > 0 &&

 angle < 45)) { // Facing right

 isEnemyFacingPlayer = currentDirection ==

 Character.right;

 } else if (angle > 45 && angle < 135) {

 // Facing down

 isEnemyFacingPlayer = currentDirection ==

 Character.down;

Making enemies chase the player 159

 } else if (angle > 135 && angle < 225) {

 // Facing left

 isEnemyFacingPlayer = currentDirection ==

 Character.left;

 } else if (angle > 225 && angle < 315) {

 // Facing up

 isEnemyFacingPlayer = currentDirection ==

 Character.up;

 }

 return isPlayerNear && isEnemyFacingPlayer;

}

In the isPlayerNearAndVisible function, we first measure the distance to the
player from our enemy position, check whether it is less than our DISTANCE_TO_
TRACK value, and then set the isPlayerNear value to true if needed.

Next, we use the getAngle function to get the angle between the enemy and
player and then use this to check whether the angle we are facing matches the
currentDirection we are facing. If this matches, then the enemy is facing the
player and we set the isEnemyFacingPlayer flag as needed.

If both values are true, we will return true from this function to indicate the
enemy is near enough and can see the player, which we will use in the update
function next to change the enemyMovementType from walking to chasing.

6.	 Let's rewrite the update function in the EnemyCharacter class. First, remove
the existing update function and replace it with the code from GitHub at
https://github.com/PacktPublishing/Building-Games-with-
Flutter/blob/main/chapter10/lib/components/character_
enemy.dart.

Let's go through the changes we have made to this function.

The previous update code is now in a switch/case block if the enemy is in the
default walking state. We initially call the isPlayerNearAndVisible function
we created in Step 4 and set our current speed to chasingSpeed if the player is
near and visible, and to walkingSpeed if not.

If the enemyMovementType is WALKING, the enemy will walk around as
before, but when CHASING, the enemy will run directly toward the player at the
increased speed.

https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/character_enemy.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/character_enemy.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/character_enemy.dart

160 Making Intelligent Enemies with AI

7.	 Now, let's update the Skeleton and Zombie classes to take a reference to the
player class, George, which extends from the Character class, and pass this
reference to the EnemyCharacter base class.

Open the skeleton.dart file and change the constructor like this:
Skeleton({required Character player, required Vector2

 position, required Vector2 size, required double

 speed}) : super(player: player, position:

 position, size: size, speed: speed) {

8.	 Open the zombie.dart file and change the constructor like this:

Zombie({required Character player, required Vector2

 position, required Vector2 size, required double

 speed}) : super(player: player, position:

 position, size: size, speed: speed) {

9.	 Add the following import to resolve the reference to Character in the constructor:

import 'package:goldrush/components/character.dart';

10.	 Let's now tie all this together by passing the player reference to the enemy classes.

Open the main.dart file and change the code where you add the enemies
like this:

if (index % 2 == 0) {

 add(Skeleton(player: george, position:

 Vector2(position.x + gameScreenBounds.left,

 position.y + gameScreenBounds.top), size:

 Vector2(32.0, 64.0), speed: 20.0));

} else {

 add (Zombie(player: george, position:

 Vector2(position.x + gameScreenBounds.left,

 position.y + gameScreenBounds.top), size:

 Vector2(32.0, 64.0), speed: 20.0));

}

Making enemies chase the player 161

11.	 Also, because we changed the George's image earlier, we need to update the new size
to 32, 32, where we create George in the onLoad function of main.dart:

var george = George(barrierOffsets: barrierOffsets,

 hud: hud, position: Vector2(gameScreenBounds.left +

 300, gameScreenBounds.top + 300), size:

 Vector2(32.0, 32.0), speed: 40.0);

If you run the game now and move George near to an enemy while the enemy is
facing George, you will see the enemy chase George. If the enemy catches George,
you will see the enemy collide and explode, as discussed previously in the Animating
with particles section of Chapter 9, Implementing Advanced Graphics Effects.

Let's change this now to give George a health value of 100%, which we will reduce
by 25% every time an enemy attacks George and not increase our score. In the next
chapter, we will add some user interface screens that will show Game Over when
George's health reaches 0, but for now, we will just get the mechanism working.

12.	 In the hud folder, create a new file called health_text.dart and add the
code from here: https://github.com/PacktPublishing/Building-
Games-with-Flutter/blob/main/chapter10/lib/components/hud/
health_text.dart.

This code block will look very familiar as it's the same as the ScoreText
component, but with all the references to score changed to health.

13.	 Open the hud.dart file and add the following import:

import

 'package:goldrush/components/hud/health _ text.dart';

14.	 At the top of the HudComponent class, add the following variable to show the
HealthText value:

late HealthText healthText;

15.	 In the onGameResize function, at the bottom of the if block, change the code as
follows to initialize the healthText value and add it to the HUD:

scoreText = ScoreText(position: Vector2(

 gameScreenBounds.left + 80, gameScreenBounds.top +

 60));

healthText = HealthText(position: Vector2(

https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/hud/health_text.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/hud/health_text.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/hud/health_text.dart

162 Making Intelligent Enemies with AI

 gameScreenBounds.right - 80, gameScreenBounds.top +

 60));

add(joystick);

add(runButton);

add(scoreText);

add(healthText);

16.	 At the bottom of the else block in the same function, add the following line
to update the healthText position:

joystick.position = Vector2(gameScreenBounds.left +

 80, gameScreenBounds.bottom - 80);

RunButton.position = Vector2(gameScreenBounds.right -

 80, gameScreenBounds.bottom - 80);

scoreText.position = Vector2(gameScreenBounds.left +

 80, gameScreenBounds.top + 60);

healthText.position = Vector2(gameScreenBounds.right -

 80, gameScreenBounds.top + 60);

17.	 Open the george.dart file and, in the variables section at the top, add the
following code:

int health = 100;

18.	 In the onCollision function, let's change the if block to check whether we have
hit a Zombie or Skeleton, so the code looks like the following:

if (other is Zombie || other is Skeleton) {

 gameRef.add(ParticleComponent(explodingParticle(

 other.position, Colors.red)));

 other.removeFromParent();

 if (health > 0) {

 health -= 25;

 hud.healthText.setHealth(health);

 } else {

 // TODO: Show game over screen here

 }

Navigating obstacles with pathfinding 163

 FlameAudio.play('sounds/enemy _ dies.wav', volume:

 1.0);

}

If you run the code now, you will see the health value in the top-right corner, which
will reduce every time you collide with an enemy, as shown in the following figure:

Figure 10.1 – Health score reduced when hit by an enemy

In the next section, we will add some water obstacles to the map and discuss how to navigate
around them. We will also discuss how we can enhance our enemies' AI, meaning that they
will not chase you if they can't see you because they are blocked by a water obstacle.

Navigating obstacles with pathfinding
In this section, we will discuss how to move our character from A to B when there are
obstacles in the way. There are many solutions to this problem, but a common solution
in games development that we are going to use is called the A Star algorithm.

164 Making Intelligent Enemies with AI

The algorithm is an efficient way to calculate a route on a 2D grid. Remember, a tile map
is a 2D grid that uses tile IDs to represent what is drawn on the map. We provide the
algorithm with our grid coordinates for our start location (the current location of George)
and our end location (where we tap on the screen), along with a list of grid coordinates
for any obstacles that are in the way. The algorithm then returns a list of grid offsets that
represent a path, which we can follow to navigate to our touched location while avoiding
all obstacles!

Our initial challenge is that when we move George around, we are using pixels to
represent the location, but the algorithm works in grid coordinates. For instance, if George
was at the top left of the map (ignoring the water), his pixel coordinate might be 48, 48,
but his grid coordinate will be 1, 1.

Let's start by creating a new file with some helper functions that let us convert between
George's world coordinate (pixel) and his grid coordinate:

1.	 First, create and open a new file in the utils folder called map_utils.dart, and
then add the following code:

import 'package:flame/components.dart';

import 'package:flutter/material.dart';

const int TILE _ SIZE = 32;

Offset worldToGridOffset(Vector2 mapLocation) {

 double x =

 (mapLocation.x / TILE _ SIZE).floor().toDouble();

 double y =

 (mapLocation.y / TILE _ SIZE).floor().toDouble();

 return Offset(x, y);

}

Vector2 gridOffsetToWorld(Offset gridOffset) {

 double x = (gridOffset.dx * TILE _ SIZE);

 double y = (gridOffset.dy * TILE _ SIZE);

 return Vector2(x, y);

}

Navigating obstacles with pathfinding 165

Here, we have two functions for converting between the world and grid coordinates
while taking into account our tile size of 32 x 32.

Next, we will update our George class to update our code when we move to a
touched location, to first calculate the path with the A Star algorithm, and then
navigate along the path while changing the direction we are facing as we navigate
the path.

2.	 Open the george.dart file and add the following imports to the file:

import 'package:goldrush/utils/map _ utils.dart';

import

 'package:a _ star _ algorithm/a _ star _ algorithm.dart';

3.	 Next, add the following variables at the top of the class to keep track of the barrier
offset locations, our path to the destination, and our current path step:

List<Offset> barrierOffsets;

List<Offset> pathToTargetLocation = [];

int currentPathStep = -1;

4.	 Let's now update the constructor to pass in the barrierOffsets:

George({required this.barrierOffsets, required

 this.hud, required Vector2 position, required

 Vector2 size, required double speed}) : super(

 position: position, size: size, speed: speed) {

5.	 Next, let's update the moveToLocation function to set up the new variables:

void moveToLocation(TapUpInfo info) {

 pathToTargetLocation = AStar(

 rows: 50,

 columns: 50,

 start: worldToGridOffset(position),

 end: worldToGridOffset(info.eventPosition.game),

 withDiagonal: true,

 barriers: barrierOffsets

).findThePath().toList();

 targetLocation = info.eventPosition.game;

 faceCorrectDirection();

166 Making Intelligent Enemies with AI

As pathToTargetLocation[0] is the same as the current position, we set
currentPathStep to the next step, 1:

 currentPathStep = 1;

 targetLocation = gridOffsetToWorld(

 pathToTargetLocation[currentPathStep]);

 targetLocation.add(Vector2(16, 16));

 movingToTouchedLocation = true;

}

Here, we store the result of the A Star algorithm in the pathToTargetLocation
variable.

We pass in our number of rows and columns, which is the same as our map size, 50
x 50. We set the withDiagonal value to allow the path to take shortcuts, which
looks more natural. You can try setting this value to false when we run this code
to see the difference and to decide your preference. We pass in barrierOffsets,
which will be passed in via the constructor. Finally, we convert George's position
and the touched location to the grid offset coordinates. The result will be a path to
the location while avoiding the water obstacles.

If you load the updated map that we downloaded in the Technical requirements
section of this chapter into the Tiled application, you will see that we have placed
water obstacles in the center of the map, which we can use to test that the path
navigation works.

After getting the A Star result, we set targetLocation to be the touched
location, and then call a new function that we will define soon, called
faceCorrectDirection. This new function ensures that George is facing the
correct direction when he starts navigating the path to the target location.

Next, we set currentPathStep to start at 1, rather than at the start of the list in
position 0. This is because, when we get the result of the algorithm, it inserts our
current location at position 0 and, as we are already at that location, we don't need
to move there!

We then set targetLocation based on the offset at the currentPathStep
to 1 and convert this back to world coordinates for our movement. Remember, we
need to use grid coordinates in order for the algorithm to work, but we require
world coordinates for our movement in real pixels. Finally, we add a vector of 16,
16 to our targetLocation.

Navigating obstacles with pathfinding 167

This is because, when we convert to world coordinates, we are basing this on the
top-left corner of the tile, but we want to move George based on the center of the
tile, so we add 16, 16 to the x and y values of the vectors, which is half of the tile
size, 32.

Finally in this function, we set movingToTouchedLocation to true, which
starts George moving toward the targetLocation in the update function.

6.	 Next, we need to change the update function to walk along the path. This function
allows us to change the next path step by walking between each path step until we
reach the final point in the path.

In the previous step, we referenced a new function called
faceCurrentDirection, which we will also use again when we change the
update function, so let's create that first.

Below the update function, create a new function called
faceCurrentDirection and add the following code:

void faceCorrectDirection() {

 var angle = getAngle(position, targetLocation);

 if ((angle > 315 && angle < 360) || (angle > 0 &&

 angle < 45)) { // Facing right

 animation = rightAnimation;

 currentDirection = Character.right;

 }

 else if (angle > 45 && angle < 135) {

 // Facing down

 animation = downAnimation;

 currentDirection = Character.down;

 }

 else if (angle > 135 && angle < 225) {

 // Facing left

 animation = leftAnimation;

 currentDirection = Character.left;

 }

 else if (angle > 225 && angle < 315) {

 // Facing up

 animation = upAnimation;

168 Making Intelligent Enemies with AI

 currentDirection = Character.up;

 }

}

7.	 Finally in this step, we are going to change the update function to change the
targetLocation when each path step is taken until we reach our touched location.

Because the update function is quite large now, we are going to refactor this
function completely to make it easier to manage our code.

We will create three new functions for each movement type, moveByJoystick,
moveByKeyboard, and moveByTouch. We will move the relevant parts of the
update function into the first two functions, but for the third, we will do a rewrite
because we are now using our path around the obstacles.

Below our update function, add the following three empty function stubs to start:
void moveByJoystick(double dt) async {}

void moveByKeyboard(double dt) async {}

void moveByTouch(double dt) async {}

8.	 Next, add the code (available at https://github.com/PacktPublishing/
Building-Games-with-Flutter/blob/main/chapter10/
lib/components/george.dart) from the update function to the
moveByJoystick function.

9.	 Next, add the following code from the update function to the moveByKeyboard
function:

movePlayer(dt);

playing = true;

movingToTouchedLocation = false;

if (!isMoving) {

 isMoving = true;

 audioPlayerRunning = await FlameAudio.loopLongAudio(

 'sounds/running.wav', volume: 1.0);

}

if (keyUpPressed && (keyLeftPressed ||

 keyRightPressed)) {

https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/george.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/george.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter10/lib/components/george.dart

Navigating obstacles with pathfinding 169

 animation = upAnimation;

 currentDirection = Character.up;

} else if (keyDownPressed && (keyLeftPressed ||

 keyRightPressed)) {

 animation = downAnimation;

 currentDirection = Character.down;

} else if (keyLeftPressed) {

 animation = leftAnimation;

 currentDirection = Character.left;

} else if (keyRightPressed) {

 animation = rightAnimation;

 currentDirection = Character.right;

} else if (keyUpPressed) {

 animation = upAnimation;

 currentDirection = Character.up;

} else if (keyDownPressed) {

 animation = downAnimation;

 currentDirection = Character.down;

} else {

 animation = null;

}

10.	 Next, add the following code from the update function to the moveByTouch
function:

if (!isMoving) {

 isMoving = true;

 audioPlayerRunning = await FlameAudio.loopLongAudio(

 'sounds/running.wav', volume: 1.0);

}

movePlayer(dt);

double threshold = 2.0;

var difference = targetLocation - position;

if (difference.x.abs() < threshold &&

 difference.y.abs() < threshold) {

 if (currentPathStep < pathToTargetLocation.length –

170 Making Intelligent Enemies with AI

 1) {

 currentPathStep++;

 targetLocation = gridOffsetToWorld(

 pathToTargetLocation[currentPathStep]);

 targetLocation.add(Vector2(16, 16));

 } else {

 stopAnimations();

 audioPlayerRunning.stop();

 isMoving = false;

 movingToTouchedLocation = false;

 return;

 }

}

playing = true;

if (currentPathStep <= pathToTargetLocation.length) {

 faceCorrectDirection();

}

In the moveByTouch function, we have changed a few things – so let's go
through the parts that are different from our previous touch code discussed
in earlier chapters.

We still check whether our location after moving the player is within the
threshold, but we have increased the threshold to 2.0, which helps with
touch to move, especially when the character is running. If we have arrived at the
targetLocation, we check whether there are any more steps and increase
currentPathStep if there are more steps, and then update targetLocation
to the new path location. Once again, because each offset in the path relates to the
top-left corner of the grid cell, we add 16,16 to the target location to center it. If there
are no more steps, we stop the animation and sound.

At each step change, we adjust the direction the character is facing to ensure that
the character faces the direction of travel to the next path step.

Navigating obstacles with pathfinding 171

11.	 Now that we have our three movement functions defined, let's rewrite the simplified
update function. Replace the current update function in its entirety with the
following new code that uses our new movement functions:

@override

void update(double dt) async {

 super.update(dt);

 speed = (hud.runButton.buttonPressed ||

 keyRunningPressed) ? runningSpeed : walkingSpeed;

 final bool isMovingByKeys = keyLeftPressed ||

 keyRightPressed || keyUpPressed || keyDownPressed;

 if (!hud.joystick.delta.isZero()) {

 moveByJoystick(dt);

 } else if (isMovingByKeys) {

 moveByKeyboard(dt);

 } else {

 if (movingToTouchedLocation) {

 moveByTouch(dt);

 } else {

 if (playing) {

 stopAnimations();

 }

 if (isMoving) {

 isMoving = false;

 audioPlayerRunning.stop();

 }

 }

 }

}

Now that we have finished updating the George class, let's move on to the main
class to connect everything together.

12.	 Open the main.dart file and add the following import for the map utils functions:

import 'package:goldrush/utils/map _ utils.dart';

172 Making Intelligent Enemies with AI

13.	 In the onLoad function, below where we load and play the background music, add
the following code to initialize the water barriers and then pass these to the George
class via the constructor for use with pathfinding:

FlameAudio.bgm.initialize();

await FlameAudio.bgm.load('music/music.mp3');

await FlameAudio.bgm.play('music/music.mp3', volume:

 0.1);

final tiledMap = await TiledComponent.load(

 'tiles.tmx', Vector2.all(32));

add(TileMapComponent(tiledMap));

List<Offset> barrierOffsets = [];

final water =

 tiledMap.tileMap.getObjectGroupFromLayer('Water');

water.objects.forEach((rect) {

 if (rect.width == 32 && rect.height == 32) {

 barrierOffsets.add(worldToGridOffset(Vector2(

 rect.x, rect.y)));

 }

 add(Water(position: Vector2(rect.x +

 gameScreenBounds.left, rect.y +

 gameScreenBounds.top), size: Vector2(rect.width,

 rect.height), id: rect.id));

});

var hud = HudComponent();

var george = George(barrierOffsets: barrierOffsets,

 hud: hud, position: Vector2(gameScreenBounds.left +

 300, gameScreenBounds.top + 300), size:

 Vector2(32.0, 32.0), speed: 40.0);

add (george);

children.changePriority(george, 15);

Please note that we have moved the code for initializing the tile map and water
objects, meaning you can remove the other references for that in this function.

Summary 173

If you run the game now and use touch to move toward the center of the map inside of the
water barriers, you will see George walk around the water barriers to get to his location!

Summary
In this chapter, we improved our character and enemies by making them appear more
intelligent. The enemies now chase George if he is near enough and within their line of
sight, and George can now move around the map while avoiding obstacles.

In the final chapter, we will add some new screens to the game to tie everything together.

We will add a simple menu intro screen with a link to a settings screen and talk about how
we can navigate between screens within the game. We will also discuss how you could
improve the game further, how to monetize your games, and what else is worth learning
to expand your games' programming skills.

Questions
1.	 What function can we call to measure the distance between two positions to detect

whether an enemy is near a player?
2.	 What is the name of the algorithm we use for pathfinding in our game?
3.	 How can we convert between world and grid coordinates?
4.	 Why would we set withDiagonal to true in our pathfinding algorithm?
5.	 Why must we adjust the direction in which we are facing at each step of

our pathfinding?

11
Finishing the Game

The game is looking great and is nearly complete, but we want to tie up some loose ends in
this chapter to finish it off. At the moment, we only have the main game screen; however,
games often have many screens in them, such as a menu screen or settings screen.

In this chapter, we will add a few more screens and show you how to navigate between
them. We will create these screens with standard Flutter widgets and show you how you
can mix Flutter and Flame together. Specifically, in our settings screen, we will add an
option for controlling the music volume and persist the user's music volume preference,
and then use this when playing the game.

After wrapping up the game code, we will discuss a few other things to consider when
developing a game, such as how to make money from it, what else is worth learning as
you continue to learn more about game development, and where to get help when you
get stuck developing your games.

We will cover the following topics in this chapter:

•	 Wrapping up the game

•	 Monetizing your game

•	 What else should I learn?

•	 Where to get help?

176 Finishing the Game

Technical requirements
To examine the source from this chapter, you can download it from https://github.
com/PacktPublishing/Building-Games-with-Flutter/tree/main/
chapter11.

In this chapter, we will save the user's preference for the music volume, so let's add the
library for persisting this value in our game:

1.	 Open the pubspec.yaml file and add the following dependency:

shared _ preferences: ^2.0.15

2.	 Save the file and allow pub get to download this dependency and validate
the assets:

flutter pub get

In the next section, we will discuss the final code we need to add to the game to wrap
things up, including the game screens and navigation.

Wrapping up the game
In this section, we will add three new screens and navigate between these screens.

These screens are as follows:

•	 Menu screen: The first screen the player will see, with options to play the game, view
the settings, or exit the game.

•	 Settings screen: The settings allow us to change the music volume via a Slider
widget or go back to the menu screen.

•	 Game over screen: We will show this screen when the player's health is 0 and allow
them to go back to the menu screen to play again.

These three screens will use standard Flutter widgets; we will use Flutter navigation routes
to navigate between them and our game widget to play the game.

Let's get started by adding each of these screens.

https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter11
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter11
https://github.com/PacktPublishing/Building-Games-with-Flutter/tree/main/chapter11

Wrapping up the game 177

Adding a menu screen
In this section, we will add a menu screen to help us navigate between each of the game's
screens by following these steps:

1.	 In the project's lib directory, create a new folder called widgets to hold our new
widget screens.

2.	 Create three new files in the widgets folder called screen_menu.dart,
screen_settings.dart, and screen_gameover.dart.

3.	 Open the screen_menu.dart file and add the following code:

import 'package:flutter/material.dart';

import 'package:flutter/services.dart';

class MenuScreen extends StatelessWidget {

 const MenuScreen({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 backgroundColor: Colors.black,

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment:

 CrossAxisAlignment.center,

 children: [

 getGameTitle(),

 getGameMenu(context)

]

)

),

);

 }

178 Finishing the Game

 Widget getGameTitle() {}

 Widget getGameMenu(BuildContext context) {}

}

Here, we add a class called MenuScreen, which is StatelessWidget, and set
up the basic structure for the layout, where we will have a title at the top and a few
menu items that we can click on in the menu.

4.	 Let's expand the getGameTitle function to return a Text widget for the title:

Widget getGameTitle() {

 return Text('Gold Rush', style: TextStyle(color:

 Colors.yellow, fontSize: 64.0));

}

5.	 Next, we will expand the getGameMenu function to add menu options for
Play Game, Settings, and Exit Game; they will be Text widgets wrapped in
GestureDetector widgets so that they are clickable.

For the first two options, we will use navigator routes to move to the new screens,
and we will use a SystemNavigator function to exit the game:

Widget getGameMenu(BuildContext context) {

 return Padding(

 padding: const EdgeInsets.all(40.0),

 child: Column(children: [

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: GestureDetector(

 onTap: () {

 Navigator.pushNamedAndRemoveUntil(context,

 "/game", (r) => false);

 },

 child: Text('Play Game', style: TextStyle(

 color: Colors.blue, fontSize: 32.0))),

),

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: GestureDetector(

Wrapping up the game 179

 onTap: () {

 Navigator.pushNamedAndRemoveUntil(context,

 "/settings", (r) => false);

 },

 child: Text('Settings', style: TextStyle(

 color: Colors.blue, fontSize: 32.0))),

),

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: GestureDetector(

 onTap: () { SystemNavigator.pop(); },

 child: Text('Exit Game', style: TextStyle(

 color: Colors.red, fontSize: 32.0))),

),

]),

);

}

Here, we have a simple widget that draws the menu, which is a simple column of
menu items in the middle, with a title at the top and an exit option below the menu
items. Clicking on these options tells the navigator to change to a different page.

Here, you can see how the menu screen should look:

Figure 11.1 – The game menu screen, allowing you to play the game or view the settings

Next, let's continue for now with the settings screen.

180 Finishing the Game

Adding a settings screen
In this section, we will add a settings screen to allow us to choose the volume of the
background music by following these steps:

1.	 Open the screen_settings.dart file and add the code from here: https://
github.com/PacktPublishing/Building-Games-with-Flutter/
blob/main/chapter11/lib/widgets/screen_settings.dart.

In this code block, we will set up StatefulWidget this time, as we want to keep
track of the music volume value and persist this for using the SharedPreferences
library we added earlier in the Technical requirements section.

We store the current music volume in a variable called musicVolume. In the
initState function, we try and read this value from the shared preferences and
set it to 25% as a default if this has not been previously set.

Let's continue and build the UI for the settings screen by completing the
empty functions.

2.	 Here is the code for the getSettingsTitle function:

Widget getSettingsTitle() {

 return Padding(

 padding: const EdgeInsets.fromLTRB(0, 0, 0, 20),

 child: Text('Settings', style: TextStyle(color:

 Colors.yellow, fontSize: 64.0)),

);

}

Here, we return a Text widget for our title, which is styled in yellow and has a font
size of 64.

3.	 The following is the code for the getMusicVolumeLabel function:

Widget getMusicVolumeLabel() {

 return Text('Music Volume', style: TextStyle(color:

 Colors.blue, fontSize: 32.0));

}

Here, we return a Text widget for our volume label, which is styled in blue and has
a font size of 32.

https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter11/lib/widgets/screen_settings.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter11/lib/widgets/screen_settings.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter11/lib/widgets/screen_settings.dart

Wrapping up the game 181

The following is the code for the getVolumeSlider function:
Widget getVolumeSlider() {

 return SizedBox(

 width: 250.0,

 child: Slider(

 value: musicVolume,

 min: 0.0,

 max: 100.0,

 label: '${musicVolume.round()}',

 divisions: 4,

 onChanged: (double newMusicVolume) {

 SharedPreferences.getInstance().then((prefs)

 => prefs.setDouble('musicVolume',

 newMusicVolume));

 setState(() => musicVolume = newMusicVolume);

 }),

);

}

Here, we return a Slider widget wrapped around a fixed SizedBox widget
that has values for the music volume between 0 and 100. Whenever the slider
value is changed, we set the musicVolume value in the widget and save this
to the shared preferences.

4.	 The following is the code for the getBackLabel function:

Widget getBackLabel() {

 return GestureDetector(

 onTap: () { Navigator.pushNamedAndRemoveUntil(

 context, "/", (r) => false); },

 child: Text('Back', style: TextStyle(color:

 Colors.red, fontSize: 32.0))

);}

Here, we return a Text label to go back to the main menu and use Navigator to
return the player to the top-level route if this is clicked.

182 Finishing the Game

The following screenshot shows our settings screen along with a slider to set the
music volume:

Figure 11.2 – The Settings screen with the adjustable music volume

Now that the settings screen is complete, let's work on our final screen, which is the game
over screen.

Adding a game over screen
In this section, we will add a game over screen to let the user know the game has ended. To
do this, open the screen_gameover.dart file and add the code from here: https://
github.com/PacktPublishing/Building-Games-with-Flutter/blob/
main/chapter11/lib/widgets/screen_gameover.dart.

In this code block, we show a simple screen to indicate that the game is over and a link to
go back to the menu, where the user can play again, change the settings, or quit the game.

Here is the game over screen that is shown when George dies:

Figure 11.3 – The game over screen when George dies

https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter11/lib/widgets/screen_gameover.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter11/lib/widgets/screen_gameover.dart
https://github.com/PacktPublishing/Building-Games-with-Flutter/blob/main/chapter11/lib/widgets/screen_gameover.dart

Wrapping up the game 183

Now that we have our three extra screens, let's tie these together with navigation routes
and music volume.

Compiling all screens with navigation routes and
music volume
In this section, we will tie all the navigation together and also adjust the music volume,
based on the settings menu choice. To do this, we will follow these steps:

1.	 Open the main.dart file and import the screens and shared preference library:

import

 'package:goldrush/widgets/screen _ gameover.dart';

import 'package:goldrush/widgets/screen _ menu.dart';

import

 'package:goldrush/widgets/screen _ settings.dart';

import

 'package:shared _ preferences/shared _ preferences.dart';

2.	 Let's rewrite the main function to use routes. Replace the existing main function
with the following:

void main() async {

 WidgetsFlutterBinding.ensureInitialized();

 await Flame.device.fullScreen();

 await Flame.device.setLandscape();

 runApp(

 MaterialApp(

 debugShowCheckedModeBanner: false,

 title: 'Gold Rush',

 initialRoute: '/',

 routes: {

 '/': (context) => MenuScreen(),

 '/settings': (context) => SettingsScreen(),

 '/gameover': (context) => GameOverScreen(),

 '/game': (context) => GameWidget(game:

 GoldRush()),

184 Finishing the Game

 },

),

);

}

Here, we set the screen up as full-screen landscape as we did before in Chapter 7,
Designing Your Own Levels, but now we have four navigation routes defaulting, with
the initial route pointing to the menu screen.

3.	 In the onLoad function of the GoldRush class, let's read the musicVolume value
from shared preferences and set up the playback of the music with this value. Note
that if the player has not gone into the settings and changed this value, the volume
will default to 25%.

Returning to where the background audio is initialized, add the following code:
var musicVolume;

await SharedPreferences.getInstance()

 .then((prefs) => prefs.getDouble('musicVolume') ??

 25.0)

 .then((savedMusicVolume) => musicVolume =

 savedMusicVolume);

4.	 Next, change the line that starts playing the music to the following:

await FlameAudio.bgm.play('music/music.mp3', volume:

 (musicVolume / 100));

5.	 During the testing of the navigation, a bug was found where the enemies and coins
were invisible when playing the game for the first time. This is due to the z-order
priority being incorrect, which makes the map draw on top of the sprites. So, let's fix
that now by setting the priority higher.

In the same onLoad function, change the initialization of the Skeleton, like this:
var skeleton = Skeleton(player: george, position:

 Vector2(position.x + gameScreenBounds.left,

 position.y + gameScreenBounds.top), size:

 Vector2(32.0, 64.0), speed: 20.0);

children.changePriority(skeleton, 15);

add(skeleton);

Wrapping up the game 185

6.	 Next, update the Zombie initialization, like this:

var zombie = Zombie(player: george, position:

 Vector2(position.x + gameScreenBounds.left,

 position.y + gameScreenBounds.top), size:

 Vector2(32.0, 64.0), speed: 20.0);

children.changePriority(zombie, 15);

add(zombie);

7.	 And finally, for the sprites, update the Coin initialization, like this:

var coin = Coin(position: Vector2(posCoinX, posCoinY),

 size: Vector2(20, 20));

children.changePriority(coin, 15);

add(coin);

8.	 Now that we are done updating the navigation and music playback, let's fix one
last thing.

When George's health gets to 0, we want to trigger the navigation to show the game
over screen. Open the george.dart file and, in the onCollision function,
change the health check code block to the following:

if (health > 0) {

 health -= 25;

 hud.healthText.setHealth(health);

}

if (health == 0) {

 Navigator.pushNamedAndRemoveUntil(gameRef.buildContext

 !, "/gameover", (r) => false);

}

This will replace the previous else clause, where we had a to-do action to show the game
over screen.

We have now the complete code for the game! If you run the game now, you can see the
simple screens and navigate around them, and you can adjust the music volume from off
to full volume.

186 Finishing the Game

When you have built your own game, it would be great to sell the game, and who knows
– you may make the next successful blockbuster game, such as Angry Birds, and become
very rich! In the next section, we will discuss exactly that – how to make money from
your game.

Monetizing your game
Once you have developed your own game, you may want to try to make some money from
the game. There are a few ways to do this, depending on the platforms you wish to support.
But in this section, we will focus on the three most common ways so that you can decide
what is best for you, as there are pros and cons to each way.

The three main ways to monetize your game are as follows:

•	 Adverts

•	 In-app purchases

•	 Purchase

In the following subsections, we will discuss each of these options.

Adverts
There are many advert providers, and each provides its own libraries for Flutter. The
recommended one for mobile is Google's own Mobile Ads SDK, which Google provides
an official library for. This is easy to integrate, and you will make money by showing
adverts to the players within your game.

Be aware that overuse of adverts will annoy players, so please try and think of the
experience the user will get while playing the game to try and balance this out.

Let's look at the pros and cons of using adverts in your game:

•	 Pros:

a. Easy to integrate.

b. Repeat income from a constant revenue stream.

•	 Cons:

a. Can be annoying for users.

b. Money paid for adverts is quite low.

Now, let's look at another monetization option, in-app purchases.

Monetizing your game 187

In-app purchases
In-app purchases can be a great way to make money from your game. Generally, with this
type of game, you give it away free and then take small micropayments in the game, which
work through Google Play or Apple's App Store.

You are purchasing virtual goods that only exist in that game. For instance, in our game,
you can purchase extra lives or a better weapon to use in exchange for real money.

Be aware that some existing games that use in-app purchases have a reputation for paying
to win, where the user that is willing to pay to buy the best items in the game can win
the game easily. This is controversial, especially in multiplayer games where you can buy
success in the game.

From our view as developers, virtual goods provide an interesting way to monetize our
games. This is because the game assets are virtual, and they can be sold many times to
different players and provide a reliable, repeatable revenue stream.

Let's look at the pros and cons of using in-app purchases in your game:

•	 Pros:

a. You can sell the same virtual goods to many different users.

•	 Cons:

a. It can be fiddly to set up in the mobile developer portals.

b. It can be irritating to users if overused.

Now that we have discussed the pros and cons of in-app purchases, let's look at our final
option, purchase.

Purchase
One-time purchases are also another valid option for monetizing your app. You can set a
fixed price for your game that the users pay once.

Be aware that players tend to want to see updated content in the game, such as new levels.
So, if you only make money from a fixed price, you will be maintaining the game for free,
aside from any new sales you may make by updating the content.

188 Finishing the Game

Let's look at the pros and cons of using purchases in your game.

•	 Pros:

a. It's hassle free, and you only have to set the price once.

•	 Cons:

a. There's no repeat income from existing customers.

If you want to further read up on ways to monetize your game, please check out
https://flutter.dev/monetization, which goes into more detail.

In this section, we discussed ways of monetizing your game. In the next section, we will
discuss what else is worth learning to expand your game development knowledge.

What else should I learn?
Now you have mastered the basics of game development with Flame, let's look at what else
you can learn that are more advanced topics but are very useful in expanding your game
development knowledge.

Forge2d
A lot of games use advanced physics to make the games more realistic, such as using
gravity to affect how sprites jump and fall or calculating the trajectory of a falling bird
in Angry Birds.

There is a very good physics engine available called Forge2d, which is based on the
famous Box2d engine, which is worth investigating if you want to make your games
more realistic.

You can find everything you need to get started at https://docs.flame-engine.
org/1.0.0/forge2d.html.

Nakama
Single-player games can be a lot of fun, but games go to a whole new level when you
play them with your friends. Multiplayer game development is a very complex subject
to do from scratch, but it is a useful subject to learn and can improve your games a lot.
Fortunately, Flutter has a good library that handles all the complex stuff needed to build
multiplayer games, which works well with Flame.

https://flutter.dev/monetization
https://docs.flame-engine.org/1.0.0/forge2d.html
https://docs.flame-engine.org/1.0.0/forge2d.html

What else should I learn? 189

The library is called Nakama, which is discussed at https://heroiclabs.com/
docs/nakama/getting-started/, and the Flutter library for this is at
https://github.com/obrunsmann/flutter_nakama.

Nakama has many features. Here are a few of the things it can do:

•	 Multiplayer gaming between different players

•	 Real-time chat between players

•	 Leaderboards for tracking who has the highest score

•	 User accounts with logins

Nakama covers many more multiplayer features than we cover here, so it is recommended
that you check out their website (https://heroiclabs.com/docs/nakama/
getting-started/) for more information.

Rive
Rive is a cross-platform animation tool that allows you to export an animation and play
it back, using libraries specific to each platform. If you are familiar with the old Flash
animations, this is similar.

You can read more about Rive at https://rive.app/. The Flame library for Rive can
be found at https://pub.dev/packages/flame_rive.

What games shall I make?
Flame is suitable for all types of 2D games, so you can make whatever game you like. The
difficulty is that some types of games are more complicated to code than others.

If you plan on making role-playing games, which are very popular, be aware that these are
very complicated games to make, as they often simulate real-world mechanics and require
you to build a lot of content for the game.

Start simple with games such as tic-tac-toe and build up to games such as Sokoban or
Breakout, before moving on to platform games such as Mario.

There is a great article at https://gamefromscratch.com/just-starting-
out-what-games-should-i-make/ to give you some more ideas about what games
to make and in what order you should make them.

In the next section, we will discuss where to get help when you get stuck with
Flutter/Flame.

https://heroiclabs.com/docs/nakama/getting-started/
https://heroiclabs.com/docs/nakama/getting-started/
https://github.com/obrunsmann/flutter_nakama
https://heroiclabs.com/docs/nakama/getting-started/
https://heroiclabs.com/docs/nakama/getting-started/
https://rive.app/
https://pub.dev/packages/flame_rive
https://gamefromscratch.com/just-starting-out-what-games-should-i-make/
https://gamefromscratch.com/just-starting-out-what-games-should-i-make/

190 Finishing the Game

Where to get help?
There will be times when you are making your game that you will get stuck. You may not
know how to implement something or there might be a bug with the Flame library or
Flutter SDK, for instance.

Here, I have compiled a list of great resources where you can seek help if you get stuck:

•	 Flame Discord (https://discord.gg/5unKpdQD78): Here, you can ask the
Flame development team questions and get excellent advice on how to use Flame.

We especially want to thank Spydon, Erick, and Wolfen on the Flame Discord server
for all the help they gave while I worked on the book.

•	 Stack Overflow: The same people who monitor Flame Discord monitor Stack
Overflow, where you can also post questions. Be sure to tag your questions with
the #flame tag.

•	 Flame documentation: The Flame documentation can be found at https://
pub.dev/documentation/flame/latest/, and you can find many examples
and tutorials for Flame at https://github.com/flame-engine/flame/
tree/main/examples and https://github.com/flame-engine/
awesome-flame#articles--tutorials.

•	 Flutter community page: For more general Flutter help, please check out the Flutter
community page at https://flutter.dev/community, where you can find
links to the Flutter Discord and Slack channels.

In this section, we discussed where to get help when you get stuck with Flame or Flutter.

Summary
In this chapter, we learned how to mix our game widget with other Flutter widgets and
navigate between screens to complete our game. We also gave the player the option to
change the music volume on the settings screen.

We discussed options for monetizing your game and what to learn next to improve your
game development knowledge. Finally, we reviewed where to get help if you get stuck
with your game.

We have covered a lot in the book, and you now have the knowledge to build a variety of
2D games with Flutter and Flame. Good luck with your game development journey. I look
forward to seeing the games that you create.

https://discord.gg/5unKpdQD78
https://pub.dev/documentation/flame/latest/
https://pub.dev/documentation/flame/latest/
https://github.com/flame-engine/flame/tree/main/examples
https://github.com/flame-engine/flame/tree/main/examples
https://github.com/flame-engine/awesome-flame#articles--tutorials
https://github.com/flame-engine/awesome-flame#articles--tutorials
https://flutter.dev/community

Questions 191

Questions
1.	 What library should we use to persist simple data such as the music volume?
2.	 What options are there for monetizing your game?
3.	 Which Flutter class is used to change screens?
4.	 What is the main benefit of monetizing your game with in-app purchases?

Appendix: Answers

Chapter 1
1.	 The minimum constant frame rate Flutter draws at is 60 frames per second.
2.	 The graphics engine used by Flutter is Skia.
3.	 Android, iPhone, Mac, Linux, Windows, and the Web can be supported with Flutter.
4.	 Skia is an open-source graphics engine that provides graphics APIs for drawing

shapes, text, and images.
5.	 Dart supports both just-in-time and ahead-of-time compilation. Just-in-time

compilation provides great features like stateful hot reload while debugging, and
ahead-of-time compilation provides high performances when the game is released.

6.	 Stateful hot reload allows you to make a change to your code, reload it, and instantly
see the change (it's like painting with code!).

7.	 Dart uses fast garbage collection for short lived objects, allowing Dart to rebuild the
widget tree at 60 frames per second for smooth animation.

Chapter 2
1.	 deltaTime is the time that has elapsed between frames. This is used to ensure that

the frame rate stays constant across devices with different processing powers.
2.	 The Flame Component System allows us to build a flexible architecture for our

game which is essential as our game grows.
3.	 HitboxRectangle is used for detecting shapes that are squares or rectangles.

Chapter 3
1.	 A synopsis gives a high-level summary of the game's goals used to entice players to

play the game.
2.	 George's health will reduce by 25% when an enemy attacks him.

194 Appendix: Answers

3.	 George's score increases by 20 points for every gold coin collected.
4.	 Water is used to define boundaries that George or the enemies cannot cross.

Chapter 4
1.	 A sprite is a graphic or image asset that can be static or animated.
2.	 The functions createAnimationByColumn or createAnimationByRow

return a sprite animation list.
3.	 SpriteAnimationComponent reduces the amount of extra code we need as

animation is built into the component by design.
4.	 A range is specified using the to and from parameters to represent the start and

end animation frames.
5.	 A base class allows us to set up common behaviors that the sprites will share.

Chapter 5
1.	 A HUD is a Heads-Up Display. It represents a user interface that we want to draw

on top of our game, showing things like score and health.
2.	 To detect touches, we use the Tappable mixin.
3.	 A TextComponent is used to draw text on the screen.
4.	 A joystick has an inner control which needs to be dragged to the outer control to

register a value for the joystick's direction.

Chapter 6
1.	 We use the flame_audio library to add audio to our games.
2.	 Loading audio into a memory cache ahead of time improves your game's

performance, as we are usually going to play the same sound effects many times in
the game.

3.	 We need to clear the buffer to prevent holding onto the resource and causing
memory leaks, which may crash our game.

4.	 We need to listen for pause events when the game is backgrounded and resume
events when the game is brought back into focus.

5.	 We need to store a reference to the AudioPlayer that is returned for longer sound
effects, so we can control the sound if the game is paused or resumed.

6.	 We use the volume parameter passed to the play function of FlameAudio.

Chapter 7 195

Chapter 7
1.	 The Tiled application allows us to create tile maps that are much larger than the

physical screen of our game, by using tile sets made up of small tiles to represent
things like grass or water.

2.	 Tile maps reuse each tile, meaning that they take up much less memory than storing
a larger image.

3.	 Tile map data is stored in a 2D array to represent the width and height of the map.
4.	 We can use tile layers for representing the tiles and object layers for objects we want

to draw on top of the map.
5.	 To adjust the map as a sprite moves around, we use a camera and set up the

followComponent function with the component that we want to focus on while
it moves.

6.	 We can add collidable objects as an object layer in our tile map and then
create components from these by reading the object with the tile map
getObjectGroupFromLayer function.

7.	 A collidable object can be active, passive, or inactive. We use these to reduce the
amount of collision checks between collidable objects, which helps the game's
performance.

Chapter 8
1.	 Web browsers require audio permissions to be enabled when first loaded to prevent

web sites irritating the user with annoying noises.
2.	 Our game is set up with an initial size based on the dimensions of the screen. If this

changes, everything now needs to be recalculated, otherwise things like the joysticks
won't be positioned correctly.

3.	 The default TiledComponent doesn't need a position and size. but to fix issues
when resizing, we need to be able to recalculate these values. So, we wrap the
component in a PositionComponent to give us the position and size values.

4.	 We can use canvaskit for prioritizing performance or html for prioritizing
download size.

5.	 We use the KeyboardHandler mixin to listen for key events.

196 Appendix: Answers

Chapter 9
1.	 lifespan and count are common properties to set when using particles. They

represent how long the particle should be shown for and how many should be
shown, respectively.

2.	 Particles created a lot of objects very quickly and can use up a lot of memory, so we
need to free up the memory once the particle is no longer in use.

3.	 MovingParticle, CircleParticle, and ComputedParticle are examples
of particles that Flame supports.

4.	 Flame supports the PreRenderedLayer for static images and the
DynamicLayer for animated images.

5.	 We need to delegate the rendering of the super class to the layer class so that the
layer processor can do its work of generating the shadow image.

Chapter 10
1.	 We can use the distanceTo function to measure the distance between two

position vectors.
2.	 The algorithm we used in Gold Rush for pathfinding is known as A* (A Star).
3.	 We can multiply or divide the x or y position by the tile size to convert between

world and grid coordinates.
4.	 Turning withDiagonal to true provides more natural movement to our

characters, otherwise the characters will move at right angles which look robotic!
5.	 Every time we change direction, we must match the correct animation, or we will

get issues like the sprite appearing to walk backwards.

Chapter 11
1.	 To persist simple data, we use the shared_preferences library.
2.	 To monetize a game, we can use adverts, in-app purchases, or a fixed cost purchase.
3.	 The Navigator class is used to change screens in Flutter.
4.	 With in-app purchases, you can resell the same digital asset to many people for

a repeatable revenue stream.

Index

A
adverts

cons 186
pros 186
used, for monetizing game 186

ahead-of-time (AOT) 6
assets

organizing, in game 16-18
A Star algorithm 163

B
background music

playing 89, 90

C
character

moving, with onscreen controls 75-80
moving, with touch events 80-85

code
converting, to use components 22-28

collidable types
active 112
inactive 113
passive 113

components
working with 20

D
Dart

compilation types 5, 6
garbage collection 7
hot reload 6
native code 6, 7
thread control 7
using 5

dynamic objects
adding, to tile maps 103-108

E
enemies

making, to chase player 157-163

F
Flame

about 15, 189
DynamicLayer 150
game loop, adding 18

198 Index

PreRenderedLayer 150
reference link 109
render function 19
resources, for help 190
update function 18, 19

Flame Component System
about 20
components 21
reference link 21

FlameGame class 20, 21
Flutter

working with 5
Forge2d

about 188
reference link 188

frames per second (FPS) 5

G
game

assets, organizing 16-18
background music, playing 89, 90
game over screen, adding 182, 183
images, adding to 40, 41
menu screen, adding 177-179
monetizing 186
monetizing, purchases 187
monetizing, with adverts 186
monetizing, with in-app purchases 187
screens, adding 176
screens, compiling with navigation

routes and music volume 183-186
settings screen, adding 180-182
sound effects and music, volume

controlling 95, 96
sound effects, playing 90-95

game development knowledge
expanding 188

game, for web and desktop
background, fixing 127
background music, setting 134, 135
building 120, 121
coin and water components,

fixing 125, 126
Flutter Web build parameters,

setting 135, 136
HUD components, fixing 129-134
key events, navigating with 137-140
screen boundary, setting 122, 123
sprites, fixing 123-125
tile map, fixing 127-129

game frame 18
game loop

adding 18
Gold Rush game

planning 30-32
screen, designing 33-36

H
Heads Up Display (HUD) 66

I
images

adding, to game 40, 41
in-app purchases

cons 187
pros 187
used, for monetizing game 187

Index 199

J
just-in-time (JIT) 6

L
layers

about 149
used, for creating shadows 150-153

M
map navigation 108-111
monetization

reference link 188

N
Nakama

about 188
features 189
references 189

native bridge 6

O
object layer 103
obstacles

navigating, with pathfinding 163-172
onscreen controls

drawing 66-74
used, for moving character 75-80

P
particle effects

about 146
animating 148, 149

creating 147
example 146, 147

pathfinding
obstacles, navigating with 163-168

purchases
cons 188
pros 188
used, for monetizing game 187

Python
download link 136

R
resources, Flame

Flame Discord 190
Flame documentation 190
Flutter community page 190
Stack Overflow 190

Rive
about 189
references 189

S
screens, game

game over screen 176
menu screen 176
settings screen 176

ShadowProcessor 150
shadows

creating, with layers 149-153
shapes

drawing, on screen 41-45
simple example animation

creating 10-13
Skia Graphics Engine 5

200 Index

sound effects
playing 90-95
volume, controlling 95, 96

sound effects, Gold Rush game
coins 32
enemy dying 32
George movement 32

sprite
about 39
animation, setting up 47, 48
colliding with 52-64
moving, around screen 49-51

stateful hot reload 6

T
tile collisions

about 112
detecting 111
implementing 113-118

TileCraft Tile set-Ground
reference link 99

Tiled
about 99-101
download link 99

tile maps
about 99
displaying 103
dynamic objects, adding to 103-108
loading 102, 103

touch events
used, for moving character 80-85

U
user interface (UI) 6

﻿ 201

Hi!

I am Paul Teale, author of Building Games with Flutter. I really hope you enjoyed reading
this book and found it useful for increasing your productivity and efficiency in Flutter.

It would really help me (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on Building Games with Flutter here.

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/1801816980

Your review will help me to understand what's worked well in this book, and what could
be improved upon for future editions, so it really is appreciated.

Best Wishes,

Paul Teale

https://packt.link/r/1801816980

﻿ 203

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

204 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Flutter for Beginners – Second Edition
Thomas Bailey, Alessandro Biessek
ISBN: 978-1-80056-599-9

•	 Explore the core concepts of the Flutter framework and how it is used for cross-
platform development

•	 Understand the fundamentals of the Dart programming language

•	 Work with Flutter widgets and learn the concepts of stateful and stateless widgets

•	 Add animation to your app using animated widgets and advanced animations
techniques

•	 Master the complete development lifecycle, including testing and debugging

•	 Investigate the app release process to both mobile stores and the web

https://www.packtpub.com/product/flutter-for-beginners-second-edition/9781800565999

Other Books You May Enjoy 205

Flutter Cookbook

Simone Alessandria, Brian Kayfitz

ISBN: 978-1-83882-338-2

•	 Use Dart programming to customize your Flutter applications

•	 Discover how to develop and think like a Dart programmer

•	 Leverage Firebase Machine Learning capabilities to create intelligent apps

•	 Create reusable architecture that can be applied to any type of app

•	 Use web services and persist data locally

•	 Debug and solve problems before users can see them

•	 Use asynchronous programming with Future and Stream

•	 Manage the app state with Streams and the BLoC pattern

https://www.packtpub.com/product/flutter-cookbook/9781838823382

206 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

	Cover
	Title Page
	Copyright and credits
	Contributors
	About the reviewers
	Table of Contents
	Preface
	Part 1:
Game Basics
	Chapter 1: Getting Started with Flutter Games
	Technical requirements
	Working with Flutter
	Using Dart
	Compilation types
	Hot reload
	Native bridge
	Garbage collection
	Thread control

	Summarizing the book
	Flame
	Designing a game
	Graphics
	Input
	Sounds
	Level design
	Cross-platform games
	Advanced graphics effects
	Game AI
	Finishing the game

	Creating a simple example animation
	Summary
	Questions

	Chapter 2: Working with the Flame Engine
	Technical requirements
	Organizing the assets in your game
	Adding the game loop
	Update
	Render

	Working with components
	FlameGame
	Converting our code to use components

	Summary
	Questions

	Chapter 3: Building a Game Design
	Planning a game
	Designing the game screens
	Summary
	Questions

	Part 2:
Graphics and Sound
	Chapter 4: Drawing and Animating Graphics
	Technical requirements
	Drawing on the screen
	Working with sprite animation
	Moving a sprite around the screen
	Colliding with other sprites
	Summary
	Questions

	Chapter 5: Moving the Graphics with Input
	Technical requirements
	Drawing onscreen controls
	Moving our character with onscreen controls
	Moving our character with touch
	Summary
	Questions

	Chapter 6: Playing Sound Effects and Music
	Technical requirements
	Playing background music
	Playing sound effects
	Controlling the volume
	Summary
	Questions

	Chapter 7: Designing Your Own Levels
	Technical requirements
	Introduction to Tiled
	Loading a tile map
	Adding dynamic objects to the map
	Understanding map navigation
	Detecting tile collisions
	Understanding collisions
	Implementing collisions

	Summary
	Questions

	Chapter 8: Scaling the Game for Web and Desktop
	Technical requirements
	Building the game for the web and desktop
	Setting the new screen boundary
	Fixing the sprites
	Fixing the coin and water components
	Fixing the background and tile map
	Fixing the HUD components

	Setting background music
	Setting Flutter Web build parameters
	Navigating with key events
	Summary
	Questions

	Part 3:
Advanced Games Programming
	Chapter 9: Implementing Advanced Graphics Effects
	Technical requirements
	What are particle effects?
	Animating with particles
	Creating shadows with layers
	Summary
	Questions

	Chapter 10: Making Intelligent Enemies with AI
	Technical requirements
	Making enemies chase the player
	Navigating obstacles with pathfinding
	Summary
	Questions

	Chapter 11: Finishing the Game
	Technical requirements
	Wrapping up the game
	Adding a menu screen
	Adding a settings screen
	Adding a game over screen
	Compiling all screens with navigation routes and music volume

	Monetizing your game
	Adverts
	In-app purchases
	Purchase

	What else should I learn?
	Forge2d
	Nakama
	Rive
	What games shall I make?

	Where to get help?
	Summary
	Questions

	Appendix: Answers
	Index
	Other Books You May Enjoy

